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A B S T R A C T

To understand the influence of friction on the shear-slip behavior of heterogeneous brittle composites, a novel 
cohesive interlayer model that can effectively capture the friction effect was proposed based on the classical 
Park-Paulino-Roesler model. Meanwhile, the unified potential energy function governing the interface tangential 
and normal behaviors was introduced to realize the mechanical interaction between Mode I fracture and Mode II 
fracture, and a smooth friction growth function was added in the elastic deformation stage for calculating the 
accurate contact pressure and friction force. Furthermore, the capability of the proposed model in addressing 
unloading and reloading was improved, and the fracture energy can vary accordingly during cyclic loading. To 
verify the effectiveness of the proposed model, it was examined by modelling the shear behavior of a masonry 
wallette. The results show that the relative error of the proposed model is 14.92% which is much lower than 
those of the other three pre-existing models when calculating the displacement corresponding to peak shear 
stress. Meanwhile, in terms of peak shear stress and initial displacement at residual stage, the relative errors of 
the proposed model are only 1.82% and 5.04%, respectively, indicating the high accuracy. Besides, the tangent 
stiffness determined by the second-order integration of the potential energy function is also continuous and 
smooth, which ensures the effective convergence of the proposed cohesive model.

1. Introduction

Cohesion and friction play a considerable role in governing the 
mechanical behavior of heterogeneous brittle materials, such as con
crete, rock and rubble (Tarasov 2023; Wang et al. 2022; Feng et al. 
2022). Indeed, the creation, propagation and coalescence of microcracks 
inside such materials is a continuous to discontinuous process (Gong 
et al. 2024; Feng et al. 2024; Luo et al. 2023). Meanwhile, the gradual 
development of multiple cracks is generally accompanied with the ac
tion of frictional contacts. The cohesive zone model (Enayatpour et al. 
2018; Chen et al. 2020; Yu et al. 2020) has been proposed to simulate the 
progressive failure of brittle materials using the finite element method 
(FEM) or the discrete element method (DEM). However, the shearing 
strength of interlayers inside brittle materials are commonly provided by 
the combined action of cohesion and friction, which cannot be taken 
into account by the conventional cohesive zone model in most numerical 
simulations (Benzeggagh and Kenane 1996; Haddad and Sepehrnoori 
2016). Researchers have established several coupling cohesion-friction 
models in the FEM (Tvergaard 1990). For most of them, friction can 

only act when the cohesive force disappears completely, which is 
therefore unreasonable compared with the actual situation. To deter
mine the onset condition of friction, some researchers pointed out that 
the fraction force can start to act when the cohesion enters the softening 
stage (Rezazadeh et al. 2017; Dehestani and Mousavi 2015; Jin et al. 
2019; Tian et al. 2021). These improved models were mainly applied to 
simulate the pull-out of reinforcement or steel from concrete and the 
failure of masonry wall (Bolhassani et al. 2015; Zeng et al. 2021; 
Sunkpal and Sherizadeh 2022). Additionally, Yao et al. (2015), Li et al. 
(2017) and Li et al. (2019) used the coupling cohesion-friction model to 
investigate rock failure.

In 2009, the Park-Paulino-Roesler (PPR) model was proposed by 
Park et al. (2009) and Park (2009) to model the mechanical response of 
interlayers. In the following years, researchers added new features to the 
PPR cohesive model and applied it in engineering practice. Gilormini 
and Diani (2017) came up with a different linear loading, unloading and 
reloading relationship coupled with the PPR cohesive model. Oliver 
et al. (2019) developed a PPR-based cohesive model which can consider 
the rate-dependent effect. Yang et al. (2021) investigated the fracture 
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characteristics of different kinds of concretes by simulating the disk- 
shaped compact tension (DCT) tests and the punch-through shear 
(PTS) tests. Zhong et al. (2021) proposed a new model by coupling an 
unloading/reloading relationship with the PPR-based cohesive model to 
investigate the interface cracking of a slab track. Tvergaard (1990)
proposed a cohesive model considering friction. However, this model 
assumed that the friction plays a role after the interlayer cohesion is 
reduced to 0, which leads to the unsmooth conversion between cohesion 
and friction and the convergence difficulty. To solve this problem, 
Spring and Paulino (2015) improved the model by calculating the 
interlayer friction when the cohesion reaches the peak. Although the 
model can consider the influence of friction and cohesion on shear 
strength, the peak shear stress will lag when the friction is large because 
the peak values of cohesion and friction are generally not researched at 
the same shear deformation. Therefore, their model cannot appropri
ately characterize the shear strength.

Furthermore, Baek and Park (2018) proposed a model where friction 
peaks at the initiation of tangential displacement and remains constant 
under unchanged normal conditions. To reflect this behavior, they 
simplified the PPR cohesive model by adjusting its traction to reach its 
maximum when tangential displacement is zero, effectively eliminating 
its ascending segment. While this adjustment suits dynamic simulations 
dominated by friction, it can compromise the convergence of numerical 
calculations in quasi-static scenarios. Moreover, when dealing with in
terfaces of initially low stiffness, this approach might introduce exces
sive elastic stiffness. In contrast, Spring and Paulino (2015) chose to 
preserve the original PPR cohesive model. Instead, they introduced a 
κ-factor to capture how frictional force varies with relative displace
ment, assuming it remains at 0 until traction peaks. Although this 
strategy can introduce a phase difference between traction and friction, 
it complicates the decomposition of actual interface strength into fric
tion and cohesion when fitting shear strength and friction coefficients. 
Furthermore, in the model proposed by Li et al. (2017), the relationship 
between peak shear displacement and cohesion remains uncertain. 
Additionally, their model neglects the continuous differentiability of 
both cohesive and frictional terms concerning tangential displacement. 
Notably, Park et al. (2009) highlighted the pivotal role of continuous 
differentiability in the traction-displacement equation, significantly 
enhancing numerical convergence. Hence, ensuring this continuity is 
imperative in the traction-displacement governing equation. Moreover, 
considering the non-negligible initial stiffness of the interface is crucial. 
This factor becomes particularly relevant in characterizing interface 
deformation under relatively low stiffness during the initial loading 
stages. Incorporating this aspect effectively can provide deeper insights 
into the interface behavior and contribute to a more comprehensive 
understanding of its mechanical response.

In this study, a novel coupling model is proposed to fully describe the 
interaction of cohesion and frictional contact between two adjacent 
media based on the PPR cohesive model. In the developed model, the 
Mode I and Mode II fractures are controlled by a unified potential energy 
function and can influence each other. Namely, an interactive rela
tionship between these two fracture modes is established. The unified 
potential energy function is second-order continuous and differentiable 
with respect to displacement. Therefore, the related stress-displacement 
curve is continuous and smooth. Besides, the tangent stiffness deter
mined by the second-order integration of the potential energy function is 
also continuous and smooth, which ensures the effective convergence of 
the proposed cohesive model compared with the bilinear and trilinear 
cohesive models (Park and Paulino 2012; Spring and Paulino 2014; Park 
et al. 2016). The governing function of friction force in the proposed 
model is continuous and differentiable with respect to the Mode II 
displacement. Thus, the superposition equation of cohesive and friction 
can also be continuous and smooth. The continuous growth of friction 
will not have a negative impact on the convergence of the model.

For the coupling friction-cohesion model, a reasonable unloading/ 
reloading relationship is indispensable. Through the cyclic shear 

displacement loading, the jumping of friction can be determined (Zhang 
et al. 2020). During the process of reloading, the influence of previous 
loading history on traction can be captured. According to these princi
ples, the direct shear test of masonry wallette is carried out, and the 
results obtained by the proposed model are compared with the experi
mental data and the numerical simulations by the other methods. After 
comparison, the effectiveness and reliability of the proposed model are 
verified, and the satisfactory convenience for parameter fitting are also 
be confirmed. Through describing the interlayer between steel tube and 
concrete, we further investigate the effects of the coronal gap length and 
the angle between loading direction and gap axis on the bending and 
bearing capacity of circular concrete-filled steel tube (CCFST) under 
eccentric compression.

2. Methodology

2.1. The basic cohesive model

In 2009, Park et al. (2009) and Park (2009) proposed the PPR 
cohesive model, for which, each parameter has a clear physical meaning, 
and the bonding force and tangent stiffness matrix are uniformly 
controlled by the continuous potential energy function. The normal and 
tangential cohesions Tn and Tt can be obtained by calculating the first- 
order derivatives of the normal and tangential displacements of the 
potential energy function. The Jacobian matrix can be obtained by 
solving the second-order differential equation of the potential energy 
function. Because the cohesion-displacement curve is continuous and 
smooth, the convergence of the numerical iteration of the calculation 
model can be guaranteed.

The potential energy function of the PPR cohesive model is as fol
lows: 

ψ(Δn,Δt) = min(ϕn,ϕt)+

[
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where Δn and Δt are the normal and tangential opening displacements, 
respectively; ϕn and ϕt are the Mode I and Mode II fracture energy, 
respectively; α and β are the parameters controlling the softening form of 
the normal and tangential cohesions after reaching shear strength. The 
potential energy function is controlled in a scope with the boundaries of 
(0,δn), (− δt,δt). δn and δt are the final opening displacements along the 
normal and tangential directions, respectively, and be determined by Eq. 
(2). 
⎧
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⎪⎪⎪⎩

δn =
ϕn

σmax
αλn(1 − λn)

α− 1
(α

m
+ 1

)(α
m

λn + 1
)m− 1

δt =
ϕt

τmax
βλt(1 − λt)

β− 1
(

β
n
+ 1

)(
β
n

λt + 1
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where σmax and τmax are the normal and tangential strengths of inter
layer materials, which are also the maximum values regarding cohesion; 
λn and λt control the initial normal and tangential stiffnesses of the 
cohesion displacement curve, which is numerically equal to the 
displacement ratio when the cohesion reaches the scope boundaries of 
the potential energy function. The governing equation is shown in Eq. 
(3). 

Tn = (λnδn, 0) = σmax,Tt = (0, λtδt) = τmax (3) 

The variation of the normal and tangential cohesions subject to the 
opening displacement is controlled by Eqs. (4) and (5), where Tn and Tt 
are the normal and tangential cohesions, respectively.  

J. Yu et al.                                                                                                                                                                                                                                       International Journal of Solids and Structures 305 (2024) 113049 

2 



where Γn and Γt are the normal and tangential fracture energy co
efficients, respectively. Note that Eqs. (4) and (5) define the calculation 
method for cohesions in both tension and compression conditions. When 
an interface is in tension, the expression for Tn is the partial derivative of 
the potential function with respect to normal displacement. In 
compression, according to Spring and Paulino (2015) and Li et al. 
(2017), Tn increases linearly with the growth of normal displacement. 
The stiffness in compression state is the initial stiffness of Tn in tensile 
state and is not influenced by tangential state. When the normal and 
tangential fracture energy magnitudes are not equal, the fracture energy 
coefficients can be calculated by Eq. (6)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Γn = ( − ϕn)
〈ϕn − ϕt 〉/(ϕn − ϕt )

(α
m

)m

Γt = ( − ϕt)
〈ϕt − ϕn〉/(ϕt − ϕn)

(
β
n

)n (6) 

where m and n are two dimensionless constants. When the normal and 
tangential fracture energy magnitudes are equal, the fracture energy 
coefficients can be computed by Eq. (7). 

⎧
⎪⎪⎪⎨
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Γn = ( − ϕn)
(α

m

)m

Γt =

(
β
n
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The calculation method of m and n is shown in Eq. (8). 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m =
α(α − 1)λ2

n(
1 − αλ2

n
)
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β(β − 1)λ2

t(
1 − βλ2

t
)

(8) 

The PPR cohesive model requires the eight input parameters 
including fracture energy (ϕn & ϕt), strength (σmax & τmax), initial stiff
nesses (λn & λt), and softening parameters (α & β). According to the 
above displacement traction function, the relationship between cohe
sion and displacement can be drawn as shown in Fig. 1.

It can be seen from Fig. 1 that the normal and tangential cohesions 
are affected by both normal and tangential displacements. Simulta
neously, the cohesion can change continuously and smoothly with the 

Fig. 1. Separation-traction relation of the PPR cohesive model.
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normal or tangential displacement increasing.

2.2. The friction model

A new friction model coupling with the conventional PPR cohesive 
model is established in this section by introducing the Mohr-Coulomb 
strength criterion, through which the peak value of the cohesion and 
friction of interlayer materials can appear at the same shear deforma
tion. The coupling relationship between friction and cohesion is 
controlled by Eq. (9). 

T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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where Tf is the friction force; Δ2 and Δ3 are the relative displacements 
along the shear direction between the two adjacent layers, and 
Δt=(Δ2

2+Δ2
3)1/2; Δ̇2 and Δ̇3 are the related displacement increments.

When the elements on both sides of the interface are squeezed and 
intrude into each other, the resistance will be activated along the 
interface. The magnitude of resistance depends on the depth of element 
intrusion and the normal stiffness of the interface under compression. 
The normal stiffness under compression is equal to the normal stiffness 
when the tensile displacement approaches 0. For the proposed model, it 
is assumed that friction will occur when the interface is compressed, and 
shear slip happens between the adjacent layers. Then, it will increase 
smoothly with the growth of shear displacement. This process can be 

described by Eq. (10). 

Tf = μ × κ(Δt) × |Tn|,Tn < 0 and Δt > 0 (10) 

where μ is the interlayer friction coefficient; κ is the response factor that 
increases monotonically and continuously from 0 to 1 with the growth of 
shear displacement, and it can be expressed as follows: 

κ(Δt)=

⎧
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,0 < Δt ≤ λtδt
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where s is the transformation shape parameter controlling the growth 
mode of friction, and the influence of s on κ can be seen in Fig. 2a. 
Through the established friction mode, the peak cohesion and friction 
can appear at the same shear deformation, and the smooth trans
formation between cohesion and friction can be realized. Besides, 
Tt(0,Δt) represents the tangential cohesion when the normal displace
ment equals 0 and can be expressed by Eq. (12). 
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For the proposed model, eight input parameters are required, i.e., Γn, 
Γt, σmax, τmax, λn, λt, α and β. Meanshile, the friction growth shape 
parameter s and the friction coefficient μ should also be inputted. The 
curve shape of the coupled cohesion-friction model is shown in Fig. 2, 
and the coupling relationship between friction and tangent traction 
along the Δ2 and Δ3 directions can be expressed in Fig. 3.

In recent years, some researchers (Spring and Paulino 2015; Li et al. 
2017; Baek and Park 2018) have successively proposed the coupled 
cohesion-friction models in the context of the PPR model. In these 
models, different approaches were employed to describe the friction. 
The comparison of the traction-displacement relationships of the pro
posed model in this study and the pre-existing models is illustrated in 
Fig. 4.

Fig. 4 shows the traction-displacement patterns of the proposed 
model in this study and three pre-existing models. Baek and Park (2018)
assumed that friction reaches its maximum value at the onset of 
tangential displacement, and the friction remains constant if the normal 
state keeps unchanged. To accommodate this characteristic, they 
simplified the PPR cohesive model by setting the traction in the PPR 
model to reach its peak when the tangential displacement is zero, 
eliminating the ascending portion of the model. Their model may 
perform well in simulating dynamic problems dominated by friction. 
However, the adopted assumptions will adversely affect the conver
gence of numerical calculations for some quasi-static problems. Mean
while, when modelling the interface mechanical behavior with initial 
low stiffness, this model may impart excessively high elastic stiffness to 
the interface. By contrast, Spring and Paulino (2015) did not modify the 
original PPR cohesive model. Instead, they introduced a κ-factor to 
describe the variation of frictional force with the relative displacement 
of interface and assumed that this factor remains 0 until the traction 
reaches its peak. These treatments can lead to a phase shift between 
traction and friction. However, when fitting shear strength and friction 
coefficient, it is not straightforward to deconstruct the actual interface 
strength into the sum of friction and cohesion. Besides, in the model 
proposed by Li et al. (2017), the relationship between the peak shear 
displacement and the cohesion is uncertain. Simultaneously, their model 
did not consider that both cohesive and frictional terms are continuously 
differentiable with respect to tangential displacement. Actually, Park 
et al. (2009) pointed out that the continuous differentiability of the 
traction-displacement equation can significantly improve the numerical 

Fig. 2. Coupling approach between friction and tangent traction.
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convergence. Note that the proposed model in this study can ensure the 
continuous differentiability of the traction-displacement governing 
equation and precisely provide shear strength through the combined 
contribution of friction and cohesion. Additionally, by taking the non- 
negligible initial stiffness of the interface into account, the proposed 
model can effectively characterize the deformation behavior of interface 
under relatively low stiffness at the initial stage of loading.

Simultaneously, the tangent stiffness matrix (D) of materials should 
be determined, and its matrix form is shown in Eq. (13). The tangent 
stiffness of materials along each direction can be obtained by solving the 
second-order differential equation of the potential energy function. In 

our model, the calculation method for the material stiffness matrix can 
be expressed by Eq. (14) according to Spring and Paulino (2015), Park 
and Paulino (2012) and Spring and Paulino (2014). 

D =
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⎣
D11 D12 D13
D21 D22 D23
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Fig. 3. Interactive Influence of friction and cohesion.

Fig. 4. Comparison of the traction-displacement patterns of different models.

J. Yu et al.                                                                                                                                                                                                                                       International Journal of Solids and Structures 305 (2024) 113049 

5 



Δ2
3

Δ3
t 

D23 =

⎛

⎜
⎜
⎝

∂Tt

∂Δt
Δ2 +

∂Tf

∂Δt
|Δ2|

Δ̇2⃒
⃒
⃒Δ̇2

⃒
⃒
⃒

⎞

⎟
⎟
⎠

Δ3

Δ2
t
−

⎛

⎜
⎜
⎝TtΔ2 + Tf |Δ2|

Δ̇2⃒
⃒
⃒Δ̇2

⃒
⃒
⃒

⎞

⎟
⎟
⎠

Δ3

Δ3
t 

D31 =
∂Tt

∂Δn

Δ3

Δt
+

∂Tf

∂Δn

|Δ3|

Δt

Δ̇3⃒
⃒
⃒
⃒Δ̇3

⃒
⃒
⃒
⃒

D32 =

⎛

⎜
⎜
⎝

∂Tt

∂Δt
Δ3 +

∂Tf

∂Δt
|Δ3|

Δ̇3⃒
⃒
⃒
⃒Δ̇3

⃒
⃒
⃒
⃒

⎞

⎟
⎟
⎠

Δ2

Δ2
t
−

⎛

⎜
⎜
⎝TtΔ3 + Tf |Δ3|

Δ̇3⃒
⃒
⃒
⃒Δ̇3

⃒
⃒
⃒
⃒

⎞

⎟
⎟
⎠

Δ3

Δ3
t 

D33 =

⎛

⎜
⎜
⎝

∂Tt

∂Δt
Δ3 +

∂Tf

∂Δt
|Δ3|

Δ̇3⃒
⃒
⃒
⃒Δ̇3

⃒
⃒
⃒
⃒

⎞

⎟
⎟
⎠

Δ3

Δ2
t
−

⎛

⎜
⎜
⎝Tt + Tf

Δ3

|Δ3|

Δ̇3⃒
⃒
⃒
⃒Δ̇3

⃒
⃒
⃒
⃒

⎞

⎟
⎟
⎠

Δ2

Δ3
t 

where the expressions of ∂Tn
∂Δn

, ∂Tn
∂Δt

, ∂Tt
∂Δn

and ∂Tt
∂Δt 

are given by Eq. (15). ∂Tn
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The expressions of ∂Tf

∂Δn
and ∂Tf

∂Δt 
are given by Eq. (16). 

∂Tf

∂Δt
= sμ

(
Tt(0,Δt)

τmax

)s− 1 ∂Tt

∂Δt
|Tn|

∂Tf

∂Δn
= μ

(
T(0,Δt)
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)s Tn

|Tn|

⃒
⃒
⃒
⃒
∂Tn

∂Δn

⃒
⃒
⃒
⃒

(16) 

2.3. The unloading and reloading relation

In practical cases, the loading on composite structures is not 
monotonous, which means that unloading and reloading may occur. In 
order to predict the stress and deformation characteristics of composite 

structures appropriately, the unloading and reloading has been achieved 
in our model by referring to Park and Paulino (2012), Li et al. (2017) and 
Baek and Park (2018). During unloading and reloading, the fracture 
energy can also vary accordingly. The unloading and reloading curves 
are closely related to the original loading curve and can be expressed by 
Eq. (17). 

Tv
n(Δn,Δt) = Tn(Δnmax ,Δt)

(
Δn

Δnmax

)αv

Tv
t (Δn,Δt) = Tt(Δn,Δtmax )

(
|Δt |

Δtmax

)βv Δt

|Δt |

(17) 

where αv and βv are the parameters controlling the shape of the 
unloading and reloading traction curves. Generally, both are taken as 1, 
meaning that the linear curve is adopted; Δnmax and Δtmax are the 
maximum relative displacements along the normal and tangential di
rections during the loading history. Therefore, from Eq. (17), it can be 
found that Tv

n and Tv
t depend on the loading history. In addition, in terms 

of the tangential behavior, the friction direction during unloading will 
be opposite to the original direction. Thus, in this case, the Tt + Tf curve 
will be adjusted quickly with the jump amplitude of 2×abs(Tf), as shown 
in Fig. 5.

Fig. 5 shows the loading and unloading relationship of the proposed 
coupled model. Note that when the shear direction changes, the 
magnitude of the friction will remain constant, but the direction will 
reverse. Therefore, when the normal state keeps unchanged, the friction 
will jump with a amplitude of abs(Tf-(− Tf))=2×abs(Tf). This approach 
can also be found in the studies by Li et al. (2017) and Baek and Park 
(2018). When entering the softening stage, the tangent stiffness of the 
unloading and reloading relationship curve is different from the 
monotonic loading, and it can be expressed as follows: 

∂Tv
n

∂Δn
= Tn(Δnmax ,Δt)

αv

Δnmax

(
Δn

Δnmax

)αv − 1

(18) 

∂Tv
n

∂Δt
=

∂Tn(Δnmax ,Δt)

∂Δt

(
Δn

Δnmax

)αv 

∂Tv
t

∂Δn
=

∂Tt(Δn,Δtmax )

∂Δn

(
|Δt |

Δtmax

)βv 

∂Tv
t

∂Δt
= Tt(Δn,Δtmax )

βv

Δtmax

(
|Δt |

Δtmax

)βv − 1 

Fig. 5. Unloading and reloading relation of cohesion and friction model.
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To ensure the convergence of the numerical calculation, when the 
unloading and reloading behavior is deactivated, the contents of ∂Tn

∂Δn
, ∂Tn

∂Δt
,

∂Tt
∂Δn 

and ∂Tt
∂Δt 

in the tangent stiffness matrix will be updated according to Eq. 
(14). However, once the unloading and reloading behavior is activated, 
they will be updated according to Eq. (18).

It is worth noting that when the direction of tangential separation 
changes, friction also varies accordingly. For numerical calculation, the 
ideal vertical drop would hinder numerical convergence. Hence, incre
mental time steps are adopted to solve this problem. Clearly, when the 
change of the direction of shear slip is detected, the developed model 
will consider the effect of friction jump on the governing equations by 
updating the tangential stiffness of friction term. The relative slip 
deformation along the tangential axis can be determined as Δtinc . Then, 
the ratio of the required jump magnitude to the relative tangential 
deformation can be defined as the tangential stiffness of friction term at 
current increment step. At an increment step when the direction of shear 
changes, there will inevitably be a shear slip deformation. Therefore, the 
tangential stiffnesses of both friction and cohesive terms contribute to 
the global tangential matrix. This established procedure ensures the 
numerical convergence of the developed model. At a certain increment 
step, the tangential stiffness caused by friction jump can be determined 
using Eq. (19). 

∂Tf

∂Δt
=

2 ×
⃒
⃒Tf

⃒
⃒

Δtinc

(19) 

where Δtinc is the shear slip deformation at an interface.
To illustrate the numerical process of friction, two blocks on both 

sides of an interface are treated to be rigid to ensure that the applied 
shear displacement is equal to the relative slip along the cohesive 
interface. Then, the shear displacement applied on the blocks increases 
from 0 mm to 2 mm during the first analysis step and decreased from 2 
mm to 0.5 mm. during the second analysis step. The friction vs. 
tangential displacement curves obtained using various increments, i.e., 
0.2 mm, 0.4 mm and 0.6 mm are shown in Fig. 6.

From Fig. 6, it can been seen that when the tangential slip direction is 
reversed, the friction jump differs from the ideal vertical drop. Actually, 
a finite slope is adopted according to the increment of reverse slip along 
the interface, and the friction jump is completed at the end of the 
increment step. Furthermore, the tangential stiffness of friction term is 
calculate based on the slip increment. To intuitively display the estab
lished reloading and unloading mode, a numerical shear model with the 
geometry shown in Fig. 7 is tested.

Firstly, the numerical model is loaded with two different vertical 
displacements (U1) on the top surface, i.e., U1a=0.0mm, U1b=-0.5mm. 
Then, the deformation characteristics under unloading and reloading 
with and without friction are simulated and compared. The total time of 
the steps is 1.3s, and the amplitudes of U1a, U1b and U2 are shown in 
Fig. 8.

The upper and lower parts are both elastic. The elastic modulus and 
Poisson’s ratio of the upper part is 1,200 MPa and 0.3. Meanwhile, the 
elastic modulus and Poisson’s ratio of the lower part is 1,500 MPa and 
0.25. The parameters of the interlayer are σmax=0.075 MPa, τmax=0.075 

Fig. 6. The variation and tangential stiffness of friction term during shearing.

Fig. 7. Model for the direct shear test.

Fig. 8. The amplitudes of U1a, U1b and U2.
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MPa, fn=0.16 MPa•mm, fn=0.16 MPa•mm, α=4, β=4, λn=0.4, λt=0.4, 
s=1.7 and μ=0.504. The obtained results of shear displacement ampli
tude and reaction force of the two preset conditions are extracted, and 
the simulated displacement-force curves are shown in Fig. 9.

3. Numerical benchmark and application

3.1. Shear test of the masonry wallette

Masonry wallette is wildly used in civil engineering. The experiment 
conducted by Beyer et al. (2010, 2012) on the Masonry wallette is 
chosen to verify the correctness and effectiveness of the proposed 
cohesion-friction mode. As shown in Fig. 10a, there are three bricks 
bonded by mortar, the middle brick is also constrained by two rigid 
bricks on the upper surface. Besides, the bilateral bricks are applied with 
the vertical displacement load on the lower surfaces to achieve shear 
effect. A pressure is applied onto the two outer vertical surfaces to 
ensure the friction effect.

Fig. 9. The displacement-force curve of the shear test model.

Fig. 10. Numerical verification of masonry wallette.

Fig. 11. The parameter fitting using the experimental data.

Table 1 
Material parameters of bricks and joint mortar used in numerical 
simulation.

Parameter Value

Mode I fracture energy ϕn/MPa•mm 0.125
Mode II fracture energy ϕn/MPa•mm 0.45
Normal cohesive strength σmax/MPa 0.2295
Tangential cohesive strength τmax/MPa 0.2295
Normal initial slope indicator λn 0.06
Tangential initial slope indicator λt 0.06
Normal shape parameter α 5.0
Tangential shape parameter β 5.0
Friction shape parameter s 1.0
Friction Coeffificient μ 0.77
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In the experiment by Beyer et al. (2010, 2012), the pressures of 0.2 
MPa, 0.4 MPa, and 0.65 MPa were applied. This experiment has also 
been simulated using different numerical models (Spring and Paulino 
2015; Snozzi and Molinari 2013; Baek and Park 2018). Considering that 
the symmetric half model was used by Spring and Paulino (2015), Snozzi 
and Molinari (2013) and Baek and Park (2018) as shown in Fig. 10b, 
such model is also used in this section for strict comparison purpose. 
Firstly, the normal pressure is applied on the right surface of the spec
imen and keeps constant during the shearing. Then, a vertical 
displacement of 10 mm is loaded on the lower surface of the right brick. 
Simultaneously, a vertical constrain is applied on the upper surface of 
light brick. Therefore, the joint interface is in the compress-shear state 
during the loading. The static solving algorithm is adopted, and the total 
time of shear load steps can be set as 1s because of the time indepen
dence of the algorithm. The three-dimensional (3D) eight-nodes linear 
elements are selected to discretize the bricks, and the eight-nodes 
cohesive elements are inserted into the joint region between the 
bricks. In the numerical studies by Spring and Paulino (2015) and Snozzi 
and Molinari (2013), they chose the pressure of 0.4 MPa for calibration. 
Baek and Park (2018) chose the pressure of 0.2 MPa, 0.4 MPa, 0.65 MPa. 
In this study, the fitting parameters are determined when the pressure is 
0.4 MPa. However, the other normal pressures are also simulated for the 
comprehensive validation as shown in Fig. 11.

According to the Mohr-Coulomb strength criterion, the peak shear 
stress can be divided into two parts. The first part is contributed by the 
cohesion, which is approximately 0.2295 MPa; the other part is 
contributed by the friction, which is about 0.308 MPa. Because the 
normal pressure of 0.4 MPa is applied, it can be deduced that the friction 
coefficient is 0.77. The other parameters are determined by fitting the 
shape of the oscillating area in Fig. 11 through the trial and error pro
cess. The material parameters of bricks and joint mortar are shown in 
Table 1. Additionally, it is assumed that the brick is linear elastic with 
the elastic modulus of 14,000 MPa and Poisson’s ratio of 0.15.

The shear stress vs. displacement curves predicted by the different 
models are compared with the experimental data (Beyer et al. 2010, 
2012) as shown in Fig. 12. It shows that the proposed model in this study 
can effectively simulate the shear slip behavior of bricks under different 
normal pressures. The simulated curves are basically covered by the 
envelope of the experimental data. Furthermore, the displacement cor
responding to the peak shear stress is nearly identical to the experi
mental value, and the residual stress also falls within the envelope of the 
experimental results. In the case of 0.2 MPa pressure, the softening stage 
computed by the proposed model differs from the physical test because 
the material parameters are determined by fiting the experimental data 
when the pressure is 0.4 MPa. When the pressure equals 0.4 MPa, the 
predicted curve by the proposed model agrees with the experiment with 

Fig. 12. Shear stress vs. applied displacement curves of the masonry wallette.
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satisfactory accuracy. Besides, the calculated peak shear stress, the 
displacement corresponding to peak shear stress, the initial displace
ment at residual stage, the tangential cohesive strength, the friction 
coefficient and their relative errors are listed in Table 2.

From Table 2, it can be seen that the relative errors of the proposed 
model and the pre-existing models (Snozzi and Molinari 2013; Spring 
and Paulino 2015; Baek and Park 2018) are 14.92%, 153.83%, 81.05%, 
91.13%, respectively when calculating the displacement corresponding 
to peak shear stress. In terms of peak shear stress and initial displace
ment at residual stage, the performance of the proposed model is also the 
best. Although for tangential cohesive strength, the relative error of the 
proposed model is larger than the model developed by Baek and Park 
(2018), it is still much smaller than the other two models. The satis
factory accuracy produced by the proposed model is mainly because the 
shear strength and friction coefficient obtained from the physical 
experiment can be applied directly. Simultaneously, the ultimate failure 
displacement can also be directly determined based on the experimental 
data, meaning that the tangential initial slope indicator λt can be 
determined in a straightforward manner. Moreover, from Fig. 12, it can 

be seen that the peak shear stress of the proposed model occurs at a small 
displacement. This is because the peaks of friction and cohesive are set 
to be synchronous, facilitating the effective control of the peaks and 
their corresponding displacements during the parameter fitting. Besides, 
when the peak shear stress is reached, the predicted curve of the pro
posed model exhibits a steep slope downward and approaches the lower 
bound of the experimental results thereafter. This phenomenon is 
mainly because the shear-fracture-induced energy is calculated using a 
triangular area whose base and height are equal to the ultimate failure 
displacement and the shear strength, respectively. Hence, the accuracy 
can be further improved by calculating the released energy precisely. 
However, more detailed experimental data are therefore necessary. It is 
worth noting that the material parameters including the peak stress, 
tangential cohesive strength and residual stress are determined by fitting 
the experimental data under 0.4 MPa pressure as shown in Fig. 11. The 
curve comparison in Fig. 12 and the error analysis in Table 2 confirm the 
effectiveness of the proposed model.

3.2. Eccentric compression test of the circular concrete-filled steel tube

In this section, the effects of the coronal gap height and the angle 
between loading direction and coronal gap axis on the bending and 
bearing capacity of CCFST under eccentric compression are investi
gated. In actual engineering projects, the CCFST structures may suffer 
eccentric compression due to inaccurate construction or changes of 
external loads. In the following simulation, the eccentric distance is set 
to be 20 mm, and two monitoring points are assigned on the top and 
bottom sections of CCFST. The displacement-control vertical loading is 
applied at the top loading point which is 20 mm away from the center 
point of the top section until the final instability of the CCFST. Besides, 
the configuration of the angle between cap gap axis and loading direc
tion is defined as shown Fig. 13. With the aim of systematically revealing 
the effect of loading angle, the loading angle changes from 0◦ to 180◦

with an interval of 3◦. Meanwhile, the coronal gap height is set to be 
0 mm, 2.5 mm, 5.0 mm and 7.5 mm, respectively. The model geometry is 
shown in Fig. 14.

In the numerical model of CCFST, the concrete core is simulated by 
the 3D 8-node reduced integral elements. The outer steel tube is simu
lated by the 4-node reduced integral shell element. Meanwhile, the 
concrete damage plastic constitutive model is adopted (Hillerborg et al. 
1976; Lee and Fenves 1998; Lubliner et al. 1989), and the stress–strain 
relationship refers to the previous studies (Mander and Priestley 1988a; 
Mander and Priestley, 1988b; Han and An 2014). As a simplification, the 
ideal bilinear elastoplastic model (Kabir et al. 2019) is applied with the 
elastic modulus of 2.1×105 MPa, the Poisson’s ratio of 0.3, and the yield 
stress of 335 MPa. Besides, the cement mortar interlayer is simulated by 

Table 2 
The critical indices of each model and their relative errors.

Experiment/ 
Model

Beyer 
and 
Dazio 
(2012)

Snozzi and 
Molinari 
(2013)

Spring and 
Paulino 
(2015)

Baek 
and Park 
(2018)

This 
study

Peak shear stress/ 
MPa

0.550 0.519 0.536 0.562 0.540

Relative error/% − 5.64 2.55 2.18 1.82
Displacement at 

peak shear 
stress/mm

0.496 1.259 0.898 0.044 0.422

Relative error/% − 153.83 81.05 91.13 14.92
Initial 

displacement at 
residual stage/ 
mm

5.888 5.591 5.591 8.772 5.591

Relative error/% − 5.04 5.04 48.98 5.04
Tangential 

cohesive 
strength/MPa

0.25 0.3 0.45 0.25 0.229

Relative error/% − 20.00 80.00 0.00 8.40
Friction 

coefficient
0.77 0.77 0.77 0.77 0.77

Relative error/% − 0 0 0 0

Notes: The peak shear stress reported by Beyer and Dazio (2012) fluctuates 
within a certain range. Therefore, the average value is chosen. Meanwhile, the 
highest point of the fluctuation range is used to determine the displacement 
value corresponding to the peak shear stress.

Fig. 13. Changes of the angle between load direction and coronal gap axis.
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the cohesive elements. The Mode I and Mode II fracture energy of mortar 
interlayer are determined according to Nasiri and Liu (2017), and the 
initial stiffness and strength are derived by the test data (Tao et al. 
2016). The friction coefficient is set as 0.6 (Wang et al. 2013). The 
material properties are shown in Table 3.

Fig. 15 illustrates the calculated force–displacement curves of the 
61×4 CCFST models with different loading angles under varying coronal 
gap heights. Namely, for a certain coronal gap height, 61 CCFST models 
with the angle between loading direction and coronal gap changing from 
0◦ to 180◦ by an interval of 3◦ are tested under eccentric compression, 
and 4 coronal gap heights are considered. As displays in Fig. 13, the 
minimum of 0 mm represents that the pouring of core concrete is perfect 
and there is no coronal gap defect, and the maximum of 7.5 mm means 
that there is a relatively large gap defect which may significantly in
fluence the mechanical performance of the CCFST structure. From 
Fig. 15, we can see that the numerical results exhibit the typical 

softening and yield characteristics. Before the peak force, the CCFST 
structures displays the apparent linear-elastic behavior. However, with 
the gradual growth of the external loading, the bearing force increases 
nonlinearly when approaching the peak value. Although the average 
peak bearing forces almost remain at the same level for different coronal 
gap heights, the fluctuation ranges of the initial deformation modulus, 
peak bearing force and residual strength increase as the coronal gap 
height grows up. It means that the bearing capacity of CCFST becomes 
more and more sensitive to the dip angle between loading direction and 
coronal gap axis as the coronal gap height rises.

Fig. 16 illustrates the relationship between the eccentric compression 
strength and the dip angle between coronal gap axis and loading di
rection. The varying trend is not affected by the loading angle when 
there is no coronal gap, which is consist with the actual monitoring. 
Meanwhile, the CCFST strength keeps decreasing and becomes more and 
more sensitive to the change of the loading angle as the coronal gap 
height increases. Clearly, the fluctuation range of the CCFST strength is 
enlarged by the growth of the coronal gap height. However, the fluc
tuation shows various detailed changing trends. When the loading angle 
increases from 0◦ to 108◦, the eccentric compression strength of CCFST 
continuously rises to the maximum value. However, it starts to drop with 
the loading angle keeping increasing and reaches a trough when the 
loading angle is 180◦. Besides, the eccentric compression strength rea
ches the minimum value when the loading angle is 0◦, and the strength- 
angle curves are axisymmetric for the loading angle ranges of [0◦, 180◦] 
and [180◦, 360◦].

The probability distribution of the calculated CCFST strengths 
affected by different coronal gap heights is shown in Fig. 17. Here, the 
bar chart displays the statistical number of the same CCFST strengths for 
a specific coronal gap height; the red curve represents the best multi
modal fitting line of the peak strength distribution; the red dotted curve 
represents the cumulative occurrence frequency of a certain CCFST 
strength. From Fig. 17, it can be seen that the frequency distribution of 
the eccentric compressive strengths follows the bimodal pattern, i.e., the 
slow growth in the early stage and the rapid growth in the late stage. 
Simultaneously, the two probability peaks of the possible CCFST 
strengths can be observed for each coronal gap height, indicating the 
two extremes of a CCFST structure. However, the probability of the first 
crest is obviously smaller than the second one. Although as a good signal 
for safe construction, the most proportion of CCFST eccentric 
compressive strengths concentrate at the high value range, there is still a 
large proportion occur at the low value range. This phenomenon cannot 
be ignored for the design and management of CCFST structures.

Fig. 18 illustrates the variation of the strength, mean strength, and 
covariance (COV) of the CCFST structures with varying coronal gap 
heights. The COV is defined as the ratio between the standard deviation 
and the mean of the strengths for each gap height. When the coronal gap 
changes from 0 mm, 2.5 mm, 5.0 mm to 7.5 mm, the COV values in
creases from 0, 0.0027, 0.0080 to 0.0148. It means that with the gradual 
growth of coronal gap height, the dispersion of the eccentric compres
sive strength distribution of CCFSTs becomes greater. Furthermore, the 
increasing amplitude of the strength distribution dispersion of also 

Fig. 14. Eccentric compression setting of CCFST.

Table 3 
The mechanical parameters of interlayer.

Parameter Value

Mode I fracture energy ϕn/MPa•mm 0.04
Mode II fracture energy ϕn/MPa•mm 0.4
Normal cohesive strength σmax/MPa 0.2
Tangential cohesive strength τmax/MPa 1.0
Normal initial slope indicator λn 0.25
Tangential initial slope indicator λt 0.25
Normal shape parameter α 5.0
Tangential shape parameter β 5.0
Friction shape parameter s 4.0
Coefficient of friction μ 0.6

J. Yu et al.                                                                                                                                                                                                                                       International Journal of Solids and Structures 305 (2024) 113049 

11 



grows up. Hence, the representativeness of the mean CCFST strength 
will be weaken when the coronal gap reaches a relatively large height. 
At this moment, the inclination between the loading direcion and the 
void axis plays an important role in governing the CCFST strength.

Fig. 19 illustrates the influence of the coronal gap height (g) on the 
different CCFST strength indices under eccentric compression. In Fig. 19
(a)-(c), the longitudinal axis represents the maximum strength, the 
minimum strength and the mean strength, respectively. The shapes of 
the 95% confidence intervals indicates that the changing range of the 
three strength indices gradually increase and the minimum strength 
decreases quickly as the coronal gap height rising. The fitting curves are 
deduced when the mean squared error (R2) ≥0.999 as expressed in Eq. 
(20). 
⎧
⎨

⎩

f = − 0.034g + 510.335 (Maximumstrength)
f = − 2.555g + 510.333 (Minimumstrength)
f = − 0.879g + 510.333 (Meanstrength)

(20) 

From Fig. 19(d), it can be seen that the three fitting curves divide the 
strength space into four different zones. For actual engineering design, it 
is the most reasonable and acceptable to select the first and second 
highest strength zones for the perspective of safety and stability. During 
the maintenance and management of CCFST structures, the strength 

Fig. 15. The force–displacement curves of CCFST under different coronal gap heights.

Fig. 16. Correlation between bearing strength and loading angle.
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indices should be evaluated regularly. Attention should be paid when 
the measured strength drops to the third highest strength zone, and 
appropriate reinforcement measures must be taken when the measured 
strength decreases to the lowest strength zone.

4. Conclusions

In this study, to understand the influence of friction on the shear-slip 
behavior of heterogeneous brittle composites, a novel cohesive inter
layer model has been proposed based on the classical PPR cohesive 
model. Meanwhile, the capability of the proposed model in dealing with 
unloading and reloading was improved. By comparing the shear defor
mation results of a masonry wallette obtained by simulation and 
experiment, the effectiveness and validity of the proposed model was 
verified. Then, the coupled model was used to investigate the mechan
ical response of the circular concrete-filled steel tube under eccentric 
compression. The main conclusions can be summarized as follows:

(1) Based on the classical PPR cohesive model, a novel cohesive 
interlayer model has been proposed, and it ensures that friction 
and cohesion can reach their peaks at the same element defor
mation. Meanwhile, the unified potential energy function that 

Fig. 17. Probability density of the CCFST strengths under different coronal gap heights.

Fig. 18. Variation of strength, mean strength and COV under different coronal 
gap heights.

J. Yu et al.                                                                                                                                                                                                                                       International Journal of Solids and Structures 305 (2024) 113049 

13 



governs the tangential and normal behaviors of the interface was 
introduced to realize the mechanical interaction between Mode I 
fracture and Mode II fracture. Furthermore, a smooth friction 
growth function was added in the elastic deformation stage for 
calculating the accurate contact pressure and friction force, and 
the difficulty was also solved that the contact surfaces may invade 
each other excessively which could result in incorrect deforma
tion results.

(2) The capability of the proposed model in addressing unloading 
and reloading has been improved, and the fracture energy can 
vary accordingly during cyclic loading. The simulated results 
indicate that the developed coupling cohesion-friction model can 
effectively capture the role of friction, especially the jumping 
behavior of friction under cyclic loading. Simultaneously, the 
simulated shear stress-displacement curve of the masonry wal
lette agrees with the related experiment and the other simula
tions, demonstrating the validity and correctness of the proposed 
coupling model.

(3) For the shear test of masonry wallette, the relative error of the 
proposed model is 14.92% which is much lower than those of the 
three pre-existing models when calculating the displacement 
corresponding to peak shear stress. In terms of peak shear stress 
and initial displacement at residual stage, the relative errors of 

the proposed model are only 1.82% and 5.04%, indicating the 
high accuracy. Besides, the peak shear stress of the proposed 
model occurs at a small displacement because the peaks of fric
tion and cohesive are set to be synchronous, facilitating the 
effective control of the peaks and their corresponding displace
ments during the parameter fitting.

(4) Under eccentric compression, although the average peak bearing 
forces of the CCFST structures almost remain at the same level for 
different coronal gap heights, the fluctuation ranges of the initial 
deformation modulus, peak bearing force and residual strength 
are enlarged as the coronal gap height grows up. Simultaneously, 
when the loading angle increases from 0◦ to 108◦, the compres
sion strength continuously rises to the maximum value. However, 
it starts to drop with the loading angle keeping increasing and 
reaches a trough when the loading angle is 180◦. Additionally, 
the probability density of the eccentric compressive strengths 
follows the bimodal pattern, i.e., the slow growth in the early 
stage and the rapid growth in the late stage.
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Appendix 

The algorithm for calculating the normal and tangential cohesive behaviors and frictional jump is shown as follows:
%Normal behavior:
if (Δn<0) then Tn =

∂Tn(0,0)
∂Δn

Δn %Compression

else if (0≤Δn<δn and |Δt|<δt and Δn>Δnmax) then Tn =
∂ψ(Δn ,Δt)

∂Δn 
%Elastic and softening.

else if (0≤Δn<δn and |Δt|<δt and Δn<Δnmax) then Tn = Tv
n(Δnmax ,Δt)

(
Δn

Δnmax

)αv 

%Unloading and reloading.

else if (Δn≥δn or |Δt|≥δt) then Tn = 0 %Failure.
end if.
%Tangential behavior:
if (Δn<0) then %Compression
if (0≤Δt<δt and |Δt|>Δtmax) then Tt =

∂ψ(Δn ,Δt)
∂Δt

+μκ(Δt)|Tn|
∂Δt

∂|Δt |
%Elastic, softening and friction

else if (0≤Δt<δt and |Δt|<Δtmax) then Tt = Tv
t (Δn,Δtmax )+μκ(Δt)|Tn|

∂Δt
∂|Δt |

%Unloading, reloading and friction

else Tt = μκ(Δt)|Tn|
∂Δt

∂|Δt |
%Failure and friction

end if.
else if (0≤Δn<δn) then %Tension
if (0≤Δt<δt and |Δt|>Δtmax) then Tt =

∂ψ(Δn ,Δt)
∂Δn 

%Elastic and softening.
else if (0≤Δt<δt and |Δt|<Δtmax) then Tt = Tv

t (Δn,Δtmax ) %Unloading and reloading.
else Tt = 0 %Failure.
end if.
else if (Δn≥δn) then Tt = 0 %Failure.
end if.
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