
Received: 18 September 2023 Revised: 16 April 2024 Accepted: 10 May 2024

DOI: 10.1112/jlms.12961

Journal of the London
Mathematical SocietyRESEARCH ARTICLE

On K-stability of ℙ𝟑 blown up along a (2,3)
complete intersection

Tiago Duarte Guerreiro1 Luca Giovenzana2

Nivedita Viswanathan3

1Université Paris-Saclay, CNRS, UMR 8628- Laboratoire de mathématiques d’Orsay, Orsay, France
2Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, UK
3School of Mathematical Sciences, Brunel University London, Kingston Lane, Uxbridge, Middlesex, UK

Correspondence
Nivedita Viswanathan, School of
Mathematical Sciences, Brunel University
London, Kingston Lane, Uxbridge,
Middlesex, UB8 3PH, UK.
Email: nivi.vishy@gmail.com

Present address
Luca Giovenzana, Department of Pure
Mathematics, University of Sheffield,
Hicks Building, Hounsfield Road,
Sheffield, UK

Funding information
SinG School at the University of Trento;
Engineering and Physical Sciences
Research Council, Grant/Award
Numbers: EP/V005545/1, EP/T015896/1,
EP/V055399/1, EP/V048619/1,
EP/V056689/1

Abstract
We prove K-stability of every smooth member of
the Fano 3-fold family 2.15 of the Mori, Mukai and
Iskovskikh classification.
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1 INTRODUCTION

The existence of a Kähler–Einstein metric on a compact manifold 𝑋 is a foundational problem
in complex geometry. In the seminal series of papers [6–8, 21], the authors prove that such an
existence has an algebro-geometric characterisation, known as K-polystability, and hence, solve
the famous Yau–Tian–Donaldson conjecture. From then on, a great deal of work has been carried
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out to verify K-stability of Fano manifolds. Of particular importance is the work of Abban and
Zhuang [2] where the authors introduce a new powerful inductive framework. These new tech-
niques have been most notably used in [1] where the 105 families of smooth Fano 3-folds have
been analysed. Despite the extensive investigation, the K-stability of all smooth members of cer-
tain families is still yet to be described making this one of the most trending problems of recent
times. While there has been quite some progress made in this regard (see [4, 5, 9–12, 15–17, 19]),
our paper makes an in-depth analysis of the K-stability of every smooth member of Fano 3-folds
belonging to family 2.15.
This is particularly unique as compared to the previous cases, since members of this family

belong to two distinct structural scenarios (see Section 3 for a detailed description). That is, each
smooth member of family 2.15 is a 3-fold of Picard number 2 obtained as the blow-up of ℙ3 in a
(2,3)-complete intersection, see [1, Section 4.4] and references therein. In particular, this unique
quadric 𝑄 containing the blown-up curve can be smooth (Subsection 3.1) or singular (Subsection
3.3). Each one of these cases involve techniques that are starkly different, with the geometry of
singular quadric having to be exploited carefully to obtain the required result (using [15, Corollary
4.18 (2)]). Our main result is the following.

Theorem 1.1 (Main theorem. See Theorem 3.15). Every smooth member of the Fano family 2.15,
which is the blow-up of ℙ3 in a curve given by the complete intersection of a quadric and a cubic,
is K-stable.

1.2 Structure of the paper

In Section 2, we recall the preliminaries and the result from Abban–Zhuang theory that we use to
prove themain result. In Section 3, after a brief presentation of the smoothmembers of the family,
we show the main theorem by estimating the local stability threshold 𝛿𝑝. The computations are
split according to the position of the point 𝑝. Particular care has to be taken when the unique
quadric containing the blown-up curve is singular.

2 ABBAN–ZHUANG THEORY

In this section, we recall the definition of K-stability and the main results used in order to prove
Theorem 3.15.

Definition 2.1. LetΔ be an effectiveℚ-divisor on a normal projective variety𝑋 for which𝐾𝑋 + Δ

is ℚ-Cartier. We say that (𝑋, Δ) is a log Fano pair if (𝑋, Δ) is klt and −(𝐾𝑋 + Δ) is ample. If Δ = 0,
we call (𝑋, 0) a Fano variety and denote it by 𝑋.

We recall the notion of stability threshold (or 𝛿-invariant) introduced in [13].

Definition 2.2. Let (𝑋, Δ) be a log Fano pair, and let 𝑓 ∶ 𝑌 → 𝑋 be a projective birational mor-
phism such that𝑌 is normal and let 𝐸 be a prime divisor on𝑌. Let 𝐿 be an ampleℚ-Cartier divisor
on 𝑋. We set

𝐴𝑋,Δ(𝐸) = 1 + ord𝐸(𝐾𝑌 − 𝑓∗(𝐾𝑋 + Δ)), 𝑆𝐿(𝑋) =
1

𝐿𝑛 ∫
∞

0
vol(𝑓∗(𝐿) − 𝑢𝐸)𝑑𝑢.
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We define the stability threshold as

𝛿(𝑋, Δ; 𝐿) = inf
𝐸∕𝑋

𝐴𝑋,Δ(𝐸)

𝑆𝐿(𝑋)
,

where the infimum runs over all prime divisors over 𝑋. For a point 𝑝 ∈ 𝑋, we define the local
stability threshold as

𝛿𝑝(𝑋, Δ; 𝐿) = inf
𝐸∕𝑋

𝑝∈𝐶𝑋(𝐸)

𝐴𝑋,Δ(𝐸)

𝑆𝐿(𝑋)
,

where the infimum runs over all prime divisors over 𝑋 whose centres on 𝑋 contain 𝑝.

It is proved in [3, 13, 18] that the following equivalence holds:

𝛿(𝑋) > 1 ⟺ 𝑋 is K-stable.

We will, in fact, take this to be our definition of K-stability of a Fano variety. Moreover,

𝛿(𝑋, Δ; 𝐿) = inf
𝑝∈𝑋

𝛿𝑝(𝑋, Δ; 𝐿).

Definition 2.3 [14, Definition 1.1]. Let Δ be an effective ℚ-divisor on 𝑋 and (𝑋, Δ) be a klt pair.
A prime divisor 𝑌 over 𝑋 is said to be of plt-type over (𝑋, Δ) if there is a projective birational
morphism 𝜇 ∶ 𝑋 → 𝑋 with 𝑌 ⊂ 𝑋 such that −𝑌 is a 𝜇-ample ℚ-Cartier divisor on 𝑋 for which
(𝑋, Δ̃ + 𝑌) is a plt pair where the ℚ-divisor Δ̃ is defined by

𝐾𝑋 + Δ̃ + (1 − 𝐴𝑋,Δ(𝑌))𝑌 = 𝜇∗(𝐾𝑋 + Δ).

Remark 2.4. The morphism 𝜇 is completely determined by 𝑌 and it is called the plt-blow-up
associated to 𝑌.

In the following, we study K-(semi)stability of certain Fano 3-folds 𝑋. We do this by employing
the Abban–Zhuang theory developed in [2] to estimate the local stability threshold 𝛿𝑝 for every
point in 𝑋. We recall the main results we need by referring to the book [1].
Given a smooth Fano 3-fold𝑋, so that, in particular, Nef(𝑋)=Mov(𝑋) by [20], and a point𝑝 ∈ 𝑋

we consider flags 𝑝 ∈ 𝑍 ⊂ 𝑌 ⊂ 𝑋 where:

∙ 𝑌 is an irreducible surface with at most Du Val singularities;
∙ 𝑍 is a non-singular curve such that (𝑌, 𝑍) is plt.

We denote by Δ𝑍 the different of the log pair (𝑌, 𝑍).
For 𝑢 ∈ ℝ, we consider the divisor class −𝐾𝑋 − 𝑢𝑌 and we denote by 𝜏 = 𝜏(𝑌) its pseudo-

effective threshold, that is, the largest number for which −𝐾𝑋 − 𝑢𝑌 is pseudo-effective. For 𝑢 ∈
[0, 𝜏], let 𝑃(𝑢) (respectively,𝑁(𝑢)) be the positive (respectively, negative) part of its Zariski decom-
position. Since 𝑌 ⊄ Supp(𝑁(𝑢)), we can consider the restriction 𝑁(𝑢)|𝑌 and define 𝑁′

𝑌
(𝑢) to be

its part not supported on 𝑍, that is, 𝑁′
𝑌
(𝑢) is the effective ℝ-divisor such that 𝑍 ⊄ Supp(𝑁′

𝑌
(𝑢))
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4 of 26 DUARTE GUERREIRO et al.

defined by:

𝑁(𝑢)|𝑌 = 𝑑(𝑢)𝑍 + 𝑁′
𝑌(𝑢),

where 𝑑(𝑢) ∶= ord𝑍(𝑁(𝑢)|𝑌).
We consider then for every 𝑢 ∈ [0, 𝜏] the restriction 𝑃(𝑢)|𝑌 and denote by 𝑡(𝑢) the pseudo-

effective threshold of the divisor 𝑃(𝑢)|𝑌 − 𝑣𝑍, by 𝑃(𝑢, 𝑣) and 𝑁(𝑢, 𝑣) the positive and negative
part of its Zariski decomposition. Let 𝑉𝑌

∙,∙ and𝑊
𝑌,𝑍
∙,∙,∙ be the multigraded linear series defined in

[1, Page 57].
Finally, we can state the main tool we use to estimate the local 𝛿-invariant.

Theorem 2.5 [1, Theorem 1.112].

𝛿𝑝(𝑋) ⩾ min

⎧⎪⎨⎪⎩
1 − ord𝑝Δ𝑍

𝑆
(
𝑊𝑌,𝑍

∙,∙,∙; 𝑝
) , 1

𝑆
(
𝑉𝑌
∙,∙; 𝑍

) , 1

𝑆𝑋(𝑌)

⎫⎪⎬⎪⎭,
where

𝑆
(
𝑉𝑌
∙,∙; 𝑍

)
=

3

(−𝐾𝑋)
3 ∫

𝜏

0
(𝑃(𝑢)2 ⋅ 𝑌) ⋅ ord𝑍(𝑁(𝑢)|𝑌)𝑑𝑢

+
3

(−𝐾𝑋)
3 ∫

𝜏

0 ∫
∞

0
vol(𝑃(𝑢)|𝑌 − 𝑣𝑍)𝑑𝑣𝑑𝑢, (1)

and

𝑆
(
𝑊𝑌,𝑍

∙,∙,∙; 𝑝
)
=

3

(−𝐾𝑋)
3 ∫

𝜏

0 ∫
𝑡(𝑢)

0
(𝑃(𝑢, 𝑣) ⋅ 𝑍)2𝑑𝑣𝑑𝑢 + 𝐹𝑝

(
𝑊𝑌,𝑍

∙,∙,∙

)
, (2)

with

𝐹𝑝

(
𝑊𝑌,𝑍

∙,∙,∙

)
=

6

(−𝐾𝑋)
3 ∫

𝜏

0 ∫
𝑡(𝑢)

0
(𝑃(𝑢, 𝑣) ⋅ 𝑍) ⋅ ord𝑝(𝑁

′
𝑌(𝑢)|𝑍 + 𝑁(𝑢, 𝑣)|𝑍)𝑑𝑣𝑑𝑢. (3)

The theorem above admits a slight generalisation which allows to consider not only flags of
varieties in 𝑋, but also over 𝑋. In particular, let 𝑋 and 𝑌 be as above, in order to estimate 𝛿𝑝 for
𝑝 ∈ 𝑌, it turns out to be useful to consider curves over 𝑌. For this, let 𝜎 ∶ 𝑌 → 𝑌 be a plt blow-up
of 𝑌 in 𝑝 and denote by 𝑍 its exceptional divisor. We consider the linear system 𝜎∗(𝑃(𝑢)|𝑌) − 𝑣𝑍

and denote by �̃�(𝑢) its pseudo-effective threshold, that is,

�̃�(𝑢) = max{𝑣 ∈ ℝ⩾0 ∶ 𝜎∗(𝑃(𝑢)|𝑌) − 𝑣𝑍 is pseudo − ef fective}.

For every 𝑣 ∈ [0, �̃�(𝑢)], we denote by 𝑃(𝑢, 𝑣) and �̃�(𝑢, 𝑣) the positive and negative part
of its Zariski decomposition. We also denote by 𝑁′

𝑌
(𝑢) the strict transform of the divisor

𝑁(𝑢)|𝑌 .
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K-STABILITY 5 of 26

Theorem 2.6 [1, Remark 1.113].

𝛿𝑝(𝑋) ⩾ min

⎧⎪⎨⎪⎩min𝑞∈𝑍
1 − ord𝑞Δ𝑍

𝑆
(
𝑊𝑌,𝑍

∙,∙,∙; 𝑞
) , 𝐴𝑌(𝑍)

𝑆
(
𝑉𝑌
∙,∙; 𝑍

) , 1

𝑆𝑋(𝑌)

⎫⎪⎬⎪⎭,
where

𝑆
(
𝑉𝑌
∙,∙; 𝑍

)
=

3

(−𝐾𝑋)
3 ∫

𝜏

0
𝜎∗(𝑃(𝑢)|𝑌)2 ⋅ ord𝑍(𝜎∗(𝑁(𝑢)|𝑌))𝑑𝑢 +

3

(−𝐾𝑋)
3 ∫

𝜏

0 ∫
∞

0
vol

(
𝜎∗(𝑃(𝑢)|𝑌) − 𝑣𝑍

)
𝑑𝑣𝑑𝑢,

(4)

and

𝑆
(
𝑊𝑌,𝑍

∙,∙,∙; 𝑞
)
=

3

(−𝐾𝑋)
3 ∫

𝜏

0 ∫
�̃�(𝑢)

0
(𝑃(𝑢, 𝑣) ⋅ 𝑍)2𝑑𝑣𝑑𝑢 + 𝐹𝑞

(
𝑊𝑌,𝑍

∙,∙,∙

)
, (5)

with

𝐹𝑞

(
𝑊𝑌,𝑍

∙,∙,∙

)
=

6

(−𝐾𝑋)
3 ∫

𝜏

0 ∫
�̃�(𝑢)

0
(𝑃(𝑢, 𝑣) ⋅ 𝑍) ⋅ ord𝑞(𝑁

′
𝑌
(𝑢)|𝑍 + �̃�(𝑢, 𝑣)|𝑍)𝑑𝑣𝑑𝑢. (6)

3 K-STABILITY OF THE FAMILY 2.15

We briefly review the geometry of a smooth Fano 3-fold in the family 2.15.
Let 𝒞 ⊂ ℙ3 be the complete intersection of a quadric 𝑄 = (𝑓2 = 0) and a cubic 𝑆3 = (𝑓3 = 0).

We are interested in the K-stability of the blow-up𝑋 ∶= Bl𝒞 ℙ3. We stress the fact that the quadric
𝑄 can be either smooth or a quadric cone. Let 𝛼 ∶ 𝑋 → ℙ3 be the projection, 𝐸 the exceptional
divisor and 𝑄 the strict transform of 𝑄. The linear system of cubics vanishing along 𝒞 gives a
rational map:

𝜑∶ ℙ3 ⤏ ℙ4

[𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤] ↦ [𝑥𝑓2 ∶ 𝑦𝑓2 ∶ 𝑧𝑓2 ∶ 𝑤𝑓2 ∶ 𝑓3].

with indeterminacy locus 𝒞. The blow-up 𝑋 is a resolution of indeterminacy of 𝜑 fitting in the
diagram

where 𝛽 contracts 𝑄 to a point and maps 𝑋 to a cubic 3-fold 𝑉3 singular only at the point 𝛽(𝑄) =
[0 ∶ 0 ∶ 0 ∶ 0 ∶ 1]. It is an ordinary double point if𝑄 is smooth and anA2 singularity if𝑄 is a cone.
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6 of 26 DUARTE GUERREIRO et al.

We denote by 𝐻 ∈ NS(𝑋) the pullback of the line bundle ℙ3(1) along 𝛼. The Neron–Severi
group of 𝑋 is generated by𝐻 and 𝐸 and its anti-canonical divisor is given by

−𝐾𝑋 = 4𝐻 − 𝐸 = 2𝐻 + 𝑄 = 2𝑄 + 𝐸,

where we used the equality 𝑄 = 2𝐻 − 𝐸. We denote by 𝑓1 ∈ 𝑁1(𝑋) the class of the fibre of the
restriction 𝛼|𝐸 ∶ 𝐸 → 𝒞 and by 𝑓2 ∈ 𝑁1(𝑋) the class of a ruling of 𝑄 so that the Mori cone is
𝑁𝐸(𝑋) = ℝ⩾0𝑓1 + ℝ⩾0𝑓2. The intersection numbers are as follows:

𝐸 ⋅ 𝑓1 = 𝑄 ⋅ 𝑓2 = −1, 𝐸 ⋅ 𝑓2 = 3

𝐻 ⋅ 𝑓2 = 𝑄 ⋅ 𝑓1 = 1, 𝐻 ⋅ 𝑓1 = 0,

𝐻3 = 1, 𝐻 ⋅ 𝐸2 = −6, 𝐻2 ⋅ 𝐸 = 0, and

𝐸3 = −deg𝑁𝒞|ℙ3 = −2g + 2 + 𝐾ℙ3 ⋅ 𝒞 = −30.

3.1 Estimate of 𝜹𝒑 for 𝒑 in 𝑸when 𝑸 is a smooth quadric

In this section, we estimate the K-stability threshold 𝛿𝑝 for a point 𝑝 ∈ 𝑄 by applying Theorem 2.5
to a specific flag.

Proposition 3.2. If 𝑝 is a point in 𝑄 and not in 𝐸, then

𝛿𝑝(𝑋) =
44

37

and it is computed by the divisor 𝑄 in 𝑋. If 𝑝 ∈ 𝐸 ∩ 𝑄, then

𝛿𝑝(𝑋) ⩾
8

7
.

Proof. Given a point 𝑝 ∈ 𝑄, we consider the flag

𝑝 ∈ 𝐿 ⊂ 𝑄 ⊂ 𝑋,

where 𝐿 is a line of 𝑄 through 𝑝 which is not tangent to the curve 𝐸 ∩ 𝑄 at 𝑝, or equivalently,
whose image under the map 𝛼 is not tangent to𝒞 at 𝛼(𝑝).
We start by computing 𝑆𝑋(𝑄). For this, we consider the linear system 𝐾𝑋 − 𝑢𝑄 = 𝐸 + (2 − 𝑢)𝑄

for 𝑢 ∈ ℝ. Clearly, its pseudo-effective threshold is 𝜏 = 2. The Zariski decomposition is given by:

𝑃(𝑢) =

{
(4 − 2𝑢)𝐻 + (𝑢 − 1)𝐸 if 𝑢 ∈ [0, 1],

(4 − 2𝑢)𝐻 if 𝑢 ∈ [1, 2],
and 𝑁(𝑢) =

{
0 if 𝑢 ∈ [0, 1],

(𝑢 − 1)𝐸 if 𝑢 ∈ [1, 2].

Therefore, the volume can be computed to be:

vol(−𝐾𝑋 − 𝑢𝑄) = (𝑃(𝑢))3 =

{
22 − 6𝑢 − 6𝑢2 − 2𝑢3 if 𝑢 ∈ [0, 1],

64 − 96𝑢 + 48𝑢2 − 8𝑢3 if 𝑢 ∈ [1, 2].
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K-STABILITY 7 of 26

Hence, we get

𝑆𝑋(𝑄) =
1

(−𝐾𝑋)
3 ∫

𝜏(𝑄)

0
vol

(
−𝐾𝑋 − 𝑢𝑄

)
𝑑𝑢 =

37

44
. (7)

We move on to compute the value 𝑆(𝑉𝑄
∙,∙; 𝐿). For this, let 𝓁1,𝓁2 the classes of the rulings of 𝑄

so that the class of 𝐿 is 𝓁1, we consider for 𝑣 ∈ ℝ⩾0 the linear system:

𝑃(𝑢)|𝑄 − 𝑣𝐿 =

{
(1 + 𝑢 − 𝑣)𝓁1 + (1 + 𝑢)𝓁2 if 𝑢 ∈ [0, 1],

(4 − 2𝑢 − 𝑣)𝓁1 + (4 − 2𝑢)𝓁2 if 𝑢 ∈ [1, 2].

The nefness and bigness of the above linear system is readily checked and its Zariski
decomposition is given by

𝑃(𝑢, 𝑣) =

{
(1 + 𝑢 − 𝑣)𝓁1 + (1 + 𝑢)𝓁2 if 𝑢 ∈ [0, 1], 𝑣 ∈ [0, 1 + 𝑢]

(4 − 2𝑢 − 𝑣)𝓁1 + (4 − 2𝑢)𝓁2 if 𝑢 ∈ [1, 2], 𝑣 ∈ [0, 4 − 2𝑢],
𝑁(𝑢, 𝑣) =

{
0

0.

Hence,

vol(𝑃(𝑢)|𝑄 − 𝑣𝐿) =

{
2(1 + 𝑢 − 𝑣)(1 + 𝑢) if 𝑢 ∈ [0, 1], 𝑣 ∈ [0, 1 + 𝑢]

4(4 − 2𝑢 − 𝑣)(2 − 𝑢) if 𝑢 ∈ [1, 2], 𝑣 ∈ [0, 4 − 2𝑢].

We note that the restriction of the divisor 𝐸 to 𝑄 consists of an irreducible curve which is
isomorphically mapped to 𝒞 by the blow-up morphism 𝛼. In particular, we see that 𝐸|𝑄 has
no support on 𝐿 and the negative part 𝑁(𝑢) does not contribute in the formula (1) and we
get:

𝑆
(
𝑉𝑄
∙,∙; 𝐿

)
=
69

88
. (8)

We move on now to compute 𝑆
(
𝑊𝑄,𝐿

∙,∙,∙; 𝑝
)
.

If the point 𝑝 ∈ 𝑄 ⧵ 𝐸, then the order of 𝐸|𝑄 at 𝑝 is trivial; hence, the value 𝐹𝑝 (𝑊𝑄,𝐿
∙,∙,∙

)
of (3)

is zero. A direct computation gives the value of (2):

𝑆
(
𝑊𝑄,𝐿

∙,∙,∙; 𝑝
)
=
69

88
. (9)

On the other hand, if the point 𝑝 is in 𝑄 ∩ 𝐸, the value 𝐹𝑝 in (3) is not trivial. First of all, we
notice that 𝐿 is not contained in𝐸|𝑄, sowe have𝑁(𝑢) = 𝑁′

𝑄
(𝑢). Secondly, since in the choice of the

flag, we assumed that 𝐿 intersects 𝐸 ∩ 𝑄 transversely we have ord𝑝(𝑁′

𝑄
(𝑢)|𝐿) = 𝑢 − 1 if 𝑢 ∈ [1, 2].

For the value in (3), we therefore get:

𝐹𝑝 =
1

11
. (10)
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8 of 26 DUARTE GUERREIRO et al.

If 𝑝 ∉ 𝐸, the values 𝑆𝑋(𝑄), 𝑆(𝑉𝑄
∙,∙; 𝐿) and 𝑆(𝑊

𝑄,𝐿
∙,∙,∙; 𝑝) are computed in the formulas (7)–(9), so

that:

44

37
=

1

𝑆𝑋(𝑄)
⩾ 𝛿𝑝(𝑋) ⩾ min

{
44

37
,
88

69
,
88

69

}
=
44

37
.

If the point 𝑝 is in 𝐸, the value 𝑆(𝑊𝑄,𝐿
∙,∙,∙; 𝑝) is obtained by summing up also 𝐹𝑝, which is

computed in (10) and one gets:

𝛿𝑝(𝑋) ⩾ min
{
44

37
,
88

69
,
8

7

}
=
8

7
.

This concludes the proof. □

3.3 Estimate of 𝜹𝒑 for 𝒑 in 𝑸when 𝑸 is a quadric cone

We divide the computations in two separate cases: These are when 𝑝 is the vertex of the quadric
cone or 𝑝 is away from it.

3.3.1 𝑝 is the vertex of the quadric cone

Let 𝜋∶ 𝑋 → 𝑋 be the blow-up of 𝑋 at 𝑝 with exceptional divisor 𝐺 ≃ ℙ2. Let 𝑄 be the strict
transform of 𝑄 in 𝑋. Since 𝑄 = 𝜋∗𝑄 − 2𝐺 and −𝐾𝑋 = 2𝑄 + 𝐸, we have

𝜋∗(−𝐾𝑋) − 𝑢𝐺 = 2𝑄 + 𝐸 + (4 − 𝑢)𝐺, (11)

where 𝐸 ≃ 𝐸 is the strict transform of 𝐸 in 𝑋.

Lemma 3.4. The pseudo-effective threshold 𝜏 of the linear system 𝜋∗(−𝐾𝑋) − 𝑢𝐺 is 𝜏 = 4.

Proof. FromEquation (11), we clearlywehave that 𝜏 ⩾ 4. In order to prove the equality, it is enough
to show that the divisor 2𝑄 + 𝐸 is not big. For this, let 𝛾∶ 𝑋 → Bl𝛼(𝑝) ℙ

3 be the divisorial contrac-
tion of 𝐸. Since the pushforward of a big divisor along a birational morphism is big, in order to
show the claim, it is enough to show that 𝛾∗𝑄 is not big. For this, notice that Bl𝛼(𝑝) ℙ3 is the resolu-
tion of indeterminacy of the projection from 𝛼(𝑝) and is a ℙ1-bundle over ℙ2, ℎ∶ Bl𝛼(𝑝) ℙ

3 → ℙ2,
which contracts 𝛾(𝑄) to a conic. In particular, 𝛾(𝑄) ≡ ℎ∗ℙ2(2) is not big. The claim is proven. □

Let 𝑙, 𝑓𝐺 and 𝑓𝐸 be the ruling of𝑄, the class in Pic(𝐺) of a line of𝐺 and a fibre of𝐸, respectively.
We have the following intersection numbers:

𝒍 𝒇𝑮 𝒇𝑬

𝑄 −3 2 1
𝐺 1 −1 0
𝐸 3 0 −1
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K-STABILITY 9 of 26

Moreover,

𝑄2 ⋅ 𝐸 = −6, 𝑄 ⋅ 𝐺2 = −2, 𝑄2 ⋅ 𝐺 = 4, 𝐺2 ⋅ 𝐸 = 𝐺 ⋅ 𝐸2 = 0,

𝐸3 = −30 𝑄 ⋅ 𝐸2 = 18, 𝑄3 = −6, 𝑄 ⋅ 𝐸 ⋅ 𝐺 = 0, 𝐺3 = 1.

Proposition 3.5. If 𝑝 is the vertex of the quadric cone 𝑄, then

𝛿𝑝(𝑋) =
11

10
,

and it is computed by the exceptional divisor 𝐺 corresponding to the ordinary blow-up of 𝑋 at 𝑝.

Proof. By [Corollary 4.18 (2)], we have

𝐴𝑋(𝐺)

𝑆𝑋(𝐺)
⩾ 𝛿𝑝(𝑋) ⩾ min

{
𝐴𝑋(𝐺)

𝑆𝑋(𝐺)
, inf
𝑞∈𝐺

𝛿𝑞

(
𝐺,Δ𝐺; 𝑉

𝐺
∙,∙

)}
. (12)

We compute first 𝐴𝑋(𝐺)
𝑆𝑋(𝐺)

and then show that this is the bound given by the right-hand side of the
second inequality of (12). Let 𝑃(𝑢) and 𝑁(𝑢) be the positive and negative parts of 𝜋∗(−𝐾𝑋) − 𝑢𝐺.
We have

𝑃(𝑢) =

{
2𝑄 + 𝐸 + (4 − 𝑢)𝐺 if 𝑢 ∈ [0, 1],
7−𝑢

3
𝑄 + 𝐸 + (4 − 𝑢)𝐺 if 𝑢 ∈ [1, 4],

and 𝑁(𝑢) =

{
0 if 𝑢 ∈ [0, 1],
(𝑢−1)

3
𝑄 if 𝑢 ∈ [1, 4].

A direct computation gives

𝐴𝑋(𝐺)

𝑆𝑋(𝐺)
=
11

10
.

We now compute inf 𝑞∈𝐺 𝛿𝑞(𝐺, Δ𝐺; 𝑉𝐺
∙,∙).

∙ Suppose 𝑞 ∉ 𝑄|𝐺 .
For every such point, we choose a flag 𝑞 ∈ 𝐿 ⊂ 𝐺, where 𝐿 is a line in 𝐺. Then, by [2,

Theorem 3.2],

𝛿𝑞

(
𝐺,Δ𝐺;𝑊

𝐺
∙,∙

)
⩾ min

⎧⎪⎨⎪⎩
1

𝑆
(
𝑊𝐺

∙,∙; 𝐿
) , 1 − ord𝑞Δ𝐿

𝑆
(
𝑊𝐺,𝐿

∙,∙,∙; 𝑞
)⎫⎪⎬⎪⎭.

Let 𝑃(𝑢, 𝑣) and 𝑁(𝑢, 𝑣) be the positive and negative parts of 𝑃(𝑢)|𝐺 − 𝑣𝐿. These are given by

𝑃(𝑢, 𝑣) =

{
(𝑢 − 𝑣)𝐿 if 𝑢 ∈ [0, 1], 𝑣 ∈ [0, 𝑢],(
2+𝑢

3
− 𝑣

)
𝐿 if 𝑢 ∈ [1, 4], 𝑣 ∈ [0, 2+𝑢

3
],

and 𝑁(𝑢, 𝑣) = 0.
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10 of 26 DUARTE GUERREIRO et al.

Notice that ord𝐿(𝑁(𝑢)|𝐺) = 0 since 𝑄|𝐺 is not supported on 𝐿 and ord𝑞(𝑁′
𝐺
(𝑢)|𝐿 + 𝑁(𝑢, 𝑣)|𝐿) = 0

since 𝑞 ∉ 𝑄|𝐺 . Hence,
1

𝑆
(
𝑊𝐺

∙,∙; 𝐿
) =

1 − ord𝑞Δ𝐿

𝑆
(
𝑊𝐺,𝐿

∙,∙,∙; 𝑞
) =

44

23
.

∙ Suppose 𝑞 ∈ 𝑄|𝐺 .
We denote by 𝜂 ∶ 𝐺 → 𝐺 the (1,2)-weighted blow-up of 𝑞 with exceptional divisor 𝐹 ≃ ℙ(1, 2).

By [15, Corollary 4.18 (1)], we have

𝛿𝑞

(
𝐺,Δ𝐺;𝑊

𝐺
∙,∙

)
⩾ min

⎧⎪⎨⎪⎩
𝐴𝐺(𝐹)

𝑆
(
𝑉𝐺
∙,∙; 𝐹

) , inf
𝑞′∈𝐹
𝜂(𝑞′)=𝑞

𝐴𝐹,Δ𝐹 (𝑞
′)

𝑆
(
𝑊𝐺,𝐹

∙,∙,∙; 𝑞′
)⎫⎪⎬⎪⎭ . (13)

The surface 𝐺 has an 𝐴1 singular point 𝑞0 lying on 𝐹. Denote by 𝐶 the conic 𝑄|𝐺 and by 𝓁𝑇 the
line tangent to 𝐶 at 𝑞. Their strict transforms 𝐶 and 𝓁𝑇 intersect 𝐹 at a regular point of𝐺. We have

𝐶 = 𝜂∗𝐶 − 2𝐹, 𝓁𝑇 = 𝜂∗𝓁𝑇 − 2𝐹, and

𝓁𝑇
2
= −1, 𝐶2 = 2, 𝐹2 = −

1

2
, 𝓁𝑇 ⋅ 𝐹 = 1.

We consider the linear system

𝜂∗(𝑃(𝑢)|𝐺) − 𝑣𝐹 =

{
𝑢𝓁𝑇 + (2𝑢 − 𝑣)𝐹 if 𝑢 ∈ [0, 1],
2+𝑢

3
𝓁𝑇 +

(
2

3
(2 + 𝑢) − 𝑣

)
𝐹 if 𝑢 ∈ [1, 4].

Then, its Zariski decomposition has positive part

𝑃(𝑢, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢𝓁𝑇 + (2𝑢 − 𝑣)𝐹 if 𝑢 ∈ [0, 1] 𝑣 ∈ [0, 𝑢]

(2𝑢 − 𝑣)(𝓁𝑇 + 𝐹) if 𝑢 ∈ [0, 1] 𝑣 ∈ [𝑢, 2𝑢]

2+𝑢

3
𝓁𝑇 +

(
4+2𝑢

3
− 𝑣

)
𝐹 if 𝑢 ∈ [1, 4] 𝑣 ∈

[
0, 2+𝑢

3

]
4+2𝑢

3
(𝓁𝑇 + 𝐹) if 𝑢 ∈ [1, 4] 𝑣 ∈

[
2+𝑢

3
, 4+2𝑢

3

]
,

and negative part

�̃�(𝑢, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if 𝑢 ∈ [0, 1]𝑣 ∈ [0, 𝑢]

(𝑣 − 𝑢)𝓁𝑇 if 𝑢 ∈ [0, 1]𝑣 ∈ [𝑢, 2𝑢]

0 if 𝑢 ∈ [1, 4] 𝑣 ∈ [0, 2+𝑢
3
]

(𝑣 − 2+𝑢

3
)𝓁𝑇 if 𝑢 ∈ [1, 4] 𝑣 ∈

[
2+𝑢

3
, 4+2𝑢

3

]
.
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K-STABILITY 11 of 26

Notice that

ord𝐹(𝜂
∗𝑁(𝑢)|𝐺) ={

0 if 𝑢 ∈ [0, 1]

ord𝐹

(
𝑢−1

3
𝜂∗𝐶

)
if 𝑢 ∈ [1, 4]

=

{
0 if 𝑢 ∈ [0, 1],
2

3
(𝑢 − 1) if 𝑢 ∈ [1, 4].

A direct computation gives

𝐴𝐺(𝐹)

𝑆
(
𝑉𝐺
∙,∙; 𝐹

) =
11

10
.

We now compute the second term in formula (13). For 𝑢 ∈ [0, 1],

ord𝑞′(𝜂
∗(𝑁′

𝐺
(𝑢)|𝐹 + 𝑁(𝑢, 𝑣)|𝐹)) = ord𝑞′(𝜂

∗𝑁(𝑢, 𝑣)|𝐹)
= ord𝑞′((𝑣 − 𝑢)𝓁𝑇|𝐹)
=

{
0 if 𝑞′ ∉ 𝓁𝑇,

𝑣 − 𝑢 otherwise.

On the other hand, for 𝑢 ∈ [1, 4],

ord𝑞′(𝜂
∗(𝑁′

𝐺
(𝑢)|𝐹 + 𝑁(𝑢, 𝑣)|𝐹)) = ord𝑞′

(
𝑢 − 1

3
𝐶|𝐹 + (

𝑣 −
2 + 𝑢

3

)
𝓁𝑇|𝐹)

=

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑞′ ∉ 𝓁𝑇 ∪ 𝐶,
𝑢−1

3
if 𝑞′ ∈ 𝐶,

𝑣 − 2+𝑢

3
if 𝑞′ ∈ 𝓁𝑇.

Then,

𝑆(𝑊𝐺,𝐹
∙,∙,∙; 𝑞

′) =

⎧⎪⎪⎨⎪⎪⎩

23

88
if 𝑞′ ∉ 𝓁𝑇 ∪ 𝐶,

37

44
if 𝑞′ ∈ 𝐶,

23

44
if 𝑞′ ∈ 𝓁𝑇.

Moreover, 𝐴𝐹,Δ𝐹 (𝑞
′) = 1 for every 𝑞′ ∈ 𝐹 except when 𝑞′ is the 𝐴1 singularity introduced by 𝜂, in

which case it is 1

2
. Hence,

inf
𝑞′∈𝐹
𝜂(𝑞′)=𝑞

𝐴𝐹,Δ𝐹 (𝑞
′)

𝑆(𝑊𝐺,𝐹
∙,∙,∙; 𝑞′)

= min
{

1

23∕88
,
1∕2

23∕88
,

1

23∕44
,

1

37∕44

}

= min
{
88

23
,
88

46
,
44

23
,
37

44

}
=
44

37
.
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12 of 26 DUARTE GUERREIRO et al.

Therefore,

𝛿𝑞

(
𝐺,Δ𝐺;𝑊

𝐺
∙,∙

)
⩾ min

{
11

10
,
44

37

}
=
11

10

for 𝑞 ∈ 𝐶.
Putting together the cases, 𝑞 ∉ 𝐶 and 𝑞 ∈ 𝐶, we have indeed

𝛿𝑞

(
𝐺,Δ𝐺;𝑊

𝐺
∙,∙

)
⩾ min

{
11

10
,
44

23

}
=
11

10
.

Hence,

𝛿𝑝(𝑋) ⩾
11

10
,

and the claim follows. □

3.3.1 The point 𝑝 is away from the vertex of the quadric cone

Let 𝑝 be any point in 𝑄 such that 𝛼(𝑝) is not the vertex of 𝑄. Let Π ⊂ ℙ3 be a general hyperplane
containing the point 𝛼(𝑝). Its strict transform 𝑆 in 𝑋 is isomorphic to the blow-up of Π in the six
points 𝑝1, … , 𝑝6 given by the intersection of Π ∩𝒞. In particular, the points 𝑝𝑖 lie on the conic
𝐶 = 𝑄 ∩ Π.
We consider the blow-up 𝜎∶ 𝑆 → 𝑆 in the point 𝑝 with exceptional divisor 𝐹. We denote by 𝐶

the strict transform of 𝐶 in 𝑆, by 𝐸1, … , 𝐸6 the curves lying over the points 𝑝1, … , 𝑝6 and by 𝐿𝑗 the
strict transform of the line through the points 𝛼(𝑝) and 𝑝𝑗 for 𝑗 = 1,… , 6. Finally, let ℎ denote the
pullback of a line in ℙ3 lying in the hyperplane section considered.

Proposition 3.6. Assume that𝑄 is a quadric cone. Let 𝑝 ∈ 𝑋 be a point such that 𝛼(𝑝) ∈ 𝑄 is away
from the vertex. Then,

𝛿𝑝(𝑋) ⩾
44

43
.

Proof. The result follows from applying Theorem 2.6 to the flag consisting of the strict transform
𝑆 of a hyperplane in ℙ3, the exceptional curve 𝐹 in 𝑆.
We consider the linear system −𝐾𝑋 − 𝑢𝑆. Its Zariski decomposition is then given by

𝑃(𝑢) =

{
(4 − 𝑢)𝐻 − 𝐸 if 𝑢 ∈ [0, 1],

(6 − 3𝑢)𝐻 + (𝑢 − 2)𝐸 if 𝑢 ∈ [1, 2],
and 𝑁(𝑢) =

{
0 if 𝑢 ∈ [0, 1],

(𝑢 − 1)𝑄 if 𝑢 ∈ [1, 2].

A direct computation gives

𝐴𝑋(𝑆)

𝑆𝑋(𝑆)
=
44

23
. (14)
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K-STABILITY 13 of 26

We consider then the linear system

𝐷 = 𝜎∗(𝑃(𝑢)|𝑆) − 𝑣𝐹 =

{
(4 − 𝑢)ℎ −

∑6
𝑖=1 𝐸𝑖 − 𝑣𝐹 if 𝑢 ∈ [0, 1],

(6 − 3𝑢)ℎ − (2 − 𝑢)
∑6
𝑖=1 𝐸𝑖 − 𝑣𝐹 if 𝑢 ∈ [1, 2].

Its Zariski decomposition for 𝑢 ∈ [0, 1] is given by

𝑃 =

⎧⎪⎨⎪⎩
𝐷 if 𝑣 ∈ [0, 2 − 2𝑢],

𝐷 − 𝑎𝐶 if 𝑣 ∈ [2 − 2𝑢, 3 − 𝑢],

𝐷 − 𝑎𝐶 − 𝑏
∑6
𝑖=1 𝐿𝑗 if 𝑣 ∈ [3 − 𝑢, 1

4
(14 − 5𝑢)].

and

𝑁 =

⎧⎪⎨⎪⎩
0 if 𝑣 ∈ [0, 2 − 2𝑢],

𝑎𝐶 if 𝑣 ∈ [2 − 2𝑢, 3 − 𝑢],

𝑎𝐶 + 𝑏
∑6
𝑖=1 𝐿𝑗 if 𝑣 ∈ [3 − 𝑢, 1

4
(14 − 5𝑢)],

where 𝑎 = 1

3
(𝑣 + 2𝑢 − 2) and 𝑏 = 𝑣 − 3 + 𝑢. For 𝑢 ∈ [1, 2], it is given by

𝑃 =

{
𝐷 − 𝑎𝐶 if 𝑣 ∈ [0, 4 − 2𝑢],

𝐷 − 𝑎𝐶 − 𝑏
∑6
𝑗=1 𝐿𝑗 if 𝑣 ∈ [4 − 2𝑢, 1

4
(18 − 9𝑢)]

and

𝑁 =

{
𝑎𝐶 if 𝑣 ∈ [0, 4 − 2𝑢],

𝑎𝐶 + 𝑏
∑6
𝑗=1 𝐿𝑗 if 𝑣 ∈ [4 − 2𝑢, 1

4
(18 − 9𝑢)],

where 𝑎 = 𝑣

3
and 𝑏 = 𝑣 − 4 + 2𝑢. Hence, for 𝑢 ∈ [0, 1], the volume of the divisor 𝐷 is

vol(𝐷) = 𝑃2 =

⎧⎪⎨⎪⎩
𝑢2 − 𝑣2 − 8𝑢 + 10 if 𝑣 ∈ [0, 2 − 2𝑢],
1

3
(7𝑢2 + 4𝑢𝑣 − 2𝑣2 − 32𝑢 − 4𝑣 + 34) if 𝑣 ∈ [2 − 2𝑢, 3 − 𝑢],

1

3
(5𝑢 + 4𝑣 − 14)2 if 𝑣 ∈ [3 − 𝑢, 1

4
(14 − 5𝑢)]

and for 𝑢 ∈ [1, 2]

vol(𝐷) = 𝑃2 =

{
𝑢2 − 𝑣2 − 8𝑢 + 10 if 𝑣 ∈ [0, 4 − 2𝑢],
1

3
(7𝑢2 + 4𝑢𝑣 − 2𝑣2 − 32𝑢 − 4𝑣 + 34) if 𝑣 ∈ [4 − 2𝑢, 1

4
(18 − 9𝑢)].

We note that for 𝑢 ∈ [1, 2], the contribution of the negative part in (4) is ord𝐹(𝜎∗𝑁(𝑢)|𝑆) =
ord𝐹((𝑢 − 1)(𝐶 + 𝐹)) = 𝑢 − 1. So, the value can be computed

𝐴𝑆(𝐹)

𝑆(𝑉𝑆
∙,∙; 𝐹)

=
8

7
. (15)

We now compute 𝑆(𝑊𝑆,𝐹
∙,∙,∙; 𝑞). Since 𝑆 is smooth, the different Δ𝐹 is trivial, while the value of

𝐹𝑞(𝑊
𝑆,𝐹
∙,∙,∙) depends on the position of 𝑞 in 𝐹. We split thus into following three cases:
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14 of 26 DUARTE GUERREIRO et al.

∙ 𝑞 ∉ 𝐶 ∪
⋃6
𝑗=1 𝐿𝑗 , so that ord𝑞(𝑁

′

𝑆
(𝑢)|𝐹 + �̃�(𝑢, 𝑣)|𝐹) = 0 and 𝐹𝑞 = 0. And one has:

1 − ord𝑞Δ𝐹

𝑆
(
𝑊𝑌,𝐹

∙,∙,∙; 𝑞
) =

22

15
.

∙ 𝑞 = 𝐶 ∩ 𝐹 so that

ord𝑞(𝑁
′

𝑆
(𝑢)|𝐹 + �̃�(𝑢, 𝑣)|𝐹) = ⎧⎪⎨⎪⎩

1

3
(𝑣 + 2𝑢 − 2) if 𝑢 ∈ [0, 1] and 𝑣 ∈ [2 − 2𝑢, 1

4
(14 − 5𝑢)],

𝑢 − 1 + 𝑣

3
if 𝑢 ∈ [1, 2] and 𝑣 ∈ [0, 1

4
(18 − 9𝑢)],

0 otherwise.

From which, one can compute:

𝐹𝑞

(
𝑊𝑆,𝐹

∙,∙,∙

)
=
13

44
and

1 − ord𝑞Δ𝐹

𝑆
(
𝑊𝑌,𝐹

∙,∙,∙; 𝑞
) =

44

43
.

∙ 𝑞 = 𝐹 ∩ 𝐿𝑗 for some 𝑗 = 1,… , 6 so that

ord𝑞(𝑁
′

𝑆
(𝑢)|𝐹 + �̃�(𝑢, 𝑣)|𝐹) = ⎧⎪⎨⎪⎩

𝑣 + 𝑢 − 3 if 𝑢 ∈ [0, 1] and 𝑣 ∈ [3 − 𝑢, 1
4
(14 − 5𝑢)],

𝑣 − 4 + 2𝑢 if 𝑢 ∈ [1, 2] and 𝑣 ∈ [4 − 2𝑢, 1
4
(18 − 9𝑢)],

0 otherwise.

From which, one can compute:

𝐹𝑞

(
𝑊𝑆,𝐹

∙,∙,∙

)
=

1

66
and

1 − ord𝑞Δ𝐹

𝑆
(
𝑊𝑌,𝐹

∙,∙,∙; 𝑞
) =

33

23
.

Therefore,

min
𝑞∈𝐹

1 − ord𝑞Δ𝐹

𝑆
(
𝑊𝑆,𝐹

∙,∙,∙; 𝑞
) = min

{
22

15
,
44

43
,
33

23

}
=
44

43
. (16)

Finally, by combining Equations (14)–(16), we get

𝛿𝑝(𝑋) ⩾ min
{
44

23
,
8

7
,
44

43

}
=
44

43
. □

3.4 Estimate of 𝜹𝒑 for a point 𝒑 off 𝑬 and 𝑸

In this section, we estimate 𝛿𝑝(𝑋) for a point 𝑝 ∈ 𝑋 ⧵ (𝐸 ∪ 𝑄). Roughly speaking, we consider
the flag given by the general hyperplane section of 𝑉3 containing 𝛽(𝑝) and the curve given by its
tangent hyperplane section. The precise flag depends though on the singularity of the latter.
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K-STABILITY 15 of 26

Lemma 3.8. Let 𝑆 be the strict transform of a hyperplane section of 𝑉3 not containing the singular
point of 𝛽(𝑄). Then,

𝑆𝑋(𝑆) =
14

33
.

Proof. The linear system −𝐾𝑋 − 𝑢𝑆 can be written as

−𝐾𝑋 − 𝑢𝑆 =
(
2 −

3

2
𝑢
)
𝑄 +

(
1 −

𝑢

2

)
𝐸 = (4 − 3𝑢)𝐻 + (𝑢 − 1)𝐸.

Thus, its pseudo-effective threshold is 𝜏(𝑢) = 4

3
and its Zariski decomposition is given by

𝑃(𝑢) =

{
(4 − 3𝑢)𝐻 + (𝑢 − 1)𝐸 if 𝑢 ∈ [0, 1],

(4 − 3𝑢)𝐻 if 𝑢 ∈ [1, 4
3
].
and 𝑁(𝑢) =

{
0 if 𝑢 ∈ [0, 1],

(𝑢 − 1)𝐸 if 𝑢 ∈ [1, 4
3
].

Therefore, vol(−𝐾𝑋 − 𝑢𝑆) =

{
22 − 36𝑢 + 18𝑢2 − 3𝑢3 if 𝑢 ∈ [0, 1],

64 − 144𝑢 + 108𝑢2 − 27𝑢3 if 𝑢 ∈ [1, 4
3
].

Hence,

𝑆𝑋(𝑆) =
1

(−𝐾𝑋)
3 ∫

𝜏(𝑆)

0
vol(−𝐾𝑋 − 𝑢𝑆)𝑑𝑢 =

14

33
. (17)

□

We consider a hyperplane section 𝑆 of 𝑉3 containing the point 𝛽(𝑝) and not containing the
point 𝛽(𝑄), so that 𝑆 is a smooth cubic surface.We study the singularities of its tangent hyperplane
section, because the relevant flag we use to estimate 𝛿𝑝 depends on them.
For an appropriate choice of coordinates, 𝛽(𝑝) = (0, 0, 0, 0) ∈ ℂ4𝑥,𝑦,𝑧,𝑡 in a chart of ℙ

4 and the
surface 𝑆 is given by

𝑆 =

{
𝑥 + 𝑓2(𝑥, 𝑦, 𝑧, 𝑡) + 𝑓3(𝑥, 𝑦, 𝑧, 𝑡) = 0,

𝑦 = 0,

where 𝑓2 (respectively, 𝑓3) is a homogeneous polynomial of degree 2 (respectively of degree 3).
Recall that an 𝑛-dimensional quadric 𝑓2(𝑥0, … , 𝑥𝑛+1) = 0 ⊂ ℙ𝑛+1 has a rank which is the rank of
the associated hessian matrix. We denote it by rk(𝑓2).
By considering a suitable change of variables, we might assume that no monomials containing

𝑥 appear in the expression of 𝑓2, and so, we have

rk(𝑓2|(𝑦=0)) ∈ {0, 1, 2}.

The tangent hyperplane section of 𝑆 is the curve 𝐶 given by

(𝑥 = 0) ∩ 𝑆 =

{
𝑥 = 𝑦 = 0,

𝑓2(0, 𝑧, 𝑡) + 𝑓3(0, 0, 𝑧, 𝑡) = 0.

Therefore, the curve 𝐶 consists of

∙ a rational curve with a node at 𝛽(𝑝) if rk(𝑓2|(𝑦=0)) = 2;
∙ a rational curve with a cusp at 𝛽(𝑝) if rk(𝑓2|(𝑦=0)) = 1;
∙ three lines intersecting at 𝛽(𝑝) if rk(𝑓2|(𝑦=0)) = 0.

We note that when rk(𝑓2|(𝑦=0)) ⩾ 1 by generality of 𝑆, the curve 𝐶 can be taken to be irreducible.
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16 of 26 DUARTE GUERREIRO et al.

In each of these cases, we use a different flag. Since we are assuming that 𝑆 does not contain the
point 𝛽(𝑄), the surface 𝑆 is isomorphic to its strict transform in 𝑋, and so, is 𝐶. In what follows
we slightly abuse notation and use the symbols 𝑆 and 𝐶 for the strict transforms as well.

3.4.8 Nodal curve

Suppose the point 𝑝 on 𝑋 is such that the curve 𝐶 on 𝑉3 is a curve with a node at 𝛽(𝑝). In order
to estimate 𝛿𝑝, we make use of Theorem 2.6. Let 𝜎∶ 𝑆 → 𝑆 be the blow-up of 𝑆 in 𝑝 with excep-
tional curve 𝐺. We denote by 𝐶 the strict transform of 𝐶 in 𝑆. We have the following intersection
numbers:

𝐺2 = −1, 𝐺 ⋅ 𝐶 = 2, 𝐶2 = −1.

Proposition 3.9. Suppose that 𝑝 ∈ 𝑋∖(𝑄 ∪ 𝐸) is such that 𝛽(𝑝) is the node of the tangent
hyperplane section to the general hyperplane section of 𝑉3 containing 𝛽(𝑝), then

𝛿𝑝(𝑋) ⩾
176

161
.

Proof. We apply Theorem 2.6 to the flag consisting of 𝑝, the exceptional curve 𝐺 and the strict
transform of the general hyperplane section of 𝑉3 through 𝛽(𝑝). For this, we consider the linear
system

𝜎∗(𝑃(𝑢)|𝑆) − 𝑣𝐺 =

{
(2 − 𝑢)𝐶 + (4 − 2𝑢 − 𝑣)𝐺 if 𝑢 ∈ [0, 1],

(4 − 3𝑢)𝐶 + (8 − 6𝑢 − 𝑣)𝐺 if 𝑢 ∈ [1, 4
3
].

Its Zariski decomposition is given by

𝑃(𝑢, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(2 − 𝑢)𝐶 + (4 − 2𝑢 − 𝑣)𝐺 if 𝑢 ∈ [0, 1] 𝑣 ∈
[
0, 3 − 3𝑢

2

]
;

(4 − 2𝑢 − 𝑣)(2𝐶 + 𝐺) if 𝑢 ∈ [0, 1] 𝑣 ∈
[
3 − 3𝑢

2
, 4 − 2𝑢

]
(4 − 3𝑢)𝐶 + (8 − 6𝑢 − 𝑣)𝐺 if 𝑢 ∈ [1, 4

3
] 𝑣 ∈

[
0, 6 − 9𝑢

2

]
(8 − 6𝑢 − 𝑣)(2𝐶 + 𝐺) if 𝑢 ∈ [1, 4

3
] 𝑣 ∈

[
6 − 9𝑢

2
, 8 − 6𝑢

]
.

and by

�̃�(𝑢, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if 𝑢 ∈ [0, 1] 𝑣 ∈
[
0, 3 − 3𝑢

2

]
;

(2𝑣 + 3𝑢 − 6)𝐶 if 𝑢 ∈ [0, 1] 𝑣 ∈
[
3 − 3𝑢

2
, 4 − 2𝑢

]
0 if 𝑢 ∈ [1, 4

3
] 𝑣 ∈ [0, 6 − 9𝑢

2
]

(2𝑣 + 9𝑢 − 12)𝐶 if 𝑢 ∈
[
1, 4

3

]
𝑣 ∈

[
6 − 9𝑢

2
, 8 − 6𝑢

]
.
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K-STABILITY 17 of 26

Its volume can be directly computed to be

vol(𝜎∗(𝑃(𝑢)|𝑆) − 𝑣𝐺)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

3𝑢2 − 𝑣2 − 12𝑢 + 12 if 𝑢 ∈ [0, 1], 𝑣 ∈ [0, 3 − 3𝑢

2
],

12𝑢2 + 12𝑢𝑣 + 3𝑣2 − 48𝑢 − 24𝑣 + 48 if 𝑢 ∈ [0, 1], 𝑣 ∈
[
3 − 3𝑢

2
, 4 − 2𝑢

]
,

27𝑢2 − 𝑣2 − 72𝑢 + 48 if 𝑢 ∈
[
1, 4

3

]
, 𝑣 ∈

[
0, 6 − 9𝑢

2

]
,

108𝑢2 + 36𝑢𝑣 + 3𝑣2 − 288𝑢 − 48𝑣 + 192 if 𝑢 ∈
[
1, 4

3

]
, 𝑣 ∈

[
6 − 9𝑢

2
, 8 − 6𝑢

]
.

(18)

We note that

ord𝑝𝑁(𝑢)|𝑆 ={
0 if𝑢 ∈ [0, 1],

ord𝑝(𝑢 − 1)𝐸|𝑆 if𝑢 ∈ [1, 4
3
],

and therefore, ord𝑝𝑁(𝑢)|𝑆 = 0 since 𝑝 is not in 𝐸 by assumption. Thus,

𝑆(𝑉𝑆
∙,∙; 𝐺) =

161

88
. (19)

Since 𝐴𝑆(𝐺) = 1 + ord𝐺(𝐾𝑆 − 𝜎∗(𝐾𝑆)) = 2, we have that 𝐴𝑆(𝐺)

𝑆(𝑉𝑆∙,∙;𝐺)
= 176

161
.

Next, we compute 𝑆(𝑊𝑆,𝐺
∙,∙,∙; 𝑞). Straightforward computations using the intersection numbers

give us the first summand in (5)

3

(−𝐾𝑋)
3 ∫

𝜏

0 ∫
�̃�(𝑢)

0
(𝑃(𝑢, 𝑣) ⋅ 𝐺)2𝑑𝑣𝑑𝑢 =

{
135

176
if𝑢 ∈ [0, 1],

3

176
if𝑢 ∈ [1, 4

3
].

For 𝑢 ∈ [0, 1] since 𝑁𝑆(𝑢) = 0, we have that 𝑁′

𝑆
(𝑢) = 0. When 𝑢 ∈ [1, 4

3
], 𝑁𝑆(𝑢) = (𝑢 − 1)𝐸|𝑆 ,

where 𝐸|𝑆 is the strict transform of the curve 𝐸|𝑆 on 𝑆. Since by assumption 𝑝 ∉ 𝐸, we have
𝑁𝑆(𝑢)|𝐺 = 0. We have different cases depending on the position of the point 𝑞.
If 𝑞 ∈ 𝐺 ∩ 𝐶,

𝐹𝑞

(
𝑊𝑆,𝐺

∙,∙,∙

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if𝑢 ∈ [0, 1], 𝑣 ∈ [0, 3 − 3𝑢

2
],

45

352
if𝑢 ∈ [0, 1], 𝑣 ∈

[
3 − 3𝑢

2
, 4 − 2𝑢

]
,

0 if𝑢 ∈ [1, 4
3
], 𝑣 ∈

[
0, 6 − 9𝑢

2

]
,

1

352
if𝑢 ∈

[
1, 4

3

]
, 𝑣 ∈

[
6 − 9𝑢

2
, 8 − 6𝑢

]
.

If 𝑞 ∈ 𝐺∖𝐶,

𝐹𝑞

(
𝑊𝑆,𝐺

∙,∙,∙

)
= 0.
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18 of 26 DUARTE GUERREIRO et al.

The value in (5) is then given by

𝑆
(
𝑊𝑆,𝐺

∙,∙,∙; 𝑞
)
=
161

176
when 𝑞 ∈ 𝐺 ∩ 𝐶 and

𝑆
(
𝑊𝑆,𝐺

∙,∙,∙; 𝑞
)
=
69

88
when 𝑞 ∈ 𝐺∖𝐶.

Since the surface 𝑆 is smooth, the different Δ𝐺 is trivial and we get

min𝑞∈𝐺
1 − ord𝑞Δ𝐺

𝑆
(
𝑊𝑆,𝐺

∙,∙,∙; 𝑝
) =

176

161
. (20)

In conclusion, combining Lemma 3.8 and Equations (19) and (20), we get

𝛿𝑝(𝑋) ⩾ min
{
176

161
,
176

161
,
33

14

}
=
176

161
. □

3.4.9 Cuspidal curve

Suppose the point 𝑝 on 𝑋 is such that 𝐶 ⊂ 𝑆 is cuspidal at the point 𝛽(𝑝). Similar to the previous
subsection, we use Theorem 2.6 to obtain an estimate to 𝛿𝑝(𝑋).
Let 𝜎 ∶ 𝑆 → 𝑆 be the (2,3)-weighted blow-up of 𝑆 at the point 𝑝 with exceptional divisor 𝐺. The

strict transform 𝐶 of 𝐶 in 𝑆 intersects the exceptional curve 𝐺 in one regular point. The following
hold:

𝐶 = 𝜎∗(𝐶) − 6𝐺, 𝐾𝑆 = 𝜎∗(𝐾𝑆) + 4𝐺, and

𝐺2 = −
1

6
, 𝐶 ⋅ 𝐺 = 1, 𝐶2 = −3.

We note that 𝐺 has two singular points, we denote by 𝑝0 the one of type
1

2
(1, 1) and by 𝑝1 the one

of type 1

3
(1, 1). In particular, the different Δ𝐺 defined by:

(
𝐾𝑆 + 𝐺

)|𝐺 = 𝐾𝐺 + Δ𝐺 is given by Δ𝐺 =
1

2
𝑝0 +

2

3
𝑝1.

Proposition 3.10. Suppose the point 𝑝 ∈ 𝑋∖(𝑄 ∪ 𝐸) is a cusp of the tangent hyperplane section to
the general hyperplane section of 𝑉3 containing 𝛽(𝑝), then

𝛿𝑝(𝑋) ⩾
220

207
.

Proof. We apply Theorem 2.6 to the flag consisting of 𝑝, the exceptional curve 𝐺 and the strict
transform of the general hyperplane section of 𝑉3 through 𝛽(𝑝).
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K-STABILITY 19 of 26

We start by computing 𝑆(𝑉𝑆
∙,∙, 𝐺). We consider the linear system

𝜎∗(𝑃(𝑢)|𝑆) − 𝑣𝐺 =

{
(2 − 𝑢)𝐶 + (12 − 6𝑢 − 𝑣)𝐺 if 𝑢 ∈ [0, 1],

(4 − 3𝑢)𝐶 + (24 − 18𝑢 − 𝑣)𝐺 if 𝑢 ∈ [1, 4
3
].

Its Zariski decomposition has positive part given by

𝑃(𝑢, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(2 − 𝑢)𝐶 + (12 − 6𝑢 − 𝑣)𝐺 if 𝑢 ∈ [0, 1], 𝑣 ∈ [0, 6 − 3𝑢];

(12 − 6𝑢 − 𝑣)
(
1

3
𝐶 + 𝐺

)
if 𝑢 ∈ [0, 1], 𝑣 ∈ [6 − 3𝑢, 12 − 6𝑢];

(4 − 3𝑢)𝐶 + (24 − 18𝑢 − 𝑣)𝐺 if 𝑢 ∈
[
1, 4

3

]
, 𝑣 ∈ [0, 12 − 9𝑢];(

8 − 6𝑢 − 𝑣

3

)(
𝐶 + 3𝐺

)
if 𝑢 ∈

[
1, 4

3

]
, 𝑣 ∈ [12 − 9𝑢, 24 − 18𝑢]

and negative given by

�̃�(𝑢, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if 𝑢 ∈ [0, 1], 𝑣 ∈ [0, 6 − 3𝑢];(
𝑢 − 2 + 𝑣

3

)
𝐶 if 𝑢 ∈ [0, 1], 𝑣 ∈ [6 − 3𝑢, 12 − 6𝑢];

0 if 𝑢 ∈ [1, 4
3
], 𝑣 ∈ [0, 12 − 9𝑢];(

𝑣

3
+ 3𝑢 − 4

)
𝐶 if 𝑢 ∈ [1, 4

3
], 𝑣 ∈ [12 − 9𝑢, 24 − 18𝑢].

Note that 𝑁𝑆(𝑢)|𝑆 = 0 for 𝑢 ∈ [0, 1] and ord𝐺(𝑁𝑆(𝑢)|𝑆) = ord𝐺((𝑢 − 1)𝐸|𝑆) = 0 for 𝑢 ∈ [1, 4
3
]

since by assumption 𝑝 ∉ 𝐸. Therefore, the value in Equation (4)

𝑆
(
𝑉𝑆
∙,∙, 𝐺

)
=
207

44
, and thus

𝐴𝑆(𝐺)

𝑆
(
𝑉𝑆
∙,∙, 𝐺

) =
220

207
, (21)

since 𝐴𝑆(𝐺) = 1 + ord𝐺(𝐾𝑆 − 𝜎∗(𝐾𝑆)) = 5.
We now compute 𝑆(𝑊𝑆,𝐺

∙,∙,∙; 𝑞) for various points 𝑞 ∈ 𝐺. To compute the value in formula (5), we
notice that the first term is independent of the position of 𝑞 ∈ 𝐺, while 𝐹𝑞 ∶= 𝐹𝑞(𝑊

𝑆,𝐺
∙,∙,∙) varies, so

we split in cases. We notice that ord𝑞(𝑁′

𝑆
(𝑢)|𝐺) = 0 for any point 𝑞 ∈ 𝐺, since𝑁(𝑢)|𝑆 is a multiple

of 𝐸 and 𝑝 ∉ 𝐸 by assumption. Also, �̃�(𝑢, 𝑣) is a multiple of 𝐶, hence 𝐹𝑞 ≠ 0 only for 𝑞 = 𝐺 ∩ 𝐶.
We have 𝑆(𝑊𝑆,𝐺

∙,∙,∙; 𝑞) =
23

88
+ 𝐹𝑞 and we get the cases:

∙ 𝑞 = 𝑝0, so ord𝑝0(Δ𝐺) =
1

2
and

1 − ord𝑞(Δ𝐺)

𝑆(𝑊𝑆,𝐺
∙,∙,∙; 𝑞)

=
(
1 −

1

2

)
⋅
88

23
=
44

23
;

∙ 𝑞 = 𝑝1, so ord𝑝1(Δ𝐺) =
2

3
and

1 − ord𝑞(Δ𝐺)

𝑆(𝑊𝑆,𝐺
∙,∙,∙; 𝑞)

=
(
1 −

2

3

)
⋅
88

23
=
88

69
;
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20 of 26 DUARTE GUERREIRO et al.

∙ 𝑞 = 𝐶 ∩ 𝐺, so ord𝑞(Δ𝐺) = 0, 𝐹𝑞 =
23

88
and

1 − ord𝑞(Δ𝐺)

𝑆(𝑊𝑆,𝐺
∙,∙,∙; 𝑞)

=
1

23

88
+ 23

88

=
44

23
;

∙ 𝑞 ∉ {𝑝0, 𝑝1, 𝐶 ∩ 𝐺}, so ord𝑝𝑞 (Δ𝐺) = 0 and

1 − ord𝑞(Δ𝐺)

𝑆(𝑊𝑆,𝐺
∙,∙,∙; 𝑞)

=
88

23
.

Therefore,

min
𝑞∈𝐺

1 − ord𝑞Δ𝐺

𝑆
(
𝑊𝑆,𝐺

∙,∙,∙; 𝑞
) = min

{
88

23
,
44

23
,
88

69
,
44

23

}
=
88

69
. (22)

In conclusion, by Lemma 3.8 and Equations (21) and (22), we have

𝛿𝑝(𝑋) ⩾ min
{
33

14
,
220

207
,
88

69

}
=
220

207
. □

3.4.10 Three lines

Suppose the point 𝑝 ∈ 𝑋 is such that the curve𝐶 ⊂ 𝑆 containing 𝛽(𝑝) is a union of three lines that
intersect at 𝛽(𝑝). Then, unlike the previous two cases, blowing up the surface 𝑆 in𝑋 does not prove
useful in giving a good estimate to 𝛿𝑝(𝑋), and therefore, we will use the notion of infinitesimal
flags over 𝑋.
Let 𝜋 ∶ 𝑋 → 𝑋 be the blow-up of the 3-fold 𝑋 at the point 𝑝, with the exceptional divisor given

by 𝐺. We consider the surface 𝑉3 ∩ (𝑥 = 0) and its strict transforms 𝑆𝑥 in 𝑋 and 𝑆𝑥 in 𝑋. In par-
ticular, 𝑆𝑥 is isomorphic to a cubic cone in ℙ3. Since −𝐾𝑋 = 2𝑆𝑥 − 𝑄 and −𝐾𝑋 = 𝜋∗(−𝐾𝑋) − 2𝐺,
the divisor

𝜋∗(−𝐾𝑋) − 𝑢𝐺 =
4

3
𝑆𝑥 +

1

3
𝐸 + (4 − 𝑢)𝐺 (23)

where we also use 𝑆𝑥 = 𝜋∗(𝑆𝑥) − 3𝐺 and 𝑄 = 2

3
𝑆𝑥 −

1

3
𝐸.

Lemma 3.11. The pseudo-effective threshold 𝜏 of the linear system 𝜋∗(−𝐾𝑋) − 𝑢𝐺 is 𝜏 = 4.

Proof. From Equation (23), we clearly have that 𝜏 ⩾ 4. In order to prove the equality, we show
that the divisor 4𝑆𝑥 + 𝐸 is not big. For this, let 𝛾∶ 𝑋 → Bl𝛼(𝑝) ℙ

3 be the divisorial contraction of
𝐸. Since the pushforward of a big divisor along a birational morphism is big, in order to show
the claim, it is enough to show that 𝛾∗𝑆𝑥 is not big. For this, notice that Bl𝛼(𝑝) ℙ3 is the resolu-
tion of indeterminacy of the projection from 𝛼(𝑝) and is a ℙ1-bundle over ℙ2, ℎ∶ Bl𝛼(𝑝) ℙ

3 → ℙ2,
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K-STABILITY 21 of 26

which contracts 𝛾(𝑆𝑥) to an elliptic curve. In particular, 𝛾(𝑆𝑥) = ℎ∗ℙ2(3) is not big. The claim is
proven. □

Proposition 3.12. Suppose 𝑝 ∈ 𝑋∖(𝑄 ∪ 𝐸) is such that 𝑝 is the Eckardt point of curve 𝐶 given by
the tangent hyperplane section to the general hyperplane section of 𝑉3 containing 𝛽(𝑝). Then

𝛿𝑝(𝑋) =
22

17
,

and it is computed by the exceptional divisor 𝐺 corresponding to the ordinary blow-up of 𝑋 at 𝑝.

Proof. By [15, Corollary 4.18 (2)], we have

𝐴𝑋(𝐺)

𝑆𝑋(𝐺)
⩾ 𝛿𝑝(𝑋) ⩾ min

{
𝐴𝑋(𝐺)

𝑆𝑋(𝐺)
, inf
𝑞∈𝐺

𝛿𝑞

(
𝐺,Δ𝐺; 𝑉

𝐺
∙,∙

)}
, (24)

where the infimum runs over all points 𝑞 ∈ 𝐺.
We first compute the left-hand side of inequality (24) and prove that the right-hand side is

bounded below by 𝐴𝑋(𝐺)

𝑆𝑋(𝐺)
. From the proof of Lemma 3.11, we know that 𝑆𝑥 is a cone over an elliptic

curve. Let 𝐿 be the class of a ruling in 𝑆𝑥, then

𝐺 ⋅ 𝐿 = 1 𝐸 ⋅ 𝐿 = 2 and 𝑆𝑥 ⋅ 𝐿 = −2.

Moreover,

𝑆2𝑥 ⋅ 𝐸 = 6, 𝑆𝑥 ⋅ 𝐺
2 = −3, 𝑆2𝑥 ⋅ 𝐺 = 9, 𝐺2 ⋅ 𝐸 = 𝐺 ⋅ 𝐸2 = 0,

𝐸3 = −30 𝑆𝑥 ⋅ 𝐸
2 = 12, 𝑆3𝑥 = −24, 𝑆𝑥 ⋅ 𝐸 ⋅ 𝐺 = 0, 𝐺3 = 1.

Let 𝑃(𝑢) and 𝑁(𝑢) be the positive and negative part of 𝜋∗(−𝐾𝑋) − 𝑢𝐺. We have

𝑃(𝑢) =

⎧⎪⎨⎪⎩
1

3
𝐸 + 4

3
𝑆𝑥 + (4 − 𝑢)𝐺 if 𝑢 ∈ [0, 2],

1

3
𝐸 +

(
7

3
− 𝑢

2

)
𝑆𝑥 + (4 − 𝑢)𝐺 if 𝑢 ∈ [2, 4],

and 𝑁(𝑢) =
⎧⎪⎨⎪⎩
0 if 𝑢 ∈ [0, 2],

(𝑢−2)

2
𝑆𝑥 if 𝑢 ∈ [2, 4],

and since −𝐾𝑋 = 𝜋∗(−𝐾𝑋) − 2𝐺, we have that 𝐴𝑋(𝐺) = 3 and 𝑆𝑋(𝐺) =
51

22
, so that

𝐴𝑋(𝐺)

𝑆𝑋(𝐺)
=
22

17
.

We now estimate inf 𝑞∈𝐺 𝛿𝑞(𝐺, Δ𝐺; 𝑉𝐺
∙,∙). For every point 𝑞 ∈ 𝐺, we choose the flag 𝑞 ∈ 𝐿 ⊂ 𝐺,

where 𝐿 is a line in 𝐺 intersecting 𝑆|𝐺 transversely. Then, by [2, Theorem 3.2],

𝛿𝑞

(
𝐺,Δ𝐺;𝑊

𝐺
∙,∙

)
⩾ min

⎧⎪⎨⎪⎩
1

𝑆
(
𝑊𝐺

∙,∙; 𝐿
) , 1 − ord𝑞Δ𝐿

𝑆
(
𝑊𝐺,𝐿

∙,∙,∙; 𝑞
)⎫⎪⎬⎪⎭.
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22 of 26 DUARTE GUERREIRO et al.

Let 𝑃(𝑢, 𝑣) and 𝑁(𝑢, 𝑣) be the positive and negative parts of 𝑃(𝑢)|𝐺 − 𝑣𝐿. These are given by

𝑃(𝑢, 𝑣) =

{
(𝑢 − 𝑣)𝐿 if 𝑢 ∈ [0, 2], 𝑣 ∈ [0, 𝑢],(
6−𝑢

2
− 𝑣

)
𝐿 if 𝑢 ∈ [2, 4], 𝑣 ∈ [0, 6−𝑢

2
],

and 𝑁(𝑢, 𝑣) = 0.

Notice that ord𝐿(𝑁(𝑢)|𝐺) = 0 since 𝑆𝑥|𝐺 is not supported on 𝐿. Then,
1

𝑆
(
𝑊𝐺

∙,∙; 𝐿
) =

44

23
.

Let 𝑍 be the elliptic curve 𝑆𝑥|𝐺 . Then,
ord𝑞(𝑁

′
𝐺(𝑢)|𝐿 + 𝑁(𝑢, 𝑣)|𝐿) = ord𝑞(𝑁

′
𝐺(𝑢)|𝐿) = ord𝑞

(
𝑢 − 2

2
𝑍|𝐿)

=

{
0 if 𝑞 ∉ 𝑍|𝐿,
𝑢−2

2
otherwise.

Then,

𝑆
(
𝑊𝐺,𝐿

∙,∙,∙; 𝑞
)
=

⎧⎪⎨⎪⎩
23

44
if 𝑞 ∉ 𝑍|𝐿,

17

22
if 𝑞 ∈ 𝑍|𝐿.

Hence,

inf
𝑞∈𝐺

𝛿𝑞

(
𝐺,Δ𝐺; 𝑉

𝐺
∙,∙

)
⩾ min

{
44

23
,min

{
44

23
,
22

17

}}
=
22

17
.

The claim follows. □

3.13 Estimate of 𝜹𝒑 for a point 𝒑 in 𝑬

We now estimate 𝛿𝑝(𝑋)where 𝑝 ∈ 𝐸. LetΠ ⊆ ℙ3 be a general hyperplane containing 𝛼(𝑝). Then,
recall thatΠ intersects the curve𝒞 in six points, which we denote 𝑝1 ∶= 𝛼(𝑝), 𝑝2, … , 𝑝6, lying on
the conic 𝐶 ∶= 𝑄 ∩ Π. Let 𝑆 be the strict transform of Π. The morphism 𝑆 → Π is the blow-up of
Π ≃ ℙ2 in the six points 𝑝1, 𝑝2, … , 𝑝6, and we denote by 𝐸𝑖 the associated exceptional divisors. Let
𝑙 be the strict transform of a line in Π.

Proposition 3.14. If 𝑝 ∈ 𝐸 ∩ 𝑄†, then 𝛿𝑝(𝑋) ⩾
132

131
. If 𝑝 ∈ 𝐸 ⧵ 𝑄, then 𝛿𝑝(𝑋) ⩾

66

65
.

Proof. We apply Theorem 2.5 to the flag:

𝑝 ∈ 𝐸1 ⊂ 𝑆 ⊂ 𝑋.

†Note that a (better) bound for a point 𝑝 ∈ 𝐸 ∩ 𝑄 is provided in Proposition 3.2.
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K-STABILITY 23 of 26

To compute 𝑆𝑋(𝑆), we consider the linear system −𝐾𝑋 − 𝑢𝑆 for 𝑢 ∈ ℝ⩾0 which, in terms of the
generators of Ef f (𝑋), is given by (

2 −
𝑢

2

)
𝑄 +

(
1 −

𝑢

2

)
𝐸.

Hence, its pseudo-effective threshold is 𝜏 = 2. Consider the Zariski decomposition of −𝐾𝑋 − 𝑢𝑆:

𝑃(𝑢) =

{
(4 − 𝑢)𝐻 − 𝐸 if 𝑢 ∈ [0, 1],

(6 − 3𝑢)𝐻 + (𝑢 − 2)𝐸 if 𝑢 ∈ [1, 2],
and 𝑁(𝑢) =

{
0 if 𝑢 ∈ [0, 1],

(𝑢 − 1)𝑄 if 𝑢 ∈ [1, 2].

Recall that this is the same as in Proposition 3.6, from which we have that 𝑆𝑋(𝑆) =
23

44
(14). We

now compute the value 𝑆(𝑉𝑆
∙,∙; 𝐸1). Consider the linear system

𝐷 = 𝑃(𝑢)|𝑆 − 𝑣𝐸1 =

{
(4 − 𝑢)𝑙 −

∑6
𝑖=𝑖 𝐸𝑖 − 𝑣𝐸1 if 𝑢 ∈ [0, 1],

(6 − 3𝑢)𝑙 − (2 − 𝑢)
∑6
𝑖=𝑖 𝐸𝑖 − 𝑣𝐸1 if 𝑢 ∈ [1, 2].

We denote by 𝐿𝑖,𝑗 the strict transform of the line through the points 𝑝𝑖, 𝑝𝑗 . Its Zariski
decomposition for 𝑢 ∈ [0, 1] is

𝑃 =

⎧⎪⎪⎨⎪⎪⎩
𝐷 if 𝑣 ∈ [0, 2 − 2𝑢],

𝐷 − 𝑎𝐶 if 𝑣 ∈ [2 − 2𝑢, 2 − 𝑢],

𝐷 − 𝑎𝐶 − 𝑏
∑6
𝑗=2 𝐿1,𝑗 if 𝑣 ∈ [2 − 𝑢, 8−4𝑢

3
]

and

𝑁 =

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑣 ∈ [0, 2 − 2𝑢],

𝑎𝐶 if 𝑣 ∈ [2 − 2𝑢, 2 − 𝑢],

𝑎𝐶 + 𝑏
∑6
𝑗=2 𝐿1,𝑗 if 𝑣 ∈ [2 − 𝑢, 8−4𝑢

3
],

where 𝑎 = 𝑣

2
+ 𝑢 − 1 and 𝑏 = 𝑣 + 𝑢 − 2 and for 𝑢 ∈ [1, 2] is

𝑃 =

⎧⎪⎨⎪⎩
𝐷 − 𝑎𝐶 if 𝑣 ∈ [0, 2 − 𝑢],

𝐷 − 𝑎𝐶 − 𝑏
∑6
𝑗=2 𝐿1,𝑗 if 𝑣 ∈ [2 − 𝑢, 8−4𝑢

3
]
and

𝑁 =

⎧⎪⎨⎪⎩
𝑎𝐶 if 𝑣 ∈ [0, 2 − 𝑢],

𝑎𝐶 + 𝑏
∑6
𝑗=2 𝐿1,𝑗 if 𝑣 ∈ [2 − 𝑢, 8−4𝑢

3
],

where 𝑎 = 𝑣

2
and 𝑏 = 𝑣 + 𝑢 − 2. Hence, the volume of the divisor 𝐷 for 𝑢 ∈ [0, 1] is

vol(𝐷) = 𝑃2 =

⎧⎪⎪⎨⎪⎪⎩

𝑢2 − 𝑣2 − 8𝑢 − 2𝑣 + 10 if 𝑣 ∈ [0, 2 − 2𝑢],

12 − 4𝑣 − 12𝑢 − 1

2
𝑣2 + 2𝑣𝑢 + 3𝑢2 if 𝑣 ∈ [2 − 2𝑢, 2 − 𝑢],

1

2
(4𝑢 + 3𝑣 − 8)2 if 𝑣 ∈

[
2 − 𝑢, 8−4𝑢

3

]
,
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and for 𝑢 ∈ [1, 2] is

vol(𝐷) = 𝑃2 =

⎧⎪⎨⎪⎩
12 − 4𝑣 − 12𝑢 − 1

2
𝑣2 + 2𝑣𝑢 + 3𝑢2 if 𝑣 ∈ [0, 2 − 𝑢],

1

2
(4𝑢 + 3𝑣 − 8)2 if 𝑣 ∈

[
2 − 𝑢, 8−4𝑢

3

]
.

We note that 𝑄|𝑆 = 𝐶 which has no support on 𝐸1. Hence, the negative part 𝑁𝑆(𝑢) does not
contribute in the formula (1), and we get

𝑆(𝑉𝑆
∙,∙; 𝐸1) =

65

66
. (25)

We now compute 𝑆(𝑊𝑆,𝐸1
∙,∙,∙ ; 𝑝). Notice that the hyperplane Π can be chosen so that 𝑝 does not

lie in any of the 𝐿1,𝑗 . Then,

ord𝑝(𝑁
′
𝑆(𝑢)|𝐸1 + 𝑁|𝐸1) = ord𝑝

((
𝑢 − 1 +

𝑣

2

)
𝐶|𝐸1) =

{
𝑢 − 1 + 𝑣

2
if 𝑝 ∈ 𝐶,

0 if 𝑝 ∉ 𝐶,

since 𝐸1 is transversal to 𝐶. By (3), we have,

𝐹𝑝

(
𝑊

𝑆,𝐸1
∙,∙,∙

)
=

{
5

33
if 𝑝 ∈ 𝐶,

0 if 𝑝 ∉ 𝐶.

By direct application of (2), we have

𝑆
(
𝑊

𝑆,𝐸1
∙,∙,∙ ; 𝑝

)
=

{
131

132
if 𝑝 ∈ 𝐶,

37

44
if 𝑝 ∉ 𝐶.

(26)

By Theorem 2.5, we have

𝛿𝑝(𝑋) ⩾

⎧⎪⎨⎪⎩
min

{
44

23
, 66
65
, 132
131

}
= 132

131
if 𝑝 ∈ 𝐶,

min
{
44

23
, 66
65
, 44
37

}
= 66

65
if 𝑝 ∉ 𝐶.

(27)

□

We can finally prove our main theorem.

Theorem 3.15. Let 𝑋 be a smooth member of the Fano family 2.15, which is the blow-up of ℙ3 in a
curve given by the intersection of a quadric and a cubic. Then,

𝛿(𝑋) ⩾
66

65
.

In particular, 𝑋 is K-stable.
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Proof. The local stability threshold is estimated for every point 𝑝 ∈ 𝑋. In particular, by
Propositions 3.2, 3.5, 3.6, 3.9, 3.10, 3.12 and 3.14, one has

𝛿(𝑋) ⩾ min
{
8

7
,
11

10
,
44

43
,
176

161
,
220

207
,
22

17
,
66

65

}
=
66

65
. □
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