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Air Quality Index Prediction Using DNN-Markov Modeling
Roba Zayed and Maysam Abbod

Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge, UK

ABSTRACT
Air quality measurements contribute to diverse socio-economic 
sectors, including the environment and healthcare. Many methods 
are commonly applied to present air-quality levels, reflecting differ-
ing national standards. This study presents an air quality index 
prediction model, to measure air pollution levels for healthcare 
applications in congested areas. DNN-Markov modeling techniques 
are used to predict air quality, based on environmental conditions 
at peak hours. The developed model presents different approaches 
for highly accurate prediction of the air quality index for the 
next hour at a given location, under specific environmental condi-
tions. This system could be used to support planning decisions 
related to the consequences of air quality. The study was con-
ducted in selected locations in Jordan and England as 
a comparative model prediction accuracy study using different big- 
data sets of multivariate time series in traffic-heavy locations. The air 
quality index was represented using Neuro Fuzzy Logic as 
a method to contribute in air quality index predictions within blurry 
(boundary) values. The selected DNN-Markov hybrid model could 
predict air quality with accuracy of around (RMSE 7.86) for the 
location in England, and around (RMSE 15.27) for the one in Jordan.
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Introduction

Air quality prediction involves various factors, intricately connected to atmo-
spheric conditions and exhibiting time dependencies. The concentrations of 
air pollutants are influenced by meteorological events and state fluctuations, 
and optimal forecasting in specific domains is hampered by the limited 
availability of valid air-quality datasets (Tripathi and Pathak 2021). 
Nevertheless, there is increasing urgency to address high pollutant levels and 
their consequences, which has elicited in-depth studies on air quality para-
meters, temporal dimensions, and spatial interactions (Alnawaiseh and 
Hashim 2014; Cheng et al. 2007; Masih 2019). Emissions, being a complex 
mixture of gases and meteorological conditions, present challenges for fore-
casting models due to non-linearity and a lack of meteorological parameters in 
certain regions (Masih 2019). Air quality is affected by multiple complex 
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factors, such as traffic flow, meteorology, and land use, and the data are not 
sufficient and accurate to model each factor which present challenges in 
prediction. Moreover, there are some very sharp changes which can be caused 
by unusual weather conditions (inflection points) and significant variations in 
air pollution because air itself changes over location and time. Given the 
plethora of instrumental variables, current tools for the generic prediction of 
overall air quality are not useful for decision-making (Zheng et al. 2015).

Machine Learning Approaches and Challenges

Tealab (2018) used systematic review method to address air quality prediction 
challenges, exploring the use of Neural Networks (NN), Support Vector Machines 
(SVM), and the Ensemble Learning algorithm, known for their ability to capture 
non-linearity in modeling. Analyzing research on air quality prediction indicates 
that NNs are among the most reliable and cost-effective machine-learning tools, 
but issues such as overfitting and generalization have been identified with their use 
(Siami-Namini, Tavakoli, and Namin 2019). While some of these issues were 
resolved using other methods such as SVM, linear regression, and many other 
linear and non-linear methods (Méndez, Merayo, and Núñez 2023), the existing 
literature still debates suitable methods for air quality prediction, and discusses 
more possibilities of combined solutions that could overcome shortages in stand- 
alone models (Devasekhar and Natarajan 2023; Masih 2019).

The extensive literature on time-series Artificial Neural Network (ANN) 
research underscores the efficiency of NNs, but its use still depends on 
modelers’ experience, and lacks systematic procedures, particularly for non- 
linear forecasting in time series (Baatarchuluun, Sung, and Lee 2020; Niska 
et al. 2004; Shrestha and Mahmood 2019). Tealab’s (2018) systematic review of 
time-series forecasting revealed that many studies utilized hybrid (linear and 
non-linear) models. Despite the importance of traditional predictive modeling 
methods like ARIMA, SARIMA, ARIMAX, and other statistical linear model-
ing, the need for deep learning arises to better capture non-linearity in data 
between parameters, ensuring reliable performance and accuracy in time- 
series data (Siami-Namini, Tavakoli, and Namin 2019).

Deep Neural Networks (DNN) Evolution

In the evolution of DNN, the Universal Approximation Theorem initially 
posed challenges, but the emergence of the backpropagation learning algo-
rithm marked a significant leap for DNN. This advancement automated 
feature extractors, providing added value compared to traditional machine- 
learning techniques. Despite such progress, deep learning algorithms had their 
shortcomings, prompting the development of various architectures and train-
ing techniques as revolutionary solutions (Kaur et al. 2023).
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An increase in the number of layers within DNNs enhanced their capacity 
for network learning. However, this did not necessarily lead to an improve-
ment in accuracy (Barrera-Animas et al. 2022). Shifting focus to air pollution 
time-series prediction, traditional statistical linear methods have been 
employed in the past, but recent research has explored the use of various 
combined machine-learning methods for air-quality forecasting over the past 
decade (Shrestha and Mahmood 2019).

Discrete Time Series and Advanced Models

The complex nature of air-quality prediction, coupled with variations in data 
sources and parameters, underscores the urgent need for accurate measurement 
methods. This highlights the necessity for further research to enhance air- 
quality prediction (Ameer et al. 2019). Time series offer multiple approaches 
for forming models, with discrete-valued time series finding application in 
various contexts. Discrete models require careful consideration of the data’s 
discrete nature when building distributions, emphasizing that a normal distri-
bution may not always be the optimal choice (Ameer et al. 2019).

The Markov-switching dynamic regression model marked a breakthrough 
in work on state-space representation. Introduced in 1988–89, it represented 
the dynamic behavior of time-series variables, with switching represented by 
a DTMC object (Kim 1994). The Markov-switching vector autoregressive 
(MS-VAR) model, considered a complex application, was proposed by Iain 
and MacDonald (2016) as a solution for non-linear time-series models. Finite- 
state Markov chains form a discrete-time stochastic process transitioning 
between states. Predictions in this process depend on the immediate past, 
emphasizing the sequence of previous states. Markov chains neglect past 
information, but use the outcome of the most recent experiment to predict 
the future, describing a process of transitioning between states with transition 
probabilities (Kemeny and Snell 1983).

This paper discusses the revolution of air quality prediction and the complex-
ities related to the domain, presenting the shift from statistical linear methods to 
more advanced machine learning methods, and addressing the limitations of 
some of the most used algorithms in the domain, such as ANNs, DNNs, and 
some others. This paper addresses some of the limitations and drawbacks of 
some algorithms which are dominant in the field of air quality forecasting, and 
presents hybrid modeling as a solution of integrated way to overcome some 
shortages of stand-alone algorithms. Moreover, it concludes that integrating 
traditional statistical methods with advanced machine learning unlocks the 
potential for improving air quality prediction accuracy. This paper presents 
the contribution of integrating DNNs model with Markov-switching dynamic 
regression model as hybrid modeling for air quality prediction with the aim of 
achieving suitable accuracy within the introduced framework.
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Real-World Relevance and Practical Implications of Air Quality Prediction 
Research

A bibliometric review of 100 studies over 20 years have been performed in an 
effort to study economic impact of air pollution (cost vs benefit). Air quality, 
health, and climate, growth in all countries scales are all interconnected and 
would need long-term strategies and sustainable policies that supports the 
whole economic development (Liu et al. 2023). Air Quality impacts are inter-
connected from health system to social and environmental which all have 
economic impacts on cities. For instance, the increase in hospital admissions 
from those affected by pollution such as asthma, stroke and others will impact 
their social life at first place, besides the high impact on environment there are 
as well major economic consequences due to increase in hospital admissions 
which incur costs on governments.

Proposed Solution Significance and Contribution to the Air Quality Prediction 
Domain

The study conducted several methods in an effort to contribute with a new and 
efficient approach to predict air quality index (AQI) for the next hour; DNN- 
Markov approach was selected as validation proved the model’s performance 
in terms of promising potential for efficiency. It is also efficacious to deploy 
a simple linear model, enabling backup in the fact of complexity and potential 
losses that could occur with the DNN model, which thereby boosts perfor-
mance. Among its main contributions to knowledge, this paper proposes an 
hourly prediction model, with multivariate input and output models support-
ing the complexity of air quality prediction. It proposes a hybrid model, 
combining Markov and DNN models considering static and dynamic vari-
ables for accurate results and AQI representation.

The developed solution offers hourly generation of the AQI model, to 
produce more accurate results, and improved access for added value for 
decision makers for the selected regions (especially concerning the data for 
Jordan). The research considers the transportation factor (share of transporta-
tion emissions), and addresses data refinement and model accuracy by gen-
erating a model to cover such challenges (such as missing data and reducing 
noise). It proposes the best combination of tested models to cover complex 
gases that are currently creating challenges in prediction, such as particulate 
matter (PM).

The proposed multi-input multi-output hybrid model achieves reliable 
accuracy of hourly time-series data and provides the large dataset in this 
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study. This aims to cover the gap in high big-data prediction accuracy for the 
domain (hourly frequency) and to form a more standardized AQI by compar-
ing results in two selected cities: London and Jordan. The following are the 
main objectives of the proposed solution:

● Reduced data complexity processing through selecting the best machine 
learning methods to support air quality domain.

● Increased reliability and accurate modeling to predict air quality.
● An effective AQI model for policy and regulation, supporting health and 

climate change issues.
● Considering transportation/traffic factors.

Background

Air Quality Measurement and Indices Challenges

Despite the existence of air quality indices, they are not without drawbacks, 
including a lack of standardization. Comparing air quality at the country level 
becomes challenging due to the use of different measurement methods and the 
influence of various factors on hourly pollution concentration (Monteiro et al.  
2017). The implementation of AQI in the USA in 1999 has faced obstacles in 
adoption by many countries due to the high costs associated with PM2.5 and 
other monitoring systems; Cheng et al. (2007) suggest that full AQI imple-
mentation is unlikely in the near future due to these financial burdens.

The need for a reliable and comparable AQI standard is evident to under-
stand air quality situations in different countries. The literature emphasizes the 
challenges of developing a universal AQI covering all situations and pollution 
types. Instead, the focus should shift toward vulnerable (highly polluted) zones, 
necessitating the development of a universal technique to respond to human 
exposure to pollution and improve quality of life (Tripathi and Pathak 2021).

Currently, no universal AQI exists, particularly for highly polluted areas. 
A method for identifying zones with high air pollution is essential, as there is 
no international AQI (Tripathi and Pathak 2021). Existing AQI methodologies 
are limited, as they overlook pollutant numbers and variations and fail to 
measure the health implications of exposure to pollutants (Bishoi, Prakash, 
and Jain 2009; Monteiro et al. 2017; van den Elshout, Léger, and Nussio 2008; 
Zayed and Abbod 2022a).

Air quality has become a prominent concern both nationally and inter-
nationally, with varying complexities. Several standards have been estab-
lished, such as the Pollution Standards Index (PSI) and its evolution into 
the AQI (Cheng et al. 2007). The EPA’s Revised Air Quality Index (RAQI) 
was developed as an alternative (Tealab 2018; van den Elshout, Léger, and 
Nussio 2008). The RAQI addresses some shortcomings of the AQI by 
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considering concentrations of various pollutants, potentially providing 
a more accurate assessment of air quality. Another proposed method 
involves a pollution AQI that calculates weighted mean values of sub- 
indices for the most critical pollutant (Sowlat et al. 2011). The absence of 
global standards and the need for a more dynamic system accommodating 
different pollutants and boundary-level pollutant predictions are recognized 
issues.

Researchers are exploring various methods to produce a universal tool to 
measure the health implications of pollution (Mandal and Gorai 2014). 
Algorithms are employed to address issues with current domain systems, 
and fuzzy logic, a decision-based model representing uncertainties, has gained 
attention. Fuzzy logic, introduced by Lotfi Zadeh in the 1960s (Baatarchuluun, 
Sung, and Lee 2020), offers a logical, reliable, and dynamic approach to 
presenting the health effects of pollutants to the public (Niharika and Rao  
2014). Its ability to map different categories with uncertain values, known as 
“fuzziness,” makes fuzzy logic a promising avenue for enhancing air-quality 
indices (Kaur and Gao 2018; Sowlat et al. 2011).

Theoretical Framework

This work used several methods to design a study for air quality prediction, 
and in order to cover the dynamic nature of air quality field and the relevant 
needs, the authors studied some theories based on the aims and objectives of 
this study, including universal theorem and relevant algorithmic theories 
pertaining to ANNs, extended types of recurrent NNs (RNNs) and LSTMs; 
and fuzzy logic theory, to contextualize the studied model outputs.

Universal Theorem and Relevant Algorithmic Theories
Machine learning is simply a collection of instructions (algorithms) that build 
their experience to improve functionality based on data presented to the 
system over time; an alternative description for the process is predictive 
analytics. It is used by many applications nowadays, including NN deploy-
ments to solve business problems using historical data. While machine learn-
ing is generally quite reliable for statistical data, its accuracy declines with 
increasingly complex and multidimensional data types, and more difficult 
tasks. NNs were originally founded based on the illustration of a biological 
brain, and the most well-known type is ANNs, whose connected neurons are 
modeled as weights between nodes; the neuron is the initial element of a NN 
where input and output values are exchanged. There are number of NN types, 
the most basic of which is the feed-forward network, which has limitations in 
modeling time prediction tasks. ANN is basically a perceptron, as displayed in 
Figure 1. It consists of more than one input external links, one output and has 
an internal input (bias) (Staudemeyer and Morris 2019).
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RNNs have various forms, the most fundamental of which are (1) one input to 
multiple outputs, (2) multiple outputs to one input, and (3) many inputs to many 
outputs. Some of their drawbacks include “vanishing gradients,” when input 
information passes through many layers, and then vanishes when reaching to the 
beginning or the end layer; and “exploding gradients,” where input information 
passes through many layers that end up with a large gradient when reaching to 
the beginning or the end layer. This presents issues in training RNNs, which 
creates more problems when long-term dependencies occur. LSTM models are 
a type of RNNs, whose memory architecture helps to accommodate inputs via 
long-term dependencies (capturing features and preserving information over 
long periods) (Ma et al. 2019). An LSTM model (Figure 2) is based on three gates: 
(1) the forget gate for decisions; (2) the output gate, where results are presented; 
and (3) the input gate, where information is added to the memory.

Fuzzy Logic Theorem
Fuzzy logic can be considered as decision-making tool and it is a subset of the 
intelligent system field. It is used in the simulation of non-linear behavior using 
the fuzzy logic framework. Despite its name, it is actually more of a precise logic 
for rational decisions in light of uncertainty (Singpurwalla and Booker 2004). As 
explained previously, fuzzy logic was originally proposed as a solution to handle 
uncertainty by approximation (Baatarchuluun, Sung, and Lee 2020). A fuzzy 
system includes a membership function, which can be of different curve shapes 
(trapezoidal, triangular, or Gaussian); the curve shows the connection between 
each input point and value between 0 and 1 (Sowlat et al. 2011).

Figure 1. Structure of perceptron (most basic artificial neuron type). Source: Staudemeyer and 
Morris (2019).
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Materials and Methods

The modeling stage requires combining data from various sources, in order to 
achieve an appropriate level of accuracy (Zayed and Abbod 2022a, 2022b). We 
took into consideration the data used and the domain (air quality), following 
the steps described below in order to obtain the final results.

Firstly, gas concentration was used as the output data for the Markov 
model. Any missing data were first processed with a moving mean for each 
gas, and then as a previous value, to back up any missing values for which the 
data was completed by the mean. The input data (wind speed, wind direction, 
temperature, and humidity) inputs were fed to the Markov model, which 
simulated the results.

The gas concentration results from the Markov model were fed to the 
DNN model (acting as the output). The inputs (i.e., the original inputs for 
the DNN model) were: day, month, year, hour, wind speed, wind direc-
tion, temperature and humidity. The final results were the outputs pre-
dicted after the running of the DNN model (Zayed and Abbod 2022a,  
2022b).

Figure 2. LSTM cell structure. Source: Ma et al. (2019).
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Parameters Selection

A thorough literature review was done for input and output selection for 
studies of how air quality prediction has been undertaken by previous 
researchers, and it was found that a significant number used wind speed, 
wind direction, humidity, and temperature in different combinations, based 
on the studies’ setups. Furthermore, this study collected available data from 
the parameters available for selected locations in Jordan and England, as 
explained below. The selection of input and output was then performed 
based on the aims and objectives of this study. Most related studies performed 
prediction in isolation of the other gases factor, and this research aims to 
provide multivariate output predictions by having multiple outputs.

Data Sources, Collection, and Processing

Data was collected after a comprehensive review of the literature on the air- 
quality domain. This informed our view of the factors affecting gas concentra-
tions in air, and these were selected as parameters for the models in this 
research. Accordingly, in this big data comparative study, data was selected 
in order to compare developed and developing cities for which sufficient data 
fulfilling the aim and objectives of the research were available and accessible. 
The data used in this research were collected from three different sources, as 
adumbrated below (Zayed and Abbod 2022a, 2022b).
First location: Marylebone Road, London
Source: Open data (United Kingdom):

https://www.londonair.org.uk/LondonAir/Default.aspx. 

● Inputs: day, month, year, hour, humidity, temperature, wind speed, wind 
direction

● Output: CO (µg/m3) NO (µg/m3), NO2 (µg/m3), NOx (µg/m3), O3 (µg/ 
m3), PM10 (µg/m3), SO2 (µg/m3)

● Size: 43824 data point

Second location: Greater Amman Municipality (GAM)
Source: Closed data (Jordan)
Data (from traffic locations) was collected from the Jordanian Ministry of 
Environment.

● Input: day, month, year, hour, humidity, temperature, wind speed, wind 
direction

● Output: PM10 (µg/m3), NO2 (ppb), CO (ppb), SO2 (ppb)
● Size: 26268 data point
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Third location: Unspecified Italian city
Source: Open data (Italy)

UCI Machine Learning Repository: Air Quality Data Set
Italy data parameters:

● Date (DD/MM/YYYY)
● Time (HH.MM.SS)
● True hourly averaged concentration CO in mg/m3 (reference analyzer) 

PT08.S1 (tin oxide) hourly averaged sensor response (nominally CO 
targeted)

● True hourly averaged overall non-methanic hydrocarbons concentration 
in microg/m3 (reference analyzer)

● True hourly averaged Benzene concentration in µg/m3 (reference 
analyzer)

● PT08.S2 (titania) hourly averaged sensor response (nominally NMHC 
targeted)

● True hourly averaged NOx concentration in ppb (reference analyzer)
● PT08.S3 (tungsten oxide) hourly averaged sensor response (nominally 

NOx targeted)
● True hourly averaged NO2 concentration in microg/m3 (reference 

analyzer)
● PT08.S4 (tungsten oxide) hourly averaged sensor response (nominally 

NO2 targeted)
● PT08.S5 (indium oxide) hourly averaged sensor response (nominally O3 

targeted)
● Temperature in °C
● Relative humidity (%)
● Absolute humidity

All data sets units for data sources, data collection and data processing are 
the same. Data were converted after prediction for the AQI representation 
purposes. There were four data phases: collection, processing, modeling, and 
obtaining of outputs. While optimal accuracy was the intended aim, challenges 
were presented by issues including data losses and data sparseness (issues of 
data collection); noisy and incomplete data (issues of data preprocessing); and 
accuracy and scalability (issues of data modeling). Some solutions to these 
issues were suggested by the literature (Zayed and Abbod 2022a, 2022b), 
including removing noise (by filtering data such as null). During the data 
check undertaken before the modeling phase, major data losses were found for 
temperature, wind speed, wind direction and humidity.

Accordingly, other data sources were provided: e-mails were sent to repre-
sentatives of the areas listed above, who suggested using similar data from the 
nearest available area to the one selected (for instance, London City Airport 
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was said to be “the nearest area to Marylebone Road”). The missing data was 
retrieved using R software (source) and the data was replaced (by checking 
where it was null or zero and replacing it with the City Airport value for the 
corresponding hour, where applicable) (Zayed and Abbod 2022a, 2022b).

Experimental Design Framework

The purpose of this research is to build a prediction model for next hour fore-
casting and to define measurable (quantifiable) data and compare different models 
for air quality prediction recommendations. Several machine learning regression 
methods have been used to compare results and model results using MATLAB 
R2020a software. Algorithms presented by reviewed studies were analyzed in the 
domain, and then experimenting top niche of them in an effort to develop a new 
and more time-efficient and accurate models to support air quality prediction.

Experiment Stages

(1) Stage 1: Data collection
(2) Stage 2: Data pre-processing
(3) Sage 3: Data preparation
(4) Stage 4: Models development

Models development phase 1

● NN (feed-forward backdrop)
● NN fitting
● NN time series (NARX)

Models development phase 2

● DNN
● Markov Chain
● Hybrid Model (DNN and Markov)

Stage 5: Models performance evaluation

Models

Models Development Phase 1
This research seeks to build a prediction model and define measurable (quan-
tifiable) data set to a measurable index (i.e., the AQI). Several machine learn-
ing methods were used to compare and model results using MATLAB R2020a 
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software in the initial stage using the fitting tool and time-series apps, as well 
as ANN – nntool.

Results were compared and the time-series app exhibited better results in all 
tested cases and scenarios for the same data set. After checking with several 
ANN models, DNN model was developed first based on the Jordanian data. 
Hyper parameters tuning was performed to the model until suitable accuracy 
was achieved. Then model was used for England data and gradual modifica-
tions were happening to achieve suitable accuracy. A Markov model was then 
developed independently for the Jordan and England data, and it was built to 
fulfil the data structure and the objectives of the experiment. After approach-
ing sensible accuracy, a hybrid model took a huge part of the experiment, to 
have better accuracy than both developed models independently.

Models Development Phase 2
Deep-learning modeling architecture was built, using some of the methods 
and techniques discussed in this section. Due to the advantages of the DNN 
model in big-data prediction, many trials were performed, using tailored 
parameters to fit the data requirements, to produce appropriate accuracy for 
the predictions. The multivariate model improved the performance of the data 
from both Jordan and England. A DNN model with two LSTM layers was used 
as the first method of predicting air quality for the selected data (Zayed and 
Abbod 2022a, 2022b). A separate experiment was performed using Markov- 
chain modeling, and then hybrid modeling was developed, so that the test data 
was fed to the Markov model. This produced the required outputs and gave an 
indication of appropriate levels of accuracy (see Table 2).

By its nature, the Markov model requires data to be prepared in a certain way, 
so the Markov-switching regression was tailored to this particular research (Kim  
1994) and was treated in a special way to fulfil the specific aims of the model. The 
initial input consisted of multiple inputs of eight parameters. When preparing to 
feed the Markov model with data, the data set was split randomly in a ratio of 
0.8:0.1:0.1–0.8 for training, 0.1 for testing and 0.1 for validation. The data was 
then filled with movemean, as the first method, and the previous value, as 
the second method, to back up any missing values, for which the data were 
filled up using the mean. Indexing for both the input and output data was done 
in such a way as to treat each input and output as separated parameters. This 
procedure was based on previous trials, in which it was attempted to replace 
missing values on the run time using different methods.

The method described gave good results when it was applied to the data for 
both England and Jordan. This method of replacing the data was also suitable 
for this hourly data, as the first replacement of mean values through move-
mean method was aligned with the frequency of the data. The second method 
of replacement through previous value is also likely to be appropriate. Because 
of the nature of the data selected, there was a realized pattern of values, which 
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was relatively close to each other’s readings on many occasions. This is because 
of the impact of weather conditions as a collective atmospheric effect, and the 
steep corresponding increase or decrease in values.

Movemean was chosen as the primary method of replacing missing cover 
values, as it can give near-average replacements. It should be noted here that 
the data contain negative temperature values, which were not manipulated, as 
they represent the reality of weather conditions and sub-zero temperatures, 
particularly in winter. The Markov model was based on several input models. 
Each input was represented by an ARIMA model, which was built using 
a number of variables: AR (auto regression coefficient), beta (regression 
coefficient); constant (mean); and variance (standard deviation). The AR 
variable for each input y was calculated using correlation function for each 
input and output, and then taking the mean as the result of the correlation (the 
value being used for each input ARIMA mode): the beta was a fixed value of 1 
and the constant was a fixed value of zero.

The standard deviation changed according to each input value. An std 
function was used for each input: std (Input1), std (Input2), std (Input3), std 
(Input4), std (Input5), std (Input6), std (Input7) and std (Input8). A DTMC 
object (discrete-time Markov chain) was used for the switching-technique 
Markov-switching dynamic regression model msVAR object, which stored 
the parameter values of the model. The DTMC object took the P parameter as 
referred to the probability of the transition. When the output values stored in 
the Mdl variable were then simulated using the simulation function in 
MATLAB, which took the saved Mdl representing the input side, a number 
of observations (referring to the number of data rows used in the experiment) 
and the output were produced. A simulation object was used for each output, 
and it should be mentioned here that the output was named Training-Data in 
the code, so that TrainingData1 represented the value of Output1, Training- 
Data2 represented Output2, Training-Data3 represented output3 and 
TrainingData4 represented Output4.

The probability transition was created in eight different states, based 
on the eight input values. The assumption for the probability matrix was 
to produce an 8-by-8 matrix between zero and one, by generating 
a random number from a uniform distribution in range (0,1). All new 
outputs were represented using Training-Data, as all simulated outputs 
are stored in this variable. The transition probabilities linked each state 
to the next one; the earlier described model created a Markov-switching 
dynamic regression model which supported the dynamic behavior of the 
time series through the set of state transition probabilities. ARIMA and 
msVAR were used to create the dynamic regression model.

The DNN and Markov models were trained using the methods 
described above. Both trained models were saved appropriately, the 
resulted output of the DNN was fed to the Markov model as a new 
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output and the values were predicted using the previously trained model 
parameters. The new output represented the predicted values for the 
hybrid model (both DNN and Markov). Data manipulation was per-
formed in order to execute the hybrid model. This was done by using 
the output data of the validation model as the output for the first DNN 
model. The resulting values were then used as the output of the pre-
viously trained Markov model, as test data were used alongside other 
data in this experiment. A third source of data was considered to be 
external to the other data. This was used to predict the output, in order 
to validate the model and show how well it would perform with new 
data. The modeling results are presented in results section.

Considerations and Challenges

The study included a substantial number of trials to enhance the reliability of 
the findings. The experiment involved repeated thousands of trials to examine 
the stability and consistency of the observed effects; this is a lengthy study, and 
approximately 2 years of continuous trials were necessary for the practical 
work to attain the current proposed shape. The challenges encountered are as 
summarized below:

● Data complexity: the models consist of multivariate data (multi-inputs and 
multi-outputs). This added challenges to the work of data pre-processing 
and training time (for each trial the DNN model took approximately three 
and 2 days to run for data for England and Jordan, respectively).

● Model complexity: challenges in selecting a suitable algorithm for study 
were encountered, requiring a thorough literature review studying many 
elements and factors. Besides the overhead of DNN and the computa-
tional resources required, model hyper-tuning is a significant part of 
optimization research. It took quite a long time to run trials and find 
the optimal combination of suitable parameters for this study. Integrating 
two models to create hybrid model consisted of several steps, scenarios, 
and configurations to approach suitable results effectively aligned with the 
aims and the objectives of the study.

Results

England and Jordan Model Results (Models Phase 1)

Previous research on phase 1 model results presented NN methods, as shown in 
Table 1, indicating that NN-NARX outperformed other methods conducted; 
however, Zayed and Abbod (2022a, 2022b) stated that the nature of emissions 
and the complexity of some gases led to discovering other new methods (as 

e2371540-14 R. ZAYED AND M. ABBOD



described in the next section) that provide improved predictive performance 
and effectiveness as contribution to the air quality modeling field.

England and Jordan Model Results (Models Phase 2)

As Table 2 demonstrates, the accuracy of the hybrid models in the selected 
locations in England and Jordan is better than that of the DNN and Markov 
models. The hybrid models provided good accuracy in both experiments. 
Moreover, the performance of the models was validated using the new data. 
Improved accuracy was also noticed when the same hybrid models were used. 
This shows that they are preferable to the standalone models, in the light of the 
multivariate data from both England and Jordan. This study shows that combin-
ing two models supporting the time-series nature of air quality data has enhanced 
the experimental results. The first experiment was performed to obtain appro-
priate results for each individual model. The hybrid model was then applied to the 
experiment to achieve the required level of prediction accuracy.

Hybrid Model Validation

To validate the performance of the models, new data was selected from 
a data source that was not used in the experiment, in order to validate and 
evaluate the models and calculate the error for the models, using RMSE. 
The first stage of the validation was data preparation from the new source. 
Data were selected with similarities to the original data specifically to fulfil 
the requirements of the study, to ensure that the model would perform well 
with similar studies and data, and show that it was reliable. Data were 
selected from the Italian data source, which resembled the data used to 
build the models mentioned above.

Table 1. Neural network modeling results.
Model type Location Accuracy No. hidden units Training Function

NN -FFB Jordan 0.94 20 trainlm
NN -FFB England 0.89 25 trainlm
NN-Fitting Jordan 0.93 20 trainlm
NN-Fitting England 0.88 25 trainlm
NN-NARX Jordan 0.98 20 trainlm
NN-NARX England 0.97 25 trainlm

Source: Zayed and Abbod (2022a, 2022b).

Table 2. Modeling results: Jordan.
Model England RMSE Jordan RMSE

DNN 53.3712 77.7665
Markov 11.1347 15.6624
Hybrid (DNN and Markov) 9.8892 14.8770
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After preparation of the input data, the data was partitioned to fit the 
number of rows selected for the test data. The new input data was then fed 
to the DNN model (after the previously saved DNN model results were loaded 
to the MATLAB workspace). A run of the prediction was then performed with 
the current settings, but without retraining the DNN (the pre-saved model set- 
up was used). Finally, the new predicted result was fed to the Markov model 
(after the previously saved Markov model results were loaded to the MATLAB 
workspace), and the results from this run were considered for the validation of 
the hybrid modeling results.

A new source of data was used to validate the Jordan modeling: KHG 
location data, provided by the Jordanian Ministry of the Environment. 
Firstly, the DNN and Markov models were trained and each set of results 
saved separately. The externally sourced test data was predicted (fed) first to 
the DNN and then to the Markov (see Tables 3 and 4). The results were 
validated using the new Italian data. The output was used to perform a new 
DNN run, using this data source. As Table 2 shows, the accuracy of the hybrid 
models in both England and Jordan was better than that of the DNN and 
Markov models. The hybrid model showed good accuracy in both experi-
ments. Its performance was validated using new data, while it showed greater 
accuracy, compared to the standalone models.

Discussion

Air Quality Index

AQI (England)
The AQI for England was produced using the following method:

● Firstly, the most accurate output was selected from the predictive 
modeling.

Table 3. Modeling validation (new data source from Italy): 
England modeling.

Model England RMSE Italy RMSE

DNN 57.4937 113.3896
Markov 10.48610 18.7021
Hybrid (DNN and Markov) 7.8666 15.2777

Table 4. Performance evaluation metrics for the hybrid models.
MAE R Model

8.2426 0.9966 Hybrid (DNN and Markov) – Jordan
14.6901 0.9986 Hybrid (DNN and Markov) – England
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● The units were converted for some gases to comply with the requirements 
of the EPA

● The maximum value of each gas was determined using loop and max 
functions (showing which gas had the highest value at the specified point 
in time).

● The AQI was found for each gas concentration at the specified point of 
time, according to the EPA standards (representing the AQI levels).

The conversion units can be seen in Table 5.

AQI (Jordan)
The AQI for Jordan was produced using the following method:

● Firstly, outputs were selected from the predictive modeling.
● The units were converted for some gases to comply with the requirements 

of the selected AQI standard (US EPA 2016). CO was the only gas reading 
in the Jordan data that needed unit conversion (from ppb to ppm, 
dividing the values by 1000).

● The maximum value of the gases was found using the loop and max 
functions (to determine which gas had the highest value at that point in 
time).

● The AQI could then be found for each gas concentration at the specified 
point in time, following the EPA standards (representing the AQI levels) 
(US EPA 2016).

PM did not require any conversion, as all the units for the collected data 
matched the relevant EPA unit.

Neuro-fuzzy Logic (Representing the AQI)
Neuro-fuzzy logic was used in this study to represent the AQI for the predicted 
measurements.

● The data inputs (for fuzzy logic) for England were: Input1 (CO), Input2 
(NO), Input3 (NO2), Input4 (NOx), Input5 (O3), Input6 (PM10) and 
Input7 (SO2).

Table 5. Conversion of units for emissions.
Unit of emission EPA unit Conversion

CO (mg/m3) mg/m3 24.45*CO concentration/28.01
NO (μg/m3) μg/m3 24.45* NO concentration/30
NO2 (μg/m3) μg/m3 24.45* NO2 concentration/46.006
NOX (μg/m3) μg/m3 24.45*NOX concentration 46.006
O3 (μg/m3) μg/m3 24.45*O3 concentration/48.0
SO2 (ug/m3) μg/m3 24.45*SO2 concentration/64.06
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● The data inputs (for fuzzy logic) for Jordan were: Input1 (PM10), Input2 
(NO2), Input3 (CO) and Input4 (SO2)

In this neuro-fuzzy logic model, the outputs were considered to be inputs 
for the model. Firstly, for the training data, the initial outputs represented 
the inputs, while the outputs represented the AQI assigned to each value, 
based on the US EPA (2016) levels. Secondly, for the testing data, the 
predicted outputs represented the inputs, while the outputs represented 
the AQI assigned to each value, based on the US EPA levels. For the 
model setup, a Gaussian (gaussmf) was used as the input MF (membership 
function) type and a linear function was selected for the output MF 
(membership function) type. Two membership functions were used for 
each variable (see Figures 3 and 4).

For the purposes of illustration, CO was selected to check the AQI repre-
sentation against all other inputs. The control surface in Figure 3 shows the 
overall mapping between (Inputs) and (Outputs). It can be inferred that the 
output in this case (CO) is at highest value relatively when Input4 (NOx) and 
Input5 (O3) are high, which is almost AQI (4) on a scale from 1 to 7 for the 
AQI. Further, it is clear that Input6 (PM10) and Input7 (SO2) are influencing 
the AQI levels. It can be concluded that different gases with different concen-
trations affect the output level of gases in light of weather conditions such as 
wind speed, wind direction, temperature, and humidity.

As can be seen from Figure 4, Input4 (SO2) is greatly impacting the 
pollution level with the highest value for AQI (5) on a scale from 1 to 7. 
Input 2 (NO2) has a moderate influence on the AQI levels. Figure 5 shows 
neuro-fuzzy logic structure and Figure 6 represents neuro-fuzzy rules for the 
Jordan data as an example, and it is used to evaluate the created rules to 
validate the fuzzy model.

Concluding Remarks

After completing both the Markov Chain and DNN modeling, the results were 
assessed and reported. As the aim of this research was to increase accuracy and 
obtain more reliable results, a hybrid model was proposed by the researchers, to 
ensure better interpretation of the data and more appropriate results. Many 
experimental trials were conducted in order to achieve the best scenario possible 
with the data available for this study. The DNN-Markov model was determined to 
be the best hybrid model, for data from both England and Jordan.

The authors of this research argue that an AQI is an effective method of 
measuring healthy levels of the air we breathe every day, and so a predictive 
framework for air quality indices is presented in this study. At times of high 
toxic pollutant exposure, the researchers have introduced methods of 
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predicting hourly emission concentrations and producing related AQI levels 
as a control system for vulnerable areas.

The study conducted several methods in an effort to contribute a new and 
efficient approach to predict AQI for the next hour; DNN-Markov approach 
was selected as the model proved performance through validation which holds 
a promising potential for efficiency as well as of using simple linear model to 
backup for the complexity and losses that could occur of the DNN model 
which is a boost for performance.

Contributions, Limitations, and Future Research Directions

In addition to developing a model that achieved accuracy rates of 
approximately RMSE 7.86 and 15.27 for studied locations in England 

Figure 3. Neuro-fuzzy logic representing the air quality index data for England, with 128 rules. 
Note. Sample representation of first input (CO) and all other inputs. Input1 (CO), Input2 (NO), 
Input3 (NO2), Input4 (NOx), Input5 (O3), Input6 (PM10), and Input7 (SO2).
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and Jordan (respectively), this study makes a set of contributions 
including the following:

● Hourly prediction model has been proposed
● Multivariate input and output models that support the complexity of air 

quality prediction.

Figure 4. Neuro-fuzzy logic representing the air quality index data for Jordan, with 16 rules. Note. 
Sample representation of the first input3 (CO) and all other inputs. Input1 (PM10), Input2 (NO2), 
Input3 (CO) and Input4 (SO2).

Figure 5. Representation of neuro-fuzzy logic structure (data from Jordan).
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● Hybrid modeling methods (Markov and DNN) were combined.
● AQI representation.

This study has industrial significance, as air pollution has affected many 
aspects of life, the most egregious of which is health, with increased 
prevalence of respiratory irritation issues (Coelho et al. 2021). The first 
air quality index was developed by the USAEPA as a response to the major 
economic, health, and environmental consequences of industrial activities 
(Bishoi, Prakash, and Jain 2009). The USAEPA standard is adopted in this 
study to represent air quality levels. The authors of this research propose 
the development of a neuro-fuzzy-logic system to support the boundary 
areas of the Air Quality Index (AQI) as a further enhancement for repre-
senting air quality levels. However, this research was limited by data 
availability, which restricted the study to the selected features and specific 
emission gases for different location studies. Further developmental 
research is required to address literature gaps in the field.

Figure 6. Representation of neuro-fuzzy logic rules (data from Jordan).
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