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A B S T R A C T

We introduce a novel image-based virtual try-on model designed to replace a candidate’s garment with
a desired target item. The proposed model comprises three modules: segmentation, garment warping, and
candidate-clothing fusion. Previous methods have shown limitations in cases involving significant differences
between the original and target clothing, as well as substantial overlapping of body parts. Our model addresses
these limitations by employing two key strategies. Firstly, it utilises a candidate representation based on an
RGB skeleton image to enhance spatial relationships among body parts, resulting in robust segmentation and
improved occlusion handling. Secondly, truncated U-Net is employed in both the segmentation and warping
modules, enhancing segmentation performance and accelerating the try-on process. The warping module
leverages an efficient affine transform for ease of training. Comparative evaluations against state-of-the-art
models demonstrate the competitive performance of our proposed model across various scenarios, particularly
excelling in handling occlusion cases and significant differences in clothing cases. This research presents a
promising solution for image-based virtual try-on, advancing the field by overcoming key limitations and
achieving superior performance.
1. Introduction

The increasing popularity of e-commerce in the fashion industry
has created significant prospects for virtual try-on systems to enhance
consumers’ shopping experiences. Virtual try-on technology generates
a portrayal of an individual, showcasing the desired clothing item by
employing a deep learning model to fuse images of the candidate and
the selected apparel product. In order to provide a genuinely immersive
experience, the virtual try-on system must uphold the integrity of the
candidate’s posture, physique, and distinctive features while simulta-
neously ensuring a seamless and natural adaptation of the garment to
conform to the candidate’s body shape.

The initial iterations of virtual try-on models follow a two-stage
approach in generating the try-on image [1,2]. Subsequent researchers
have enhanced the fidelity of these models by incorporating a segmen-
tation module in their virtual try-on, enabling the preservation of non-
targeted body parts, such as the head and arms [3,4] and improving the
clothing warping process [3–6]. In recent developments, researchers
have introduced innovative normalisation layers to augment the quality
of image synthesis and enhance the efficacy of capturing input data [6,
7].

A limited number of researchers have examined how virtual try-on
models perform in scenarios where the sleeve of the target garment
differs from the candidate’s original clothing. Our investigations have
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revealed that certain previously acclaimed state-of-the-art models ex-
hibit unsatisfactory performance when confronted with such scenarios.
The implications of this observation highlight the need for further
investigation and discussion within the research community to address
this particular challenge and advance the capabilities of virtual try-
on models in accommodating variations in sleeve design. Moreover,
previous methodologies face considerable difficulty when dealing with
occlusion in poses [1–3]. Instances where the candidate’s arms are
crossed in front of their torso, pose a significant challenge for virtual
try-on models, as the accurate differentiation of these occluded body
parts becomes exceedingly complex. Consequently, such occlusion sce-
narios can lead to the generation of unrealistic and visually distorted
try-on images.

The correctness of the segmentation module’s output is paramount
in ensuring the fidelity of the virtual try-on model’s generated try-on
images. Through our analysis, we have identified a critical limitation
in previous works’ segmentation modules, specifically in cases where
the length of the target sleeve differs from that of the original garment.
Notably, the examples in Fig. 9 show that the segmentation module
encounters challenges in accurately rendering the arm label for long-
sleeved garments, consequently resulting in erroneous virtual try-on
outcomes. In regard to the occlusion problem, these models [1–3] rely
on an 18-keypoint pose map that lacks spatial information about the
https://doi.org/10.1016/j.image.2024.117189
Received 14 August 2023; Received in revised form 9 July 2024; Accepted 27 July
vailable online 16 August 2024 
923-5965/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
2024

rticle under the CC BY license ( http ://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/image
https://www.elsevier.com/locate/image
mailto:tasin.islam2@brunel.ac.uk
https://doi.org/10.1016/j.image.2024.117189
https://doi.org/10.1016/j.image.2024.117189
http://crossmark.crossref.org/dialog/?doi=10.1016/j.image.2024.117189&domain=pdf
http://creativecommons.org/licenses/by/4.0/


T. Islam et al. Signal Processing : Image Communication 129 (2024 ) 117189 
interconnections among key joints of the human body. Consequently,
in scenarios involving occlusion, the models face considerable difficulty
in accurately discerning and separating these interconnected joints. The
absence of spatial relationships within the pose map leads to poor
image synthesis.

This paper introduces a novel approach to virtual try-on, known
as Simplified Virtual Try-On (SVTON), aiming to overcome the chal-
lenges discussed earlier. SVTON incorporates an innovative segmenta-
tion module capable of generating highly accurate clothing segments
compared to previous methods. Additionally, SVTON effectively ad-
dresses the issue of occlusion by leveraging the RGB skeleton pose
image as the input, diverging from the conventional practice of util-
ising an 18-keypoint pose map as employed by previous approaches.
Notably, SVTON demonstrates improved efficiency due to containing
fewer convolutional layers in the modules, resulting in the accelerated
synthesis of try-on images.

SVTON encompasses three fundamental modules to enable its func-
tionality. The first module, the Predictive Human Parsing Module
(PHPM), facilitates the generation of segments for the torso and arms.
The segments outline these body regions’ boundaries, laying the foun-
dation for subsequent operations. The second component of SVTON is
the Geometric Matching Module (GMM), which undertakes the crucial
task of warping the selected garment. By employing geometric transfor-
mation techniques, GMM ensures proper alignment and fitment of the
clothing item onto the underlying body structure. The final module, the
Try-On Module (TOM), takes the warped garment generated by GMM
and effectively applies it to the candidate, resulting in the synthesised
appearance of the clothing item on the candidate.

The contributions presented in this paper are the following:

• The segmentation module demonstrates a remarkable ability to
generate accurate segments based on the target garment, inde-
pendent of the original garment’s influence.

• The integration of an RGB skeleton image represents a substantial
breakthrough in addressing the occlusion problem inherent in
virtual try-on systems. By leveraging the RGB skeleton image as
an input, our model can recognise the spatial relationship among
the key joints.

• The architectural optimisation employed in our model, featuring
a reduced number of convolutional layers, grants an advantage in
terms of synthesising try-on images faster compared to previous
approaches. This efficiency enhancement not only accelerates the
overall image synthesis process but also maintains a comparable
or superior level of output quality.

This manuscript represents an extension of a previous work we pub-
lished [8]. We conduct a broader scope of experimentation, including
an ablation study and evaluations conducted on additional datasets.
a broader scope of experimentation, including an ablation study and
evaluations conducted on additional datasets. The organisation of this
paper is as follows: We start by delving into the background of previ-
ous studies in Section 2. Subsequently, in Section 3, we describe our
novel model, SVTON. Furthermore, we present our empirical findings
and their corresponding analysis in Section 4. Lastly, drawing upon
the culmination of our experiments and results, we draw conclusive
insights in Section 5. Interested readers may access the source code for
our research, which is openly available at
https://github.com/1702609/SVTON.

2. Background

In this section, we undertake a comprehensive review of the gen-
erative model employed in virtual try-on systems as well as other
fashion-related applications. Our analysis will distinguish between the
various types of virtual try-on solutions currently available, explaining
their respective mechanisms and operational processes. Moreover, we
will critically evaluate the inherent limitations associated with these

virtual try-on methodologies, shedding light on their areas of weakness.

2 
2.1. Generative Adversarial Network (GAN)

Generative Adversarial Networks (GANs) [9] represent an innova-
tive approach that leverages two neural networks to achieve high-
quality image synthesis [10–13] and manipulation [14–16]. The funda-
mental principle of GANs involves a generator network that attempts to
deceive a discriminator network, which, in turn, learns to distinguish
between real and fake samples.

In order to control the generated output images in the realm of
GANs, the adoption of Conditional GAN (cGAN) [17] emerges as a
promising solution. Various methodologies exist for guiding the image
generation process within cGANs. Notable examples encompass the
utilisation of class labels [18,19], textual descriptions [20–23], at-
tributes [24], and sketches [10,25]. These techniques enable cGANs to
produce images aligned with specific criteria or desired characteristics.
Consequently, the applications of cGANs, particularly in the domains
of virtual try-on and fashion-related contexts [26,27], have gained
significant relevance.

A majority of virtual try-on models have incorporated the utilisation
of the GAN mechanism either as a whole or within specific modules [3,
4,28,29]. By integrating GANs into the virtual try-on framework, these
models have demonstrated the ability to generate try-on images with
exceptional fidelity.

However, it is crucial to acknowledge the challenges associated
with cGAN-based methods when confronted with substantial spatial
deformations between the target clothing and the pose of the in-
dividual. Notably, CP-VTON [2] has demonstrated instances where
cGAN-based approaches can exhibit unstable image generation un-
der such conditions. Consequently, it becomes imperative to develop
prerequisite methods that effectively guide cGANs during the image
synthesis process, mitigating potential issues arising from large spatial
deformations.

2.2. Diffusion model

In recent studies, the performance of diffusion models has surpassed
that of GANs in the domain of image synthesis [30]. These innovative
generative models operate by denoising a Gaussian distribution sample
iteratively until a coherent image is generated [31].

Like GANs, output images of diffusion models can be controlled
through textual descriptions [32] or even input images [33]. This
flexibility opens up various possibilities for their application in the
field of fashion. Several notable works have explored the utilisation of
diffusion models in fashion-related tasks. For instance, DreamPose [34]
leverages diffusion models to synthesise realistic fashion videos from
input fashion images. Additionally, DiffFashion [35] utilises diffusion
models to generate new textures for clothing items based on reference
appearance images.

Although integrating diffusion models into fashion synthesis is still
a relatively new phenomenon, it is evident that only a limited number
of studies have been conducted thus far. However, given the promising
results achieved and the potential of diffusion models in virtual try-on
applications, it is plausible to expect that their utilisation in this area
will become more prevalent in the near future.

2.3. 3D virtual try-on

3D virtual try-on methodologies leverage simulated 3D clothing
data to integrate and accurately apply garments onto a 3D avatar
seamlessly. This advanced method enables the precise representation
of intricate geometrical details, including the realistic rendering of
clothing wrinkles, regardless of the avatar’s pose or movement.

The Dressing Any Person (DRAPE) method [36] utilises a 3D ap-
proach to virtual fitting systems. The model training process involves
using a dataset comprising 3D avatars characterised by diverse shapes

in a consistent pose, as well as a dataset featuring a singular body shape
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navigating through a range of poses. Notably, the method integrates
a clothing deformation model performing geometrical transformations
such as rigid rotation and calculating clothing shape variations. This
model transfers the warped garments onto the 3D avatars by map-
ping the body shape parameters to the corresponding clothing shape
parameters, thereby ensuring a realistic and accurate virtual try-on.

Sekine et al. propose a method [37] that effectively addresses the
challenge of adjusting 2D clothing images to users by leveraging the
analysis of 3D body shape models derived from single-shot depth
images. Their approach entails an examination of the candidate’s body
shape, enabling the system to suggest appropriate clothing images
characterised by shape similarity. As a result, the proposed method
empowers candidates to virtually try on products that align with their
unique physique, thereby enhancing the practicality of the virtual
fitting experience.

ClothCap [38] comprises an automatic segmentation technique that
employs a 3D avatar as a reference to extract precise 3D scan sequences.
Additionally, it incorporates a sophisticated multi-mesh template track-
ing approach and a method specifically designed to adapt dynamic
clothing to diverse body shapes. Collectively, ClothCap has exhibited
exceptional capabilities in accurately dressing a 3D avatar with various
types of clothing items.

TailorNet [39] employs a simple multi-layer perceptron (MLP) to
predict the low-frequency geometry of clothing. For high-frequency
geometry, each model consists of an MLP that predicts deformation
based on the pose, and the weights of the mixture are determined using
a kernel that evaluates similarity in style and shape. Through various
experiments, the researchers demonstrate that TailorNet exhibits strong
generalisation to new poses, accurately predicts garment fit based on
body shape and retains detailed wrinkle information.

CloTH-VTON [40] introduces a hybrid methodology that combines
2D and 3D techniques. The proposed approach involves transforming
the target clothing’s 2D image into a 3D object, enabling more realistic
deformations through physics calculations. By adopting this strategy,
CloTH-VTON effectively utilises the strengths of the 2D method for gen-
erating or preserving body parts while also capitalising on the enhanced
realism and flexibility offered by the 3D approach. Another noteworthy
advancement in this field is M3D-VTON [41], which follows a similar
approach of integrating both 2D and 3D techniques. It employs a
2D image-based virtual try-on process and subsequently infers a 3D
representation of a person wearing the desired garments.

A critical limitation of 3D-based virtual try-on systems lies in their
heavy reliance on 3D measurement data, rendering them impractical
for integration within the context of online environments.

2.4. 2D virtual try-on

CAGAN [42] emerged as the pioneering model in the domain of 2D
virtual try-on. It features a single network integrating multiple images
to generate a try-on image. However, a significant drawback of this
approach lies in its reliance on both the target and original clothing
images during the inference process. Consequently, this dependency
poses a significant limitation to practical utilisation, as it requires con-
sumers to provide images of the original garment, which is unfeasible
in real-world scenarios.

VITON [1] and CP-VTON [2] stand out as practical models due to
their utilisation of the target clothing only. These models consist of two
stages: warping the garment and conducting the try-on. In the initial
stage, VITON employs Thin-Plate Spline (TPS) to align the candidate’s
body with the target garment. TPS parameters are calculated by es-
tablishing correspondences between keypoints on the target clothing
and the candidate’s body. However, TPS’s drawback lies in its potential
failure to preserve clothing logos and textures during the warping
process.

To address this limitation posed by TPS, CP-VTON introduces the
Spatial Transformation Network (STN) [43] in their model, featur-

ing convolutional layers that extract high-level features from both
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the candidate and target clothing. These features are subsequently
combined and fed into a regressor network responsible for predicting
the optimal parameters for TPS. By leveraging this enhanced warping
process, CP-VTON significantly improves the overall quality of garment
alignment.

ACGPN [3] and LA-VITON [44] assert that the utilisation of STN
alone is inadequate for effectively controlling TPS transformations,
as evidenced by instances where STN failed to prevent distortions in
clothing texture and pattern caused by TPS. In order to address this
concern, both ACGPN and LA-VITON have devised respective solutions.

ACGPN tackles the issue by imposing a constraint on TPS that
restricts shape deformation. Specifically, ACGPN employs second-order
difference constraints on the TPS to prohibit unreasonable distortions in
the shape of the garment and prevent undesirable texture disruptions.
This approach effectively preserves the integrity of the garment’s shape
and ensures the preservation of its texture.

On the other hand, LA-VITON introduces a novel loss function
known as the Grid Interval Consistency (GIC) loss. By focusing on the
absolute difference between the 𝑥 and 𝑦 coordinates of the grid to be
mapped, the GIC loss enforces consistency in the grid intervals, thereby
mitigating distortions in the clothing texture and pattern.

Various models have proposed alternative approaches to enhance
the performance and control of TPS. For instance, KP-VTON [45]
leverages keypoint prediction in the target clothing as control points
for TPS. This strategy enables finer control over the warping process,
leading to further refinement of the try-on results.

WAS-VTON [46] incorporates Neural Architecture Search (NAS)
techniques to discover clothing category-specific warping networks.
By customising the warping module based on the specific clothing
category, WAS-VTON achieves improved accuracy and effectiveness in
the virtual try-on process.

Furthermore, CP-VTON+ [47], KP-VTON, and VITON-HD [6] have
introduced modifications in their candidate representation to ensure
that the warping module receives relevant and meaningful information.
CP-VTON+ addresses the issue of misclassification by correcting the
segmentation that wrongly categorised the neck and chest as back-
ground. In the case of KP-VTON, it replaces the conventional human
parser with DensePose [48], a more precise body parts estimation
method that is unaffected by the clothing worn by the candidate.
This substitution enhances the accuracy of body part alignment during
the warping process. Lastly, VITON-HD modifies the segment label by
eliminating the clothing item’s shape, enabling the warping module to
focus solely on warping the garment in a manner that naturally matches
the candidate’s body.

Several virtual try-on methods have leveraged the segmentation
module as an integral component of their models to enhance their
performance [3–6]. The segmentation module plays a crucial role by
providing regional boundaries that guide the dimension of the warped
garment, thus improving the overall quality of the virtual try-on results.

In particular, ACGPN [3] and VTNFP [4] have demonstrated the
effectiveness of incorporating segmentation labels into their meth-
ods. By preserving non-targeted body parts, such as hands, through
the segmentation labels, these approaches enhance the realism of the
generated try-on images and provide additional guidance for image
synthesis.

Similarly, VTNFP follows a similar approach. Their method excels
in producing more accurate and consistent labels by incorporating non-
local operations that capture long-range dependencies and effectively
eliminate patchy inconsistencies that may arise within the segments.

VITON-HD [6] and C-VTON [7] models have enhanced the quality
and realism of synthesised try-on images by introducing novel condi-
tional normalisation layers, which play a crucial role in improving the
fidelity of the try-on results.

VITON-HD introduces the Alignment-Aware Segment (ALIAS) nor-
malisation layer, specifically designed to address misaligned regions

and enhance realism. The ALIAS normalisation effectively removes



T. Islam et al. Signal Processing : Image Communication 129 (2024 ) 117189 
irrelevant data from the clothing texture in these misaligned regions,
replacing it with a generated clothing texture that aligns with the
surrounding context. This process significantly contributes to the over-
all realism of the try-on image. Additionally, the normalising layer
in VITON-HD leverages semantic information in an efficient manner,
further improving the quality and coherence of the synthesised results.

Similarly, C-VTON utilises Context-Aware Normalisation (CAN) to
achieve enhanced try-on image synthesis. The CAN normalisation layer
efficiently utilises the information provided by the input images and de-
livers vital contextual cues to the generator. This enables the generator
to better understand the contextual relationship between the clothing
and the candidate, resulting in improved quality and realism of the
synthesised try-on images.

The generation of realistic try-on images on significantly different
clothing cases, along with the challenge of handling body part occlu-
sion, has proven to be a persistent issue in several previous virtual
try-on models. Notably, the segmentation module employed in these
models often encounters difficulties in reliably producing accurate seg-
ments. Instances have been observed where the segmentation module
erroneously generates segments for only a portion of the arm, even
when the target garment is long-sleeved. Furthermore, these mod-
els struggle to render the arm when it occludes the body, further
exacerbating the problem.

In light of these challenges, we have taken the initiative to conduct
an evaluation of virtual try-on models, specifically focusing on their
performance in significantly different clothing cases and their ability
to handle body part occlusion. By thoroughly assessing and comparing
these models, we aim to shed light on their strengths and limitations.
In the subsequent sections, we will delve deeper into these aspects and
present our findings and analyses.

3. Method

The proposed model, Simplified Virtual Try-On (SVTON), is com-
posed of three distinct modules, each serving a specific role in the
try-on process:

• Predictive Human Parsing Module (PHPM): This module plays
a pivotal role in generating accurate body part segments based
on the target garment. By leveraging useful input images, PHPM
efficiently extracts essential information about the candidate’s
body, facilitating subsequent steps in the try-on process.

• Geometric Matching Module (GMM): The GMM module takes on
the responsibility of aligning the target garment with the candi-
date’s body. Through sophisticated geometric transformations and
warping techniques, GMM ensures optimal alignment, thereby
enabling a realistic and visually appealing try-on experience.

• Try-On Module (TOM): The TOM module serves as the final
step in the try-on process, responsible for seamlessly merging the
warped garment onto the candidate’s body. Additionally, TOM
possesses the capability to generate or preserve the non-targeted
body parts, ensuring the overall coherence and naturalness of the
final result.

Fig. 2 provides a visual representation of all the modules involved
in the proposed model, along with their corresponding input images.
The figure illustrates the system’s comprehensive nature and highlights
the interaction between PHPM, GMM, and TOM.

3.1. Candidate representation

The candidate representation plays a crucial role in providing es-
sential information to enable the seamless functioning of the individual
modules. In existing works such as VITON [1] and ACGPN [3], the 18-
keypoint pose map has been commonly employed. However, we argue

that relying solely on this representation can lead to the generation of
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Fig. 1. Disparities between the two types of pose maps representing the human body.
On the left, we observe the conventional 18-keypoint pose map, which lacks spatial
connections with the remaining joints. In contrast, the pose map on the right showcases
the enhanced representation achieved through the utilisation of RGB skeleton pose.

unrealistic images in scenarios involving self-occlusions. This limitation
arises from the lack of spatial relationship information among the joints
within the pose map.

To address this issue, we propose the utilisation of the RGB skele-
ton pose as a superior alternative. The RGB skeleton pose shows the
spatial relationships among the joints, offering a more comprehensive
representation. Our proposed model can generate more realistic and
visually appealing virtual try-on results by leveraging this enhanced
pose information.

Fig. 1 visually demonstrates the advantage of employing the RGB
skeleton pose, showcasing how the joints are accurately connected in
the corresponding image. This visualisation serves to emphasise the
importance of incorporating spatial relationship information within the
candidate representation for improved virtual try-on outcomes.

We employ widely recognised and popular 2D pose estimators
proposed by Cao et al. [49] and Simon et al. [50] to obtain the RGB
skeleton pose image. These state-of-the-art pose estimation techniques
have demonstrated remarkable accuracy and efficiency in capturing
human body poses from 2D input images.

3.2. Predictive Human Parsing Module (PHPM)

PHPM, as depicted in Fig. 2a, serves as a segmentation module
responsible for predicting appropriate labels for the torso and arms
based on the target clothing. This module accomplishes this by taking
input in the form of the RGB skeleton pose 𝑆, the candidate’s body
mask 𝑀 , and the target clothing 𝐶, which are fed into our generative
model.

The generative model processes the input data and generates a four-
channel image denoted as 𝑀𝑆

𝑊 . Each channel within 𝑀𝑆
𝑊 corresponds

to a specific region, including the background, torso, and left and
right arms. The purpose of the network is to acquire the necessary
knowledge to generate reasonable body labels by effectively analysing
the characteristics of the garment and its spatial relationship with the
candidate’s body.

We employed a two-step process to obtain the blurred variant of
the candidate’s body mask 𝑀 . Firstly, we reduced the resolution of 𝑀
by a factor of 16, effectively downsampling the image. Secondly, we
resized the downsampled image back to its original dimension. This
resizing operation introduces a blurring effect, resulting in the desired
blurred variant of 𝑀 . This procedure creates a smoothed representation
of the candidate’s body mask, which can enhance the overall quality
and fidelity of subsequent steps in the virtual try-on process.

Many of the latest segmentation models, such as the segment
anything model (SAM) [51], grounded DINO [52], and other vision
transformer-based models [53], are not designed to predict how a
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Fig. 2. The structure of the proposed model. It involves three modules: PHPM, GMM, and TOM. (a) PHPM takes input variables such as the target garment image (𝐶), RGB
skeleton pose (𝑆), and blurred binary mask (𝑀) to generate a 4-channel image (𝑀𝑆

𝑊 ) that maps to the background, torso, and left and right arm regions. (b) GMM utilises a
spatial transformation network (STN) with an affine transform, taking 𝑀𝑡 and 𝐶 to perform a pre-conditional warp on the target garment (𝐶𝑎). Further refinement is achieved by
passing 𝑀𝑡, 𝐶𝑎, and 𝑆 through a generative model, resulting in the refined garment image (𝐶𝑤). (c) Finally, TOM combines prerequisite elements, including the refined garment
image (𝐶𝑤), prerequisite image (𝐼𝑝), and segment mask (𝑀𝐺), along with average skin colour (𝑉 ), using a generative model to synthesise the final try-on image (𝐼𝑓 ). We utilise
the discriminator for GMM and TOM during training.
segment may look on an object when a change is applied; they only
segment images in their current form. Our model, on the other hand,
is capable of predicting how a segment may look as if the person is
already wearing the current clothing.

The application of cross-entropy loss is highly advantageous in
deep learning models that involve predicting probabilities for multiple
classes [54]. In the case of PHPM, which outputs four channels for
segment prediction, cross-entropy loss plays a crucial role in evaluating
the alignment between the generated segments and the ground truth
labels. By formulating the loss function, denoted as 𝐿PHPM:

𝐿PHPM = 𝜆𝐿entropy (1)

where 𝐿entropy is the cross-entropy loss [54], and 𝜆 is the parameter to
magnify the loss.

3.3. Geometric Matching Module (GMM)

GMM, depicted in Fig. 2b, plays a pivotal role in aligning the
garment with the candidate’s pose during the virtual try-on process.
GMM incorporates a Spatial Transformation Network (STN) [43] in
its initial stage to position the clothing accurately around the torso
region. By leveraging the generated torso segment 𝑀𝑡 and the target
garment image 𝐶 as inputs to the STN, a geometrically transformed and
rotated image of the target garment, denoted as 𝐶𝑎, is obtained. This
transformation facilitates the subsequent generative model in capturing
5 
intricate details such as complex textures and logos present in the
clothing.

Our generative model is then employed to extract clothing features,
including texture and logo, and additionally synthesise natural wrinkles
on the garment. It utilises 𝑆, 𝑀𝑡, and 𝐶𝑎 as inputs. The generative
model’s output is a warped garment image, referred to as 𝐶𝑤, which
precisely conforms to the shape outlined by 𝑀𝑡, ensuring a seamless
and natural fit of the clothing onto the candidate’s body.

The utilisation of the Thin-Plate Spline (TPS) algorithm for the
Spatial Transformation Network (STN) has been commonly employed
in previous works. However, research studies such as ACGPN [3] and
LA-VITON [44] have demonstrated instances where TPS may result
in undesired deformation of the garment during the transformation
process. To address this issue, they introduced a constraint in TPS
to limit its ability to excessively deform the shape. In our approach,
we opted for an affine transform instead, as it achieves comparable
performance to TPS while maintaining garment integrity. Moreover,
the use of affine transform offers the advantage of requiring fewer
trainable parameters due to its reduced degrees of freedom in shape
deformation. This characteristic enhances the efficiency of training the
model.

To train GMM, we employ a discriminator that follows a similar
architecture to the discriminator utilised in Pix2PixHD [55]. We use
the cGAN loss [17]; the loss is formulated as:
𝐿GAN(𝑥, 𝑦) =E𝑥,𝑦[log𝐷(𝑥, 𝑦)]

(2)

+ E𝑥[log(1 −𝐷(𝑥,𝐺(𝑥)))]
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Fig. 3. Arithmetic process of generating 𝑀𝐺 and 𝐼𝑝. The process involves an arithmetic procedure that encompasses element-wise multiplication and mask manipulation.
We calculate further losses for GMM by utilising the L1 and VGG
loss functions. We formulate the loss function as 𝐿GMM:

𝐿1(𝑥, 𝑦) = |𝑥 − 𝑦| (3)

𝐿VGG(𝑥, 𝑦) = 𝜆|𝜙5(𝑥) − 𝜙5(𝑦)| (4)

𝐿GMM =𝐿1(𝐶𝑤, 𝐶gt ) + 𝐿1(𝐶𝑎, 𝐶gt ) + 𝐿VGG(𝐶𝑤, 𝐶gt )

+ 𝐿GAN(𝑓, 𝐶gt )
(5)

where the symbols represent as follows: 𝐶𝑤 denotes the warped gar-
ment; 𝐶𝑎 is the prerequisite warp performed by affine transform; 𝐶gt
denotes the ground truth of the warped garment; 𝑓 denotes the channel
concatenation of 𝑀𝑡, 𝐶 and 𝑆; 𝐺 denotes the generator; 𝐷 denotes the
discriminator. The 𝐺 for this module would be Fig. 4(a). 𝐿VGG is the
VGG perceptual loss [56] in which 𝜙5 represents the output of feature
map of 𝐶𝑤 and 𝐶gt from the pre-trained VGG19 model. We use the fifth
layer of the VGG network. 𝜆 is a parameter to control the loss value,
which has the same value as Eq. (1).

3.4. Try On Module (TOM)

The generated segments play a vital role in providing guidance
to the Try-On Module (TOM) (Fig. 2c), enabling it to determine the
appropriate areas to preserve non-targeted body parts and to generate
the arms. Nevertheless, before proceeding, pre-processing steps are
necessary to get the desired input data. We show the method below:

𝑈 = 𝑀𝑎 ⊗ (1 − 𝐼𝑎) (6)

𝐼𝑝 = (𝑈 +𝑀𝑡)⊗ 𝐼 (7)

𝑀𝐺 = 𝑀𝑆
𝑊 ⊗ 𝐼𝑝 (8)

where ⊗ denotes element-wise multiplication, we perform element-
wise multiplication on 𝐼𝑎 and 𝑀𝑎 to produce 𝑈 . The segment denoted
as 𝑈 serves as a crucial indicator for TOM, signifying the need to
generate the appropriate arm length, particularly in cases where a
transition occurs from long-sleeved to short-sleeved garments. 𝐼𝑝 rep-
resents the preservable non-targeted body part, while 𝑀𝐺 serves as a
spatial guide, dictating the placement of the warped garment 𝐶𝑤 and
providing instructions for arm synthesis. To enhance the clarity and
understanding of the intricate process involved in generating 𝐼𝑝 and
𝑀𝐺, we have incorporated Fig. 3, which visually illustrates the steps in
this arithmetic operation.

The determination of the average skin colour 𝑉 involves a calcula-
tion process wherein the candidate’s source image is analysed to derive
the average pixel value specifically from the arm region.
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Due to the inherent complexity involved, the generative model
alone cannot accurately generate the intricate details of the candidate’s
hands. This limitation becomes evident when examining the try-on
images produced by VITON [1] and CP-VTON+ [47] in the third
row of Fig. 7, where the hands appear blurry, and the fingers are
barely discernible. Our proposed approach addresses this challenge
by focusing on preserving the original hands from the source image.
This objective is accomplished through the creation of the maximum
preservable region image, denoted as 𝐼𝑝. By excluding the hand regions
from the corresponding mask 𝑀𝐺, we ensure that the generative model
prioritises the preservation of the candidate’s original hands. Both 𝐼𝑝
and 𝑀𝐺 play a pivotal role as vital inputs to the generative model,
outlining the areas to be preserved (e.g., hands) and the regions requir-
ing generation (e.g., arms). Consequently, with 𝐼𝑝, 𝑀𝐺, 𝑉 and 𝐶𝑤 as
inputs, the generative model synthesises the final try-on image, denoted
as 𝐼𝑓 , which embodies a seamless integration of the clothing onto the
candidate’s body.

We train TOM with a discriminator [55] and utilise the VGG and
L1 loss functions. The loss formula for TOM is presented as follows:

𝐿TOM = 𝐿1(𝐼𝑓 , 𝐼) + 𝐿VGG(𝐼𝑓 , 𝐼) + 𝐿GAN(𝑓, 𝐼) (9)

where 𝐼𝑓 denotes the final generated virtual try-on image; 𝐼 denotes
the ground truth; 𝑓 denotes the channel concatenation of 𝑉 , 𝐶𝑤, 𝐼𝑝,
𝑀𝐺. The 𝐺 for TOM would be Fig. 4(b).

4. Experiments

The proposed model has undergone comprehensive evaluation in
comparison to established methods such as VITON [1], CP-VTON+ [2],
and ACGPN [3]. In order to present a thorough assessment, we provide
an in-depth analysis of both qualitative and quantitative comparison
results. Furthermore, we examine the individual contributions of each
model component to the overall performance. The datasets employed in
our experiments, as well as the implementation details of the networks,
are also elaborated upon, ensuring transparency and reproducibility.

The matching of candidate and clothing images can be performed in
two distinct settings: paired and unpaired. In the paired setting, the can-
didate is depicted wearing the original clothes, and this configuration is
employed during training and for quantitative evaluation purposes. On
the other hand, the unpaired setting involves pairing the candidate with
a new garment, resembling the manner in which a consumer would

utilise it.
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Fig. 4. The generative model architectures for the three model components PHPM, GMM and TOM. (a) The generative model used in both PHPM and GMM, which has fewer
convolutional layers, making it more efficient for the PHPM to produce accurate labels and preserves clothing detail better for the GMM. (b) The generative model used in the
TOM.
4.1. Dataset

Our SVTON model has been trained on the VITON dataset [1],
which comprises a substantial training set of 14,221 pairs of candidate
images and their corresponding clothing. The researchers have allo-
cated a separate testing set of 2032 image pairs. The dataset’s images
exhibit a standardised resolution of 256 × 192 pixels. We incorporated
the RGB skeleton pose, leveraging the methodologies proposed in [49,
50].

For quantitative evaluation, we employed the testing sets derived
from the VITON [1] and VITON-HD [6] datasets, each consisting of
2032 image pairs. For qualitative assessment, we only utilise the VI-
TON test set. It is important to note that despite the similarity in
dataset names, the images within them are distinct, featuring markedly
different candidates and clothing items. By conducting evaluations
on both datasets, we aimed to gain comprehensive insights into the
performance of our model.

4.2. Implementation

Our generative model employs the U-Net architecture [57], which
serves as the backbone across all three modules of our approach.
However, we employ a strategic design decision by incorporating a
reduced number of convolution layers in the PHPM and GMM modules.

The architectural design of PHPM and GMM’s U-Net is depicted in
Fig. 4(a), showcasing the underlying framework. The U-Net’s encoder
consists of five convolutional layers, each employing a kernel size of 3.
The number of filters progressively increases through the layers, with
values of 64, 128, 256, 512, and 512, respectively. Additionally, a max
pooling operation is applied after each layer, effectively reducing the
feature map dimensions by a factor of 2.
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Within the latent space, two convolutional layers are employed,
each utilising a kernel size of 3. The filter sizes for these layers are
set at 1024 and 1024. As for the decoder, it comprises five convolu-
tional layers, each with a kernel size of 3. The number of filters in
the decoder layers follows a pattern of 512, 512, 256, 128, and 64.
Notably, an upsampling operation is performed between each layer
in the decoder, resulting in a doubling of the feature map resolution.
Skip connections are employed to establish connectivity between the
encoder and decoder.

The generative model of TOM retains the original U-Net architec-
ture [57], as illustrated in Fig. 4(b). The kernel size for TOM’s structure
remains consistent at 3 throughout.

GMM utilises an STN consisting of five convolutional layers and
a max pooling layer with a stride size of 2. This STN enhances the
network’s ability to manipulate spatial transformations.

The discriminator’s structure is akin to that of Pix2PixHD [55]. It
commences with four convolutional layers, employing a kernel size of
4. The respective numbers of filters for these layers are set at 64, 128,
256, and 1. Finally, a sigmoid function is appended to the output of the
discriminator to facilitate appropriate classification.

We have trained the individual modules independently, each with
a specific number of epochs. PHPM was trained for 20 epochs, GMM
underwent 40 epochs, and TOM was trained for 100 epochs. The
modules were trained in paired settings.

We employed the Adam optimiser, a popular choice in deep learning
applications. The optimiser was configured with a learning rate hyper-
parameter of 0.0002, a value empirically determined to yield desirable
results. Furthermore, we set the 𝛽 parameter to 0.5 and 𝛽 to 0.999.
1 2
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Fig. 5. Comparison of significant difference cases. Our proposed method showcases superior accuracy in try-on tasks involving substantial differences, such as transitioning from
short sleeves to long sleeves or vice versa, outperforming previous approaches. The implementation of PHPM effectively utilises refined candidate representations (i.e. RGB skeleton
pose and blurred mask) to generate precise labels, thus contributing to enhanced performance. ACGPN and our method rely on producing correct labels. Failure to do so may result
in erroneous try-on images and inferior performance compared to non-segmentation methods such as VITON and CP-VTON+. The first and third rows affirm this observation.
4.3. Qualitative analysis

For a qualitative visual comparison of the proposed method against
other models, we organise the unpaired setting results in three cate-
gories of significant different clothing, occlusion and easy cases.

4.3.1. Significant difference cases
One of the notable accomplishments of our work is in cases in-

volving significant differences in candidate and garment pairing. This
superiority is demonstrated in Fig. 5. In scenarios where a candidate
wearing a short-sleeved garment is paired with a long-sleeved garment,
or vice versa, our method excels by preserving intricate details and tex-
tures of the clothing, thereby generating accurate and visually pleasing
try-on images.

By closely examining the 2nd and 4th rows of the figure, we ob-
serve that VITON and CP-VTON+ exhibit shortcomings such as colour
alteration and failure to remove the back collar of the garment image.
In contrast, our approach consistently maintains fidelity to the origi-
nal clothing and successfully addresses these challenges. Furthermore,
the 1st and 3rd rows indicate that ACGPN fails to synthesise short-
sleeved to long-sleeved try-ons due to incorrect segmentation labelling,
performing less favourably than VITON and CP-VTON+.

The effectiveness of our method can be attributed to the refined
input data and a simpler network architecture employed by our seg-
mentation module, which consistently produces accurate body labels
regardless of the pairing. This is of utmost importance for methods
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utilising segmentation, such as our method and ACGPN, as an incorrect
body label significantly degrades the performance, leading to inferior
try-on results compared to methods that omit segmentation, such as
VITON.

Furthermore, the clothing generated by our method exhibits a more
visually pleasing appearance compared to VITON and CP-VTON+. This
improvement is achieved by employing a generative model that refines
geometrically warped garments, resulting in a more natural aesthetic.
The generative model effectively adds realistic wrinkles and smooth
textures to the garment. In contrast, VITON and CP-VTON+ primarily
focus on geometric transformations and composite learning, capturing
only a limited subset of the garment’s textures and other properties. The
poor performance of the composition mask is evident in its incorrect
compositing of the back collar, leading to an unnatural appearance in
the try-on images (e.g., 2nd and 4th rows).

4.3.2. Occlusion cases
An area where our model excels is in handling occluded cases. Pre-

vious works have faced challenges synthesising natural-looking try-ons
when candidates’ arms occlude their bodies. In contrast, our model con-
sistently produces superior results in such scenarios, as demonstrated
in Fig. 6.

In the 1st row of the figure, our model successfully creates a distinct
boundary around the occluding arm by appropriately darkening it. On
the other hand, ACGPN merges the arm with the torso, while VITON
and CP-VTON+ render the arm in an unnatural manner. Remarkably,
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Fig. 6. Comparison of occlusion cases. Our model distinguishes itself by successfully synthesising the arms of the candidate in occluded cases, providing accurate and realistic
results. In contrast, other models either overlook this aspect or generate unnatural-looking arms, failing to preserve the integrity of body parts and often neglecting the hand
altogether. The inclusion of RGB skeleton pose in our approach enables us to establish spatial relationships between body parts, facilitating effective arm synthesis even in
challenging occluded scenarios.
our model is the only method capable of generating the correct try-on
in the 2nd row, as it effectively preserves the occluded arm in front
of the torso, resulting in a visually accurate output. Moreover, our
model excels in preserving the hand in intricate regions (3rd row) and
consistently maintains the integrity of all body parts (4th row). The
RGB skeleton image has allowed the segmentation module to ensure
that all body parts remain intact and helped the warping module to
visualise how the arms are occluded.

The key factor enabling our model’s exceptional performance in
occluded cases is the utilisation of RGB skeleton pose. Our approach
surpasses other methods that rely on an 18-keypoint pose map. The
18-keypoint pose map assigns each channel to a single joint of the
human body. However, it does not provide any information about how
each channel is connected to each other. For instance, the model would
not be able to determine if the channel indicating the left hand of the
person is connected to the adjacent channel pointing to the left elbow.
In other words, spatial relationships do not exist in this pose map.

On the other hand, using the RGB skeleton pose clearly shows
the spatial relationships among the keypoints. It provides essential
information on how the joints of a human body are connected. For
example, the RGB skeleton pose clearly demonstrates that the joint
in the left hand is connected to the left elbow but not to the right
elbow. This is what allows our model to exhibit a superior ability to
handle occluded scenarios and maintain the integrity of the entire body
structure.
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4.3.3. Easy cases
In the case where the candidate is paired with a target garment

of similar sleeve length, our model demonstrates robust performance
as illustrated in Fig. 7. All models were consistent and accurately
preserved sleeve lengths. This finding highlights our model’s versatility,
as it is capable of handling both easy and significant difference pairings,
surpassing previous works that are more suitable for the former.

Even in the aforementioned easy cases, SVTON possesses notable ad-
vantages over previous methods. Notably, the last two rows showcasing
occluded cases exemplify SVTON’s ability to synthesise try-ons with a
highly naturalistic appearance. These results reinforce the effectiveness
of our model, as it consistently generates visually pleasing and realistic
outcomes even in scenarios where occlusion is present, setting it apart
from other approaches.

4.3.4. Comparison on the VITON-HD dataset
As opposed to Figs. 5–7 where they were evaluated against the test

set of VITON dataset, in this section, we have conducted experiments
on the VITON-HD dataset [6]. Our aim is to showcase the performance
of our model in a more diverse scenario and make it easier to compare
it with more advanced virtual try-on models like the VITON-HD. As
shown in Fig. 8, VITON-HD generates higher resolution and better
quality virtual try-on images. However, our outcomes were compara-
ble, and our performance was similar. The figure clearly depicts that
both models can accurately apply clothing to the candidate. There



T. Islam et al. Signal Processing : Image Communication 129 (2024 ) 117189 
Fig. 7. Comparison of easy cases. Our proposed approach and previous works demonstrate similar outcomes in terms of performance in easy cases. Across all models, the sleeve
length is effectively preserved, ensuring appropriateness and consistency throughout the try-on process.
were instances where our model performed better than VITON-HD. For
example, in the last row of the figure, our model preserved the hand,
whereas VITON-HD synthesised the hand unrealistically.

Furthermore, our model has the advantage of requiring less compu-
tational resources and synthesising images at a faster rate. Therefore,
our model may be more attractive to businesses with a low budget
and cannot afford to invest in powerful GPUs and other computational
resources. They may prefer to use a slightly weaker but more efficient
model.

4.4. Quantitative analysis

The structural similarity (SSIM) [58] metric measures the similarity
between the generated image and the original image by assessing their
luminance, contrast, and structural characteristics. The SSIM index
quantifies the degree of agreement between the two images, where
higher values indicate a stronger correspondence.

The fréchet inception distance (FID) [59,60] metric uses the In-
ception network [61] to extract feature representations from original
and generated images. This metric measures the discrepancy between
the feature distributions of the two image sets by calculating the
fréchet distance. Importantly, a decreased FID score indicates a stronger
resemblance between the feature distributions of the generated images
and those of the real images.

The inception score (IS) [62] is a metric designed to assess the
performance of generative models. It evaluates the diversity and visual
appeal of the generated images by passing them through a classifier
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Table 1
Quantitative comparisons among different techniques performed on VITON [1] and
VITON-HD [6] test set. The table showcases the performance of our approach in relation
to VITON [1], CP-VTON+ [47], and ACGPN [3]. Higher values indicate better results
for SSIM and IS, while lower values are desirable for FID and LPIPS.

Method Paired settings Unpaired settings

SSIM ↑ FID ↓ IS ↑ LPIPS ↓ FID ↓ IS ↑ LPIPS ↓

VITON dataset

VITON 0.801 19.463 2.946 0.0818 30.403 2.567 0.155
CP-VTON+ 0.828 16.800 3.012 0.0714 31.594 2.520 0.281
ACGPN 0.843 13.318 2.805 0.0737 20.728 2.541 0.131
SVTON 0.854 15.662 2.719 0.0647 17.607 2.615 0.135

VITON-HD dataset

CP-VTON+ 0.828 31.150 2.948 0.1236 30.026 3.254 0.158
ACGPN 0.829 20.834 2.943 0.1028 25.770 2.957 0.146
SVTON 0.819 21.708 3.092 0.0909 23.211 2.873 0.140

that has been pre-trained. The score is determined by computing the
output probabilities and is based on the KL divergence between the
class distribution of the generated images and the class distribution of a
large collection of real images. A higher IS indicates that the generated
images exhibit greater diversity and visual appeal.

The learned perceptual image patch similarity (LPIPS) [63] metric
utilises a deep neural network that has undergone fine-tuning to eval-
uate the perceptual similarity of images. This network is specifically
trained to capture human perception regarding image quality. By calcu-
lating the dissimilarity between the feature maps of two images across
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Fig. 8. Comparison conducted on the VITON-HD dataset [6]. Although VITON-HD produces higher resolution outputs for virtual try-on images, our model is equally effective and
more efficient in terms of computational resources and inference time.
various spatial scales, LPIPS determines their perceptual distance. The
average of these dissimilarity values produces an overall score, where
a lower LPIPS score indicates that the generated images demonstrate
greater perceptual similarity to the real images.

Table 1 presents a comprehensive overview of the quantitative
performance of our proposed method along with other state-of-the-art
models, namely VITON [1], CP-VTON+ [47], and ACGPN [3], on both
the VITON [1] and VITON-HD [6] test sets. In the paired setting, we
employed all the metrics discussed earlier to evaluate the performance.
However, in the unpaired setting, we excluded the SSIM metric due to
the absence of ground truth for candidates wearing different clothing,
as SSIM would not provide accurate scores in this scenario.

In the paired setting of both the VITON and VITON-HD test sets,
our method and ACGPN show varying performance in different metrics.
While we outperform ACGPN in one metric, they surpass us in another.
Notably, according to the SSIM metric, both our models demonstrate a
higher resemblance to the ground truth in terms of synthesising try-
on images compared to VITON and CP-VTON+. Moreover, our models
exhibit a similar level of image quality, as indicated by the closely
aligned scores of FID, IS, and LPIPS. This suggests that both our models
produce try-on images at a comparable level of visual fidelity.

In the unpaired setting, our method outperforms ACGPN in terms of
FID and IS scores on the VITON test set. Additionally, in the VITON-HD
test set, we achieve better scores than ACGPN for both FID and LPIPS
metrics. These results indicate that our model consistently generates
higher-quality try-on images, irrespective of the target garment. The
performance advantage positions our model favourably, as consumers
will utilise the unpaired setting in real-world scenarios. This highlights
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the practical relevance and superiority of our approach in producing
visually appealing and accurate try-on images.

Furthermore, VITON-HD has achieved a FID score of 11.988, IS
score of 3.198 and LPIPS score of 0.121 on the VITON-HD test set in
unpaired settingsCP, which is better than our model listed in Table 1.
However, it is important to note that the comparison is not entirely
suitable, as VITON-HD produces much higher-resolution virtual try-on
images. It is not enough to evaluate quantitative measures alone, as
computation resources and time taken to achieve the result also need to
be considered. Our model is significantly more efficient and demands
less video memory of a GPU, making it a more affordable option for
small businesses.

4.5. Ablation study

To thoroughly assess the impact of individual components, an ab-
lation study has been conducted on PHPM and GMM, utilising diverse
input images. The primary objective of this study was to gain a com-
prehensive understanding of the specific influences exerted by these
components.

The ablation study is presented in Table 2 highlights the com-
pelling advantages achieved when incorporating the truncated gen-
erative model (Fig. 4(a)) in conjunction with the utilisation of RGB
skeleton pose. This integration empowers our model to operate at peak
performance, delivering unparallelled levels of fidelity in its output.

We have conducted an ablation analysis on PHPM to assess its
performance under various training conditions. Specifically, we em-
ployed three different techniques: training on an 18-keypoint pose map,
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Fig. 9. Ablation study of PHPM. Ablation study of PHPM. The 18-keypoint pose creates random artefacts and spots in the arm label, which will expose bare skin in the final
synthesised image. Using the standard U-Net (Fig. 4(b)) with RGB skeleton pose can reduce the occurrence of random patches. Our truncated U-Net (Fig. 4(a)) further improves
the performance of segmentation synthesis and ensures that body labels remain intact.
Table 2
Ablation study of PHPM and GMM. The findings derived from this table indicate that
employing RGB Skeleton pose alongside a truncated generative model yields noteworthy
enhancements in the performance of both modules. This combined approach leads to
the generation of virtual try-on images characterised by superior fidelity and quality.

Method SSIM ↑ FID ↓ IS ↑ LPIPS ↓

PHPM

18-keypoint 0.715 – – –
Standard U-Net 0.866 – – –
Normal mask 0.764 – – –
Ours 0.872 – – –

GMM

18-keypoint 0.810 32.991 3.639 0.0858
Standard U-Net 0.899 23.771 3.822 0.0461
Ours 0.898 24.846 3.989 0.0481

utilising the generative model depicted in Fig. 4(b), and employing an
unblurred mask. Our proposed approach consistently achieved higher
SSIM scores than these methods, indicating superior results.

The rationale behind the observed performance discrepancy can be
explained by examining Fig. 9. In the case of the 18-keypoint pose map,
it is evident that the arm segment exhibits noticeable patches (as seen
in the 2nd and 3rd rows) due to the lack of spatial information regard-
ing the interconnections between joints. Consequently, the resulting
segmentation is suboptimal.

Furthermore, the standard generative model (Fig. 4(b)) demon-
strates limitations in preserving the integrity of segmented regions. For
instance, in the 2nd row and 5th column of Fig. 9, the generated output
fails to generate the candidate’s hand. This weakness undermines the
overall quality of the parsing results.
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Lastly, Fig. 11 showcases the advantages of employing a blurred
mask over a conventional mask. The segmentation module must gen-
erate smooth segments that facilitate the natural fit of the new target
garment on the candidate. By employing a blurred mask, the informa-
tion pertaining to the previous clothing becomes unseeable, resulting
in visually smoother and more natural-looking segments, as shown in
the 1st row.

The ablation study conducted on GMM reveals substantial advan-
tages associated with the utilisation of the RGB skeleton pose. Both
our proposed approach and the standard generative model (depicted in
Fig. 4(b)) have outperformed the approach employing the 18-keypoint
pose map. The SSIM metric affirms that the warped garments synthe-
sised by our approach and the standard generative model approach
closely resemble the ground truth, indicating the effective preserva-
tion and alignment of details and texture. Moreover, the quality and
realism of the warped garments generated by our approaches surpass
the method using the 18-keypoint pose map, as indicated by FID,
IS, and LPIPS. Fig. 10 visually demonstrates that both our proposed
approach and the standard generative model exhibit improved handling
of occlusion cases. Although the standard generative model approach
has quantitatively outperformed our approach by a small margin, their
scores are highly similar. Therefore, we have selected the shorter
generative model for its efficiency in accelerating the try-on process.

4.6. Inference time

To evaluate the efficiency of our model, we conducted a compara-
tive analysis of its inference time with two other models: ACGPN [3]
and VITON-HD [6], as shown in Table 3. Both of these models have a
similar tripartite structure to ours. We experimented with these models
on an RTX 2070 GPU. For our method and ACGPN, we used 200
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Fig. 10. Ablation study of GMM. Ablation study of GMM. The use of an 18-keypoint pose map is not sufficient for GMM to handle cases of occlusion, as the spatial relationship is
not illustrated. However, the use of an RGB skeleton on both standard (see Fig. 4(b)) and truncated U-Net (see Fig. 4(a)) provides a much clearer solution for handling occlusion.
This approach is able to effectively synthesise the arms, which are visible and clearly show the person crossing them.
Table 3
Performance comparison. The average time required to synthesise a single virtual try-on
image using the same hardware. Our method demonstrates the lowest inference time
due to the reduction of parameters.

Inference time (ms) # Parameters (millions) Time saved (%)

ACGPN 164.3 136 50.2
VITON-HD 809.6 135 89.9
Ours 81.9 98 –

images from the VITON [1] test set, while VITON-HD utilised the
high-resolution test set of the VITON-HD [6] dataset, for which we
also provided 200 images. The results demonstrate that our approach
outperforms ACGPN and VITON-HD by reducing the inference time by
50.2% and 89.9%, respectively.

The increase in speed can be attributed to our use of our truncated
U-Net, in which we reduced the number of convolution layers, thereby
reducing the number of parameters. From Table 3, we can see that
VITON-HD is slower than ACGPN, even though it has slightly fewer
parameters. This is because it operates at a much higher image reso-
lution than our model and the ACGPN model. The speed of inference
is not solely determined by the number of parameters but also by the
resolution of the data it is processing.

Our approach has a significant advantage: it can serve a larger
consumer base and deliver results more quickly, even when running
on weaker hardware. This distinct advantage offers considerable ben-
efits for businesses looking for streamlined and efficient processes or
companies that do not have the budget to pay for expensive GPUs.

4.7. Limitations

Despite the advancements achieved by the proposed methods, it
is essential to acknowledge their limitations. One such limitation is
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the candidate representation’s inadequate information regarding the
leg-torso boundary, leading to the PHPM synthesising body segment
labels of inconsistent sizes. This limitation is illustrated in Fig. 12,
where the failure of PHPM to generate accurate body segment sizes is
demonstrated. The examples highlight how TOM creates a visible gap
between body parts due to the insufficient generation of the torso label
by PHPM, thus failing to connect it with the leg. One potential solution
to address this issue is to incorporate distinct images of the candidate’s
head and legs as the input, allowing PHPM to generate the correct
length for the torso label. For instance, methods like VITON-HD [6]
initially include the head and leg labels in the candidate representation
before passing it to the segmentation module, enabling a more accurate
synthesis of the torso label.

5. Conclusion

In conclusion, we have introduced Simplified Virtual Try-On (SV-
TON), a novel image-based virtual try-on model designed to tackle
challenging scenarios characterised by significant differences between
the original and target clothing, as well as substantial overlapping of
body parts. The proposed model stands out for its two key features: (1)
a candidate representation based on an RGB skeleton image, which en-
hances the spatial relationships among joints and leads to more robust
and accurate segmentation results, and (2) the utilisation of a truncated
generative model in both the segmentation and warping modules, with
the warping module incorporating an efficient affine transform.

We conducted a comprehensive evaluation of the proposed model
against state-of-the-art approaches such as VITON, CP-VTON+, and
ACGPN. The evaluation encompassed qualitative comparisons, quan-
titative analyses, ablation studies, and computational runtime assess-
ments. The results from these evaluations consistently demonstrate
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Fig. 11. Effects of utilising the blurred and unblurred mask for PHPM. In the 1st
column, a blurred mask is employed, which effectively conceals the shape of the
original clothing. This blurred mask facilitates the generation of smoother body
segments by the PHPM, resulting in visually appealing output. Conversely, in the 2nd
column, an unblurred mask is utilised, exhibiting a coarse shape that closely resembles
the original clothing. This poses a challenge for the PHPM, as it struggles to remove
the coarse shape information provided by the unblurred mask.

Fig. 12. Limitations of the proposed model. We do not provide the boundary of the
candidate’s head and legs to the Predictive Human Parsing Module, which may cause
them to generate incorrect sizes of the body label. This will have a knock-on effect on
subsequent modules and produce undesirable try-on.

the superior performance of the proposed model across various sce-
narios. Furthermore, the proposed model exhibits notable efficiency
advantages, outperforming previous models in terms of computational
runtime.

Overall, our research underscores the effectiveness of SVTON in ad-
dressing complex virtual try-on challenges and establishes its superior-
ity over existing models. The proposed model’s enhanced segmentation
accuracy, spatial understanding, and computational efficiency make it
a promising solution for practical applications in the field of virtual
try-on technology.
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