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Abstract
We describe the sixth worst singularity that a plane curve of degree d � 5 could
have, using its log canonical threshold at the point of singularity. This is an exten-
sion of a result due to Cheltsov (J Geom Anal 27(3):2302–2338, 2017) wherein
the five lowest values of log canonical thresholds of a plane curve of degree
d � 3 were computed. These six small log canonical thresholds, in order, are 2/d,
(2d − 3)/(d − 1)2, (2d − 1)/(d2 −d), (2d − 5)/(d2 − 3d + 1), (2d − 3)/(d2 −2d)

and (2d − 7)/(d2 − 4d + 1). We give examples of curves with these values as their
log canonical thresholds using illustrations.
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1 Introduction

Let Cd ⊂ P
2 be a reduced plane curve of degree d over C and P be a point on Cd .

We aim to address the following question:

Question 1.1 Given a curve Cd of fixed degree d, what is the worst singularity that the
curve can have at the point P?

We can use various parameters to measure the singularity at the point P , such as
multiplicity of the curve at P , multP (Cd), Milnor number, μ(P), or log canonical
threshold of the curve at P , lctP (P2,Cd). In this paper, we will use lctP (P2,Cd) to
answer the above question. Recall that

lctP (P2,Cd) = sup
{
λ ∈ Q | the log pair (P2, λCd) is log canonical at P

}
.
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Fig. 1 (i) C3 : xy(x − y) = 0; (ii) C3 : y(x2 − y) = 0; (iii) C3 : x2 − y3 = 0; (iv) C3 : xy(x − 1) = 0

By [4, Exercise 6.18] and [4, Lemma 6.35], we have

1

multP (Cd)
� lctP (P2,Cd) � 2

multP (Cd)
.

This implies that the smaller the value of lctP (P2,Cd), the worse the singularity of the
curve Cd at P .

In order to answer Question 1.1 for d � 4, the values of log canonical threshold of
a given reduced curve Cd at P were computed.

Example 1.2 If d = 1 or d = 2, then lctP (P2,Cd) = 1.

Example 1.3 If d = 3, then lctP (P2,C3) is one of {1, 5/6, 3/4, 2/3}. The worst singu-
larity corresponds to lctP (P2,C3) = 2/3 and in this case, Cd is a union of three lines
intersecting at P (example of such a curve is xy(x− y) = 0). Examples of curves with
the given values of log canonical threshold (2/3, 3/4, 5/6, 1, resp.) are illustrated in
Fig. 1.

Example 1.4 (Erik Paemurru) Let C4 be a quartic curve. Then lctP (P2,C4) is
one of {1, 5/6, 3/4, 7/10, 9/14, 5/8, 2/3, 3/5, 7/12, 5/9, 1/2}. Theworst singularity
occurs when lctP (P2,C4) = 1/2 and in this case C4 is a union of four lines passing
through P (example of such a curve is xy(x − y)(x + y) = 0) as illustrated in Fig. 2.
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P

Fig. 2 C4 : xy(x2 − y2) = 0

P

P

Fig. 3 (i) C4 : y(x2 − y3) = 0; (ii) C4 : (x + x2 + y2)(x + y2) = 0

For curvesCd withd � 3, lctP (P2,Cd) corresponds uniquely to a type of singularity
of Cd at the point P . When d = 4, this is not the case. For example, both the curves
illustrated in Fig. 3 have lctP (P2,C4) = 5/8 but have very different singularities at P .

All the three parameters mentioned earlier give the same answer to Question 1.1,
since multP (Cd) � d, μ(P) � (d − 1)2, with multP (Cd) = d, μ(P) = (d − 1)2

if and only if Cd is a union of d lines. The following theorem proves that computing
the log canonical threshold of the curve at P also gives the same answer to the above
question.

Theorem 1.5 ([2, Theorem 4.1]) One has lctP (P2,Cd) � 2/d and the equality holds
if and only if Cd is a union of d lines passing through P.

We can then ask the following question:

Question 1.6 What is the second worst singularity at the point P?

While examples given above answer this question for curves of degree d � 4, [1]
answers this question for degree d � 5 curves. To present this answer, we intro-
duce certain types of singularities in Sect. 2 and we call these types of singularities
Kn,Tn, K̃n, T̃n,Mn, M̃n, M̂n , where n = multP (Cd). In [1], the following result was
obtained.

Theorem 1.7 Suppose d � 5 and 2/d < lctP (P2,Cd) � (2d − 3)/(d2 − 2d). Then
the curve Cd has singularities of type Td−1,Kd−1, T̃d−1, K̃d−1 at P and the values
of their log canonical thresholds at P are (2d − 3)/(d − 1)2 < (2d − 1)/(d2 −d) <

(2d − 5)/(d2 − 3d + 1) < (2d − 3)/(d2 − 2d), respectively.

This result and Theorem 1.5 give the five worst singularities of the curve Cd . In this
paper, we describe the sixth worst one. To be precise we prove
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Fig. 4 C with a Kn singularity at P and its blow-up at P

Theorem 1.8 Suppose d � 5 and

2d − 3

d(d − 2)
< lctP (P2,Cd) � 2d − 7

d2 − 4d + 1
.

Then the curve Cd has singularity of type Md−1, M̃d−1 or M̂d−1 at the point P with
lctP (P2,Cd) = (2d − 7)/(d2 − 4d + 1).

In the case of d = 5, one can hope to determine all possible values of log canonical
threshold of quintic curves, like in the case of d = 4 this was done in Example 1.4.

In Sect. 3 we present preliminary results used in the Proof of Theorem 1.8, while
the proof itself is given in Sect. 4.

2 Cusps and other singularities

Let C be a reduced curve on a smooth surface S and P be a point on C . We are
interested in singularities of the curve C at the point P . In this section, we introduce
various types of singularities which we denote by Tn,Kn, T̃n, K̃n,Mn, M̃n and M̂n ,
where n = multP (C). We aim to describe geometric properties of the curve C having
one of these types of singularities at P .

Let f1 : S1 → S be the blow-up of S at the point P . Let C1 be the proper transform
in S1 of the curve C and E1 be the exceptional divisor of the blow-up.

2.1 Singularities of typeKn (cusps)

A curve C having singularity of typeKn can be defined with the help of its geometric
properties as given below. These singularities are also called cusps.

• multP (C) = n � 2,
• C1∩ E1 = P1,
• C1 intersects E1 tangentially at P1 and is smooth at this point (Fig. 4).

Recall from [5, Theorem 1.1] that the log canonical threshold of a cuspidal curve
is

lctP (S,C) = 1

n
+ 1

n + 1
.
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Fig. 5 C with a Tn singularity at P and its blow-up at P

Remark 2.1 Suppose S = P
2. LetC be a curve of degree d � 3 having aKn singularity

at P . Then n � d − 1. If n = d − 1, then the curve C is irreducible. Such curves do
exist. For example, the curve given by zxd−1 + yd = 0 has singularity of type Kd−1
at the point P = [0 : 0 : 1].

2.2 Singularities of typeTn

A curve C having singularity of type Tn at P can be defined using the following
geometric properties:

• multP (C) = n � 3,
• C1∩ E1 = P1,
• the point P1 is an ordinary double point of C1 (Fig. 5).

Remark 2.2 Suppose S = P
2 andC is a curve of degree d. Let L be a line inP2 passing

through P , whose proper transform L1 in S1 passes through P1. If the curve C has
singularity of type Tn , then C = L + Z , where Z is an irreducible curve of degree
d − 1 that does not contain L as an irreducible component. Since if not, then

d � L.C = d − 1 + 2 = d + 1

which is absurd. Thus, C = L + Z and L ∩ Z = P where Z has singularity of type
Kd−2 at the point P .

2.3 Singularities of type ˜Tn

A curve C having singularity of type T̃n at P can be defined using the following
geometric properties:

• multP (C) = n � 4,
• C1∩ E1 = {P1, Q1},
• the point P1 is an ordinary double point of C1,
• C1 intersects E1 transversally at Q1 and is smooth at this point (Fig. 6).

Remark 2.3 Suppose S = P
2 andC is a curve of degree d. Let L be a line inP2 passing

through the point P , whose proper transform L1 in S1 passes through the point P1.
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Fig. 6 C with a T̃n singularity at P and its blow-up at P

C

P f1

E1

P1

C1

Q1

Fig. 7 C with a K̃n singularity at P and its blow-up at P

Similar computations as in Remark 2.2 imply C = Z + L so that L ∩ Z = P , where
Z is an irreducible curve of degree d − 1 that does not contain L as an irreducible
component and Z has singularity of type K̃d−2 at the point P , which is introduced in
the next subsection.

2.4 Singularities of type ˜Kn

A curve C with singularity of type K̃n can be defined using the following geometric
properties:

• multP (C) = n � 3,
• C1∩ E1 = {P1, Q1},
• C1 intersects E1 tangentially at the point P1 and is smooth at this point,
• C1 is smooth at Q1 and intersects E1 transversally at this point (Fig. 7).

Remark 2.4 Suppose S = P
2 and C is a curve of degree d. Then C with a K̃d−1

singularity at P exists. Such a curve can be reducible, for example, y(xd−2−yd−1) = 0
or can be irreducible, for example, xd−2y + yd + xd = 0. If C is reducible, then
C = L + Z where Z is a curve of degree d − 1 which does not contain L as an
irreducible component and has singularity of type Kd−2 at the point P .

2.5 Singularities of typeMn

A curve C with singularity of type Mn at P can be defined using the following
geometric properties:
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Fig. 8 C with anMn singularity at P and its blow-up at P

• multP (C) = n � 5,
• C1∩ E1 = {P1, Q1, R1},
• C1 is smooth at the points Q1 and R1 where it intersects transversally with E1,
• the point P1 is an ordinary double point of C1 (Fig. 8).

Remark 2.5 Suppose S = P
2 and C is a curve of degree d. A curve having singularity

of typeMd−1 at P exists, for example, x(x2 − y2)(xd−4 − yd−3) = 0. It is reducible
and thus C = Z + L where L is a line in S that contains the point P so that its proper
transform L1 in S1 contains the point P1 and Z is an irreducible curve of degree d − 1
which does not contain L as an irreducible component.

2.6 Singularities of type ˜Mn

A curve C with singularity of type M̃n at P can be defined using the following
geometric properties:

• multP (C) = n � 5,
• C1∩ E1 = {P1, Q1},
• P1 is an ordinary double point of C1 with (C1.E1)P1 = n − 2,
• C1 intersects E1 tangentially at the point Q1 with (C1.E1)Q1 = 2 and is smooth
at this point (Fig. 9).

Remark 2.6 Suppose S = P
2 and C is a curve of degree d. Then n = d −1 is possible

and a curve with singularity of type M̃d−1 exists. For example, y(zx2 + y3)(zyd−4 +
xd−3) = 0 has an M̃d−1 singularity at the point P = [0 : 0 : 1]. In this case, C is
reducible and thus, C = L + Z where L is the line in S containing P such that
its proper transform L1 passes through the point P1 in S1 and Z is a d − 1 degree
irreducible curve that does not contain L as an irreducible component.

2.7 Singularities of type ̂Mn

A curve C with singularity of type M̂n at P can be defined using the following
geometric properties:
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Fig. 9 C with an M̃n singularity at P and its blow-up at P
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Fig. 10 C with an M̂n singularity at P and its blow-up at P

• multP (C) = n � 5,
• C1∩ E1 = {P1, Q1},
• P1 is an ordinary double point of C1 with (C1.E1)P1 = n − 2,
• Q1 is an ordinary double point of C1 with (C1.E1)Q1 = 2 (Fig. 10).

Remark 2.7 Suppose S = P
2 and C is a curve of degree d with singularity of type

M̂n at the point P . Then n = d − 1 is possible, for example, C given by x(zxd−4 +
yd−3)(z2y2 + x4) = 0 has an M̂d−1 singularity at the point P = [0 : 0 : 1]. That is,
C = L + Z where L is a line in S that passes through the point P whose proper
transform contains the point P1 and Z is an irreducible curve in S of degree d − 1
which does not contain L as an irreducible component.
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2.8 Defining equations

In this section, we describe a curve C having any of the above types of singularities
using local equations. These descriptions actually are not essential to prove Theo-
rem 1.8. Up to analytic change of coordinates, the equations of the curve C with the
respective singularities are given below:

• Kn : x
n + yn+1 +

n+1∑

i=1

ai x
i yn+1−i + H.O.T. = 0,

• Tn : x

(
xn−1 − yn +

n+1∑

i=2

ai x
i−1yn+1−i + H.O.T

)
= 0,

• T̃n : x

(
y(yn−1 − xn−2) +

n+1∑

i=2

ai x
i−1yn+1−i + H.O.T

)
= 0,

• K̃n : y(x
n−1 − yn) +

n+1∑

i=1

ai x
i−1iyn+1−i + H.O.T = 0,

• Mn :x

(
(x2 − y2)(xn−3 − yn−2) +

n∑

i=2,i �=3

ai x
i yn+1−i + H.O.T

)
= 0,

• M̃n : y

(
(x2+y3)(yn−3+xn−2)+

n−1∑

i=1

ai x
i yn−i+

n+1∑

i=0,i �=n−2

bi x
i yn+1−i+H.O.T

)
= 0,

• M̂n : x

(
(xn−3 + yn−2)(y2 + x4) +

n∑

i=0,i �=1

ai x
i−1yn+1−i +

n∑

i=0

bi x
i−1yn+2−i +

n+2∑

i=0,i �=5

ci x
i−1yn+3−i + H.O.T

)
= 0.

The above set of equations comprise an exhaustive list of curves C of a given degree
with the various types of singularities, up to analytic change of coordinates and include
the curves missing from the list in [1, Definition 1.9], as pointed out by the referee.

3 Preliminaries

Let S be a smooth surface and P be a point in S. Let D be an effective non-zero
Q-divisor on the surface S. Then,

D =
r∑

i=1

aiCi

where each Ci is an irreducible curve on S and ai ∈ Q�0.
Let π : S̃ → S be a birational morphism such that S̃ is smooth. One can then

conclude that π is a composition of n blow-ups of points. For each Ci , we denote its
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proper transform by C̃i and the exceptional curves of the blow-up by F1, F2, . . . , Fn .
Then,

KS̃ +
r∑

i=1

ai C̃i +
n∑

j=1

bj Fj ∼Q π∗(KS + D)

where bi ∈ Q. Suppose
∑r

i=1 C̃i +∑n
j=1 Fj is a divisor with simple normal crossings

(SNC).

Definition 3.1 ([4, Definition 6.16]) The log pair (S, D) is said to be log canonical at
P if the following conditions are satisfied:

• ai � 1 for every Ci such that P ∈ Ci ,
• bj � 1 for every Fj such that π(Fj ) = P .

Similarly, the log pair (S, D) is said to be Kawamata log terminal at P if

• ai < 1 for every Ci such that P ∈ Ci ,
• bj < 1 for every Fj such that π(Fj ) = P .

Let π1 : S1 → S be the blow-up of S at the point P and E1 be the exceptional curve of
the blow-up. Let D1 be the proper transform of the divisor D on the surface S1 after
blow-up. Let

DS1 = D1 + (multP (D) − 1)E1.

This is called the log pull-back of the log pair (S, D). Observe that

KS1 + D1 + (multP (D) − 1)E1 ∼Q π∗
1 (KS + D).

This implies that the log pair (S, D) is not log canonical at P if multP (D) > 2, and
is not Kawamata log terminal if multP (D) � 2.

Remark 3.2 The log pair (S, D) is log canonical at the point P if and only if (S1, DS1)

is log canonical at every point in E1. Similarly, the log pair (S, D) is Kawamata log
terminal at the point P if and only if (S1, DS1 ) is Kawamata log terminal at every point
in E1.

Lemma 3.3 ([4, Exercise 6.18]) Suppose (S, D) is not log canonical at P, then
multP (D) > 1. Similarly, if (S, D) is not Kawamata log terminal at P, then
multP (D) � 1.

Let Z be an irreducible curve on S that contains the point P and is smooth at P .
Suppose that Z is not contained in Supp(D). Letμ be a non-negative rational number.

Theorem 3.4 ([3, Theorem 7], [4, Exercise 6.31], [6, Corollary 3.12]) Suppose the log
pair (S, μZ + D) is not log canonical (not Kawamata log terminal, resp.) at P and
μ � 1 (μ < 1, resp.). Then multP (D.Z) > 1.
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Lemma 3.5 If (S, D) is not log canonical at P and multP (D) � 2, then there exists
a unique point in E1 such that (S1, DS1) is not log canonical at it. Similarly, if (S, D)

is not Kawamata log terminal at P, and multP (D) < 2, then there exists a unique
point in E1 such that (S1, DS1) is not Kawamata log terminal at it.

Proof Suppose (S, D) is not log canonical at P and multP (D) � 2 and suppose there
exist two distinct points P1 and P2 in E1 at which (S1, DS1) is not log canonical.
Then,

2 � multP (D) = D1.E1 � multP1(D
1.E1) + multP2(D

1.E1) > 2

by Theorem 3.4. Thus, Remark 3.2 proves the first assertion. Similarly we can prove
the second assertion. 	

Lemma 3.6 ([1, Lemma 2.14]) Suppose (S, D) is not Kawamata log terminal at P,
and (S, D) is Kawamata log terminal in a punctured neighbourhood of the point P,
then multP (D) > 1.

Proof Suppose multP (D) � 1. Let us seek for a contradiction. Since (S, D) is not
Kawamata log terminal at P , we have that (S1, D1 + (1 − multP (D))E1) is not
Kawamata log terminal at some point P1 ∈ E1. From Lemma 3.5 we have that this
point P1 is unique. This implies that multP (D) > 1, by Lemma 3.3, which in turn
contradicts our assumption. 	

Let Z1 and Z2 be irreducible curves on the surface S such that Z1 and Z2 are not
contained in Supp(D) and P ∈ Z1 ∩ Z2. Also, suppose that Z1 and Z2 are smooth at
P and intersect transversally at P . Let μ1 and μ2 be non-negative rational numbers.

Theorem 3.7 ([3, Theorem 13]) If the log pair (S, μ1Z1 + μ2Z2 + D) is not log
canonical at the point P, and multP (D) � 1, then multP (D.Z1) > 2(1 − μ2) or
multP (D.Z2) > 2(1−μ1) (or both). Similarly, if the log pair (S, μ1Z1+μ2Z2+D) is
not Kawamata log terminal at the point P, andmultP (D) < 1, then multP (D.Z1) �
2(1 − μ2) or multP (D.Z2) � 2(1 − μ1) (or both).

4 Proof of themain result

Let us now prove the main result of the paper. Let Cd be a reduced curve of degree
d � 5 on a smooth surface S such that P ∈ Cd and let m0 = multP (Cd). Suppose
(2d − 3)/(d2−2d) < lctP (S,Cd) < (2d − 7)/(d2 − 4d + 1). This means that there
exists λ < (2d − 7)/(d2 − 4d + 1) such that (S, λCd) is not Kawamata log terminal
at P . Let us also assume that m0 �= d and thus Cd is not a union of d lines. We want
to show that the curve Cd has singularity of type Md−1, M̃d−1 or M̂d−1 at the point
P . It is important to notice that the arguments presented below are very similar to the
arguments in [1]. Also, these are local arguments, i.e., it is not necessary for the curve
Cd to be smooth everywhere outside of P . We assume that the respective divisors
on the surface S at various levels are Kawamata log terminal (or log canonical) at a
punctured neighbourhood of P .
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Lemma 4.1 The following inequalities are used in the proof of the main result:

(i) λ < 2/(d − 1),
(ii) λ < (2k + 1)/kd , for k ∈ Z>0 such that k � d − 3,
(iii) λ < (2k + 1)/(kd + 1) for k ∈ Z>0 such that k � d − 5,
(iv) λ < 3/d,
(v) λ < 2/(d − 2),
(vi) λ < 6/(3d − 4),
(vii) λ < 5/2d.

The proof is straightforward.

We will now introduce some notations. Let S = S0 = P
2 and D = (P2, λCd).

Consider a sequence of blow-ups fi : Si → Si−1 such that f1 is the blow-up of
P0 = P , f2 is the blow-up of the point P1, and so on, i.e., fi is the blow-up of the
point Pi−1 ∈ Si−1. We have

· · · → Sk+1
fk+1−−−→ Sk → · · · f4−→ S3

f3−→ S2
f2−→ S1

f1−→ S0.

Also, let f : Sk+1 → S be the composition of the blow-ups, i.e., f = f1◦ f2◦· · ·◦ fk+1.
The fi -exceptional divisor during each blow-up is denoted by Ei . The proper transform
of the exceptional divisors Ej in Si is denoted by Ei

j for all j < i . Also, after the fi
blow-up, the curve Cd is denoted by Ci

d in Si . The divisors comprising of the curve
and the exceptional curves on every floor Si are together denoted by DSi. We will
explicitly describe how each of these points of blow-up are chosen.

Since (S, λCd ) is not Kawamata log terminal at the point P ∈ Cd , by Remark 3.2
one has that (S1, λC1

d + (λm0 − 1)E1) is not Kawamata log terminal at some point in
E1. Let this point be P1.

Lemma 4.2 λm0 < 2.

Proof Since m0 � d − 1, we have λm0 � λ(d − 1). Using Lemma 4.1 (i), we get
λm0 < 2. 	

From Lemma 3.5 this implies that the point P1 is a unique point on E1 at which
(S1, DS1), that is, (S1, λC1

d + (λm0 − 1)E1) is not Kawamata log terminal.
Let L be the line in P2 whose proper transform, L1 in S1, contains the point P1.

Lemma 4.3 Suppose m0 = d − 1. Then L is an irreducible component of Cd .

Proof Observe that

C1
d ∼Q f ∗

1 (Cd) − m0E1.

If L is not an irreducible component of the curve Cd , then we have

m1 � C1
d .L

1 = Cd .L − m0E1.L
1 = d − m0, (1)
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where m1 = multP1(C
1
d). Thus we have m0 + m1 � d. P1 ∈ C1

d , since if not, then
(S1, (λm0 − 1)E1) is not log canonical at the point P1, which is not possible since
λm0 − 1 < 1 from Lemma 4.2. Since m0 = d − 1, m1 = 1. Therefore, C1

d is smooth
at P1.

Let k = multP1(C
1
d .E1). We claim that k > d − 3. Indeed, suppose k � d − 3.

Since (S1, DS1) is not Kawamata log terminal at the point P1 ∈ E1, we have that
(S2, DS2) is not Kawamata log terminal at some point in E2, where

DS2 = λC2
d + (λ(d − 1) − 1)E2

1 + (λd − 2)E2.

Let this point be P2. Note that all the coefficients of the curves in DS2 are less than 1.
In particular, we have

λd − 2 = d − 2

d2 − 4d + 1
< 1.

Thus, by Definition 3.1, (S3, DS3) is not Kawamata log terminal at some point in E3.
Let this point be P3. Thus, f2 is the blow-up of P1 ∈ C1 ∩ E1, f3 is the blow-up of
P2 ∈ C2 ∩ E2, and so on. One then has the sequence as mentioned in (i).

We require k + 1 blow-ups to ensure simple normal crossing of the elements of the
divisor over the point P . Here the points of blow-up are such that Pi = Ci ∩ Ei and
using the notations described earlier, we have

KSk+1 + λCk+1
d + (λ(d − 1) − 1)Ek+1

1

+ (λd − 2)Ek+1
2 + · · · + (λkd − 2k)Ek+1 ∼Q f ∗(KS + λCd).

(2)

Let the coefficients of Ek+1
i in (2) be denoted by bi . Then since

λCk+1 +
k∑

i=1

bi E
k+1
i + bk+1Ek+1

is a divisor with simple normal crossings over P , at least one of bi > 1 or bk+1 > 1.
But the coefficients bi are such that bj < bi for all j < i and we have

λkd − 2k � d2 − 5d + 6

d2 − 4d + 1
< 1

from Lemma 4.1 (ii). That is, in particular bj < bk+1 < 1 for all j < k + 1.
This contradiction implies that k > d − 3. We also know that

k = multP1(C
1
d .E1) � (C1

d .E1) = m0 = d − 1.

Therefore, these inequalities imply k = d − 1 or d − 2. Thus, when

• k = d − 1, then Cd has singularity of type Kd−1 at P (see Sect. 2.1).
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• k = d − 2, then Cd has singularity of type K̃d−1 at P (see Sect. 2.4).

If the curveCd has either of the above singularities at the point P , then lctP (P2,Cd) =
(2d − 1)/(d2 − d) or lctP (P2,Cd) = (2d − 3)/(d2 − 2d), respectively. Since we
assume lctP (P2,Cd) > (2d − 3)/(d2 −2d), neither of these values for k are possible.
Therefore, this contradiction implies that L is an irreducible component of the curve
Cd . 	

Lemma 4.4 Suppose m0 = d − 1. Then Cd has singularity of type Md−1, M̃d−1 or
M̂d−1 at the point P.

Proof From Lemma 4.3 we know that L is an irreducible component of the curve Cd ,
i.e., we have Cd = Cd−1 + L where Cd−1 is an irreducible curve of degree d − 1
which does not contain L as an irreducible component. Let n0 = multP (Cd−1). Since
m0 = multP (Cd) = d − 1, we have n0 = m0 − 1 = d − 2 .

Let f1 : S1 → S be the blow-up at the point P and n1 = multP1(C
1
d−1). We have

n1 = m1 − 1. We also have P1 ∈ C1
d−1 since if not, it would mean that (S1, λL1 +

(λ(d − 1) − 1)E1) is not log canonical at the point P1 which is a contradiction since
λ < 1 and λ(d − 1) − 1 < 1 and L1, E1 are SNC divisors over P1. Thus, n1 � 1.

Consider

n1 � L1.C1
d−1 = d − 1 − n0,

that is, n0 + n1 � d − 1 and since n0 = d − 2, we have n1 = 1. Thus the curve C1
d−1

is smooth at P1.
Let k = multP1(C

1
d−1.E1). We claim k > d − 5. Instead, suppose k � d − 5, then

using similar computations as in Lemma 4.3, after k + 1 blow-ups, we get

KSk+1 + λCk+1
d−1 + λLk+1 + (λ(d − 1) − 1)Ek+1

1

+ · · · + (λ(kd + 1) − 2k)Ek+1 ∼Q f ∗(KS + λCd)

where (Sk+1, DSk+1) is not Kawamata log terminal at some point in Ek+1, which we
take to be Pk+1. Here again, f is a composition of k + 1 blow-ups and bi are the
coefficients of Ek+1

i in the above equation.
Since the curves in the divisor

λCk+1
d−1 + λLk+1 +

k∑

i=1

bi E
k+1
i + bk+1Ek+1

intersect at simple normal crossing at the point P after k + 1 blow-ups, one of these
coefficients should be such that bi > 1 or bk+1 > 1 but we have

λ(kd + 1) − 2k = (k + 2)d − 2k − 7

d2 − 4d + 1
< 1

from Lemma 4.1 (iii) and the coefficients are such that bj < bi for all j < i . In
particular, bj < bk+1 < 1 for all j < k + 1. This contradiction implies k > d − 5.
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We also know that

k = multP1(C
1
d−1.E1) � (C1

d−1.E1) = multP (Cd−1) = n0 = d − 2.

Thus, these inequalities imply that k = d − 2 or d − 3 or d − 4. Thus, when

• k = d − 2, Cd has singularity of type Td−1 at P (see Sect. 2.2),
• k = d − 3, Cd has singularity of type T̃d−1 at P (see Sect. 2.3).

If Cd has either one of the above singularities at the point P , then lctP (P2,Cd) =
(2d − 3)/(d − 1)2 or lctP (P2,Cd) = (2d − 5)/(d2 − 3d + 1), respectively. Sincewe
assume that lctP (P2,Cd) > (2d − 3)/(d2 − 2d), these values of k are not possible.
Thus k = d − 4, i.e., Cd has singularity of type Md−1, M̃d−1 or M̂d−1 at P . 	

Observe that Lemmas 4.3 and 4.4 complete the proof of the main result ifm0 = d−1.
In the remaining part of the section, we will prove that m0 � d − 2 is not possible. In
particular, we prove the following proposition.

Proposition 4.5 If m0 � d − 2, then lctP (S,Cd) � 2/(d − 1).

This in turn proves that for our choice of λ and the assumption that (S, λCd) is not
Kawamata log terminal at P , m0 � d − 2 is not possible, since λ < 2/(d − 1). Let
us prove this proposition by the method of contradiction.

Proof Suppose m0 � d − 2 and lct(S,Cd) < 2/(d − 1). Let μ = 2/(d − 1). Then
(S, μCd ) is not log canonical, in particular, is not Kawamata log terminal at a point,
say P . Let us now obtain the necessary contradiction.

Claim 1 The line L is not an irreducible component of the curve Cd.

Proof We shall prove this by contradiction. Suppose L is an irreducible component
of the curve Cd . Then Cd = L +Cd−1, where Cd−1 is an irreducible curve of degree
d − 1 in P

2 and does not contain L as an irreducible component. Let f1 : S1 → S be
the blow-up at the point P in Cd . Let n0 = multP (Cd−1).

Since (S, μCd−1+μL) is not log canonical at P , we have that (S1, μC1
d−1+μL1+

(μ(n0 + 1) − 1)E1) is not log canonical at some point in E1. We choose this point to
be P1. Let n1 = multP1(C

1
d−1). Consider

d − 1 − n0 = C1
d−1.L

1 � n1

which implies that n0 +n1 � d −1. But n0 = m0 −1 � d −3, using our assumption.
Also, 2n1 � n0 + n1 which implies 2n1 � d − 1. We can then conclude that

μn1 � 1. We also have L1 and E1 smooth at P1 and intersecting transversally at P1.
Thus applying Theorem 3.7, we get

μ(d − 1 − n0) = μC1
d−1.L

1 > 2(2 − μ(n0 + 1)) (3)

which implies that μ(d − 1) > 2 or
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μn0 = μC1
d−1.E1 > 2(1 − μ) (4)

which implies that μ(n0 + 2) > 2.
The two inequalities in (3) and (4) imply that μ(d − 1) > 2 which is absurd. Thus,

L is not an irreducible component of Cd . �

Since L is not an irreducible component of the curve Cd , from the computations in
(1) we can also assume that m0 + m1 � d.

Since (S, μCd) is not log canonical at the point P and since μ < 1, we have that
(S1, μC1

d + (μm0 − 1)E1) is not log canonical at some point in E1, say P1. We also
have

μm0 − 1 � μ(d − 2) − 1 = 2

d − 1
(d − 2) − 1 = d − 3

d − 1
< 1,

for d � 5. Thus, from Lemma 3.5 there exists a unique point in E2, say P2, such that
(S2, μC2

d + (μm0 − 1)E2
1 + (μ(m0 + m1) − 2)E2) is not log canonical at P2.

We know that P2 ∈ C2
d , since if not, it would imply (S2, (μm0 − 1)E2

1 + (μ(m0 +
m1)−2)E2) is not log canonical at the point P2. This is not possible sinceμm0−1 < 1,
μ(m0 + m1) − 2 � μd − 2 < 1, and E2

1 , E2 are SNC divisors at P2.

Claim 2 P2 /∈ E2
1 .

Proof Suppose P2 ∈ E2
1 . Observe that

C2
d ∼ f ∗

2 (C1
d) − m1E2

so that C2
d .E

2
1 = C1

d .E1 − m1E2.E2
1 = m0 − m1.

Also, since P2 ∈ C2
d ∩ E2

1 ∩ E2, we havem2 = multP2(C
2
d ) � (C2

d .E
2
1). Therefore,

m2 � m0 − m1. Since m2 � m1, we have 2m2 � m1 + m2 � m0 which implies

m2 � m0

2
.

From Lemma 4.1 (v), we have

μm2 � μ
m0

2
� μ

d − 2

2
< 1.

We also know that E2
1 and E2 are smooth at P2 and intersect transversally at P2.

Since (S2, μC2
d + (μm0 − 1)E2

1 + (μ(m0 + m1) − 2)E2) is not log canonical at
the point P2, Theorem 3.7 implies μ(m0 −m1) = μC2

d .E
2
1 > 2(3− μ(m0 +m1)) or

λm1 = λC2
d .E2 > 2(2− λm0). That is, μ(3m0 +m1) > 6 or μ(2m0 +m1) > 4. We

have

3m0 + m1 = 2m0 + m0 + m1 � 2(d − 2) + d = 3d − 4, (5)

2m0 + m1 � d − 2 + d = 2d − 2. (6)
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Using the above equations (5) and (6), both of the above mentioned inequalities
obtained from using Theorem 3.7 result in contradiction, hence proving our claim
that P2 /∈ E2

1 . �

Claim 3 P2 /∈ L2.

Proof Suppose P2 ∈ L2. Since L is not an irreducible component of Cd , we have
d −m0 −m1 = L2.E2 � m2 and this implies thatm0 +m1 +m2 � d. Also, applying
Lemma 3.3, we get μd � μ(m0 + m1 + m2) > 3 which results in a contradiction
since μd < 3. Thus, P2 �= L2 ∩ E2. �

Thus,we have that (S2, μC2
d+(μ(m0+m1)−2)E2) is not log canonical at the point P2.

Then fromRemark 3.2, (S3, μC3
d +(μ(m0+m1)−2)E3

2 +(μ(m0+m1+m2)−3)E3)

is not log canonical at some point in E3, say P3.
We have 2m1 � m0 + m1 � d, and

μ(m0 + m1 + m2) � μ(m0 + 2m1) � μ(d − 2 + d) = 4. (7)

Therefore μ(m0 + m1 + m2) − 3 � 1.
P3 ∈ C3

d , since if not, then thiswould imply that (S3, (μ(m0+m1)−2)E3
2+(μ(m0+

m1 + m2) − 3)E3) is not log canonical at the point P3. But since the coefficients of
Ei � 1 and E3

2 , E3 are SNC divisors over the point P3, this is not possible.

Claim 4 P3 /∈ E3
2 .

Proof Suppose P3 ∈ E3
2 . Observe that

C3
d ∼Q f ∗

3 (C2
d ) − m2E3.

We thus have

C3
d .E

3
2 = f ∗

3 (C2
d .E2) − m2(E3.E

3
2) = m1 − m2.

Therefore, Theorem 3.4 implies

μ(m1 − m2) + (μ(m0 + m1 + m2) − 3) = (μC3
d + (μ(m0 + m1 + m2) − 3)E3).E

3
2 > 1,

which implies μ(m0 + 2m1) > 4. From (7) we know that μ(m0 + 2m1) � 4. This
contradiction proves our claim. �

Therefore, the log pair (S3, μC3
d + (μ(m0 + m1 + m2) − 3)E3) is not log canonical,

at the point P3. Thus from Remark 3.2, (S4, μC4
d + (μ(m0 + m1 + m2) − 3)E4

3 +
(μ(m0 + m1 + m2 + m3) − 4)E4) is not log canonical at a point P4 ∈ E4. We have

m2 + m3 � 2m2 � m0 + m1 � d.
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Thus,

μ(m0 + m1 + m2 + m3) � μ(2(m0 + m1)) � 2

d − 1
2d < 5. (8)

Claim 5 P4 /∈ E4
3 .

Proof Suppose P4 ∈ E4
3 . From inequality (8), m0 +m1 + 2m2 < 5/μ. Also, observe

that

C4
d ∼Q f ∗

4 (C3
d) − m3E4

so that C4
d .E

4
3 = m2 − m3. Then from Theorem 3.4 we have

(μC4
d + (μ(m0 + m1 + m2 + m3) − 4)E4).E

4
3 > 1,

which implies

m0 + m1 + 2m2 >
5

μ
.

This contradicts inequality in (8). Thus P4 /∈ E4
3 . �

Thus, (S4, μC4
d + (μ(m0 +m1 +m2 +m3) − 4)E4) is not log canonical at the point

P4. From Lemma 3.6, we have

μmultP4(C
4
d) + (μ(m0 + m1 + m2 + m3) − 4) > 1,

which implies

multQ4(C
4
d) + m0 + m1 + m2 + m3 >

5

μ
. (9)

Now using (9) and a geometric construction of a special curve in S4 wewill try to arrive
at a contradiction.Wemay assume that the line L is given by x = 0 and P = [0 : 0 : 1].
Let C be the conic in P

2 that is given by

xz + Axy + By2 = 0,

where A, B ∈ C and B �= 0. Then C is smooth and is tangent to the line L . Denote
the proper transform of C in Si by Ci. It follows from Claims 2, 3, 4 and 5, that there
exist A and B �= 0 such that Ci on Si contain Pi for i = 1, 2, 3. So we can assume
that A, B are chosen this way. Then we have

C4 ∼ 2L4 + E4
1 + 2E4

2 + E4
3 .

Thus the pencil |C4| does not have base points.
Also, let L be a pencil of conics in P2 given by
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sx2 + t(x + Axy + By2) = 0,

where s, t ∈ C. It is generated by 2L and C.
Let φ|C4| : S4 → P

1 be the morphism defined by the pencil |C4|. Similarly, let
φL : P2 ��� P

1 be the rational map defined by the pencilL. These make the following
diagram commutative:

P
2

φL

S1
f1

S2
f2

S3
f3

S4
f4

φ|C4|
P
1.

Choose a curve Z4 in |C4| that passes through the point P4. Then Z4 is a smooth
irreducible curve. Let the proper transform of Z4 in P

2 be denoted by Z . Thus Z is a
smooth conic in the pencil L. Suppose Z is not an irreducible component of the curve
Cd , then we have

2d − (m0 + m1 + m2 + m3) = C4
d .Z

4 � multP4(C
4
d). (10)

Equations (9) and (10) result in a contradiction since μ < 5/(2d).
Thus, Cd = Z + Cd−2 where Cd−2 is an irreducible curve of degree d − 2 which

does not contain the conic Z as an irreducible component.
Let C1

d−2,C
2
d−2,C

3
d−2,C

4
d−2 be the proper transforms of the curve Cd−2 on

the surfaces S1, S2, S3 and S4, respectively. Denote by n0 = multP (Cd−2), n1 =
multP1(C

1
d−2), n2 = multP2(C

2
d−2), n3 = multP3(C

3
d−2), and n4 = multP4(C

4
d−2).

Thus (S4, μC4
d−2 + μZ4 + ((μ(n0 + n1 + n2 + n3 + 4) − 4)E4) is not log canonical

at P4.
Applying Theorem 3.4 to the above gives μ(2(d − 2) − n0 − n1 − n2 − n3) +

μ(n0 + n1 + n2 + n3 + 4) − 4 > 1, which implies μ > 5/(2d). But μ < 5/(2d) and
thus this contradiction proves the proposition. 	


This in turn proves thatm0 � d − 2 is not possible for the chosen value of λ, hence
completing the Proof of Theorem 1.8.
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