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ABSTRACT
Security vulnerabilities make the Internet of Things (IoT) systems
open to online attacks that threaten both their operation and user
privacy. Among themany protocols governing IoT operation,MQTT
has seen wide adoption, but comes with rudimentary security sup-
port. Specifically, while the MQTT standard strongly recommends
that servers (brokers) offer Transport Layer Security (TLS), it is
mainly concerned with the message transmission protocol, leav-
ing to implementers the responsibility for providing appropriate
security features. However, well-known solutions for Web Security
(OAuth2) exist, which may benefit MQTT. This paper presents sys-
tematic implementation efforts and practical experimentation to
evaluate the feasibility of one such approach, namely the MQTT-
TLS profile for the Authentication and Authorization in Constrained
Environments (ACE), recently specified by the IETF. Our implemen-
tation includes the functionality for (1) the Authorization Server
(AS), to handle client registration, authorization policies, and Access
Tokens; (2) the MQTT broker, to enforce authentication in both
MQTT versions 3.1.1 and 5. Together, these enable ACE-MQTT
clients to use (3) OAuth2-based authentication and authorization via
Proof of Possession tokens. We make the source-code of our ACE-
MQTT implementation publicly available, and evaluate it against
plain MQTT systems in realistic settings with different computation
constraints. To assess the cost of security, we measure the CPU,
memory, network usage, and energy consumption. The results ob-
tained confirm that the ACE requirements match the capabilities
of moderately constrained devices, hence providing an affordable
mechanism to secure MQTT systems.

CCS CONCEPTS
•Networks→Network experimentation;Cyber-physical net-
works; • Security and privacy → Security protocols.
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1 INTRODUCTION
Internet of Things (IoT) deployments usually consist of devices that
perform measurement and monitoring (e.g., temperature sensing)
and transmit information to cloud-based services over the Internet.
The primary concern in IoT is typically the need for the systems
to scale up to tens of thousands of devices. Security, including
authentication, data integrity, and confidentiality, often remain an
afterthought. These mixed-up priorities create risks, as IoT devices
become susceptible to malware infection [1], services prone to
disruption [18], and user data vulnerable to privacy leaks [6, 11].

The Internet Engineering Task Force (IETF) Authentication and
Authorization in Constrained Environments (ACE) workgroup is
developing new IoT security standards and strengthening proto-
cols that have already seen wide adoption, yet are still vulnerable
to attacks. One such protocol is MQTT [15], a lightweight pub-
lish/subscribe message transport protocol used in over 40% of ex-
isting IoT deployments [8]. MQTT works on top of TCP and has
minimal security, e.g., TLS is strongly recommended, and client au-
thentication can be enabled via username and password. To improve
MQTT security, the MQTT-TLS profile of ACE enables authenti-
cation and more fine-grained authorization using the OAuth2.0
framework and Proof of Possession (PoP) Access Tokens (ATs) [16].

To the best of our knowledge, this work is the first to document
an implementation of the ACE MQTT-TLS profile and a thorough
practical assessment of its performance for MQTT versions 3.1.1.
and 5. The paper makes the following main contributions:
(1) We implement the ACE Authorization Server (AS), the MQTT

broker and the clients. The AS handles client registrations, man-
ages authorization policies, and grants Access Tokens (ATs).
The MQTT broker accepts ACE-based authentication and au-
thorization requests for MQTT versions 3.1.1 and 5. The clients
dynamically register with the AS and authenticate with the
broker. Proof of Possession (PoP) ATs1 permit clients to publish
or subscribe to specific topics based on the token’s scope (i.e.,
permissions). We make the source code of our implementation
publicly available to foster the development of future extensions
by the community, and we highlight the lessons learned and
challenges faced in the development process.

(2) We evaluate the performance of our solution in a testbed encom-
passing containerized and constrained environments. Specifi-
cally, we consider use case scenarios with small form IoT boards
(with CPUs clocked at sub-GHz speeds, sub-GB RAM, and net-
work adapter), capable of running minimal Unix-type oper-
ating systems and suitable for monitoring and control tasks,

1Clients need to compute a keyed hash or their digital signature to use the PoP AT,
providing evidence for the symmetric key or the corresponding private key of the
public key embedded in the token.
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e.g. building automation, smart factories, energy distribution,
automotive, etc. Our evaluation takes into consideration CPU,
memory, and power budgets. Results demonstrate that the en-
hanced security comes at the cost of a marginal increase in
resource usage, as compared to plain MQTT.

(3) We reveal that the energy consumption associated with the
authentication procedure is mostly due to the communications
overhead and running cryptographic protocols in user space.
We discuss possible ways to reduce this cost via hardware cryp-
tography extensions.

2 RELATEDWORK
Token-based authentication in MQTT is an active area of research.
Bhawiyuga et al. implement a solution for constrained devices, but
their evaluation is limited to usability and Authorization Server
(AS) response time [2]. Calabretta et al. propose protecting MQTT
topics based on the Augmented PAKE (Password-Authenticated Key
Agreement) protocol, yet no evidence of performance is given [4].
Collina et al. propose QEST, a RESTful MQTT broker, and explore
how to incorporate OAuth support into the MQTT system, but an
implementation and evaluation are not provided [7]. Niruntasukrat
et al. introduce an OAuth1a-based system, where both the broker
and client devices have embedded OAuth credentials [13]. As com-
munication channels are considered insecure, clients generate a
new signature upon every request which complicates the system
and requires one extra round trip to the AS, which is resource-
expensive. Further, using insecure channels means the system is
prone to eavesdropping and man-in-the-middle attacks.

La Marra et al. propose usage control to enhance the security of
MQTT, yet assume the connections are already authenticated [10].
Elliptic curve-based encryption of MQTT messages is proposed
in [17], but the authors assume that the topics and subscribers to
these topics are known to brokers, which is impractical. Chiwariro
and Rajendran propose a lightweight encryption scheme to ensure
MQTT payload confidentiality, yet client authentication is over-
looked [5]. Similarly, payload encryption with broker pass-through
is proposed in [12], without addressing client authentication.

The work of Fremantle et al [9] is closely related to ours as their
design uses OAuth2 tokens for authentication and authorization.
However, their work considers clients that do not support SSL/TLS,
thus sacrifices the confidentiality and integrity of MQTT data. With
a single embedded token and insecure communication channel,
the solution is vulnerable to replay attacks and eavesdropping.
Solutions relying on embedded tokens are not very flexible, as the
device firmware must be flashed to change the token.

To our knowledge, there are no implementations and evaluations
that take advantage of the latest features of MQTT version 5.

3 BACKGROUND
3.1 MQTT Overview
MQTT is a popular lightweight publish/subscribe messaging pro-
tocol. Two standardized versions exist, namely version 3.1.1 [14]
and version 5 [15]. In MQTT, the central server, called broker, is
responsible for relaying messages between clients. MQTT uses
persistent TCP connections, and clients connect to the broker us-
ing a CONNECT packet. After connection establishment, clients

ACE-MQTT 
broker

AS
server

ACE-MQTT clients

Authenticate
Publish

Subscribe
over

MQTT with TLS

Register
Request AT
over HTTPS

Token introspection
over HTTPS

Figure 1: Components of anACE-MQTT system and commu-
nication channels between them. AS and broker communi-
cate over HTTPS; clients communicate with the broker us-
ing MQTT over TLS, and with the AS using HTTPS.

publish or subscribe to ‘topics’ hosted by the broker. When the
broker receives a PUBLISH message, it forwards the message to all
clients subscribed to its topic. To subscribe to topics, clients send
SUBSCRIBE messages containing topic filters. A topic filter may
include wildcards to match multiple topics.

In terms of security, version 3.1.1 supports optional username/
password-based authentication of clients, provided in the CON-
NECT packet. MQTT version 5 addresses a set of limitations of
version 3.1.1 and also has more support for security.2 Two new
authentication fields are introduced in the CONNECT packet: Au-
thentication Method and Authentication Data. With these, a client
can signal to the broker which authentication method to use and
can provide different types of authentication data (apart from user-
name and password). Additionally, version 5 supports a new AUTH
packet that can be used to extend the authentication phase, such
as to add a challenge, or to re-authenticate. These additions are
flexible enough to implement different authentication methods but
exact method to use is out of scope of MQTT specification.

3.2 ACE MQTT TLS Profile
The ACE MQTT-TLS profile [16] describes MQTT client authen-
tication and authorization using OAuth2 ATs. To this end, MQTT
topics hosted by a broker are treated as resources to be protected.
An OAuth2.0 framework entity called Authorization Server (AS) is
responsible for registering clients, maintaining authorization poli-
cies for publishing and subscribing to these protected topics, and
granting ATs to clients.

All three entities - AS, broker, and client - communicate over
pairwise secure channels, as shown in Figure 1. The clients and
optionally, the broker communicate with the AS over HTTPS, and
between them use MQTT over TLS. Both the broker and AS use
TLS certificates to authenticate to the clients.

Clients are not assumed to have TLS certificates; thus, they au-
thenticate with the broker using OAuth2 ATs. ATs issued by the
AS are accepted by the broker as a valid form of authentication.
Each AT is associated with the client requesting it, and specifies
the permissions of the client, i.e., to which topics the client may
publish or subscribe. The ACE-MQTT broker needs to validate the
AT presented by a connecting client before authenticating it. The
token may be self-contained, and can be directly inspected by the
broker. Optionally, the broker can introspect the AT with the AS.

For valid tokens, the broker performs PoP verification so that
the client can prove the ownership of its AT (see Sec. 2.2.4 of [16]
for details). PoP tokens prevent leaked or eavesdropped ATs from
2We sometimes refer to version 3.1.1 as version 3, for simplicity.
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being used to impersonate other clients. By default AS generates a
symmetric PoP key for the client and binds it to the token. Asym-
metric key pairs can also be used, but the client needs to add its
public key to its token request for AS to embed into the AT.

Different authentication methods are available for clients using
different MQTT versions. Clients using version 3 have to overload
the username and password fields with the AT and PoP respectively,
while version 5 clients can make use of the new Authentication
Data field. Version 5 clients can also choose between a simple or
challenge-based PoP, whereas version 3 clients can only use the
simple method. In the challenge-based PoP, both the client and
the broker contribute to creating a nonce to compute a PoP. This
method requires an extra round trip. In the simple version, the client
pre-computes the PoP, just using channel binding, i.e., based on a
challenge associated with the TLS session using the TLS exporter
(see Sections 2.2.4.1 and 2.2.4.2 of [16] for more details).

Upon successful authentication, the topics the clients are au-
thorized to publish or subscribe to are determined by the ‘scope’
parameter in AT. We implemented the ‘scope’ based on an earlier
version of the profile as a space-separated set of permission strings,
where each permission authorizes publishing or subscribing to a
topic filter, e.g., 𝑝𝑢𝑏𝑙𝑖𝑠ℎ_𝑡𝑜𝑝𝑖𝑐1 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒_𝑡𝑜𝑝𝑖𝑐2/# ( currentMQTT-
ACE profile represents scopes using the Authorization Information
Format (AIF) for ACE [3]).

To authorize a PUBLISH message from a client, the broker needs
to check the client permissions by finding a scope sub-string in
the AT that matches the topic field in the PUBLISH packet. Next,
the broker verifies that each subscriber AT is still valid before it
forwards the message to a particular subscriber.

SUBSCRIBE message authorization may be more involved be-
cause both the scope sub-strings and the SUBSCRIBE topics are
topic filters, which can contain wildcards. For each topic filter in
the request, the broker checks if the AT contains a scope sub-string
that is a super-set of that topic filter. If this is the case, the broker
authorizes that topic filter.

Support for authorization errors also depends on the MQTT
version. MQTT version 3 does not allow the broker to indicate a
publish or subscribe authorization failure, nor it allows a server-side
disconnect. Thus, the broker can only drop the TCP connection
in case of an authorisation failure. MQTT version 5 enables better
error reporting: the broker can send a negative publish or subscribe
acknowledgement for authorization failures. As such, the client
can re-authenticate by obtaining and submitting a new AT without
reconnecting. Re-authentication is resource-efficient, since TLS
session initiation is expensive. Finally, a broker can also gracefully
disconnect version 5 clients by sending a server-side disconnect.

4 IMPLEMENTATION
In this section, we summarize the architecture and the implementa-
tion of the ACE-MQTT system.

4.1 Architecture
The overall architecture is shown in Figure 2.

4.1.1 Authorization Server. The AS is an Express-based HTTPS
server with OAuth2 support, and uses OAuth2orize and Passport to

implement the authorization framework.3 The server uses its TLS
certificate to authenticate to the clients and the broker. The Mon-
goose object data modelling library4 is the interface between the
server and a mongoDB database, which contains client credentials,
active ATs and policies. The AS supports the following public API:
• Client registration endpoint is an unauthenticated endpoint that
allows new clients to register with the AS. It expects the client
name and URI parameters, which can be pre-configured in an
ACE-MQTT client, and the name should be unique in the domain.
On successful registration, the AS retains the new client details
in its database, and then it issues client credentials, which include
the client ID and client secret. The secret is tied to an expiry date,
after which it has to be reset.

• Policy management endpoint is accessed by resource owners to
add, update and delete client authorization policies. Resource
owners are any entity that can authoritatively decide access per-
missions to anMQTT topic. With authorization policies, resource
owners dictate which clients can access which topics and how. A
single policy consists of a client ID, scope and expiry date.

• Access Token (AT) request endpoint is accessed by registered clients
to request a token. The AS checks its policy database to determine
if the client is authorized for the requested scopes.

• Introspection endpoint is accessed by the broker to introspect ATs.
This endpoint is optional.

4.1.2 ACE-MQTT Broker. The broker is a Java extension to the
HiveMQ Broker Community Edition5. We choose to build on the
HiveMQ instead of other publicly available Mosquitto-based im-
plementations6 due to the flexible and well-documented extension
SDK that HiveMQ offers. We believe the overhead of the Java Vir-
tual Machine can be managed by MQTT brokers, which typically
have sufficient resources, e.g. to provide high availability.

Our implementation provides the HiveMQ broker with the fol-
lowing additional capabilities:

(1) TLS and HTTPS support, to secure communications with
ACE-MQTT clients and the AS, respectively;

(2) Authentication for version 3 and version 5 clients;
(3) PoP verification of authenticating clients;
(4) AT Introspection to obtain token associated information, such

as PoP and authorization details;
(5) Token caching and periodic validation, to spot expiring ATs

and disconnect/re-authenticate clients;
(6) Authorization of PUBLISH and SUBSCRIBE requests;
(7) AS Discovery, to inform clients of the AS location.

The major components of the broker extension are shown in Fig-
ure 3. The two authenticators, AuthenticatorV3 and Authentica-
torV5, handle the authentication of clients version 3.1.1 and 5,
respectively. They inherit from the AceAuthenticator base class,
which provides common functionality such as requesting AT intro-
spection through the HttpsClient class, validating PoPs through the
3AS source code is public: https://github.com/ciseng/ace-mqtt-mosquitto. Express:
https://expressjs.com/. OAuth2orize: https://github.com/jaredhanson/oauth2orize.
Passport: http://www.passportjs.org/.
4https://mongoosejs.com/
5Wemake our source code publicly available on GitHub. https://github.com/michaelg9/
HiveMQACEextension HiveMQ: https://www.hivemq.com/developers/community/
6https://mosquitto.org/ and Machine-to-Machine bridges such as Ponte based on
Mosquitto https://www.eclipse.org/ponte/

https://github.com/ciseng/ace-mqtt-mosquitto
https://expressjs.com/
https://github.com/jaredhanson/oauth2orize
http://www.passportjs.org/
https://github.com/michaelg9/HiveMQACEextension
https://github.com/michaelg9/HiveMQACEextension
https://www.hivemq.com/developers/community/
https://mosquitto.org/
https://www.eclipse.org/ponte/
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Figure 2: The architecture of all the entities in an ACE-MQTT system.

MacCalculator class and recording authenticated clients and their
ATs in the ClientRegistry class. MacCalculator verifies Message Au-
thentication Codes (MACs) using the Nimbus JOSE/JWT library.7
ClientRegistry is queried by the authorization class AceAuthorizer,
to enforce permissions and check expired ATs. AceAuthorizer con-
tains methods for checking the AT expiry date for publishers or
subscribers. It is further equipped with an instance of a PublishOut-
boundInterceptor class, which checks the expiry date of the AT of
subscribers before the broker forwards them a published message.

With AS discovery option, an ACE-MQTT client may request the
AS location from the broker by sending a CONNECT packet with no
Authentication Data. The broker responds to this CONNECT mes-
sage with an authorization error but uses the new “user properties”
field in the CONNACK packet to inform the client about AS prop-
erties. This optional feature may simplify the initial configuration
of the client and allow a non-static AS location.

In retrospection, the choice of the base broker library did not give
us enough control over the TLS session handling. The broker library
depends on the default Java cryptographic API for TLS support,
which doesn’t allow extensive fine tuning,e.g. not allowing us to
use TLS exporters. Also, there was not much flexibility on the TLS
session algorithm choice and configuration; for example we wanted
to try lightweight TLS cipher suites that do not use certificates,
such as TLS-PSK, instead of using self signed certificates but these
weren’t supported. Had the broker library given us control over
the transport layer parameters, we could have switched to the
BouncyCastle library which adds all these missing features to Java.
Thus it is important that a future implementation chooses a base
broker library that gives full control of the TLS session to the ACE-
MQTT broker.

4.1.3 ACE-MQTT client. The client is a Java extension that acts as
a wrapper over the HiveMQ MQTT client.8 Our extension provides
a simple public API to configure the client and choose between
different options, such as authentication type. The implementation
extends the HiveMQ client with the following capabilities:

7https://connect2id.com/products/nimbus-jose-jwt
8The source of our implementation is at https://github.com/michaelg9/HiveACEclient.

<<create>> <<create>>

addAceAuthenticator

extend

AuthenticatorV3

extend

AuthenticatorV5

MacCalculatorHttpsClient ClientRegistration

ClientRegistry retrieve AceAuthorizer

PublishOutboundInterceptor

1

*

1

*

Figure 3: Main components of ACE broker extension used
for authentication, authorization, access token tracking.

(1) TLS and HTTPS support for securing the communication with
the ACE-MQTT broker and the AS;

(2) Client bootstrapping supports for initial client configuration
via a config file and functionality to complete missing infor-
mation, such as client registration to obtain client id and
secret, or AS discovery;

(3) Proof of Possession (PoP) based on a MAC or digital Signature
proof of AT ownership;

(4) Authentication using simple and challenge-based flows;
(5) Re-authentication on AT expiry for version 5 clients.

The architecture of our client extension is illustrated in Figure 4.
In our implementation, a version 3.1.1 client can choose between

simple authentication, which is the default, or no authentication,
if the client is not used as an ACE client. On the other hand, a
version 5 client can select between simple, challenge-based, and
no authentication. Any additional actions or settings required to
make the client comply with the ACE-MQTT protocol, such as AS
discovery, client registration, AT request and transport protocol
settings are performed automatically, without user interaction.

Client bootstrapping. A client instance requires initial configura-
tion before it can execute. The configuration is made up of key-value
pairs, with the keys shown as required and optional parameters
in Table 1. E.g., the location of the broker needs to be known. In
our set-up, the AS and the broker have self-signed TLS certificates;
thus, the clients should be pre-configured with a trust store.

The configuration file is parsed and client initialization is per-
formed in steps. First, the AS IP address is looked up, and if found,

https://github.com/michaelg9/HiveACEclient
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<<create>>
ClientBuilder

<<create>> <<create>> <<create>>

extend

Ace5ClientBuilder

extend

<<create>>
Ace3ClientBuilder

ClientConfig
HttpsClient

AuthMechanism

extend

DiscoveryAuthMechanism

1
1

extend

<<create>>

ChallengeAuthMechanism

extend

<<create>>

SimpleV5AuthMechanism

MacCalculator

Figure 4: Main components of ACE client showing base
ClientBuilder class (top) and its dependencies (HttpsClient,
ClientConfig), the version 3 and 5 client builder sub-classes
(Ace3-/Ace5-ClientBuilder), the three v5 authentication
mechanisms (Discovery-/SimpleV5-/Challenge-AuthMech-
anism) and MacCalculator used to calculate the PoP.

Parameter Required

Broker IP address Yes
Broker port Default if missing
AS IP address Yes, unless discovery is possible
AS port Yes
SSL/TLS key & trust store Yes, if SSL/TLS is used
Transport protocol No, defaults to TLS
Client Username Yes, unless already registered
Client Uri Yes, unless already registered
Client id Unless no username and uri is provided
Client secret Unless no username and uri is provided
Scope Yes

Table 1: Client initial configuration parameters

then the client registration is checked, i.e., if the configuration in-
cludes a client id and secret. If that is not the case, then the client is
registered with the AS registration endpoint. The retrieved client id
and secret are saved in the configuration file to avoid undergoing
the registration phase next time. Then, the MQTT session is con-
figured according to the transport protocol parameter; the default
value is ‘TLS’, according to the ACE-MQTT protocol, however, the
user may set it to ‘TCP’ instead, if the client does not support TLS.
Finally, if the AS IP address is not found, the client proceeds to
discover this if possible.

Lessons learned: In hindsight, the choice of client library would
be best implement in C. As revealed by our experiments, the mem-
ory footprint of the Java Virtual Machine is non negligible and
can prove problematic in highly constrained devices. In addition
to that, the cryptographic API natively available in Java is not as
extensive as in the OpenSSL API provided in C environments. Thus,
it does not support a feature similar to the OpenSSL TLS exporter,
which is required in order to obtain a nonce established during
the TLS handshake for the MQTT simple authentication phase. To
circumvent this problem, we used a different source to generate
nonces, as we detailed in the next subsection.

Next, we describe how the clients and broker mutually authenti-
cate to achieve the security guarantees of the ACE-MQTT protocol.

Figure 5: Challenge-based Authentication

4.2 ACE-MQTT PoP-based Authentication
In this section, we divide the two-way authentication phase be-
tween an ACE-MQTT client and the broker into steps and describe
the implementation details of each. How the PoP is performed
depends on the type of authenticator. The MQTT-TLS profile de-
scribes two mechanisms: (1) pre-computed PoP based on the chal-
lenge value returned using the TLS exporter, which we call simple
authenticator, and (2) a challenge-based scheme, initiated by the
broker. Version 3 clients can only support the simple authenticator,
while version 5 clients support both mechanisms.

Client-side implementation. Due to lack of support for TLS-exporter
in the development environment, we have implemented the au-
thenticators differently. In the simple implementation, the PoP is
computed based on the contents of the CONNECT message, which
may not have enough randomness, and hence, may not be as secure.
However, it allowed us to have a performance comparison between
the two different mechanisms. Depending on whether symmetric
or asymmetric keys are used, the PoP is a Message Authentication
Code (MAC) or a digital signature.

The challenge-based authentication (shown in Figure 5) uses the
broker and client-generated nonces. The challenge-response phase
is initiated by the Broker sending an 8-byte challenge to the client.
The authenticator then generates a secure cryptographic random
nonce and concatenates the two nonces to calculate the PoP. The
client nonce and PoP are returned to the broker as an AUTH packet.

Broker-side implementation. When the broker receives the CON-
NECT packet, it first checks whether the packet is formed correctly.
Then it checks the validity of the AT and PoP. For this, it may
introspect the client AT using the AS introspection endpoint. Next,
the broker must validate the PoP. In the case of a simple authenti-
cator, the broker generates the expected PoP using the PoP key and
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algorithm in the token. Then, it compares this with the provided
PoP and authenticates the client if the two match.

In the case of the challenge-based authenticator, on receiving the
CONNECT packet, the broker generates a cryptographic nonce. It
responds with an AUTH packet containing the nonce with reason
code "CONTINUE_AUTHENTICATION". The client performs the
PoP and returns it in an AUTH packet. To validate the PoP, the
same procedure as in the simple authenticator is then followed.

If the PoP is valid, the authenticator accepts the request. First, it
caches the introspection response in an in-memory map with the
client id as the key. Then it parses the scope of the AT into a topic
permissions list and applies it to the configuration of the client.
Both of these are used during authorization, as we explain next.

4.3 Client Authorization
Client authorization was built on top of the existing HiveMQ broker
authorization library to satisfy the ACE-MQTT authorization re-
quirements. Client authorization 1) ensures clients can only access
topics defined in their scope and only for the allowed action, i.e.,
publish or subscribe, 2) checks AT expiration for each publish or
subscribe request, and 3) provides error reporting when the AT is
expired or when the request is not authorized.

Scope permissions are implemented as part of the Broker’s ACL
(Access Control List) containing a rule for each permission defined
by the scope in the AT for that particular client. Each permission
represents the action (publish or subscribe) the client is allowed on
a topic filter. Hence, when the client publishes, the topic name in
the packet needs to match with the topic filter of at least one rule
that permits publishing. On the other hand, when a client sends a
subscribe request, each topic filter in the request is compared to
all the rules in the ACL, until a match is found, i.e., there is a rule
with an equal or broader topic filter. Then the broker authorizes the
subscription request only for the topic filters that were authorized.

Finally, ATs must be validated when the broker has messages to
forward to subscribers. If a token cannot be validated and a request
must be refused, the broker may either drop the connection (version
3 clients) or send a server-side disconnect message or a negative
acknowledgement (version 5 clients).

Lessons learned: There were no major issues in the imple-
mentation of this phase. However, the authorization of subscribe
messages requires extra attention when comparing topic filters
between them. We had to ensure that each request topic filter was a
subset of an authorized topic filter. This can prove too strict under
some circumstances, e.g., when the request filter is broader than
the authorization one, but the corresponding MQTT topics match.
Another trade-off in this phase is between performance and fresh-
ness of ATs. If a client AT is revoked before it expires, the broker
would not know that in the current implementation, because it uses
caching. If we choose not to cache, then the broker must introspect
each AT for each client action, which can become too expensive in
a production environment. In this case we prioritized performance,
with the assumption that ATs are not revoked on the AS.

5 PERFORMANCE EVALUATION
Our ACE-MQTT development is based on an enterprise MQTT bro-
ker and client solution, HiveMQ, and therefore, does not consider
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Figure 6: Resource utilization of ACE-MQTT with different
authentication methods vs plain MQTT connection set-up.

very constrained IoT set-ups. Nevertheless, in this section, we eval-
uate our implementation based on its resource utilization to assess
the additional overhead that comes with security. We compare its
performance with different authentication mechanisms against that
of MQTT systems with plain insecure clients that do not use TLS
or any authentication. The metrics we consider are memory, CPU,
and network load, power demand and overall energy consumption.

5.1 Resource Utilization
To measure the computing resources used by ACE-MQTT and
insecureMQTT clients, we ran simultaneously a secure ACE-MQTT
and a plain MQTT client inside containers, using a Docker compose
setup. We measure the CPU, memory, and network utilization per
second, for each container. Specifically, we use the Google Container
Advisor to query the container statistics and a Prometheus time
series database to store the readings 9. The only notable difference
is that memory is measured using JMX10 to observe the usage of
the Java process and not that of the whole JVM. One key benefit of
working with containers is that the setup allows running multiple
different clients simultaneously, in synch at the same phase of
operation, and obtain a meaningful comparison between them.

We test the different authentication methods against a plain
MQTT client connecting with no authentication and report the
results obtained over a 2-min window in Figure 6. As expected,
plain MQTT bears the smallest demand. All ACE authentication
methods incur high overhead during the authentication phase, and
require the same amount of resources in terms of memory, CPU,
and network bandwidth. In particular, when compared to a plain
MQTT client, an ACE client requires 10× more network resources,
3× more CPU cycles and 1.2× more memory.

We also examine the overhead incurred by an ACE-MQTT client
during normal operations, such as when publishing or receiving
messages on subscribed topics. The results are shown in Figure 7.
An ACE-MQTT publisher requires identical amount of CPU cycles

9https://github.com/google/cadvisor; https://prometheus.io/
10https://www.oracle.com/java/technologies/javase/javamanagement.html

https://github.com/google/cadvisor
https://prometheus.io/
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Figure 7: Resource utilization during normal operation.

and inbound network resources, but carries 15% more outbound
network traffic and requires 25% more memory. Meanwhile an ACE-
MQTT subscriber requires almost identical amount of CPU cycles
and inbound network resources, but around 15% more outbound
network and memory resources.

We conclude that our ACE-MQTT implementation incurs a no-
table cost in terms of energy and resources only during the authen-
tication phase, whereas the footprint of the different variants is on
par with that of plain MQTT during publish/subscribe operations.

5.2 Energy Consumption
Weuse a Raspberry Pi (RPi) 3Model B+ device running the Raspbian
Stretch Linux distribution to measure the energy consumption
overhead. We employ a UM34C USB power meter, which we place
between the RPi and the power source, measuring voltage and
current drain per second, and the power consumed by the device as a
whole. To reducemeasurement noise, we disable all the unnecessary
features and peripherals of the RPi, including the USB controller
and the video interface, and operate the device via SSH.

Since there is no straightforward way to isolate the MQTT-
related power consumption, we use the ACE-MQTT executable
jar to launch ACE-MQTT and plain MQTT clients separately, and
we measure the difference in the power consumption of the device
when operating with each of these. To put things into perspective,
we also examine the power footprint of the RPi when idle. We run
multiple experiments and monitor a client repeatedly performing
a 1) complete authentication phase with AT request and broker
authentication, 2) publish request, 3) subscribe request, with a short
sleep interval in-between. The settings are summarized in Table 2.

We first examine the power consumed over a 60-second interval,
during which different types of authentications are performed, and
messages are published and received by clients. The ACE-MQTT
client has an average power consumption of 1.2W per second during
authentication, which is only 10% higher than the average of a plain
MQTT client and corresponds to a 15% increase from the idle state.
Note that the power consumption in the idle state accounts for
the requirements of the operating system along with the HiveMQ
implementation but without any MQTT traffic. Thus, a system

Parameter Value

Authentication repeat interval 2 seconds
Pub repeat interval 2 seconds
Pub/Sub QoS At least once
Pub message length 17 B
Plain client MQTT client version 5
Authentication PoP HS256
Pub/Sub client ver. 5
Client connectivity Wi-Fi
Environment RPi 3 B+
TLS cipher suite TLS_ECDHE_RSA_WITH_

AES_128_GCM_SHA256
Client library Executable jar
AS & broker location Same network as client

Table 2: Energy consumption experiment settings
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Figure 8: Average cost of authentication with the challenge-
based authentication, MQTT v3 and v5 simple authentica-
tion, and plain MQTT, in terms of duration (left), power uti-
lization (middle), and energy consumption (right).

designer only needs to worry about the capabilities of the device
and the most suitable authentication scheme for their deployment.

We then compute the average duration of establishing a con-
nection, and the associated power and energy consumption for
the different authentication methods considered, across 10 indi-
vidual experiments. We report the results obtained in Figure 8. As
expected, since it involves the largest number of messages, the
challenge-based authentication method takes the longest to com-
plete, but the duration is comparable to that of simple authen-
tication in MQTT version 3 and 5. The insecure MQTT variant
completes the connection establishment more than 4 times faster.
As the power utilization of all methods is comparable, the energy
consumption of each strictly depends on the duration of the au-
thentication/connection phase. The challenge-based authentication
requires around 5% more energy than simple authentication, due
to the fact that it involves one extra round trip.

We examine closely the duration of simple authentication (ver-
sion 5), by breaking it down into its different parts and quantifying
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their time requirement. To this end, we remove a single component
of the authentication phase in each test and measure the average
time that a client needs to complete the authentication phase. More
specifically, we first remove TLS session initiation and measure
only the the AT request and the broker’s authentication of the
client. Without the time associated with the TLS handshake and
data encryption of the MQTT CONNECT and CONNACKmessages,
the average time required to complete authentication comes down
to half a second on average. Then, to deduct the overhead of the
AT request, we reuse the same AT among different authentication
requests and measure the new duration. The average time measured
is 4.3 seconds corresponding to the TLS session and the broker au-
thentication. Finally, to quantify the overhead incurred by the client
authentication, which includes AT introspection and PoP, the client
request is authenticated automatically, as if the broker allowed
unauthenticated requests. In this case, the average authentication
time (including only the AT request and TLS session initiation) is
approximately 4.5 seconds, with TLS overhead, AT request, and
broker authentication accounting for 90%, 8%, and respectively 2%
of the duration. Note that the AS was in the same LAN as the broker
and the client during the experiment, thus we would expect the
AT request and client authentication to be slightly higher in reality.
We conclude that the TLS session overhead bears by far the highest
overhead, which is not surprising, since our RPi does not support
hardware cryptographic extensions, and thus, all the computations
are dealt with directly in software.

6 DISCUSSION
The cost of adding authentication, authorization, data integrity,
and confidentiality to MQTT lies largely in the session authenti-
cation phase of ACE. It should be noted however that ATs can be
re-used among different sessions as long as they are not expired,
thus amortizing the overhead of requesting a token among sessions.
Thus, these results present the upper bound cost of ACE-MQTT
authentication. On the other hand, power, memory, and CPU con-
sumption is also influenced by the security operations involved, i.e.,
PoP, generation of cryptographic nonces, and TLS encryption.

Recall that our implementation runs in user space and as such
there is scope to investigate the use of hardware acceleration for
cryptography, which is increasingly present in Arm and x86 pro-
cessor that offer, e.g., specialized AES and SHA instructions. In
addition, optimizing the choice and parameters of the TLS cipher
suite has the potential to decrease the overhead further. Finally, a
lower level language could scale down the resources needed.

Note that the client has to store sensitive information on board
in ACE-MQTT, which needs to be secured. This includes the client
secret, which could be used to impersonate the client if leaked.
Secure storage could be achieved with the help of a permission
oriented operating system running on top of the client application,
or with hardware support in the case of embedded devices. For
example one could use Zymbit,11 which provides an encrypted
filesystem and key management support, to secure Raspberry Pi
(RPi) devices, as those we used in our experiments.

Finally, given the wide deployment of MQTT v3.1.1, we expect
MQTT v5 servers to offer dual-stack support for both type of clients.

11https://www.zymbit.com/blog-security-module-raspberry-pi/

In this case, the MQTT v3.1.1 clients have access only to limited
functionality and would need to be upgraded, to benefit from ad-
vanced ACE features such as improved error reporting, and the
ability to re-authenticate with new tokens during the same session.
However, it is important to avoid mixed operation, e.g., MQTT
v3.1.1 clients connecting to brokers that support only MQTT v5.
This may cause problems even if the broker implements the simple
authentication method. For instance, MQTT v3.1.1 clients are ex-
pected to ignore the fields they cannot parse in the error messages
sent by the broker (e.g., PUBACK with authorisation errors), hence
they may not be aware that the broker does not forward their mes-
sages to their subscribers in the case of an authorisation failure.
Therefore, careful consideration needed when supporting a mix of
v3.1.1 and v5 clients.

7 CONCLUSIONS
In this paper we presented a comprehensive implementation of the
MQTT-TLS profile of ACE for MQTT v3.1.1 and v5 and results of
a comparative performance evaluation. We have shown that ACE-
MQTT has acceptable overhead, which is mainly incurred during
the authentication phase. Since MQTT is based on persistent TCP
connections, amortizing the additional resources and energy costs
throughout sessions can be straightforward. Implementation im-
provements can also be achieved by using hardware cryptographic
acceleration, lower level languages, and secure storage.
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