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Abstract—The emergence of 6G wireless communication in-
troduces a new era of connectivity demands, marked by high
data rates and varying network conditions. To address these
challenges, we propose HRISDQN, a framework that combines
Hybrid Reconfigurable Intelligent Surfaces (HRIS) with Deep
Q-Network (DQN)-based reinforcement learning. HRISDQN rep-
resents a significant advancement in optimising communication
in 6G networks, enabling transformative improvements. In our
work, we compare HRISDQN with conventional Semi Definite
Relaxation (SDR), Maximum Ratio Transmission (MRT), and
Minimum Mean Square Error (MMSE) as traditional beam-
forming techniques. We demonstrate HRISDQN’s adaptability to
dynamic scenarios through extensive simulations and evaluations,
including varying Signal-to-Noise Ratios (SNR) and changing
user densities. Our results show that HRISDQN consistently
outperforms its counterparts; HRISDQN’s resource allocation
capability ensures 40% better fairness, lower delay by 80%, and
three times higher spectral efficiency, even in high-density user
environments. The designed HRISDQN excels under diverse SNR
conditions, providing robust and reliable connectivity. HRIS-
DQN’s exceptional performance holds great promise for the fu-
ture of 6G communication. HRISDQN offers ultra-efficient, low-
latency, and adaptive communication networks for augmented
reality and autonomous vehicles using HRIS and DQN.

Index Terms—Beamforming, deep Q networks, delay, fairness,
hybrid reconfigurable intelligent surfaces, 6G.

I. INTRODUCTION

The field of wireless communication has experienced sig-
nificant progress and has demonstrated notable advancements.
With each new technological generation, there is a growing
demand for unlimited global interconnectivity, which has
become a valued necessity and a central focus. The fun-
damental essence of the new wireless generation 6G inte-
grated capacities lies in its ability to provide exceptionally
high data rates, very imperceptible latency, and uninterrupted
connectivity, thereby propelling humanity into an era when
the limits of digitalisation are limitless [1]. Given the higher
expected capabilities of the 6G, it is crucial to address the

current complex issues of high network deployment costs and
high energy consumption to develop future sustainable and
environmentally friendly wireless strategies. Hybrid Reconfig-
urable Intelligent Surfaces (HRIS) have received significant
attention due to their ability to enhance wireless network
capacity and coverage by intelligently modifying the wireless
propagation environment [2] As network capacity, coverage,
and ultra-low latency communications are the main concerns
in 6G wireless communications and a critical requirement for
applications such as augmented reality, self-driving vehicles,
and the massive Internet of Things (IoT), the HRIS can address
these challenges effectively.

HRIS is essential in 6G wireless communication because
it can independently change the wireless communication en-
vironment [3]. Moreover, HRIS provides high-precision sens-
ing to create a suitable environment for signal propagation
and make the interference between wireless signals from
two nearby objects less significant, thus improving overall
sensing resolution and system performance [4]–[6]. Its low
manufacturing, simple hardware adjustment, and low energy
consumption also make it a good choice. The core of HRIS
revolutionary technology is centred around signal redirection
and beamforming. Beamforming is a fundamental technique
in wireless communication that is used to enhance the signal-
to-noise ratio (SNR) of received signals, eliminate undesirable
interference sources, and focus transmitted signals on specific
locations [7].

Conventional Semi Definite Relaxation (SDR), Maximum
Ratio Transmission (MRT), and Minimum Mean Square Error
(MMSE) have traditionally served as fundamental techniques
in the field of beamforming [8]. SDR, renowned for its
inherent simplicity, endeavours to mitigate interference by or-
thogonal use of the transmission signals. The MRT technique,
in contrast, utilises the concept of optimising the SNR at the
receiver, hence offering resilience in environments with high
noise levels [9]. The Minimum Mean Square Error (MMSE)
technique is more intricate and aims to minimise the average
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squared difference between the desired and received signals.
This technique provides enhanced reliability compared to other
methods [10].

Over recent years, deep learning has shown an exceptional
ability to address irregular network communication issues
and facilitate rapid computational processes compared to
conventional iterative methods [11]. Additionally, Deep Q-
Network (DQN) has the potential to completely change the
way beamforming works in 6G communication because it
can learn from past mistakes and dynamically improve the
distribution of resources in real-time situations [12]. As we
explore the continuously expanding realm of 6G communica-
tion, a significant development emerges in the combination of
HRIS and DQN, which holds the potential for transformational
impact. The phenomenon of our new dynamic fusion, referred
to as HRISDQN, is evidence of the limitless innovation in
wireless communication. The fundamental principle of HRIS-
DQN is rooted in DQN reinforcement learning as an artificial
intelligence framework designed to emulate the cognitive ca-
pacities of the human brain in beamforming decision-making
processes.

Currently, there have been several works investigating the
use of DQN with RIS that only reflect the incident signal, as
in [11], [13]–[24].

Even though reflective RIS and DQN have been combined,
there is still a gap in operating DQN for HRIS. This is
because HRIS, which can send and receive the incident signal
simultaneously, is being used with DQN for the first time, and
its performance will depend on the user and the BS channel.
Furthermore, this achievement is justified by different system
metric parameters.

Our novel HRISDQN contributes to the 6G communication
system with terahertz data rates by:

• We propose an HRIS model to expand the scope of
RISs that only reflect signals. Particularly, we consider
the practical electromagnetic characteristics of HRIS ele-
ments, leading to a combined phase shift in transmission
and reflection. Using the suggested model, we formulate a
problem solution of joint active and passive beamforming
that necessitates hybrid control over phase shift and
amplitude. This solution aims to enhance the fairness
between users in the network and minimise long-term
delays.

• We develop a collaborative HRIS-DQN algorithm as a
high-beamforming solution. The joint HRISDQN scheme
can handle hybrid control by using two combined net
matrices for the BS and user channel for each HRIS
element. The HRIS controls whether signals are sent or
reflected, and the DQN handles beamforming control.

• A unidirectional neural network is utilised for the predic-
tion of the phase shift matrix and beamforming matrix
simultaneously; the proposition of the neural network
design is intended to diminish the computational com-
plexity of the optimisation process, which is typically
computationally complex in most previous works that

use iterative optimisation algorithms to obtain suboptimal
solutions.

• The suggested HRISDQN design considers how the best
transmit beamforming matrix depends on the useful chan-
nel. It does this by finding the best phase shift and beam-
forming matrices for each HRIS element simultaneously
to get the highest sum rate.

The rest of this paper is organised as follows: Section II
shows the system model and interpretations of our HRISDQN-
assisted wireless network. This section includes the coupled
phase-shift, channel, and signal models. The HRIS dual func-
tionality algorithm and the DQN beamforming method are
introduced in Section III as solutions that are both simple and
effective. In Section IV, the network architecture, training, and
validation are explained. Section V provides a performance
analysis of the proposed framework and algorithms. Section
VI concludes the paper.

II. SYSTEM MODEL AND INTERPRETATION

We consider a three-point system consisting of one HRIS
with M horizontal and L vertical patches forming H reflecting
and transmitting surface, BS with A antennas to serve N users,
as in Fig.1. To demonstrate the ability of our DQN with the
HRIS, we assume that there is no direct link between the BS
and users; as a result, DQN beamforming will perfectly serve
users on both HRIS sides.

Fig. 1. System model.

The received signal at the Nth user is a superposition
between the signal from BS to HRIS and the signal from HRIS
to the user, which is equal to:

Yn = bHn ΘGH
AX + wn (1)

In our work, we refer to the complex space vector as S,bHn ∈
SH×1 denotes the beamforming link between HRIS and user
n,GH

A ∈ SH×A denotes the link between HRIS and BS, and
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the hybrid transmission or reflection beamforming matrix is
denoted as Θ, where Θ = diag

([
ejθ1 , ejθ2 , . . . , ejθH

])
and

, θH ∈ (0, 2π),X = Onsn, is the transmitted signal at the BS.
On ∈ SA×1 is the beamforming vector from BS, sn is the
information symbol for the nth user, and wn is the additive
white Gaussian noise (AWGN) at the user n.

In order to determine the nth user received SNR, the vector
of beamforming weights for all users is denoted as O =
[o1, . . . , on] where On is the weight of user n. The channel
matrix for all users in the HRIS channel vector is defined as
BH

n =
[
bH1 , bH2 , . . . , bHn

]
and B = BHΘGH

A ∈ SN×A, which
is the overall channel matrix as obtained by multiplying the
HRIS beamforming matrix with HRIS and BS link channel
matrix. Then the SNR is defined as:

SNRn =
(onBn)

T
(onBn)

In
, n = 1, 2, . . . , N (2)

where (.)T denotes the conjugate transpose of the matrix
and In is the total interference and noise at user n. Maximising
the transmit power with the total data rate of users requires
considering two important constraints at first, the total transmit
power of all users should not exceed a maximum value of
Pmax as in (3), where the second constraint states that the
phase shift values should stay between 0 and 2π as in (4):

N∑
n=1

(On)
T
On ≤ Pmax (3)

0 ≤ θn ≤ 2π (4)

From (2), (3) and (4) the beamforming maximisation is
calculated as in (5):

max
Θ,Q

RT = log (1 + SNRn) (5)

As designated in (2) and (5), maximising data rate directly
relates to beamforming and phase shift matrices. This means
that both matrices must have an optimal design to maximise
the sum rate. The maximisation involves dividing the main
maximisation approach into sub-approaches and optimizing
them iteratively. The approaches are then applied through
randomisation and normalization quadratically constrained ap-
proach, where (5) can be rewritten as:

max
Θ̄

(
Θ̄
)T

RT Θ̄ (6)

where, Θ̄ =

[
Θ
r

]
, RT =

[
BT

nG
TBG BT

nG
T bn

bTnGB 0

]
.

Then, to find the suboptimal solution for (6), it must be
normalised as a complex scalar modulus as below:

Θ = Norm
(
Θ̄ [1 : H] /Θ̄H+1

)
(7)

III. HRISDQN NEW APPROACH

A. HRIS dual functionality and power optimisation

HRIS was designed and validated using a new power
optimisation system model for the signal destination at the
HRIS controllers. For each user signal, this is determined
and calculated using the new general formulation for power
optimisation:

Pr,t = SP ×Ae =
|Er|
2Zair

2

× Un
AG

λ2

4π
(8)

where, Er is computed using (9):

Er =
M∑

M=1

L∑
L=1

√
2ZairPsUn

AGAHRISGHRIS ×NP ×RM,L

and,NP =
√
NPBSNPHRIS,BSNPHRIS,UNPU

4πlBS
HRISlUHRIS

(9)
From (9), the HRIS functionally determination at the

HRIS controller for transmission or reflection considers the
user location from the HRIS by introducing the parameters
Dptrans, Dpref , where these newly defined parameters take
values 0 or 1 so that equation (8) can be rewritten and
calculated using (10):

Pmax = Pt + Pr

= (SP ×Ae ×Dptrans ×At) + (SP ×Ae ×Dpref ×Ar)

where : SP ×Ae =
|Er|
2Zair

2
× Un

AG
λ2

4π
(10)

This power optimisation takes the system to the next step of
signal transmission and redirection towards the user location.
The suggested implementation determines signal direction
and characteristics according to HRIS space wave impedance
ηHRIS , which is reconfigured and calculated using (11):

ηHRIS = j
η0

cos θi
cot

(
(sin θi − sin θr,t)

2

)
.due (11)

where θi, θr and θt are, the incident, reflected and trans-
mitted signal phase shifts, respectively. Based on the new
power optimisation and decision-making illustrated above, the
transmitted or reflected signal from HRIS is calculated using
(12) and (13), respectively, where Yn is the Un intended signal.
Table I summarises HRIS design parameters.

Yt = PAt · ηRISe
jθtYn (12)

Yr = PAr · ηRISe
jθrYn (13)

B. DQN beamforming

Motivated by the fact that conventional optimisation meth-
ods often result in suboptimal solutions with high complexity,
we present a novel reinforcement deep learning-based frame-
work as an alternative approach, providing a more efficient
and effective solution to the optimisation problem.
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TABLE I
MODEL DESIGN PARAMETERS

Parameters Definitions

Un
AG User antenna gain

SP Power density

Zair Air impedance

Er Electric field

Ae Effective aperture

AHRIS HRIS Effective aperture

Ps Signal power

lUHRIS Distance between HRIS and user

lBS
HRIS Distance between HRIS and BS

RM,L Reflection/transmission coefficient for which equals∣∣RM,L

∣∣ exp (
−jϕM,L

)
exp

(
−j 2π

λ

(
lBS
HRIS + lUHRIS

))
NPBS BS normalised power radiation

NPU User normalised power radiation

NPHRIS,BS HRIS normalised power radiation from BS

NPHRIS,U RIS normalised power radiation to Un

Ar,t Signal amplitude response

This novel approach improves performance and efficiency
in HRIS-aided 6G wireless communication systems. Instead
of relying solely on the BS or user channels, combining the
two is utilised to establish unique characteristics for each
transmitting and reflecting element of the HRIS. Thus, using
BH

n and GH
A as a two-dimensional feature vector allows

more streamlined processing and data analysis, in contrast to
utilising each vector separately, as a result this will leads to
enhanced efficiency. Precisely, the new combined feature for
ith HRIS element is described in (14), where V ∈ SN×A:

Vi = BH
n GH

A (14)

The focal point of the new DQN network is to tackle the
problem of the optimal transmit beamforming matrix reliant
on the effective channel. In wireless communication systems,
the effective channel considers the impact of the environment,
for instance, reflections and scattering, between the transmitter
and receiver. The optimal transmit beamforming matrix is a
matrix that adjusts the phase and amplitude of the transmitted
signals to amplify the received signal power at the receiver.

Our novel HRISDQN aims to determine the optimal action
by selecting the highest Q-value while factoring in the critical
parameters associated with Q-learning. It is designed to re-
peatedly iterate the Q-value for every observation to identify
the maximum value. This process enables the algorithm to
make informed decisions that are efficient and optimised for
maximum performance.

The designed HRISDQN depends on three main stages as
illustrated in Fig.2; in the state stage indicated as (A), the
network observes and collects information on the BS channel
and user channel, which is identified as a collection of the
wireless environment characteristics E; where, en ∈ E is
the combined BS and user channel characteristics for each

user n, in which E is the current situation for user n and
sent to the HRIS controller. The next stage (B) is where the
HRIS controller takes the decision en+1 that is made based
on the current channel characteristics en. The last stage (C)
is wireless environment feedback fn and update on the taken
decision, in which the HRISDQN reinforce good behaviour
and discourages bad behaviour based on the highest Q-value
achieved as in (15), where the second part of the equation can
be rewritten as in (16).

Q (Sn, Sn+1)← Q (Sn, Sn+1) + αQ∗ (Sn, Sn+1) (15)

Q (Sn, Sn+1)← Q (Sn, Sn+1)

+α

{
r + γ max

S′
n+1

Q∗ (S′
n, S

′
n+1

)
−Q (Sn, Sn+1)

}
(16)

where r is the immediate decision obtained by the HRIS
controller, α is the learning rate, which determines the extent
to which new information overrides old information, Q∗ is
the optimal Q-value for the next (en, en+1) pair, and γ is the
buffer used to reduce the correlation between the training data
and enhance the stability of convergence, which determines
the importance of future decisions in the update.

Fig. 2. DQN System model.

IV. HRISDQN ARCHITECTURE AND VALIDATION

A. Network Architecture and Training

The adopted network architecture, as illustrated in Fig.
3, consists of one convolutional layer (CV) followed by
six fully connected layers (FC). Each FC layer neuron is
proportional to the number of reflecting elements H to ensure
that the HRISDQN network has enough capacity to learn from
larger datasets as the wireless system scales up. Therefore,
the FC layers are made up of 64H, 32H, 16H, 8H, 4H and
H neurons, respectively. To prevent network overfitting and
improve the training process, a Batch Normalization (BN)
layer is placed between each FC layer and after the first CV
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layer. All FC layers use a rectified linear unit (ReLU) as an
activation function to prevent the vanishing gradient problem.

Adam optimiser is used to train the network with an initial
training rate of 0.0001, as the maximum batch size Z is set to
6000, 80% of the generated data samples are used for training,
and the remaining 20% are used for validation.

B. Loss Function

The loss function is a crucial metric that determines a given
model’s performance regarding its training data. It serves as
an indicator of the disparity between the predicted values and
the actual values. Minimising the loss function is imperative
to improving a model’s accuracy since this implies that the
model’s predictions align more with the target values.

The loss function for single beamforming through HRIS-
DQN is calculated from (15) and (16) as in (17).

Loss =

(
Q (Sn, Sn+1)−

(
r + γ max

S′
n+1

Q∗ (S′
n, S

′
n+1)

))2

(17)
Given the anticipated expansion of wireless communication

in the 6G THz new generation, which will ultimately support
ten times the number of users compared to the current gen-
eration, it becomes imperative to establish a comprehensive
characterization of the loss function for this particular goal.
The overall loss function for HRISDQN is expressed in (18),

Loss =

(
Q (Sn, Sn+1)−

(
r + γ max

S′
n+1

Q∗ (S′
n, S

′
n+1)

))2

Z
(18)

C. Simulation Parameters

The HRIS used in this work is designed to transmit and
reflect the incident signal to their intended users at the same
time, 200 hybrid reflection and transmission elements H is
applied in which their element response equals 0.9, transmis-
sion power 1000 mW, wavelength λ of 0.1, HRIS antenna
gain is 1 and power radiation parameters are 0.99. The tested
and configured area experiences high user density of 3× 106,
6× 106, 9× 106, 12× 106, and 16× 106 user/km2 in which
they are randomly distributed, with one BS which has eight
transmitting antennas A, in which wireless communication
system with high user density indicates higher transmission
data rates.

To elucidate the performance of HRISDQN, considering
system stability, training efficiency, and testing performance,
we generate 12× 106 samples for training, 10× 106 samples
for validation, and 8×106 samples for testing. This new HRIS-
DQN is designed to support the latest wireless communication
generation, 6G; the operating frequencies for THz transmission
used to justify HRISDQN performance with the 6G THz new
wireless generation are 300, 400, and 500 GHz.

D. Working Methodology

MATLAB is selected as the primary tool for implementing
the proposed methodology in designing a novel HRISDQN
that will enhance the performance of a wireless multi-user sys-
tem. This system is characterised by its ability to accommodate
multiple users simultaneously. Incorporating HRIS technology
is intended to improve the overall efficiency and reliability of
the system in question.

The primary stage of the proposed methodology is develop-
ing an HRIS-enhanced wireless network. This is achieved by
attaining optimal configuration of varied parameters, including
wavelength, radiation power, antenna gain, bandwidth, noise
power, transmit power, source and destination locations, the
number of HRIS components, the number of users, and the
number of antennas in the BS. The next stage is to train
and validate the suggested HRISDQN network, as defined
in the previous subsections, considering data generation, loss
function application, and the data standardisation process by
dividing the data average by the standard deviation.

The third stage of the work methodology involves imple-
menting a real-time scenario that entails randomly allocating
users for signal beamforming through HRIS elements. This
approach is designed to provide a comprehensive elucidation
of the new beamforming method’s achievement in contrast
to conventional methods. As such, the results are carefully
plotted and compared to determine the effectiveness of the
new approach.

V. SIMULATION RESULTS AND DISCUSSION
In this section, we show numerical results that are performed

to evaluate the proposed approach. Our new HRISDQN is val-
idated against different beamforming techniques in single and
multi-user scenarios. Conventional Semi Definite Relaxation
(SDR), Maximum Ratio Transmission (MRT), and Minimum
Mean Square Error (MMSE) are methods used to optimise the
transmission and reception of signals in multiple-antenna com-
munication systems. Each has advantages and disadvantages
regarding difficulty, interference, channel estimation error, data
rates, and noise reduction.

A benchmark assessment measure is system fairness. Our
research shows that as the number of users increases, HRIS-
DQN displays exceptional fairness results. The adaptive re-
source allocation and learning characteristics of HRISDQN
enable it to dynamically alter signal beamforming to ensure
equal resource distribution across users.

At the beginning of the simulation, where the number
of users is 3 × 106, HRISDQN elucidates better fairness
performance than the other approaches, which is higher than
SDR, MRT, and MMSE by 30% to 40%. On the other hand,
SDR, MRT, and MMSE demonstrated low adaptability for
signal beamforming. As the number of users increased, their
performance would not exceed 50% at the maximum user
density reaches 16×106 for 500 GHz, while HRISDQN shows
90% system fairness. We discovered that fairness became a
more significant concern as the number of users in the wireless
communication scenario increased. Jain’s Fairness Index (JFI)
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Fig. 3. DQN Network architecture.

measures fairness by determining how users allocate resources.
We observed a consistent trend, as shown in Fig.4, 5 and
6, where fairness indices tended to decrease for SDR, MRT,
and MMSE as the number of users increased. This trend is
typical in scenarios involving a shared wireless medium where
resources must be divided among many users.

As we employed JFI as fairness measures, which range
between 0 and 1, HRISDQN preserved its performance against
network circumstances changes and user dynamics and proved
to achieve a substantial advantage, maintaining user fairness
of 85% considering different user densities.

HRISDQN’s flexibility allowed it to dynamically adjust its
resource allocation strategy, which leads to a more even dis-
tribution of resources. Its adaptability was particularly useful
when the number of users was changing rapidly. In contrast to
traditional beamforming methods, which may achieve initial
fairness but struggle to maintain it over time, HRISDQN
showed the ability to learn and adapt continuously, resulting
in more sustainable levels of fairness. These findings are sig-
nificant for developing 6G wireless communication scenarios,
where the demand for equitable resource allocation is expected
to be even higher than in current 5G networks.

Fig. 4. Fairness Comparison for 500GHz.

An important measure for a communication system is a

Fig. 5. Fairness Comparison for 400GHz.

Fig. 6. Fairness Comparison for 300GHz.

delay, as illustrated in Fig.7; the delay experienced by users
during communication is heavily influenced by the density of
users in the network.

All techniques exhibit lower delays in a low-density network
with 3 × 106 users. However, as the density increases, a
noticeable different trend emerges. HRISDQN consistently
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outperforms traditional beamforming techniques in terms of
reducing latency. Its dynamic resource allocation and learning-
based decision-making enable HRISDQN to quickly adapt to
changing conditions and priorities for low-latency commu-
nication. A comparison between HRISDQN and traditional
beamforming techniques highlights a significant advantage of
HRISDQN in minimising communication delay. In situations
with moderate to high user density levels in which the user’s
density is equal to 12 × 106 users and 16 × 106 users,
HRISDQN achieves considerably lower delays than SDR,
MRT, and MMSE.

Fig. 7. Delay Comparison for different frequencies.

This difference is particularly pronounced when the SNR
level is high. Traditional techniques use more time to manage
the network resources efficiently, leading to more delays as
user numbers grow. HRISDQN, however, excels in reducing
latency even in congested environments.

The SE analysis findings, as in Figs.8, 9, and 10 expose
captivating patterns at different SNR stages and beamforming
methods for 6G frequencies. SE, quantified by terabits per
second per hertz (Tbps/Hz), is a crucial gauge for a system’s
capacity to optimise data throughput by efficiently employing
the available spectrum resources. SE is a significant measure
of the best possible spectrum used for data transmission.
HRISDQN outperforms other approaches and maintains high-
performance levels as user density increases. As different sets
of 6G frequencies are tested, 14 Tbps/Hz gain is achieved
at higher SNR levels, with a maximum of 16 × 106 users
compared to SDR. This achievement reaches 11 Tbps/Hz
compared to MRT and MMSE.

HRISDQN’s ability to optimise resource allocation, prior-
ities error resilience in low SNR conditions, and maximise
data rates in high SNR environments are the reasons for its
adaptability. This adaptability is particularly valuable for 6G
applications requiring reliable communication in low SNR
scenarios, such as IoT devices and critical infrastructure.
HRISDQN’s adaptability can lead to a more efficient allocation

of resources in multi-user systems, improving overall network
performance. Although widely used, SDR shows lower SE
than HRISDQN, particularly in challenging SNR conditions.
MRT and MMSE have competitive performance but lack
HRISDQN’s dynamic adaptation, resulting in considerably
lower SE. HRISDQN’s superior SE across diverse SNR con-
ditions highlights the value of adaptive resource allocation
in 6G wireless communication. HRISDQN can learn and
adapt its beamforming strategies, maximising data rates while
maintaining reliability.

Fig. 8. Spectral Efficiency Comparison for (16× 106 users, 500 GHz).

Fig. 9. Spectral Efficiency Comparison for (16× 106 users, 400 GHz).

VI. CONCLUSION

HRISDQN’s adaptive capabilities position it as a promising
tool for improving spectral efficiency in wireless commu-
nication systems. Its ability to excel across various SNR
conditions suggests potential benefits for multiple IoT appli-
cations and 6G. The findings emphasize the importance of
adaptive solutions in addressing the complexities of modern
wireless networks, where dynamic resource allocation can
significantly enhance performance and spectral efficiency. The
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Fig. 10. Spectral Efficiency Comparison for (16× 106 users, 300 GHz).

adaptability, resilience, and knowledge acquisition capabilities
of HRISDQN make it a promising approach for ensuring
equitable distribution of resources in future networks. While
traditional beamforming methods have their advantages, the
effectiveness of HRISDQN strengthens its suitability for the
dynamic requirements of 6G wireless communication systems.

The findings emphasise HRISDQN’s potential as a pow-
erful tool for addressing spectral efficiency, fairness, and
delay concerns in 6G wireless communication. This makes
it a promising contender for resource distribution in high-
user density environments and complex interference patterns.
Further research and testing can better understand the entire
scope of HRISDQN’s capabilities in promoting fairness across
various communication contexts. These findings highlight the
potential of HRISDQN as a pivotal technology in augmenting
the effectiveness and dependability of wireless communication
in forthcoming 6G networks. These networks are anticipated
to encounter intricate hurdles in the form of user density and
dynamic channel circumstances.
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