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Abstract— The new wireless generation 6G use of intelligent 

devices, sensors, and new applications like virtual reality and 

autonomous driving requires higher demands on the network 

with more users which needs higher data rate networks with 

minimum delay and less energy consumption. The current state 

for channel decoding does not meet the 6G requirements. In this 

paper, we design, evaluate, and proposes deep learning polar 

convolutional parallel concatenated (DL-PCPC) decoding, a 

new powerful decoding technique for 6G. The developed 

decoding technique dynamically reduces errors by 99.8%. It 

provides up to 80% better system efficiency than iterative 

decoding algorithms, with a 100% reduction in system delay. 

The novel proposes design works with a 6G communication 

frequency range of 300 and 400 GHz with terahertz data rates, 

providing correctly received data with a minimum amount of 

detected errors. 

Keywords—Channel Decoding, Concatenated Codes, Data 

Rate, Deep Learning, Delay, Terahertz, 6G. 

I. INTRODUCTION

In the past few years, wireless communication generations 
have changed quickly, catching the attention of many 
countries and organisations [1]. Heterogeneous networking 
paradigms, satellite networks, and carrier networks are 
expected to be supported by the new wireless generation 6G 
to make transmissions more robust and reliable. Given that 
most current communication channels support Wi-Fi and 
cellular technologies within specific limitations, it is crucial to 
integrate 6G performance indicators to improve the user 
experience effectively [2]. One of the essential factors in 
wireless communication to meet 6G requirements is an error-
free transmission with minimum delay and minimum energy 
consumption. 

 Wireless communication systems use channel coding 
techniques to correct transmission errors, whereas long 
iterative methods are used on the decoder side. Several 
channel coding techniques, such as turbo code, Low Density 
Parity Check (LDPC) code, and Polar Code (PC), have 
evolved in the last two decades, approaching the Shannon 
limit exceptionally closely and providing higher throughput 
and a lower bit error rate. 

These codes, however, have some imperfections in terms 
of their long codeword length and long iterative decoding 
process. The 6G communication environment’s Key 
Performance Indicators (KPIs) state that the new generation 
will provide; high reliability, low latency, and more 
bandwidth to send higher data rates up to Terahertz (THz) in 
real time. 

New technological requirements have emerged for 6G to 
efficiently provide higher coverage and connections, 
including higher throughput, high dependability, low power 
consumption, and minimal encoding/decoding latency [3]. 

In our previous work [4], a new channel coding technique 
was exhaustively demonstrated to comply with 6G objectives, 
reaching the transmission limit of a terabit per second with 
higher reliability and 99.99% transmission throughput. 

Moreover, Artificial Intelligent (AI) techniques are 
fundamental regarding their capability to support 6G KPIs. 
Deep Learning (DL) is introduced as a subset of Machine 
Learning (ML), which has recently become known as a robust 
set of methods that can produce impressive results in many 
research areas. DL is based on the architecture of neural 
networks and employs multiple layers (“deep”) of artificial 
neurons [5]. DL has also been used in wireless 
communications, introducing a data-driven approach. 
Researchers are increasingly interested in how we can use DL 
in 6G communication. 

In the past several years, techniques based on deep 
learning have been utilised to construct channel coders and 
decoders; these approaches have demonstrated exceptional 
performance across various communication channels. 
Research showed that using feed-forward deep learning to 
design modulated channel decoders for high-interference 
communication channels outperforms channels with standard 
modulation techniques [5]. 

However, previous research has shown that the current 
wireless generations cannot provide the adequate bandwidth 
capability expected from 6G. On the other hand, researchers 
focused on deep learning for channel coding of previous 
wireless generations; the so-called polar code performs better 
under the DL perspective [6], [7]. Deep learning is widely 
considered in channel encoding [8]-[11].  

Our novel channel decoding, DL-PCPC, which uses a 
deep learning network, contributes to the 6G communication 
system with terahertz data rates by: 

• This is the first time a deep learning decoding technique
is used with parallel concatenated channel decoding
(DL-PCPC). This novel technique complies with 6G
terahertz transmission KPIs.

• The novel technique of DL-PCPC shows remarkable
performance in minimising the decoding errors to zero
compared with Successive Cancellation Decoding
(SCD).
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• The novel DL-PCPC has 80% system efficiency, better
than SCD.

• DL-PCPC’s performance indicators demonstrate error-
free channel decoding and 99.8% system correctness.

• The novel technique maximises the data rate without
additional system load or delay. This improvement can
be stated as a near 100% improvement in the consumed
time for the decoding process, with 14 iterations only
being compared to 25 iterations using SCD.

The rest of this paper is organised as follows. Section II 

introduces the basics of parallel concatenated channel 

coding. Section III illustrates the architecture of our deep 

learning network model decoding scheme with the network 

training process. Section IV demonstrates the analysis of the 

results, and Section V is the conclusion. 

II. PARALLEL CONCATENATED CHANNEL CODING

This paper suggests a different way to find a robust 

decoding technique for parallel concatenated channel coding 

using deep learning. We utilised a deep learning decoding 

technique for polar convolution parallel concatenated (DL-

PCPC) channel coding instead of the regular decoding 

algorithms. The standard decoding algorithm puts the network 

into undesirable delay and causes more burst errors, resulting 

in much lower reliability. The simulation results show that the 

deep learning model performs better than stand-alone SCD. 

A. Channel Encoding

To fully understand the advantages and system
performance for channel decoding with deep learning, our 
new parallel concatenated channel coding must first be 
demonstrated. The parallel concatenation formula uses data 
interleaver to reduce error bursts. The interleaved data is then 
applied to the first polar code encoder. At the same time, the 
original message is used directly as an input into the second 
encoder convolutional code, as shown in Fig.1. The resultant 
codeword from the first and second encoders is then 

multiplexed into a single codeword ĉ . 

Polar code depends on two parameters N , the codeword 

length and k the message length, which ( )N k− equals the 

redundant bits r . The coding parameters we use are 

1024N = and 528k = . 

The second encoder convolutional code has one more 
additional parameter D , the number of finite shift registers. 

Convolutional codes depend on the coding rate R Nk= to 

identify the message’s and codeword’s relation. In our 

proposed code, we set the code rate to1 3  and 3D = . 

The encoding procedure for polar code is performed by 
applying the information sequences into a generator matrix 
defined as G , in which the generated matrix for 2N =  equal 

to 
1 0

2
1 1

G =
 
  

.

Fig. 1. Polar convolutional parallel concatenated code. 

The generator matrix for any value of N is obtained using 

(1), which, 
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and NR  is the data rate for the polar code. 
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 Then the codeword is obtained by (3), where u is the 

original data stream: 

ˆpc uG= (3) 

The convolutional codeword is processed as full 

sequences length k  into the finite shift register D . The 
codeword vector for every shift register is calculated using (4), 
(5), and (6), and the final codeword from the convolutional 
code is obtained using (7). 

(1) (1) (1) (1)

0 1 1
ˆ ˆ ˆ ˆ....

kcc c c c
−

= (4) 

(2) (2) (2) (2)

0 1 1
ˆ ˆ ˆ ˆ....

kcc c c c
−

= (5) 

(3) (3) (3) (3)

0 1 1
ˆ ˆ ˆ ˆ....

kcc c c c
−

= (6) 

(1) (2) (3) (1) (2) (3) (1) (2) (3)

0 0 0 1 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ....

k k kcc c c c c c c c c c
− − −

= (7) 

The resultant code word ĉ  is obtained by multiplexing ˆ
pc

and ˆ
cc .

B. Channel Decoding

The decoding process used in our previous work [4] 
depends on an iterative approach for serial and parallel 
techniques. However, the iterative approach worked better in 
serial concatenation; parallel concatenation decoding 
performance is poor. 

As the obtained results show, the iterative decoding 
process consumes more time and energy resources since it 
involves more iterative steps from data demultiplexing and re-
multiplexing and more iterative complicated decoding 
algorithms to process the decoding operation, as shown in Fig. 
2. 

Moreover, the original data word is not obtained in the 
parallel decoding algorithms until a specific iteration limit is 
reached; the applied application typically determines this 
limit. The iterative decoding technique depends on belief 
propagation (BP) and Viterbi sequential decoding algorithms, 
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which will overload the system with a more complicated and 
time-consuming decoding process without reaching the 
preferred error threshold. 

Fig. 2. Successive Cancellation Decoding (SCD). 

III. DEEP LEARNING DECODING MODELING

This section describes the newly introduced deep learning 
decoding technique network model, the training methodology, 
and the specifications. The new deep learning technique 
indicates that the coded data blocks are processed as one block 
for the number of network neurons. This procedure allows the 
decoding process to perform more bits per second than the 
iterative decoding.  

A. Deep Network Decoding Design Architecture

The decoding process maps the received (coded) data to 
an original message estimation using the decode function 

ˆ ˆ:F c m→ . The received signal passes through a series of 

transposed convolutional layers and the ReLU activation 
function. The decoding function is designed to minimise the 
average distribution between the original message and the 
reconstructed (estimated) message by introducing a minimum 

average function as defined in lFω  (8):

( ) ( )[ ]ˆ,
ˆarg ,

p m ml l l l
Minavg d m m= Ε (8) 

The minimum average function parameters are 

( )ˆ,l ld m m  is the distribution measurement and ( )ˆ,l lp m m is 

the probability distribution for the original and the 
reconstructed messages. 

In the training process, the decoder will update the 
minimum average function iteratively and use the received 
coded signal. The decoding function will perform multiple 
iterations; each iteration will use the total codeword length 

into the DL network block parametrised by the weights 
l

ω , 

where the network function has 132 weighted neurons. The 

weighted inputs (output sequent) ˆ.
llq c ω= are added with a 

bias b where at the final stage, the result is filtered with a 
rectified linear unit (ReLU). 

Re ( ) max{0, }
l l

LU q q=   (9) 

As shown in Fig. 3, the first decoder function 
l

F
ω

takes the 

codeword 1̂c , a demultiplexed version of the codeword 2ĉ , 

and a prior version of the predicted original message m̂ ; the 

first iteration initial value of the original message is set to 0. 

The first decoder output is the sequent 
1

q , which will be 

the input for the second decoder block. The last iteration 
output from the decoder stage will feed into the ReLU 
function to predict the final message. 

Fig. 3. Deep Learning Decoding Function. 

B. Data Generation and Network Specification

The deep network model is tested and validated to extract 
the data stream features with a 200,000 codeword dataset for 

parallel concatenated decoding. Each code word ĉ  is 

processed by decoding blocks F
ω

with the parameters 1̂c  2ĉ

and m̂ . In other words, we decode ĉ for a known coding 

scheme with the abovementioned initial parameters. 

Each block represents one of the predictions in the 
prediction stream. The average value for each prediction is 
calculated as in (8), and the one with the minimum average 
distribution is the most accurate prediction. 

C. Data Preparation and System Validation

After code word generation is complete, the generated 
dataset is split into three parts, 20% for validation data, 20% 
for test data, and 60% as network training data. The tested 
decoding data is performed with the 6G terahertz frequency 
range; the tested frequency is 300 and 400 GHz. 

The training procedure optimises the weight of the 
trainable network parameters using back-propagation, and the 
optimisation technique used is the Nesterov-accelerated 
adaptive moment estimation (Nadam) algorithm. Moreover, 
we employ binary cross entropy loss as our loss function 
because it improves the performance of the deep network 
when data imbalance is unpredictable. 

The Nadam algorithm combines mini-batch gradient 
descent with Nesterov momentum to quicken the learning 
process. To correspond to our activation function, the weights 
of the hidden layers are initialised using the lecun normal 
initialiser. 

D. Training Process

Training settings are set to perform for multiple epochs, 
where the training dataset is randomly shuffled and fed into 
the model in every epoch. The training process will end when 
the minimum average function stops changing for a maximum 
of 25 consecutive epochs, as in our previous iteration limit for 
the decoding algorithm. 

The DL-PCPC network consists of six convolutional fully 
connected function layers. ReLU is used as an activation 
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function and batch normalisation to improve the overall 
system performance and reduce the internal multivariable 
shifts. 

 The DL-PCPC network is demonstrated in Fig. 4; the 
codeword data is processed into a demultiplexer, and the 
output is fed into the deep learning network iterative blocks 
from Fig. 3. The output from the deep network will be 

multiplexed before the final original data estimation m̂ is 
established. 

Fig. 4. Deep Learning Decoding Design Architecture (DL-PCPC). 

IV. RESULTS ANALYSIS 

We evaluate the minimum decoding error based on the 
new optimisation decoding technique. As shown in Fig. 5, our 
new deep learning decoding for concatenated parallel 
decoding reaches the confidence level of minimum error only 
after ten iterations. The best point at which the system detects 
no errors is reached on iteration number 14, which indicates 
50% better performance than SCD used before, where the no 
errors limit is reached on iteration number 25. 

The simulation results show error-free performance with 
300 GHz and 400 GHz, providing an error-free channel 
decoding algorithm with 99.8% correct data within terahertz 
data with 6G wireless communication. 

To facilitate the power of the new deep learning decoding 
approach, the results of successive cancellation decoding are 
demonstrated in Fig. 6. SCD fails to deliver an accepted 
decoding error for both 300 GHz and 400 GHz frequencies. 

The minimum decoding error achieved in SCD remains 
within 30% of errors for the full-time transmission and 25 
iterations. 

The new communication systems are going towards the 
6G frequency band with terahertz data throughput. As a result, 
this iterative decoding algorithm is not promising as our DL-
PCPC to be considered in 6G communication. 

Fig. 5. Performance of DL-PCPC Decoding Error. 

Fig. 6. Performance of SCD Decoding Error. 

Another performance indicator that proves the validity of 
our system is the data rate of correctly received data stream 
against received data stream with errors. Fig. 7 shows the 
performance of our DL-PCPC through different iterations; as 
the number of iterations increases, the percentage of correctly 
received data increases as well. Only five iterations can 
provide up to 94% correct data using DL-PCPC. 

Fig. 7. Performance of DL-PCPC Data Rate of Correct Data. 

These performances cannot be achieved using the 
successive cancellation decoding as experienced in our 
previous work. At the maximum iteration reach of 25, the 
correctly decoded data is up to 99.8%. 
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System Energy efficiency in (Tbit/Joule) is an essential 
key performance indicator to facilitate system proficiency. 

Fig. 8 shows the energy efficiency of DL-PCPC against 
SCD for 25 iterations. Results show that DL-PCPC surpasses 
SCD by 80% at the last iteration, where the energy efficiency 
for the SCD algorithm starts to drop sharply after ten iterations 
to reach only 20% system energy efficiency at the last 
iteration. 

Fig. 8. Performance of DL-PCPC Energy Efficiency. 

Fig. 9. System Delay for DL-PCPC and SCD. 

System delay is a significant performance indicator for 
validating deep learning design efficiency. Fig. 9 shows the 
massive difference in system delay using DL-PCPC compared 
with SCD. The new deep learning design mange to minimise 
the system delay to 0.003µs for the overall decoding process 
at the last iteration. 

On the opposite of that, SCD, where the delay goes no 
under 1µs for the whole decoding time. This improvement can 
be stated as near 100% improvement in the consumed time for 
the decoding process. 

V. CONCLUSION

In this paper, we designed and proposed a new channel 
decoding technique for 6G communicanotion based on our 
previous concatenated channel coding. 

Our new decoding technique DL-PCPC which 
incorporates a deep learning approach into the decoding 
technique proves its validity to work in the 6G communication 
system frequency range with terahertz data rates. DL-PCPC 
deliver data with 80% system efficiency, more than the 
usually used iterative decoding algorithms. 

The performance indicators prove that DL-PCPC can 
provide channel decoding with no errors and 99.8% system 
accuracy. The designed system provides the maximum 
archivable data rate with minimum load and only 14 iterations. 
Moreover, system delay maintains to remain at a deficient 
level compared with frequently used iterative decoding. 

It is increasingly encouraging to outperform the 6G 
performance metrics through deep learning for higher data 
block length. However, the results are expected to improve as 
the data block length increases; it cannot be confirmed until 
tested on the system. 

Additionally, neural codes must be taught how to use 
memory throughout encoding and decoding together to 
achieve superior performance for extended data block lengths. 
We provide evidence showing how deep learning can improve 
the decoding process for the performed code word data length, 
which is expected to deliver the same promising performance 
for greater code word lengths. 
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