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Abstract 
 

This research investigates wind energy forecasting using a Deep Dense Network (DDN) 

method enhanced by Grid Search Optimization. It begins with an introduction to wind 

energy mechanics and machine learning principles, setting the stage for the study's main 

problem. Further, a comprehensive literature review explores recent machine learning 

trends for Renewable Energy Sources (RES) output estimation, including deep Neural 

Networks (NN), Support Vector Regression (SVR), Support Vector Machines (SVM), and 

other forecasting models, discussing their advantages and disadvantages. 

The proposed methodology focuses on the Deep Dense Network (DDN) model, detailing 

its algorithm. The dataset incorporates several variables, such as wind speed, wind 

direction, temperature, and air pressure and was scaled. A DDN model with eight dense 

layers of 512, 256, 128, 64, 32, 16, and 8 neurons, each followed by dropout layers (rate 

0.4) and using ReLU activation, was designed. The final output layer, with a single neuron, 

predicts system power. The model was compiled with the Adam optimizer (learning rate 

0.1), minimizing MSE and MAE. Early stopping (patience 50 epochs) was employed to 

prevent overfitting. Grid Search Optimization was applied to fine-tune parameters such as 

learning rate, dropout rate, batch size, and epochs, improving prediction results 

The evaluation employs two key metrics: Mean Squared Error (MSE) and Mean Absolute 

Error (MAE). Together, these metrics provide a comprehensive evaluation of the DDN 

model's performance by capturing both the average error magnitude (MAE) and 

emphasizing larger errors (MSE), offering a balanced assessment of prediction accuracy 

and error distribution. The results demonstrate the model’s capability to converge, 

indicating effective learning from the data. The application of MSE and MAE metrics 

substantiates the model's accuracy, with significant reductions in these values reinforcing 

the proposed approach's validity. Specifically, the MSE decreased from 0.0785 before Grid 

Search Optimization to 0.0047 after optimization, achieving a 94.013% improvement. 

Similarly, the MAE reduced from 0.2376 to 0.0548, reflecting a 76.8474% improvement. 

These substantial enhancements validate the effectiveness of the proposed model. Given 

the relatively nascent state of renewable energy and deep learning fields, this study offers 

valuable insights and proposes several directions for future research, establishing a solid 

foundation for further advancements in this area. 
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CHAPTER 1: Introduction  

In the introduction chapter, the pressing challenges facing the planet are delved into, 

characterized by finite resources and the environmental consequences of fossil fuel 

consumption. Earth Overshoot Day serves as a stark reminder of the imbalance between 

our resource consumption rate and nature's renewal capacity. The solution to these 

challenges lies in renewable energy sources, particularly wind energy. Wind energy has 

witnessed remarkable growth and plays a crucial role in addressing sustainability concerns. 

However, the efficient utilization of wind energy is contingent on accurate forecasting. The 

significance of this research is underscored by the increasing penetration of wind energy in 

power systems, the broader optimization of Deep Learning models, and the potential for 

cost reduction and improved power output in the wind power industry. Furthermore, the 

research aligns with the global transition towards clean and renewable energy sources, 

contributing to the overarching goal of sustainability. This introductory chapter provides 

the foundation for the subsequent chapters, offering readers a comprehensive 

understanding of the study's context and objectives. 

This study serves as a comprehensive review of the results and discussions derived from 

the development and implementation of the DDN model for enhancing wind energy 

forecasting efficiency. Building upon the backdrop of the global energy landscape's 

evolution and the growing significance of wind power as a renewable energy source, this 

study presents a detailed exploration of the DDN model's performance and its implications 

for the renewable energy sector. The DDN model represents a novel deep learning-based 

approach aimed at addressing the complexities and uncertainties inherent in wind energy 

forecasting. By leveraging dense layers for intricate data pattern recognition and dropout 

regularization to mitigate overfitting, the model demonstrates promising potential for 

improving the accuracy and reliability of energy production predictions from wind turbines. 

Furthermore, the integration of grid search optimization techniques enhances the model's 

efficiency by systematically identifying optimal hyperparameters. Through rigorous 

evaluation using real-world data from the "Texas Turbine" dataset, this study assesses the 

DDN model's performance in terms of Mean Squared Error (MSE) and Mean Absolute 

Error (MAE). The results reveal significant improvements in accuracy following grid 

search optimization, demonstrating the model's effectiveness in predicting energy 

production from wind turbines. Moreover, this chapter offers a comprehensive discussion 

of the findings, comparing the performance of the DDN model with existing forecasting 
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techniques and identifying areas for further improvement. It delves into the implications of 

the model's accuracy for renewable energy management and distribution, highlighting its 

potential to contribute to a more sustainable energy future. 

1.1 Introduction 
The planet's resources are finite, and unfortunately, the rate of consumption outpaces the 

earth's natural capacity to replenish them. To illustrate this concern, It can reflect on August 

13, 2015, a significant date known as Earth Overshoot Day [1], [2]. On this day, the global 

resource consumption for the year exceeded the earth's ability to renew these resources [3]. 

In simpler terms, to find ourselves in the unsettling position of borrowing resources from 

the planet's future, a practice that continues to escalate with each passing year [4]. 

Compounding this challenge is the critical role played by fossil fuels, including coal, 

petroleum, and natural gas, in the history [5]. These fossil fuels have served as the primary 

energy source, facilitating industrialization, and powering modern transportation systems 

[6].  

However, the unsustainable exploitation of natural resources carries profound 

consequences, ultimately leading to ecological imbalances [7], [8]. More worrisome is the 

global combustion of these fossil fuels, which has given rise to a pressing environmental 

crisis. The excessive emissions of GHGs , most notably carbon dioxide, stemming from the 

combustion of fossil fuels, pose a severe threat to the environment [4], [8]. These emissions 

have contributed to a range of critical issues, including the abnormal rise in carbon dioxide 

levels, global warming, and the detrimental effects of acid rain. A poignant example of the 

detrimental consequences of fossil fuel use can be observed in the severe air pollution 

experienced in northern China in recent years [6], [9]. This underscores the urgent need to 

address the negative environmental impact resulting from the reliance on these finite 

resources. Considering these interconnected challenges, it becomes evident that the 

transition to cleaner and more sustainable energy sources is not merely a choice but an 

imperative [10]. The urgency is further accentuated by the accelerating pace of 

unsustainable resource consumption [9], [11]. To contemplate a sustainable future, 

responsible resource management and the adoption of sustainable energy practices emerge 

as paramount priorities [10], [11]." 

Renewable energy (RE) sources, such as solar, wind, and biomass energy, stand out as the 

most effective approach to addressing these pressing challenges. RE can be harnessed from 

a wide array of sources, including hydropower, biomass, geothermal, wind, and solar power 
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[12]. The wind energy sector has experienced remarkable growth, driven by a combination 

of technological advancements and innovative business strategies [13]. In the year 2020, 

global wind power capacity surged to an astounding 93 GW, marking an impressive 

52.96% increase compared to the preceding year [14], [15]. This notable surge underscores 

the pivotal role of the wind energy sector in addressing both the growing energy needs and 

pressing sustainability concerns. But, against the backdrop of this promising development 

lies a sobering reality [13]–[15]. 

Wind energy generated by wind turbines represents a sustainable and environmentally 

friendly energy solution [6], [16]. Thanks to ongoing technological advancements and 

innovative business models, the wind power industry is experiencing substantial growth, 

leading to a significant increase in its installed capacity [11], [17]. As the socioeconomic 

landscape undergoes rapid expansion, the demand for energy has surged to meet the 

everyday needs and activities of the communities [2], [17]. Wind power is essentially the 

process of converting the kinetic energy found in moving air into electricity. However, this 

conversion is influenced by various factors including wind speed, wind direction, air 

pressure, and temperature [2], [18]. Even a minor change of just 1 meter per second in wind 

speed within a wind farm that generates energy can result in significant fluctuations in 

power output [18], [19]. This occurs because the relationship between wind speed and the 

power generated is not a straightforward one [19], [20]. To illustrate, a survey conducted 

across 19 companies revealed that achieving a mere 1% improvement in reducing 

prediction errors could potentially save up to 10,000 megawatts of electricity [21]. This 

highlights the substantial cost-saving potential of an efficient Renewable Energy 

Performance Platform (REPP) model, with estimated annual savings of approximately $1.6 

million [22]. Recent research efforts have been notably focused on developing and 

implementing techniques for the prediction of wind energy generation [23]. 

In the current body of research, these methods are typically categorized into four primary 

groups: statistical, physical, intelligent, and hybrid techniques[7], [8], [23]. Statistical 

approaches entail the prediction of wind energy by utilizing probability distributions and 

random processes [23], [24]. On the other hand, physical methods rely on meteorological 

data, including factors such as topography, atmospheric pressure, and temperature, to make 

their predictions [24]. Table 1.1 is the overview of all techniques with its strength and 

limitation.  
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Table 1.1: Techniques of wind energy prediction 

Categories  Description How it works  Strengths Limitations 

Statistical 

Methods 

Statistical methods for 

predicting wind energy rely 

on historical data and 

mathematical models. They 

analyze patterns and trends in 

past wind energy generation 

to make future forecasts. 

How They Work: These 

methods use statistical tools 

like probability distributions 

and random processes to 

estimate future wind energy 

output. They consider factors 

such as the time of day, 

season, and historical wind 

patterns to make predictions 

These methods use 

statistical tools like 

probability 

distributions and 

random processes to 

estimate future wind 

energy output. They 

consider factors such as 

the time of day, season, 

and historical wind 

patterns to make 

predictions 

Statistical approaches 

are useful for 

capturing long-term 

trends and seasonal 

variations in wind 

energy production. 

They are relatively 

simple to implement 

and can provide 

valuable insights into 

the probabilistic 

nature of wind energy 

They may 

struggle to 

capture short-

term fluctuations 

and sudden 

changes in wind 

patterns. 

 

Physical 

Methods 

Physical methods for wind 

energy prediction focus on 

the direct influence of 

meteorological variables 

on wind generation. They 

incorporate data related to 

topography, atmospheric 

pressure, temperature, and 

other environmental 

factors. 

These methods use 

physics-based 

models to simulate 

the behavior of the 

atmosphere and wind 

patterns. By 

considering the 

physical interactions 

of air masses, terrain, 

and atmospheric 

conditions, they aim 

to make precise wind 

energy forecasts. 

Physical methods 

excel in capturing 

short-term 

variations and the 

impact of specific 

weather events on 

wind energy 

production. They 

provide detailed 

insights into the 

underlying 

mechanisms of 

wind generation. 

They can be 

computationally 

intensive and 

require accurate 

meteorological 

data, which may 

not always be 

readily 

available. 

 

Intelligent 

Methods 

Intelligent methods 

involve the use of artificial 

intelligence (AI) and 

machine learning 

techniques to predict wind 

energy. These methods 

can learn from historical 

Machine learning 

algorithms, such as 

neural networks and 

decision trees, are 

trained on historical 

wind energy data. 

They can identify 

complex patterns and 

Intelligent methods 

can handle large 

and complex 

datasets, making 

them suitable for 

fine-grained wind 

energy forecasting. 

They can adapt to 

They may 

require 

substantial 

computational 

resources and a 

large amount of 

training data to 
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As, the rate of resource consumption exceeds the earth's natural renewal capacity, as 

demonstrated by Earth Overshoot Day. The use of fossil fuels has resulted in environmental 

problems, such as the emission of  GHGs and air pollution [1] [25]. To address these 

challenges, renewable energy sources like wind energy are essential. Wind power, 

generated by wind turbines, is sustainable but influenced by various factors, impacting its 

efficiency. Efficient wind energy prediction methods, including statistical, physical, and  

approaches, are critical for optimizing energy production and reducing costs [2], [8], [16], 

[21], [24], [26].  

1.2 Working procedure of wind energy generation 
Wind energy generation is a multi-step process that harnesses the kinetic energy of moving 

air to produce electricity [27]. It begins with the strategic placement of wind turbines in 

locations known for consistent and strong wind patterns [28]. These turbines are equipped 

with rotor blades that capture the wind's kinetic energy, causing them to rotate. As the 

blades turn, they transfer this mechanical energy to a generator located within the turbine's 

nacelle, where it is transformed into electricity [29], [30] The electricity generated is 

typically in the form of Alternating Current (AC), the standard for most electrical 

applications [31]. To optimize power output and ensure safe operation, wind turbines are 

data and adapt their 

predictions over time 

relationships in the 

data to make 

predictions. 

changing 

conditions and 

improve accuracy 

with more data. 

perform 

optimally 

Hybrid 

techniques 

Hybrid methods combine 

elements of the other three 

categories—statistical, 

physical, and intelligent 

approaches. They leverage 

the strengths of each to 

improve prediction 

accuracy. 

Hybrid methods 

integrate statistical 

models, physical 

principles, and 

machine learning 

algorithms. This 

combination allows 

for a more 

comprehensive and 

robust approach to 

wind energy 

prediction. 

Hybrid methods 

aim to overcome 

the limitations of 

individual 

approaches by 

combining their 

strengths. They can 

provide accurate 

and reliable 

forecasts for both 

short-term and 

long-term wind 

energy generation. 

Developing and 

implementing 

hybrid methods 

can be complex, 

requiring 

expertise in 

multiple 

domains. 
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equipped with control systems that adjust the pitch angle of the rotor blades and the 

orientation of the nacelle [31], [32]. This adaptation enables the turbine to operate 

efficiently within its designed range of wind speeds [33], [34]. The electricity is then 

transmitted within the turbine's tower through cables to an on-site substation, where it 

passes through a step-up transformer to increase its voltage for long-distance transmission 

[35][36].  

The high-voltage electricity is transferred to the electrical grid, often through a dedicated 

connection point for wind farms [37]. From the grid, the electricity is distributed to homes, 

businesses, and industries, serving a variety of purposes, including lighting, heating, and 

running appliances [28], [38]. Wind energy generation is integrated with other energy 

sources on the grid to ensure grid stability and grid operators carefully balance the supply 

and demand of electricity to maintain a reliable power supply. Where,  Figure 1 illustrates 

the renewable energy system, highlighting renewable energy sources like solar panels and 

wind turbines generate electricity, which can be used immediately or stored in batteries for 

later use. A generator acts as a backup power source, providing electricity when renewable 

sources and the grid are unavailable. The smart meter plays a crucial role by recording real-

time energy consumption and generation, allowing for efficient energy management and 

communication with the utility company for billing and supply monitoring. both 

schedulable and non-schedulable appliances. 
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Figure 1.1: Wind energy and electricity to home 

Monitoring and maintenance play a critical role in the wind energy generation process, 

ensuring the continued efficiency and reliability of wind turbines [27]. Routine 

maintenance addresses wear and tear and helps prevent equipment failures [28]. 

Additionally, some wind energy systems may incorporate energy storage solutions, such as 

batteries, to store excess electricity generated during periods of high wind for use during 

low-wind periods. Wind energy generation is a sustainable and environmentally friendly 

means of producing electricity, contributing to a cleaner and more sustainable energy 

future. Timely wind energy forecasting is critical due to the nonlinear relationship between 

wind speed and power generation—however, the complexity and uncertainty of natural 

wind factors present challenges, necessitating effective forecasting methods [29]. 

1.3 Machine Learning 

Machine learning is a branch of computer science that focuses on enhancing a program's 

performance through learning from experience [25]. In machine learning, rather than 

explicitly instructing the machine on how to solve a problem, it is provided with historical 

data as input, and it learns to create a model that can address similar problems in the future. 
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Machine learning draws knowledge from diverse fields like artificial intelligence, statistics, 

and neuroscience. Nowadays, applications of machine learning are encountered in daily 

life, such as speech recognition and personalized online ads. Notable examples of its 

capabilities include the computer program AlphaGo, which defeated the world Go 

champion [2], [31]. The process of machine learning typically involves several steps. 

Initially, historical data is collected for training purposes. Then, an abstract target function 

is defined to describe the relationship between input data and the desired output. 

Subsequently, a machine learning model is chosen to approximate this target function. 

Finally, an appropriate algorithm is applied to construct the model using the training data. 

[17] [32]. Figure 1.2 illustrates the process of wind prediction using machine learning 

models. It starts with the historical data of wind power, which provides the foundational 

information needed for analysis. This data undergoes processing to clean, normalize, and 

transform it into a suitable format for the machine learning engine. The machine learning 

engine then uses this processed data to train the model, learning patterns and relationships 

within the data. Finally, the trained model generates future wind power value predictions, 

offering insights into expected wind power generation. 

 

Figure 1.2 Machine learning model and wind prediction 

In the context of wind power prediction, the target function usually maps weather data to 

future wind power output. The specific machine-learning models relevant to this 

application will be discussed in the following section. 

1.4 Machine Learning Models  

In the realm of machine learning, simpler models like Decision Trees (DTs) and k-Nearest 

Neighbours (k-NN) have proven to be effective in various applications. A decision tree, as 

its name implies, is a tree-structured model that is constructed through training examples 

[7],[13]. At each node of the tree, a decision is made based on one of the input attributes, 
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and by making a sequence of such decisions, the tree leads to a leaf node, which represents 

the output of the target function. In contrast, the k-NN method, also named descriptively, 

works by determining the result through the average of k-training examples that are closest 

to the test sample. Typically, Euclidean distance is used to measure proximity, although 

more general distance definitions can be employed.  When it comes to wind power 

prediction, two commonly employed machine learning models are the ANN and the 

Support Vector Machine (SVM). An ANN comprises an input layer, hidden layers, and an 

output layer, each composed of multiple neurons. These neurons possess the ability to learn 

the relationships between input and output. Input data flows through the hidden layers to 

produce predictions in the output layer. In practical applications, various ANN variants are 

used, including the Multilayer Perceptron (MLP) and recurrent ANN. In contrast, SVM is 

a relatively recent algorithm in the field of machine learning, employing a kernel-based 

approach [5], [9], [28]. The underlying mechanism of SVM is intricate, but in simplified 

terms, it seeks to find a hyperplane with maximal margins between two sets of training 

examples. This hyperplane is subsequently used for making predictions [39]. The AI based 

Wind Power Forecasting (WPF) framework is given in Figure 1.3 

     

Figure 1.3 Machine learning-based WPF framework 
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Where, data is collected from wind machines such as temperature, wind direction, wind 

speed, and active wind power. This data is then processed and divided into training, testing, 

and validation sections. The training portion is used to train the model, while the test portion 

is used to evaluate the model performance. Model performance is assessed using metrics 

including Mean Absolute Percentage Error (MAPE), RMSE, R-squared (R²), and MAE, 

and the Numerous other machine learning models, such as fuzzy systems, are also utilized 

for wind power prediction. Additionally, hybrid approaches that combine various machine 

learning techniques have been developed to further improve prediction accuracy. 

1.5 Deep learning  

Deep learning encompasses techniques designed to efficiently train deep neural networks, 

which distinguish themselves from regular Artificial Neural Networks (ANNs) by having 

multiple hidden layers. These additional layers increase the complexity of the model, 

resulting in a higher capacity for learning [1][25][28]. The enhanced learning capacity of 

deep neural networks allows them to grasp more abstract concepts as information passes 

through successive layers of interconnected neurons. One member of the deep learning 

family is the Convolutional Neural Network (CNN), known for its ability to excel in tasks 

involving spatial relations, particularly image recognition. Another valuable model for deep 

learning is the Recurrent Neural Network (RNN), which is adept at temporal predictions 

due to its capability to store previous states of neurons [21], [28]. 

However, the increased complexity of deep neural networks introduces a common issue 

known as overfitting. Overfitting occurs during the training phase when a model becomes 

excessively tailored to the training data, losing its ability to generalize to new, unseen data. 

In such cases, the model essentially memorizes the training data instead of learning from 

it. To address overfitting in deep learning, various techniques have been developed, 

including dataset expansion and the application of dropout methods [40].Error! Reference 

source not found. divided the whole process into several sections . First the required 

dataset has uploaded in google Colab. Data preprocessing section is used to perform the 

preprocessing steps on data to ensure that the data is clean, well-formatted, and suitable for 

analysis or model training. Further, the dataset is divided into three parts: training, 

validation, and test sets. During the training phase, the model learns from the training set 

by identifying patterns and adjusting its parameters to minimize prediction errors. The 

validation phase involves periodically evaluating the model on the validation set to tune 

hyperparameters and prevent overfitting. Finally, the testing phase assesses the model's 
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performance on the unseen test set, providing an unbiased measure of its ability to 

generalize.  

Performance metrics such as Means Square Error (MSE) and MAE are used to evaluate the 

model's success. Finally, the model is tested to generate the predicted output. This 

structured approach helps in developing a robust and reliable machine learning model. 

 

Figure 1.4 Wind prediction process 

The motivation for this study stems from two key considerations. Firstly, in the domain of 

machine learning methods for wind power prediction, there exists a gap that calls for a 

comprehensive empirical investigation [3], [25], [40]. The literature review, detailed in 

Chapter 2, underscores the need for such research. Secondly, deep learning, being a 
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relatively new subfield of machine learning, has demonstrated significant prowess in 

various problem-solving contexts. Given the limited prior work on deep learning in wind 

power prediction, the study is driven by a strong interest in assessing its performance in 

this specific domain [40]. 

1.6 Problem Statement 

The process of generating electricity from wind power is complex, as it relies on several 

variables, including wind speed, direction, air pressure, and temperature [41]. Small 

changes in wind speed within a wind farm can lead to significant fluctuations in power 

output, primarily because the relationship between wind speed and power generation is not 

linear [42]. For instance, improving prediction accuracy by just 1% could potentially save 

an impressive 10,000 megawatts of electricity, translating to substantial cost savings, 

approximately $1.6 million annually [43], [44]. The increasing adoption of wind power in 

power systems, it becomes crucial to accurately predict wind power generation due to its 

growing impact. At lower wind penetration rates, variations in wind power supply can be 

accommodated, but as wind power's share in the energy mix rises, precise wind power 

prediction is essential [6], [45]. Accurate predictions aid in avoiding system imbalances 

and contribute to improved stability and efficiency. The wind power prediction process 

typically involves forecasting wind speed, which is then used to estimate the power output 

of wind farms [46]. These predictions have different time scales, with short-term 

predictions being particularly relevant for power dispatch planning. Wind power prediction 

methods can be classified into physical, statistical, and hybrid approaches, each with its 

own set of challenges and advantages [17], [45] The problem lies in developing effective 

and efficient wind power prediction models, especially for short-term forecasts, to support 

power systems' integration of wind energy [14], [15].  Current research is focused on 

tackling the challenge of accurately forecasting wind energy generation, a critical task for 

enhancing power output and reducing expenses in the wind power industry using deep 

learning.  

1.7 Research Questions  

RQ1: How to propose a deep learning model, that can accurately predict wind energy 

production forecasting using deep learning? 

RQ2: How to propose a deep-learning algorithm that tunes the hyperparameter to optimize 

the proposed deep-learning model? 
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RQ3: What role can deep learn play in enhancing the accuracy of wind energy generation 

forecasts, and how can it contribute to improved power output and cost reduction in the 

wind power industry? 

1.8 Research Aim  

The primary aim of this research is the development of a Deep Dense Network (DDN) 

model designed for predicting energy production from wind turbines. To achieve this, the 

research meticulously crafts the architecture of the DDN model, making it essential for 

accurate predictions. Furthermore, the study focuses on hyperparameter tuning, seeking to 

optimize the model's performance by carefully selecting key hyperparameters like learning 

rate, dropout rate, batch size, and training epochs. The overarching objective is the 

reduction of prediction errors, as evaluated through the Mean Squared Error (MSE) and 

MAE metrics. By successfully reducing these errors, the research aims to enhance the 

accuracy of the model's predictions. 

To make the model efficient and improve its generalization to new data, several techniques 

are incorporated, including dropout regularization, the use of the Adam optimizer with 

dynamic learning rate adaptation, and early stopping to halt training when substantial 

improvement ceases. The grid search algorithm is employed for systematic hyperparameter 

tuning, systematically testing various hyperparameter combinations to find the optimal set. 

The research recognizes the real-world applicability of the optimized DDN model, 

particularly in forecasting energy production from wind turbines. Accurate predictions in 

this context are instrumental in advancing efficient energy management and distribution, 

aligning with sustainable energy practices in the renewable energy sector. The study 

acknowledges that further research and data exploration could lead to even better results, 

indicating an ongoing commitment to refining the model and assessing its performance 

continuously. In conclusion, this research aims to create a valuable tool for predicting 

energy production from wind turbines, emphasizing accuracy, efficiency, and real-world 

applications. 

1.9 Research Objective 

• To develop a deep learning model for wind energy production forecasting. 

• To optimize the deep learning model through the tuning of hyperparameters. 

• To investigate the role of deep learning in improving the accuracy of wind energy 

generation forecasts. 
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• To assess how deep learning can contribute to enhanced power output and reduced 

expenses in the wind power industry. 

1.10 Research Scope 

The research scope is cantered on the development and optimization of deep learning 

models for wind energy forecasting, with a specific emphasis on short-term predictions 

relevant to power dispatch planning. Within this defined scope, the study seeks to explore 

the practical applications of advanced deep learning techniques in addressing the pressing 

challenges outlined in the problem statement. The time horizon of short-term predictions is 

of paramount importance, considering its direct relevance to real-time decision-making by 

grid operators. These predictions, typically spanning hours or days, play a crucial role in 

balancing electricity supply and demand, a fundamental aspect of the energy industry. 

Moreover, the research aims to optimize the deep learning models, fine-tuning them for 

enhanced accuracy in wind energy predictions. This optimization may involve adjustments 

in hyperparameters, model architecture, and data preprocessing techniques. Notably, the 

research is underpinned by a commitment to practical applicability, with the developed 

models and techniques intended to have tangible benefits in the wind power sector. The 

ultimate goal is to improve the efficiency of wind energy generation by contributing to 

increased power output and reduced operational costs, thereby advancing the broader goals 

of sustainability and renewable energy utilization. However, it is essential to acknowledge 

the limitations of this scope, such as the exclusion of very long-term wind energy 

predictions and detailed engineering aspects of wind turbines, which are beyond the study's 

defined boundaries. 

1.11 Significant 

1.11.1 Rising Wind Energy Penetration 

As the global transition to renewable energy sources gains momentum, wind energy has 

emerged as a prominent player in power systems. This transition is driven by environmental 

concerns, the finite nature of fossil fuels, and the need for sustainable energy solutions. 

Wind energy, with its clean and renewable attributes, has witnessed a significant increase 

in penetration within power systems worldwide. However, as wind energy's share in the 

energy mix continues to grow, it introduces challenges related to grid stability and energy 

supply-demand balance. These challenges are particularly critical in the context of 

managing a power system. The research recognizes the pressing need to forecast wind 
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energy production accurately to ensure the stability and efficiency of power systems. As 

wind energy becomes an increasingly significant contributor to electricity generation, the 

ability to predict its output with precision is vital for grid operators. Accurate predictions 

allow for better planning, real-time adjustments, and efficient utilization of wind power 

resources. 

1.11.2 Optimizing Deep Learning Models 

Beyond simply developing deep learning models for wind energy forecasting, this research 

sets out to optimize these models. The optimization process encompasses tuning essential 

hyperparameters such as learning rates, dropout rates, batch sizes, and the number of 

training epochs. By focusing on this aspect, the research contributes to the broader field of 

deep learning. The insights gained from fine-tuning deep learning models can extend to 

various applications beyond wind energy forecasting. Understanding how to tailor deep 

learning models for specific tasks is significant, as it can improve their overall performance 

and efficiency. The research's emphasis on optimization underscores the value of fine-

tuning models to maximize their predictive capabilities. It also showcases the adaptability 

of deep learning techniques to address specific challenges in a variety of domains. 

1.11.3 Cost Reduction and Improved Power Output 

The financial implications of accurate wind energy predictions are substantial. The research 

underscores the potential for significant cost savings within the wind power industry by 

improving the accuracy of wind energy forecasts. Prediction enhancement in prediction 

accuracy can translate into noteworthy savings in electricity production costs. For example, 

the research highlights that a mere 1% improvement in prediction accuracy could result in 

annual savings of approximately $1.6 million. These cost reductions directly impact the 

economic viability of wind energy projects and enhance their competitiveness in the energy 

market. Lower production costs can lead to more affordable energy for consumers and 

strengthen the business case for further wind energy investments. 

1.11.4 Clean Energy Transition 

The transition to clean and renewable energy sources is a global imperative in the fight 

against climate change and the reduction of greenhouse gas emissions. Wind energy 

represents a key component of this clean energy transition. By advancing the accuracy of 

wind energy forecasts, this research aligns with broader efforts to embrace sustainable and 

environmentally friendly energy sources. Reliable wind energy predictions play a pivotal 
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role in the integration and management of wind power resources. They ensure that wind 

energy is harnessed efficiently, reducing the reliance on fossil fuels and lowering carbon 

emissions. In essence, this research contributes to the overarching goal of mitigating 

climate change and promoting a sustainable energy future. 

1.12 Methodology of the DDN model  

During the development of the DDN (Dense and Dropout Neural Network) model, Python 

3, a highly versatile programming language for data science and machine learning tasks, 

was utilized. To expedite model training, Google Colab was chosen, which harnessed the 

power of a GPU T4, significantly reducing computation time. For streamlined data access, 

the dataset was uploaded to Google Drive, providing a convenient and secure repository. 

By seamlessly integrating Google Drive with Google Colab's GPU environment, efficient 

data handling was ensured. 

Firstly, the training and test data were scaled using MinMaxScaler from sklearn. This 

involved scaling the training data, excluding the timestamp, to facilitate effective training. 

The scaled data was then split into input features (X_train) and the target variable (y_train), 

representing system power generated. Similarly, the test data was scaled based on the 

parameters of the training data and then split into X_test (features) and y_test (target 

variable). Next, an ANN model with a Dense and Dropout Layers architecture was designed 

to capture complex relationships in the data. The model consists of eight dense layers with 

increasing complexity and dropout layers (with a rate of 0.4) after each dense layer to 

mitigate overfitting. The architecture starts with a dense layer of 512 neurons with ReLU 

activation, followed by layers of 256, 128, 64, 32, 16, and 8 neurons, each also using ReLU 

activation. The final output layer has a single neuron for regression output (system power 

prediction). 

For training, the model was compiled using the Adam optimizer with a learning rate of 0.1 

and configured to minimize mean squared error (MSE), while monitoring mean squared 

error (MSE) and MAE as metrics. Early stopping with a patience of 50 epochs was 

employed to prevent overfitting and ensure optimal convergence during training. After this, 

Grid search was applied to optimize parameters including learning rate, dropout rate, batch 

size, and epochs of the proposed model to improve the prediction results. 
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CHAPTER 2: Literature Review 

2.1 Introduction 

The second chapter contains a literature review that emphasizes the critical significance of 

energy in accelerating economic progress and emphasizes energy consumption as an 

important indication of a country's developmental state.  Within this framework, the growth 

of energy engineering as a modern technical subject is acknowledged, with increasing 

recognition for its importance in meeting carbon reduction targets. The worldwide 

transition to renewable energy is a prominent issue, with many nations implementing 

measures to reduce pollution by lowering reliance on fossil fuels and increasing usage of 

renewable sources such as wind and solar. Wind energy has been hailed as a prominent 

player in this global transformation, having undergone enormous development and 

emerging as a big contributor to global energy production.  Its crucial role in reducing the 

effects of climate change is underlined, with particular focus on the difficulties presented 

by changes in wind patterns brought on by climate change. The story emphasizes how 

accurate wind energy forecasts are essential for efficient grid management and project 

planning. This chapter is divided into multiple categories related to wind energy prediction 

based on AI, where each category contains various algorithm methodologies or other 

important literature associated with that group. Furthermore, the precise discussion of each 

category is presented to conclude.   This chapter evaluates the feasibility of employing 

machine learning based methods for forecasting RES power output to enhance integration. 

The SLR identifies various successful ML approaches, including (ANNs), SVMs, Random 

Forests (RF), XGBoost, DTs, Logistic Regression (LR), and k-nearest neighbors (k-NN), 

with a notable trend toward using deep neural networks, especially Long Short-Term 

Memory (LSTM) network. Ensemble methods are also common for improved robustness. 

While ML-based predictions can enhance grid decision-making, their real-life 

implementation in power systems remains a topic for further research. The study suggests 

potential benefits in solving Unit Commitment (UC) optimization problems based on ML-

based RES power predictions and emphasizes the need for future research in this direction. 

Figure 2-1 reflects the different categories explained in the literature.  
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.    

Figure 2.1: Literature review categories 

The literature review chapter overviews wind energy, with a focus on AI applications, wind 

measurement problems, and wind prediction approaches. Finally, the GAP or future work 

related to that literature has been evaluated and the conclusion is given to conclude the 

chapter. 

2.2 Contemporary Developments in Machine Learning Approaches for 

Predicting Renewable Energy Source Power Output 

This section examines the application of Machine Learning techniques for forecasting 

photovoltaic (PV) and wind turbine power output. The literature evaluates various ML 

models, their parameters, prediction time horizons, and data collection methods. Notably, 

ANNs have emerged as the most popular ML-based method, with deep NNs being 

particularly favoured for their ability to handle non-linear features in RES forecasting. 

SVMs/SVRs and ensemble methods, including RF and boosting techniques, also gain 

attention. The analysis emphasizes short-term forecasting as predominant, with challenges 

noted in very short-term and long-term predictions.  

Data collection primarily relies on historical on-site data, while parameters such as weather 

conditions significantly influence model accuracy. The ML-based model implementation 
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involves crucial steps like data pre-processing, feature extraction, selection, hyper-

parameter optimization, training, and validation. Feature selection commonly employs 

Principal Component Analysis (PCA) and gains importance, while hyper-parameter 

optimization often employs grid search and Particle Swarm Optimization (PSO). 

Performance measurement relies on metrics like RMSE and absolute error (MAE). Despite 

the importance of data pre-processing, it is often underreported in the reviewed literature. 

Overall, this chapter provides comprehensive insights into the current trends and challenges 

in ML-based RES power output forecasting. 

2.3 Deep NN-based RES Power Output Forecasting 

In this section, there is a clear trend toward adopting deep NNs instead of classical ANNs 

since they give greater generalization power, allowing big-data training to avoid arduous 

feature extraction and selection, decreasing computing costs and durations. According to 

Wang et al. [47] describe the application of Machine Learning, specifically deep learning, 

to forecasting renewable energy output, with an emphasis on photovoltaic and wind turbine 

power. It emphasizes the growing use of ANNs, particularly deep neural networks, for 

dealing with non-linear information. Also included are SVMs and ensemble approaches. 

Short-term forecasting challenges and the impact of weather conditions on model accuracy 

are examined. The study focuses on on-site data collection and the ML deployment process, 

highlighting weaknesses in reporting data pre-processing.  

Deep learning is introduced as a viable strategy for dealing with intermittent and 

unpredictable renewable energy data, addressing the constraints of shallow models. It 

classifies deep learning models such as stacking auto-encoders, deep belief networks, and 

deep RNN, describing their advantages and disadvantages.  Also, Yousif et al.  [48] 

compare ANN strategies for predicting photovoltaic thermal (PV/T) energy production 

based on data from 2008 to 2017. The emphasis is on Global Solar Radiation (GSR) 

prediction using ANNs, including assessment factors such as MSE, MAPE, R2, RMSE, 

MBE, and MPE. The research covers a wide range of locales and climates, demonstrating 

the importance of ANNs in solar energy prediction. Various ANN architectures, including 

MLP, are discussed. Models with low MSE, MAPE, and high R2 values are highlighted as 

effective for accurate solar energy forecasts in the comparison. The report emphasizes the 

usefulness of ANN models for estimating GSR and offers insights for engineers and 

researchers working on the subject.  Further, Khan et al. [49] offer DSE-XGB, a solar 

energy forecasting model that improves accuracy by combining ANN, LSTM, and 
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XGBoost. DSE-XGB regularly beats solo ANN, LSTM, and Bagging models on multiple 

datasets, with a 10%-12% boost in R2 value. The study used the Shapley Additive 

Explanation paradigm for model interpretability, emphasizing the necessity of precise solar 

forecasting for grid integration. DSE-XGB overcomes existing forecasting limits by 

utilizing the strengths of deep learning algorithms to provide exact solar PV projections. 

The study finishes with research recommendations and a discussion of the model's possible 

applications outside of solar forecasting.  

Additionally, Ding et al. [50] present STL-LSTM, an ensemble framework for mid-term 

renewable energy generation (REG) forecasting, which is critical for grid flexibility and 

energy system transition. STL is used to pre-process data and extract trends and periodic 

patterns, whereas LSTM improves forecasting precision. The architecture is validated using 

monthly REG information from various renewable sources from several nations. The 

results demonstrate that it outperforms pure LSTM, SVR, NARNN, SARIMA, FT-LSTM, 

and STL-BPNN. The method is adaptable, has interpretable references, and solves the lack 

of mid-term REG prediction tools, making it a promising tool for improving grid flexibility 

throughout the energy transition. 

Also, the paper [51] describes the use of  LSTM Recurrent Neural Networks (LSTM-RNN) 

for exact PV power forecasting in smart grids. Because of the intermittent and 

unpredictable nature of PV output power, the growing global use of renewable energy, 

particularly PV systems, highlights the importance of accurate forecasting. The suggested 

method employs a novel methodology based on deep LSTM-RNN, which is well-known 

for its ability to simulate temporal variations in PV data. The paper compares five LSTM 

models with different topologies to three existing PV forecasting methods. The results 

reveal that LSTM models, particularly model 3, outperform other techniques, 

demonstrating the importance of deep learning in improving predicting accuracy.  Further, 

Abdel-Nasser et al.  [45] present "SUNSET," a tailored CNN for short-term solar power 

forecasting that addresses cloud-related uncertainties. In foggy conditions, the model 

achieves a forecast skill of 16.3% using hybrid input and heavy regularization. Critical 

elements such as sky photos and PV output histories are included in optimal input settings. 

Training against PV output improves performance, and judicious down sampling 

minimizes training time while maintaining accuracy. The findings highlight the model's 

usefulness for microgrids and end-users with on-site solar generation. The code is 

accessible for replication.  
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Additionally, Hussain et al.  [52] describe an end-to-end hybrid network for precise PV 

power forecasting in microgrids. Data preparation, temporal feature extraction using a GRU 

sequential model, and spatial feature extraction using a CNN are the three processes in the 

model. The proposed model outperforms state-of-the-art approaches when tested on 

publicly available PV datasets, stressing the relevance of prioritizing temporal 

characteristics. The study emphasizes the importance of accurate PV power forecasting for 

optimal energy management in microgrids. Also, Feng et al. [41] explore machine learning 

strategies, particularly ANNs, for computing  GSR in the absence of observable data. PSO-

ELM (particle swarm optimization-extreme learning machine) is a new hybrid model that 

is presented, and its performance is compared with SVM, GRNN, M5T, and autoencoder. 

The study emphasizes how important accurate Rs data are in determining solar photovoltaic 

(PV) output. With a focus on China's Loess Plateau, it uses machine learning algorithms to 

forecast Rs in areas without measurements. Metrics including the Nash-Sutcliffe 

coefficient, relative RMSE, and MAE are used to assess the performance of the model.  

After being trained with data from stations possessing measurements, the regional model 

is then utilized to predict in stations lacking measurements. Further, Behera et al.  [42] 

investigate photovoltaic (PV) power forecasting, addressing uncertainties in solar 

generation by proposing an ELM technique. This method, integrated with incremental 

conductance Maximum Power Point Tracking (MPPT) using a proportional-integral (PI) 

controller, is optimized with PSO. The study highlights the importance of accurate PV 

power forecasting due to the growing integration of PV in smart grids. It categorizes 

forecasting models into hybrid, artificial intelligence, statistical, and physical approaches, 

emphasizing their role in microgrid and smart grid energy management. Evaluation metrics 

like RMSE, MAE and MAPE assess the proposed model's performance. The paper 

concludes that the ELM, particularly when optimized with accelerated PSO (APSO), 

surpasses other methods in short-term solar power forecasting, providing enhanced 

accuracy and faster convergence. Additionally, Widodo et al. [3] This research investigate 

a Smart Micro Grid that increases energy efficiency by combining renewable energy 

sources and state power plants. It seeks to lessen dependency on the state utilities by 

utilizing ML, Big Data, AI, IoT, and smart sensors. To achieve Future Accurate Prediction 

(FAP) of power consumption and renewable energy generation, the study builds a DNN 

with LSTM architecture, highlighting the necessity for novel machine learning techniques, 

particularly Deep Learning (DL).  
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The results demonstrate the advantage of DNN over LSTM when evaluating predictive 

accuracy using MAE and MSE, confirming its promise for accurate renewable energy 

forecasting. Furthermore, et al. [6] address the randomness and intermittent of photovoltaic 

(PV) power in contemporary power networks, the research presents a hybrid model for 

precise ultra-short-term PV power forecasting. The model combines three modules: one for 

feature engineering, one for error correction using wavelet transform (WT) and k-nearest 

neighbour (KNN), and one for point prediction using a non-pooling convolutional neural 

network (NPCN). The feature module tackles missing values and outliers by using an 

isolated forest. The error correction module lowers model variance while NPCNN 

concentrates on nonlinear feature extraction. The model outperforms benchmarks when 

evaluated using actual PV data from Limburg, Belgium, offering a novel approach to better 

ultra-short-term PV power forecasting. Also, Khan et al. [2] planned AB-Net to introduce 

a unique architecture for renewable energy (RE) forecasting to address the problem of 

controlling the growing power demand. The methodology includes using the AB-Net 

architecture, thorough pre-processing to assure data appropriateness, and gathering data 

from solar and wind sources.  

To provide a one-step forecast of electricity generation, this design integrates a 

bidirectional LSTM (BiLSTM) with an autoencoder (AE). AB-Net displays state-of-the-

art performance in terms of error metrics through the evaluation of benchmark datasets. 

Addressing data anomalies, establishing a novel hybrid network, and emphasizing short-

term RE forecasting are some of the key achievements. The outcomes demonstrate AB-

Net's edge over rival models and underscore its potential for precise RE power generation 

forecasts. Further, Liu et al.  [37] propose a novel approach to short-term wind power 

prediction, introducing the Genetic Programming ensemble ANN to address wind power 

generation instability. Unlike traditional methods, GPeANN prevents error propagation by 

employing a semi-stochastic combination of neural networks. Tested on data from five 

European wind farms, the model demonstrates effectiveness with an average RMSE. 

Emphasizing the significance of accurate short-term WPF for reliable energy distribution, 

the paper contributes by creating an intelligent ensemble predictor that enhances robustness 

and outperforms individual predictors. The ensemble methodology, utilizing Genetic 

Programming, creates a nonlinear decision space, improving the model's adaptability to 

meteorological fluctuations for more reliable wind power predictions.  
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2.3.1 Discussion   

The research consistently argues that advanced neural network models, particularly deep 

neural networks (DNNs), outperform classic ANNs in the domain of renewable energy 

forecasting, with a particular emphasis on solar and wind power. The included studies, 

which range from DSE-XGB to STL-LSTM, SUNSET, and AB-Net, demonstrate the 

usefulness of hybrid models, which combine techniques such as ANN, LSTM, and 

ensemble approaches such as Genetic Programming. These models outperform traditional 

approaches consistently, underlining their capacity to improve accuracy and reliability in 

projecting renewable energy generation. The findings highlight the increasing importance 

of advanced neural network topologies and ensemble methodologies in improving the 

precision of renewable energy projections, providing vital insights for future advances in 

the field. 

2.4  SVM and SVR for RES Power Output Forecasting   

According to Zendehboudi et al.  [53] explore the transition from traditional fossil fuels to 

renewable energy, notably solar and wind power. It underlines the difficulties in projecting 

these renewable resources accurately and criticizes established methods. The research 

focuses on the usefulness of  SVM models in solar and wind energy forecasting, and it is 

supported by a systematic review of 75 relevant publications published between 2009 and 

2017. Descriptive statistics show how these articles and SVM applications are distributed 

in various contexts. 

 The SVM modelling approach is classified, and applications in predicting solar radiation 

and wind speed are investigated. The limitations and methodological constraints of SVM 

modelling are acknowledged in the paper. It finishes by outlining research gaps and 

recommending more studies into hybrid models for improved accuracy. Further  Lin et al. 

[54] use an improved Moth-Flame Optimization-SVM(IMFO-SVM) model to enhance the 

prediction accuracy of photovoltaic (PV) power generation. The study adds new features 

to the moth-flame optimization technique, enhancing diversity while balancing search 

capabilities. When the model's efficacy is evaluated using actual data from an Australian 

photovoltaic power plant, it outperforms other models in terms of optimization. The work 

adds a trustworthy model for real-time grid dispatching and power system stability and 

emphasizes the significance of accurate PV output projections in the context of the world's 

transition to sustainable energy sources. Additionally, Li et al. [55] introduce a hybrid IDA-
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SVM model for short-term wind power prediction, which addresses the issues provided by 

wind power's non-stationary and stochastic character.  

To boost prediction accuracy, the model combines the SVM with an improved dragonfly 

algorithm (IDA). When tested on real datasets from the La Haute Borne wind farm in 

France, the IDA-SVM model outperforms other models such as back propagation neural 

networks and Gaussian process regression. Accurate forecasting of short-term wind output 

is critical for effective integration into power grids, and the suggested model provides a 

possible solution. 

2.4.1 How SVM, SVR used of PV 

SVM and Support Vector Regression (SVR) are advanced machine learning techniques 

extensively applied in Photovoltaic (PV) systems to enhance performance, reliability, and 

efficiency [43]. 

SVM, a classification algorithm, is pivotal in fault detection and classification within PV 

systems. It processes data patterns from PV panels to differentiate between normal 

operational states and various fault conditions such as short-circuits, open-circuits, or 

shading issues. By training on labelled datasets representing different fault types, SVM can 

accurately identify and classify these anomalies, enabling prompt maintenance actions. 

Additionally, SVM is used for performance monitoring by classifying the system's 

operational data into distinct categories, thereby identifying deviations from expected 

performance that might suggest underlying issues [56]. 

On the other hand, SVR, a regression algorithm, excels in predicting continuous variables 

like power output, which is essential for effective energy management in PV systems. By 

training on historical data encompassing inputs such as solar irradiance, temperature, and 

time of day, SVR learns the relationship between these factors and the power output. This 

enables SVR to predict future power output with high accuracy, facilitating better planning 

and optimization of energy supply. Furthermore, SVR is instrumental in forecasting energy 

production based on past weather patterns and system performance, aiding in grid 

integration and ensuring a reliable energy supply [7]. 

SVR is also employed in efficiency analysis to assess how efficiently PV systems operate 

under varying environmental conditions. By modelling the relationship between 

environmental factors and power output, SVR helps in identifying performance trends and 

potential areas for improvement. This continuous efficiency analysis is crucial for 

maintaining optimal system performance over time [29]. 
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Both SVM and SVR offer significant benefits due to their high accuracy and robustness. 

They effectively handle non-linear relationships and are resistant to overfitting, especially 

in high-dimensional spaces. This makes them suitable for complex datasets commonly 

encountered in PV systems. The versatility of SVM and SVR, enabling their application in 

both classification and regression tasks, adds to their value in comprehensive PV system 

analysis [37]. 

 

2.4.2 Discussion   

The review of the literature highlights the significant shift from conventional fossil fuels to 

renewable energy, with a focus on solar and wind power. The research emphasizes the 

difficulties in precisely estimating these resources, underlining the limitations of existing 

approaches. With insights from a systematic review and a recommendation for more 

research into hybrid models, SVM models prove useful in solar and wind energy 

forecasting. The adoption of the IMFO SVM model improves the accuracy of PV power 

generation estimates, providing a dependable tool for real-time grid dispatching. Similarly, 

the hybrid IDA-SVM model handles the non-stationary and stochastic nature of wind 

power, giving an efficient solution for forecasting short-term wind output. These studies 

emphasize the magnitude of advanced modelling techniques and hybrid models. 

2.5 Ensemble of ML-based Methods for RES Power Output Forecasting   

According to Lahouar et al.  [57] introduce a direct hour-ahead WPF model employing the 

RF method. It focuses on selecting key meteorological factors, specifically spatially 

averaged wind speed and direction. RF, known for its ability to handle non-linear 

relationships without extensive tuning, was chosen. Using data from the Sidi Daoud wind 

farm in Tunisia, the study shows enhanced forecast accuracy compared to classical neural 

network predictions. The research underscores the importance of wind speed and direction 

in optimizing model performance, showcasing RF's resilience to irrelevant inputs. Overall, 

the paper highlights RF's potential for improved WPF through the effective utilization of 

additional information. 

Also, Tato et al. [56] focus on leveraging machine learning, namely the RF algorithm, to 

enhance solar energy forecasting. The study examines three years' worth of data from six 

solar PV modules in Faro, Portugal, integrating Smart Persistence, irradiance, and historical 

production data. A variety of data elements are combined in the suggested feature set for 

both training and validation. The best panels achieve an NRMSE of 0.25, indicating that 
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the use of Smart Persistence as a machine learning input greatly improves short-term 

forecast accuracy. The study highlights how RF are helping to improve solar energy 

forecasts, which is important for solar power plants to remain competitive.  

Furthermore, Zameer et al. [58] a wind power prediction methodology using a genetic 

programming-based semi-stochastic combination of various neural network types, 

including feed-forward backpropagation neural networks (FFBPNNs), radial basis function 

neural networks (RBFNNs), backpropagation neural networks (BPNNs), and Broyden-

Fletcher-Goldfarb-Shanno neural networks (BFGSNNs). This ensemble approach aimed to 

forecast wind power output by collectively considering the predictions of different neural 

network models. The study demonstrated the effectiveness of this method in addressing the 

inherent instability of wind power generation, attributed to atmospheric and meteorological 

variables. The approach was found to create a robust decision space, reducing errors caused 

by individual base learners and enhancing overall prediction performance, especially in 

response to sudden input changes. 

Additionally, Wang et al. [11] combine BPNNs, RBFNNs, and SVMs for wind power 

output forecasting, and a Bayesian model averaging (BMA) technique was used. The 

method created variety by combining several machine learning models with self-organizing 

map (SOP) clustering and k-fold cross-validation to construct three training subsets for 

meteorological data. The results revealed that the SOP-based technique outperformed 

equivalent state-of-the-art alternatives in accurately and dependably projecting wind power 

generation under diverse meteorological conditions. Also, AlKandari et al. [44] present a 

hybrid model “MLSHM” exact solar power prediction in renewable energy facilities, is 

introduced. Theta statistical approach is combined with machine learning (LSTM, GRU, 

Auto-LSTM, Auto-GRU) to improve accuracy through structural and data diversity. The 

ensemble employs averaging and variance combination methods. The dataset used for 

experiment shows that MLSHM outperforms individual models, stressing the combination 

of machine learning and statistical techniques [41], [53] . The study emphasizes the 

significance of diversity in ensemble methods for improved predictions in renewable 

energy applications [59]. 

2.5.1 Discussion 

In discussion, the above literature demonstrates the effectiveness of machine learning, 

particularly RF and ensemble approaches, in improving wind and solar energy forecasting. 

These approaches improve accuracy, especially when Smart Persistence and different data 
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components are considered. The research brings vital insights by providing effective 

algorithms and hybrid models that have the potential to improve the dependability and 

sustainability of renewable energy systems. 

2.6 Advantages and Disadvantages of the most popular ML-based approaches to 
forecasting RES power output 

The fundamental issue in forecasting Renewable Energy Sources (RES) power output is 

successfully modelling both its autoregressive temporal characteristics and its reliance on 

uncertain, non-linear atmospheric spatial variables. To address these problems, several 

machine learning algorithms discussed in the Systematic Literature Review (SLR) adopt 

different strategies. Each method has advantages and disadvantages, and there is no 

universal solution. The method of choice is determined by criteria such as the specific 

application, available data, and resources. Table 2.1 summarizes the primary advantages 

and disadvantages of commonly used ML-based techniques for forecasting photovoltaic 

(PV) and wind output. It also recommends the best uses for each strategy. 

Table 2.1 Comparison of Machine Learning Approaches for RES Power Output Forecasting 

Approach Advantages Disadvantages Application 

Traditional ML-based models 

ANN • Can learn non-linear relationships. 

 

• Hand-engineered feature selection.  

• Fail to learn complex patterns from 

intermittent, stochastic, and highly 

varying data.  

• Sample complexity: Network 

instability and parameters non-

convergence when dealing with huge 

amounts of training data. 

• Time-consuming training phase.  

RES power output 

forecasting within 

stationary frameworks.  

SVM/SVR • Well-suited for complex non-

linear applications.  

• Robust to noisy and biased data. 

• Less prone to overfitting than 

other ML-based methods. 

• Good generalization capability for 

small datasets. 

• Highly sensitive to hyper-parameter 

tuning. 

Newly built PV or wind 

plants, which lack large 

amounts of historical data. 

Deep NNs 

LSTM • Automatic feature selection.  

• Can handle time series data. 

• Can handle long-term time 

dependencies. 

• Can capture complex patterns in 

sequential data. 

• Prone to overfitting. 

• Sensitive to hyper-parameter tuning. 

• Computationally expensive. 

RES power output 

forecasting considering 

autoregressive features 

(time series).  
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• More robust than simple RNN to 

noisy and missing data. 

CNN • Automatic feature selection.  

• Accurate modeling of spatial 

features. 

 

• Requires large amounts of data to lean. 

• Computationally expensive. 

• PV power output 

forecasting based on sky 

or satellite images.  

• Spatial feature modeling 

for weather-related data. 

Ensembles 

RF • Robust to missing data and 

outliers. 

• No need for variable selection. 

• Can handle large datasets. 

• Can handle high-dimensional 

data. 

• Easy hyper-parameter tuning. 

• Less prone to overfitting than 

other ML-based methods. 

• Not suitable for low-dimensional data. 

• Not suitable for small datasets.  

RES power output 

forecasting within the 

context of high-

dimensional, large datasets.  

Different 

base learners 

• Reduce overfitting. 

• Robust to base learners’ errors. 

• Robust to inconsistencies in the 

changing weather data. 

• Better performance than 

traditional ensembles. 

• Improve of individual ML-based 

models. 

• Computationally expensive. 

• Depend on the combination 

strategy. 

 

RES power output 

forecasting within highly 

complex scenarios.  

2.7 Miscellaneous forecasting energy models and algorithms  

Further Demolli et al. [8] focus on machine learning techniques for long-term wind power 

forecasts utilizing daily wind speed data. The study suggests a technique for predicting 

wind power that considers the daily mean wind speed and standard deviation and uses five 

machine learning algorithms (LASSO, kNN, xGBoost, RF, and SVR). The models are put 

to the test in a variety of settings, showing their universal applicability. The outcomes show 

that RF, SVR, and xGBoost are all successful, RF performed the best. The study concludes 

that machine learning algorithms can be used effectively to anticipate wind power before 

building new wind farms.  Also, Zhou et al.  [10] integrate WPD and LSTM networks to 

create a hybrid deep-learning model for PV power forecasting one hour ahead of time. 

Breaking down the series using WPD and using the sub-series as input for LSTM networks, 

solves the problems associated with PV power interruption. After reconstruction, the results 

are linearly weighted. PV power forecasting becomes more accurate and stable when 

evaluated using Alice Springs data, as it performs better than when using individual LSTM, 

RNN, GRU, and MLP models. Additionally, Ahn et al. [12] uses real-time on-site 
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meteorological IoT data to propose a deep RNN model for short-term PV power 

forecasting.  

The experimental results surpass standard models such as ARIMA and SVR-RFN, 

demonstrating good accuracy for forecasts of 1-3 hours (92.9%-94.8% normalized RMSE) 

and 5-15 minutes (96.6%-98.0% normalized RMSE). highlights how crucial real-time data 

is to accurate short-term PV forecasting. Future upgrades will include the incorporation of 

more meteorological features and techniques for abnormality detection. Further Torres et 

al. [13] propose a novel deep learning-based method for solar photovoltaic (PV) power 

prediction using the H2O R package. It takes a multi-step approach to managing large 

amounts of time series data. Assessments conducted on solar PV data from Australia 

demonstrate competitive performance in comparison to well-established algorithms, 

highlighting the benefits of scalability for large datasets when compared to alternative 

methods that incur exponential time increases.  According to Agga et al. [14] hybrid CNN-

LSTM model for short-term PV energy forecasting outperforms traditional machine 

learning and standalone deep learning models in terms of accuracy and stability. The CNN-

LSTM architecture, which can evaluate spatial and temporal data, is effective when applied 

to real data from Rabat, Morocco. The study emphasizes the importance of accurate PV 

estimates for grid stability and system integration. The model shows promise for improving 

power system operations, with further study focusing on potential applications in larger 

renewable energy predictions and consumer behaviour analysis. 

Further, Cebekhulu et al. [15] evaluated six well-known machine-learning algorithms for 

power demand and supply prediction in smart grids. After thorough fine-tuning, the models 

were tested on Eskom's datasets, revealing little to no significant difference in their 

performance, except for challenges in predicting wind power. The findings suggest that, 

with proper tuning, any of these algorithms can be deployed for prediction in smart grid 

systems, emphasizing the importance of reporting multiple metrics. Further research is 

encouraged, especially in addressing challenges related to stochastic energy sources like 

wind power. Also, Vennila et al. [16] provide a hybrid approach that combines machine 

learning and statistical methodologies to provide precise solar power predictions in large-

scale renewable energy plants.  

When compared to previous methods, the hybrid approach's ensemble of machine learning 

models offers higher accuracy and cost savings. The hybrid approach beats others that rely 

primarily on machine learning in managing market volatility and intermittent sources, 

emphasizing the importance of understanding weather patterns. The suggested feature 
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selection method combines filter and wrapper techniques, leveraging ensemble feature 

classification for improved estimates of solar power generation. Overall, the study 

emphasizes hybrid models' potential for greater performance and accuracy in renewable 

energy forecasting.  Additionally, Mahmud et al. [17] compared techniques such as Linear 

Regression, Polynomial Regression, Decision Tree Regression, SVR, RF Regression, 

LSTM, and MLP, this study conducted in Alice Springs, Australia, focuses on machine 

learning for PV power forecasting. The RF Regression shows better results. The influence 

of weather characteristics, including temperature and relative humidity, is examined, with 

a focus on data standardization to enable more accurate forecasts. Planning for energy 

generation can benefit from the new insights, but large-scale forecasting and panels with  

MPPT require more study. 

According to Zheng et al. [19] hybrid framework for precise power generation forecasting 

in multiple renewable sources. It combines a CNN, Attention-based Long Short-Term 

Memory (A-LSTM), and Auto-Regression for energy correlation, nonlinear temporal, and 

linear temporal patterns. Validation on a real renewable energy system demonstrates its 

superior accuracy compared to other models, notably reducing MAE for solar PV, solar 

thermal, and wind power. The study emphasizes the importance of energy correlation 

patterns, addressing the critical need for enhanced multi-energy generation predictions in 

efficient power scheduling for renewable systems. Furthermore, Rahman et al.  [21] discuss 

the use of ANNs for renewable energy prediction, particularly focusing on their popularity 

due to good predictive ability.  

The study recommends ANNs, emphasizing the importance of network structure, learning 

procedures, and various parameters for energy prediction. It underscores challenges such 

as theoretical complexity, model optimization, and the need for domain experts. The 

conclusion highlights the benefits of ANNs, including adaptive learning and real-time 

operation, while suggesting future directions like exploring advanced AI techniques and 

incorporating IoT tools in renewable energy research. Additionally, Wan et al.  [25] present 

ANNs to the forecast of renewable energy is covered in this section, with an emphasis on 

how well-liked ANNs are for this reason. The study suggests ANNs, highlighting the 

significance of different parameters, learning processes, and network architecture for 

energy prediction. It draws attention to difficulties such as theoretical complexity, model 

optimization, and the requirement for subject matter specialists. In addition to highlighting 

the advantages of ANNs, such as adaptive learning and real-time operation—the conclusion 
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makes suggestions for future research topics, such as investigating more sophisticated AI 

methods and utilizing IoT tools in the study of renewable energy. 

 Also, Laiet al. [29] examine the machine-learning models for renewable-energy forecasts, 

this paper places special emphasis on parameter selection, data preparation, model 

selection, and performance indicators. It emphasizes how important precise forecasts are 

becoming in response to climate change. The study observes a rise in the application of 

hybrid models and artificial intelligence, especially in the prediction of solar and wind 

energy. Important conclusions include the frequent use of extreme-learning machines and 

support-vector machines for parameter selection, as well as the predominance of 

decomposition approaches in data pre-processing. Future objectives for research include 

going beyond solar and wind predictions, examining the effects of data pre-processing, and 

developing novel parameter selection metaheuristics. Furthermore, Niu et al. [33] provide 

an AGRU model for multi-step-ahead WPF. The model uses GRU blocks to add a 

correlation between forecasting stages and an attention mechanism to choose features. 

When compared to benchmarks, validation using case studies shows enhanced forecasting 

accuracy, computational efficiency, and feature selection capabilities. The study guides 

choosing models in multi-step-ahead forecasting and emphasizes the need for accurate 

WPF for dependable power system operations.   

Additionally, Hong et al.  [35] works in the field of energy forecasting are given in this 

article, with a focus on relevant data sources, repeatable research, and suggestions for 

publishing high-calibre publications. It covers a wide range of topics, such as renewable 

energy, long-term load predictions, and electricity pricing. By examining cutting-edge 

subjects including artificial intelligence, ensemble techniques, and prediction valuation, the 

paper emphasizes the significance of interdisciplinary cooperation in energy forecasting.  

Also, Zhao et al.  [18] perform a study that investigates how energy engineering employing 

resources such as wind and solar aids in pollution reduction and economic growth. They 

discussed how important it is to forecast how much electricity the wind will produce and 

agreed that using AI will allow them to make better predictions.  Furthermore, K. Nam et 

al. [26] create a custom forecasting model for renewable energy systems to predict 

changing electricity demand and generation. Different scenarios are assessed using the 

best-performing model, GRU. While GRU excels at predicting rapid changes, it may 

struggle with detecting long-term patterns compared to more complex models. Moreover,  

Zhao et al. [24] focused on the intelligent and hybrid methods that use big data for accurate 

predictions.  
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The study provides an outline of big data and AI's role in wind energy forecasting, including 

data sources, pre-processing, and machine learning algorithms. However, the research is 

restricted by its scope and lack of focus on unstructured data. Additionally, Tarek et al. [22] 

present SFSPSO, a novel optimization technique merging PSO and SFS for LSTM 

parameter optimization, leading to improved model performance compared to existing 

methods; however, further investigation is required to validate its efficacy on larger datasets  

According to ELSARAITI et al. [28] use LSTM to estimate short-term solar PV generation. 

The use of LSTM for time series prediction has the benefit of capturing detailed temporal 

patterns and dependencies in data, but it is more complicated and requires more training 

time.  

2.7.1 Discussion 

In essence, the literature emphasizes the accuracy with which machine learning and hybrid 

models, such as RF and CNN-LSTM, anticipate wind and solar energy parameters. 

Notably, these models show adaptability, pre-construction wind power potential, and 

increased solar energy prediction accuracy. Real-time meteorological IoT data is critical in 

short-term PV power forecasting, highlighting the significance of real-time data in effective 

predictions. The intricacy of parameter selection, the complexities of data preparation, and 

the requirement for successful model selection are all challenges. The literature adds to the 

growing landscape of renewable energy forecasting by emphasizing the importance of 

advanced AI algorithms and the continuous emphasis on real-time data for future research 

objectives. 

2.8 ANNs  

Further Yousif et al. [60] conduct a comprehensive review and comparative investigation 

of Photovoltaic/Thermal (PV/T) energy data prediction systems, with a particular emphasis 

on the use of various ANN methodologies. The study collects and assesses data from varied 

geographical places with robust meteorological stations throughout the decade (2008-

2017). The goal is to improve the efficiency of solar energy systems by utilizing ANNs to 

anticipate GSR. Recognizing the difficulties posed by environmental elements such as 

temperature, dust, and humidity, the study offers the novel concept of PV/T hybrids, which 

combine photovoltaic modules with solar thermal collectors to offset the negative impacts 

on PV module performance. The methodology employs ANNs for GSR estimates due to 

their ability to handle nonlinear data like human cognitive processes. 
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 To assess the accuracy of ANN models, evaluation measures such as MSE, RMSE, MAPE, 

and R-squared (R2) are used. The research includes a geographical and climatic variation 

analysis, which provides insights into the adaptability and performance of ANN models in 

a variety of environmental situations. The conclusion underlines the appropriateness of 

ANN models for GSR prediction in PV/T systems and gives useful recommendations for 

researchers and engineers interested in using ANNs to generate solar energy data. The 

working procedure of the ANN is given in Figure 2.2.   

 

 

Figure 2.2: Working procedure of ANN 

 

According to Wang et al [47] the main highlights are below. Among them, the following 

ones should be highlighted:  

• Hand-engineered feature selection: ANN feature selection not only requires 

significant personal experience but also prevents traditional ANNs from 

dealing with inherently non-linear features, as in the case of RESs. 

• Time-consuming training phase. 

• Limited generalization capability: Traditional ANNs fail to learn complex 

patterns from intermittent, stochastic, and highly varying data, such as weather 

data. 

• Sample complexity: ANNs will suffer from network instability and parameters 

non-convergence if, due to the increasing availability of environmental meters, 

huge amounts of training data related to RESs are available. The percentage of 

the deep ANN, ELM and other learning model is given in Figure 2.3. 
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Figure 2.3: Most used types of artificial neural networks 

Additionally, Huang et al. [61], The ELM, a unique approach for Single-Hidden Layer 

Feedforward Neural Networks (SLFNs), is introduced in this research. ELM seeks to 

address traditional neural networks' slow learning pace by randomly assigning input 

weights and hidden biases, hence reducing repetitive tweaking. The methodology 

demonstrates that this random assignment is feasible under specific conditions. ELM 

considers SLFNs to be linear systems, calculating output weights analytically. This method 

produces learning speeds hundreds of times faster than traditional methods, as well as high 

generalization performance. The report emphasizes ELM's simplicity, efficiency, and 

prospective applicability in a variety of sectors, demonstrating improved performance in 

benchmark testing compared to older approaches.   

Furthermore, Ding et al [62] introduce the ELM, a learning technique for single hidden layer 

feedforward neural networks, stressing its benefits in terms of training speed and overfitting 

resistance. The methodology entails a thorough examination of theoretical foundations, 

algorithmic concepts, and applications. The authors explain the history of neural networks, 

emphasizing ELM's versatility and fast learning rate. The algorithm's primary 

characteristics are adaptive hidden layer node placement and random weight and bias 

assignment, allowing for quick learning in a single cycle. Several extensions, such as online 

sequential ELM and pruned ELM, are described to meet specific issues. Experiments 

compare ELM to other algorithms, with future research plans and funding assistance 

acknowledged. Types of deep NN are given in Figure 2.4. 
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Figure 2.4: Most popular architectures used for deep NNs 

2.8.1 Discussion  

ANNs have shown effectiveness in solar energy prediction, the ELM stands out as a 

promising improvement, delivering a faster learning rate and improved performance. The 

findings pave the way for future research aimed at refining and increasing the use of ELM 

as well as overcoming the noted difficulties in standard ANN approaches, ultimately 

contributing to the progress of solar energy prediction systems. 

2.9 Ensemble Methods 

According to Chen et al. [63], the increasing trend for using deep NNs discussed in Section, 

ensemble methods have also been identified as one of the most popular ML-based 

techniques among the SLR articles. Whereas 37.8 % of them are devoted to the former, 

19.51 % proposed the latter. Ensemble methods use multiple learning algorithms – called 

base learners – to improve the predictive performance corresponding to the use of 

individual learning algorithms. RF is an ensemble of DTs, focused on increasing the 

diversity among the trees to enhance its prediction performance. In addition to its very good 

discriminative capability, RF can manage large databases, handle a great number of input 

variables without performing variable selection, deal with missing data and outlier removal, 

and avoid overfitting.  

Boosting techniques, including Gradient Boosting (GB) and Extreme GB (XGBoost), are 

also ensembles of DTs. In GB, additive regression models are built by fitting them 

according to the residuals’ least square minimization. Furthermore Friedman et al. [64]. 

One of the main advantages of GB algorithms is their flexibility; they allow to optimize 

different loss functions and provide several options for hyper-parameter tuning. The 

XGBoost algorithm extends the GB one by providing customizable optimisation objectives 

and evaluation criteria, as well as allowing regularisation, which helps to reduce overfitting.  

Also, LEE et al. [65] focus on forecasting wind power generation to effectively integrate it 

into smart networks. For reliable predictions, ensemble learning methods such as Boosted 
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Trees, RF, and Generalized RF are used. Using wind turbine data from France and Turkey, 

the models are compared to Gaussian process regression and SVR. Ensemble models 

outperform isolated models, demonstrating their efficacy. Lagged variables are found to 

contribute significantly to model accuracy. 

2.10 Compared other methods like PV systems. 

Comparing photovoltaic (PV) power systems with other renewable energy methods 

involves examining various factors such as efficiency, cost, environmental impact, and 

scalability. Here’s a comparison with some other common renewable energy sources [42]: 

2.10.1 Photovoltaic (PV) Power Systems: 

• Efficiency: PV systems convert sunlight directly into electricity using 

semiconductor materials like silicon. The efficiency of commercial PV panels 

typically ranges from 15% to 22%. 

• Cost: The cost of PV systems has been decreasing over the years due to 

advancements in technology and increased production scale. Initial installation 

costs can be high, but operational costs are low. 

• Environmental Impact: PV systems produce no direct emissions during operation. 

However, there are environmental considerations during the manufacturing and 

disposal of panels. 

• Scalability: PV systems can be scaled from small residential installations to large 

utility-scale solar farms [52]. 

2.10.2 Wind power 

• Efficiency: Modern wind turbines convert about 35-45% of the wind's kinetic 

energy into electricity. The efficiency can vary based on location and wind 

conditions. 

• Cost: Wind power has become more cost-competitive with other energy sources. 

Initial installation costs are high, but operational costs are relatively low. 

• Environmental Impact: Wind power produces no direct emissions, but there are 

concerns about noise, visual impact, and effects on wildlife, particularly birds and 

bats. 

• Scalability: Wind power can be implemented onshore and offshore, with capacities 

ranging from small single turbines to large wind farms [57]. 
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2.10.3 Hydropower 

• Efficiency: Hydropower plants are highly efficient, converting about 90% of the 

available energy into electricity. 

• Cost: Hydropower can be cost-effective over the long term, but the initial 

construction costs are high, especially for large dams. 

• Environmental Impact: Hydropower can have significant environmental impacts, 

including habitat disruption, changes in water quality, and displacement of local 

communities. 

• Scalability: Hydropower is typically large-scale, although small and micro-hydro 

installations are also possible [53]. 

2.10.4 Biomass Power 

• Efficiency: The efficiency of biomass power plants varies but is generally lower 

than other renewables, often around 20-30%. 

• Cost: Biomass can be cost-effective depending on the availability of feedstock. 

Costs include collection, transportation, and processing of biomass. 

• Environmental Impact: Biomass is considered renewable if managed sustainably, 

but it does produce emissions. However, it can also help manage waste. 

• Scalability: Biomass power can be scaled to various sizes, from small local plants 

to larger industrial operations [54]. 

2.10.5 Geothermal Power 

• Efficiency: Geothermal plants can achieve efficiencies of around 10-20%, but they 

provide a stable and continuous power supply. 

• Cost: High initial costs due to drilling and exploration, but low operational costs 

once the plant is running. 

• Environmental Impact: Geothermal power has minimal emissions, but there can be 

concerns about land use and water quality. 

• Scalability: Geothermal power is location-specific, typically feasible in regions 

with significant geothermal activity [50]. 

2.10.6 Analysis   

• Efficiency: Hydropower and wind power are generally more efficient than PV and 

biomass. 

• Cost: Wind and PV have become increasingly cost-competitive. Hydropower and 

geothermal have high initial costs but low operating costs. 
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• Environmental Impact: All renewables have minimal emissions, but each has 

unique environmental considerations. 

• Scalability: PV and wind are highly scalable. Hydropower and geothermal are 

more location dependent [51]. 

 

The research underlines the significance of precise wind power forecasts in solving issues 

in power grid dispatch and wind turbine economic management. Despite the positive 

results, it is proposed that future work investigate multiscale ensemble models and add 

spatiotemporal information for further improvement. Also, Khan et al. [66] Gathering 

historical SCADA data, operational records, and system alerts from a 3 MW direct-drive 

turbine is the proposed methodology, with stator temperature as the goal variable. A two-

layer ensemble model is trained using thorough pre-processing, including optimal feature 

selection and managing null values. The first layer combines RF, Extra Tree Regressor, 

and XGBoost models, while the second layer, which serves as the meta layer, also uses an 

XGBoost model. Model performance is assessed using validation metrics focusing on 

RMSE, with a threshold for anomaly detection based on established limitations. The 

model's accuracy in detecting turbine defects is confirmed using rigorous metrics and 

graphical approaches. Future research could investigate fault type classification algorithms, 

false alarm likelihoods, and a thorough grasp of generic fault differences.  Furthermore, 

Matinet al. [67] In this study, machine learning techniques are used to estimate wind speed 

and power production in a Supervisory Control and Data Acquisition (SCADA) system. 

For this objective, six algorithms are used: Light GB Machine, GB Regressor, Ada Boost 

Regressor, Elastic Net, Lasso, and an ensemble of Light GB Machine and Ada Boost. The 

models are trained and tested using 10-fold, 5-fold, and 4-fold cross-validation methods, 

and their performances are compared. Root-Mean-Square Error (RMSE), MAE, MAPE, 

and coefficient of determination (R2) are among the evaluation measures.  

The results show that the ensemble technique predicts the SCADA system's production 

power more accurately, as shown by lower RMSE values and higher R2 coefficients. The 

computational efficiency and accuracy of the suggested methods in forecasting wind-

related parameters are evaluated. The study intends to improve the prediction capacities of 

machine learning models for SCADA systems, notably in renewable energy applications.  

Furthermore, Ramon et al.[68] Using data from a wind farm in Parazinho, Brazil, the study 

applies a thorough technique for short-term wind energy forecasting. The wind power 

generation data is first submitted to Complete Ensemble Empirical Mode Decomposition 
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(CEEMD), which divides it into five Intrinsic Mode Functions (IMFs) and a residue. 

Lagging approaches and three separate procedures are used in pre-processing: Box-Cox 

Transformation (BC), Correlation Matrix Analysis (CORR), and PCA.  

The ensemble learning method combines basic models such as k-nearest Neighbours, 

Partial Least Squares Regression, Ridge Regression, and SVR with a meta-model known 

as Cubist Regression. Stacking-ensemble learning is implemented in two layers, the first 

of which combines individual predictions from base models and the second of which uses 

pre-processed predictions as input for Cubist Regression. The models undergo training with 

5-fold cross-validation, and their performance is assessed using MAE, MAPE, and RMSE. 

Statistical tests, specifically the Diebold-Mariano (DM) test, are employed for comparing 

forecasting errors among different models. The study systematically compares the 

proposed approach with variations in pre-processing techniques, decomposition methods, 

stacking-ensemble models, and non-decomposed models. The chosen model for each 

scenario is determined based on its accuracy and stability. Future research directions 

include hyperparameter optimization, testing additional models in stacking approaches, 

exploring different decomposition methods, and incorporating dual decomposition 

methods in stacking-ensemble learning.  Furthermore, Piotrowski et al. [69] focused on 

projecting power generation for tiny wind turbines, with a 48-hour prediction horizon in 

mind.  

The study aims to fill a knowledge gap, particularly for prosumer-owned turbines that face 

specific obstacles. The study looked at wind speed forecasts with a 48-hour horizon, which 

is a rarely studied issue. Various prediction algorithms, including machine learning 

techniques such as LSTM, MLP, SVR, and KNNR, were used. The research presented 

hybrid and ensemble approaches, which merged physical models with single procedures. 

MAE, RMSE, R, MBE, PCTL75AE, and PCTL99AE were among the evaluation criteria.  

Forecasts were classified according to the variables employed into several input data 

classes. The supplied data was divided into three sets: training, validation, and test. The 

data from the second year served as the test set for the final evaluation. The performance 

of single methods, hybrid methods, and ensemble methods was highlighted for each input 

data class. The findings shed light on the efficacy of various models and methods, stressing 

the impact of input data complexity on forecast accuracy and identifying the most 

successful approaches for forecasting small wind turbine energy generation. 
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2.10.7 Discussion  

The examined literature demonstrates the expanding importance of ensemble approaches, 

notably in the field of machine learning-based wind power generation forecasting. 

Ensemble techniques, such as RF, GB, and Extreme GB, have emerged as robust 

approaches, outperforming individual models in studies from Chen et al. [44], Khan et al. 

[47], Matin et al. [48], Ramon et al. [49], and Piotrowski et al. [50]. Notably, these ensemble 

approaches show adaptability in dealing with the different issues inherent in wind energy 

forecasting, including managing huge datasets, supporting several input variables without 

the requirement for variable selection, and efficiently dealing with missing data and outlier 

removal.  

Lagged variables are discovered as major contributions to model accuracy, stressing the 

need to include them in models. Ensemble approaches are especially useful in Supervisory 

Control and Data Acquisition (SCADA) systems, as demonstrated by the combination of 

Light GB Machine and Ada Boost for enhanced accuracy in estimating production power. 

While the good results are clear, the literature also suggests future study directions, such as 

investigations into multiscale ensemble models, the incorporation of spatiotemporal 

information, and the examination of fault-type classification methods. Overall, the findings 

highlight the importance of ensemble approaches in improving the precision and reliability 

of wind power generation estimates, with a strong call for more investigation and 

refinement in addressing specific difficulties. 

2.11 Finding and GAP  

a) Based on the literature, the research highlights the effectiveness of hybrid models 

and ensemble techniques in refining renewable energy forecasting, there is still a 

need for additional exploration and comparison of various hybrid architectures and 

ensemble methodologies. To acquire even higher accuracy and resilience, research 

might focus on enhancing the combination of several machine learning algorithms 

and ensemble techniques. 

b) The significance of real-time data in renewable energy forecasting is emphasized, 

the literature does not go into detail about how to overcome the barriers involved 

with getting and processing real-time data. Future studies could investigate 

approaches and technologies for collecting, processing and combining real-time 

data into forecasting models. 
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c) Parameters selection and model evaluation are crucial for enhancing the 

performance of deep learning models related to wind energy prediction. Effective 

parameter selection involves tuning hyperparameters such as learning rates, batch 

sizes, and network architecture, which significantly affects model outcomes. 

Manual tuning is often impractical due to the extensive search space, making 

automated techniques like Grid Search, Random Search, and more advanced 

methods such as Bayesian Optimization or Genetic Algorithms essential. Data 

preparation also plays a pivotal role, as issues such as missing values, 

normalization, and augmentation need to be meticulously handled to avoid 

overfitting or underfitting. Developing standardized data preprocessing pipelines 

and employing robust data augmentation strategies can enhance model 

performance. Model evaluation, meanwhile, requires rigorous metrics and 

validation methods to accurately assess model efficacy and avoid problems like 

overfitting. Comprehensive evaluation protocols, including cross-validation and 

diverse metrics, alongside techniques such as ensemble learning, can provide a 

clearer picture of a model's capabilities. Future research should focus on creating 

standardized protocols and automated systems for parameter tuning, data 

preparation, and model evaluation to streamline these processes. Additionally, a 

comprehensive framework that integrates advanced deep learning techniques with 

thorough hyperparameter optimization is necessary to precisely predict wind 

turbine energy output. This holistic approach will ensure more accurate and reliable 

results in practical applications. 

d) Several studies report decisions based on specific geographical locations, and there 

is a need for research that verifies models across different regions with varying 

climatic conditions. This would improve model generalizability and usefulness in 

varied scenarios, so developing a model such a model which can used in various 

geographical locations can be a future study. 

e) The literature focuses on short-term and mid-term forecasting, but there is a study 

void in ultra-short-term forecasting, which is critical for grid stability and 

management. Methods for exact ultra-short-term predictions, remarkably for rapid 

changes in energy generation, are being researched. 

f) Model generalization in wind energy forecasting using deep learning involves 

ensuring that a model performs effectively on new, unseen data beyond its training 

set. This concept is crucial because models that overfit may excel on training data 
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but fail to predict accurately in real-world applications. Overfitting occurs when a 

model learns specific patterns or noise in the training data that do not apply to other 

datasets. Conversely, underfitting happens when the model is too simplistic to 

capture the underlying patterns, resulting in poor performance across both training 

and new data. A significant challenge is geographic and temporal variability. Wind 

patterns can vary widely due to geographical differences such as topography and 

proximity to bodies of water, and due to temporal factors like seasonal and diurnal 

changes. Models trained on data from a specific region may not perform well in 

different locations or under different conditions. To mitigate this, incorporating 

diverse datasets that cover a range of geographic and weather conditions is essential. 

Techniques such as data augmentation, which involves simulating various scenarios 

or introducing controlled noise, can enhance model robustness. 

Model complexity also plays a role in generalization. Deep learning models with 

many parameters can capture intricate patterns but are at risk of overfitting. 

Regularization techniques like dropout, weight decay, and early stopping can help 

in balancing complexity and generalization. Additionally, transfer learning using 

pre-trained models on related tasks and fine-tuning them can leverage existing 

knowledge to improve performance. Evaluation practices such as cross validation 

and using diverse performance metrics help in assessing how well the model 

generalizes. Continuous learning approaches, where models are updated with new 

data regularly, can also aid in maintaining relevance and accuracy over time. By 

addressing these factors, it is possible to develop deep learning models for wind 

energy forecasting that are both accurate and resilient when applied to new 

scenarios 

g) Addressing long-term predictions in wind energy forecasting involves capturing 

and modelling dependencies over extended periods, which is crucial for effective 

planning and operation of wind farms. Deep learning models can leverage RNNs, 

particularly LSTM networks or Gated Recurrent Units (GRUs), to maintain and 

utilize temporal information over long sequences. These models are designed to 

handle the vanishing gradient problem, allowing them to remember long-term 

dependencies and trends in wind data. Additionally, temporal convolutional 

networks (TCNs) offer another approach by using dilated convolutions to capture 

long-range temporal dependencies more efficiently. Both approaches help improve 

forecast accuracy for longer time horizons, but the challenge remains in effectively 
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managing and utilizing large amounts of historical data to avoid overfitting and 

ensure generalizability. 

On the spatial side, wind energy prediction requires modelling spatial correlations 

between different measurement locations to capture how wind patterns vary across 

a region. CNNs can be employed to analyse spatial patterns in wind data, especially 

when the data is represented in a grid-like format, such as from satellite imagery or 

weather models. By applying convolutional layers, CNNs can extract local features 

and understand spatial relationships. To further enhance spatial modelling, hybrid 

models combining CNNs with RNNs or attention mechanisms can be used to 

integrate both spatial and temporal dimensions. Additionally, graph-based models, 

such as Graph Convolutional Networks (GCNs), can model complex spatial 

dependencies by representing measurement locations as nodes in a graph and 

learning relationships between them. Effectively accounting for these spatial 

correlations allows for more accurate predictions across different locations and can 

significantly improve the reliability of forecasts by considering the interconnected 

nature of wind patterns. 

2.12 Research contribution.  

The future gap having number “c” under the section “Finding and GAP (2.10)” focuses on 

enhance parameter selection, model evaluation, and data preparation in deep learning 

models for wind energy forecasting—a topic that has received little attention. Although 

these components are acknowledged, a critical gap remains unfilled: there has been no 

thorough investigation to address these issues. It suggests future research paths centred on 

developing automated tools or standardized processes to improve data preparation, perform 

thorough model evaluations, and fine-tune parameters. 

In this thesis the above gap has addressed and fills the gap by proposing a new method—

the DDN model—supported by Grid Search Optimization. This approach fills the gap in 

the literature by combining careful hyperparameter tuning with sophisticated deep learning 

algorithms. This work bridges the gap between theoretical developments and real-world 

application of the suggested model in wind energy prediction by using the Texas Turbine 

dataset for evaluation. 

Moreover, the systematic examination of model architecture in the paper, which includes 

activation functions such as ReLU, dropout regularization, and dense layers, offers a clear 

implementation roadmap for utilizing comparable techniques in the field of wind energy 
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monitoring. Significant reductions in Mean Squared Error (MSE) and MAE demonstrate 

the model's effectiveness and potential for practical application in renewable energy 

systems. These improvements in forecast accuracy are particularly noteworthy. Overall, 

this work successfully establishes a connection between the recognized research need and 

its contribution, demonstrating how the suggested methodology resolves and closes that 

gap in the field of wind energy forecasting. 

2.13 Summary 

The literature digs further into the field of renewable energy forecasting, exploring complex 

machine learning and deep learning models. There is an obvious shift from traditional 

ANNs to more advanced deep neural networks (DNNs), driven by a collective desire to 

improve forecasting accuracy, overcome inherent challenges, and effectively address the 

intricate dynamics of meteorological conditions. Notably, the literature emphasizes the 

critical relevance of hybrid models and ensemble methodologies in achieving precision in 

forecasts, particularly in the context of solar and wind energy. These investigations offer 

light on crucial topics such as model interpretability, showing the inner workings of 

complicated models as well as potential dangers in data preparation methods. Throughout 

the studies, the significance of precise forecasting for seamless grid integration and the 

broader change of energy systems is emphasized. These findings add considerably to the 

growing landscape of renewable energy forecasting, highlighting the need for powerful 

artificial intelligence algorithms and ongoing research efforts to attain future advances.  

To advance this discipline, the literature prudently examines research gaps, indicating areas 

where additional inquiry and refinement are required to accelerate the accuracy and 

application of renewable energy forecasting models to new heights. This thesis fills a 

critical vacuum in wind energy forecasting by addressing the overlooked aspects of 

parameter selection, model evaluation, and data preparation in deep learning. It introduces 

the DDN model with Grid Search Optimization, effectively merging advanced algorithms 

with meticulous parameter tuning. By utilizing the Texas Turbine dataset, it showcases the 

practical application of this model, offering a clear path for implementing similar 

methodologies in wind energy monitoring. The significant improvement in forecast 

accuracy, evidenced by reduced MSE and MAE, underscores the model's practicality in 

renewable energy systems. Overall, this work not only identifies the research gap but also 

closes it by presenting a solution that bridges theoretical advancements with real-world 

application in wind energy forecasting. 
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CHAPTER 3: Designing of DDN Model  

This chapter describes the study design used to accomplish the objectives of forecasting 

wind energy using the deep learning DDN model, which was optimized using the Grid 

Search algorithm. The research design includes the “introduction”, “research philosophy”, 

“aim and objectives”, “research design” and methodology for model design and 

evaluation, and an examination of existing wind energy forecast models. 

3.1 Introduction 

The increasing dependency on energy resources has resulted in a significant annual 

escalation in the generation of electrical power [31], [70] Each year, there is a discernible 

2% rise in global energy consumption, primarily sourced from natural gas, coal, and oil. 

Together, these three sources constitute the primary contributors to the world's energy 

production portfolio [21], [26], [47] The substantial utilization of fossil fuels considerably 

contributes to the emission of anthropogenic Greenhouse Gases (GHGs), consequently 

precipitating disturbances in the global climate. These disruptions manifest in diverse 

climatic phenomena, such as heightened occurrences of heavy precipitation and prolonged 

droughts [23], [71]. The consequential impact on climate patterns underscores the urgency 

for strategic interventions to curtail the deleterious consequences associated with the 

widespread consumption of fossil fuels [35], [72]. In the absence of restrictions on fossil 

fuel consumption, a notable projection anticipates a 30% surge in greenhouse gas (GHG) 

emissions over the next two decades [35], [47]. The utilization of traditional fossil fuels has 

resulted in pronounced environmental contamination, manifesting critical challenges such 

as global warming and air pollution [7], [58]. These emissions significantly contribute to 

the phenomenon of global warming and consequential shifts in climate patterns [15], [59].  

Future energy consumption is expected to shift from mineral-based resources to sustainable 

alternatives as the environment continues to degrade and fossil fuel stocks are consumed 

[43], [59]. Due to its essential role in environmental protection, the growing need for eco-

friendly energy has become a major global problem. Utilizing renewable energy (RE) 

sources like solar, wind, and biomass energy emerges as the optimal approach to address 

the challenges [22]. Wind energy, derived from wind turbines, stands as a renewable and 

eco-friendly power solution. Continuous technological advancements and innovative 

business models are propelling substantial growth in the wind power industry, resulting in 

a significant increase in its installed capacity. Amidst rapid socio-economic development, 
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there is a notable surge in the demand for energy to fulfil the daily requirements and 

activities of society [14], [15]. Wind power is fundamentally about converting the energy 

present in moving air into electricity. However, the kinetic energy of the air that reaches a 

wind farm is influenced by various factors, including wind speed, wind direction, 

atmospheric pressure, and air temperature [73]. 

In the context of a wind farm dedicated to energy production, even a minor change of 1 

meter per second in wind speed can lead to significant fluctuations in power output. This 

phenomenon arises due to the non-linear relationship between wind speed and the power 

generated [74]. An illustrative survey involving 19 companies highlights the substantial 

impact of a modest 1% improvement in minimizing prediction errors, potentially resulting 

in the preservation of up to 10,000 megawatts of electricity. This underscores the 

substantial potential of an efficient REPP model, with the capacity to yield considerable 

annual savings, estimated at around $1.6 million [5]. Timely wind energy forecasting is 

critical due to the nonlinear relationship between wind speed and power generation. 

However, the complexity and uncertainty of natural wind factors present challenges, 

necessitating effective forecasting methods [14], [44], [45]. 

This chapter contains on methodology of the deep learning approach to predict energy 

production from wind turbines. Further “Grid search algorithm” is used to optimize the 

hyperparameters to increase the precision and accuracy of the energy prediction from the 

wind turbines. 

3.2 Research Philosophy 

This study's research methodology is grounded in pragmatism and emphasizes a practical 

approach to improving the accuracy of wind energy forecasts. As the underlying 

methodology, pragmatism allows the integration of theoretical knowledge from the body 

of literature with practical applications in real-world situations. This pragmatic approach 

guarantees a well-balanced synthesis of theoretical knowledge and practical implications, 

closely coordinating the study with the demands and obstacles present in the wind energy 

area. This study attempts to close the knowledge gap between theoretical developments and 

real-world applications by using a pragmatic approach and providing insightful information 

that can be used immediately to improve wind energy forecast models. 
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3.3 Research Design 

3.3.1 Research Approach  

The proposed DDN model's performance is evaluated using a quantitative research 

technique that stresses the use of numerical data and statistical analysis. In the context of 

wind energy generation forecast, a quantitative approach is ideal for evaluating the model's 

effectiveness using rigorous numerical measurements and statistical analysis. The 

quantitative research technique entails the collecting and analysis of numerical data, with a 

particular emphasis on performance indicators such as Mean Squared Error (MSE) and 

MAE. These metrics quantify the model's prediction accuracy by calculating the squared 

and absolute differences between anticipated and observed values.  

3.3.2 Research Strategy  

The research strategy combines literature review, data collecting, model creation, and 

model optimization. The study begins with a thorough examination of existing wind energy 

prediction models, laying the groundwork for the construction of the DDN model. The Grid 

Search technique is then used to refine the model parameters, hence improving its 

predictive powers. 

3.3.3 Methods and technique  

3.3.3.1 Data collection  

To train this model “Texas turbine dataset” in CSV format has used. The dataset contains 

on the four variables including “wind speed”, “wind direction”, “wind pressure”, and 

“wind temperature”.  as visualized Figure 3.1.  

 

Figure 3.1: Dataset variables 
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The different variables of the dataset are also visualized as given in Figure 3.2.  

  

Figure 3.2: Time stamp of dataset variables 

3.3.3.2 Data preprocessing  

The dataset is meticulously divided into three distinct subsets, each serving a crucial role 

in the development and evaluation of the model. The training set, constituting 80% of the 

data with 7008 rows and 6 columns, acts as the primary source for model learning, allowing 

it to discern patterns and relationships within the dataset. Simultaneously, the testing subset, 

comprising 10% of the data (876 rows x 6 columns), remains untouched during the model's 

training phase and serves as a critical benchmark for evaluating the model's performance 

on new, unseen data. Complementing this, the validation set, also 10% of the data (876 

rows x 6 columns), provides an additional layer of scrutiny. Its purpose is to fine-tune 

model parameters, ensuring enhanced robustness and reliability. This meticulous 

preprocessing, involving strategic allocation into training, testing, and validation sets, 

establishes a robust foundation, fostering accurate insights and reliable model training 

outcomes. 
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3.3.3.3 Model parameters  

In table 1, the layer specification of the model and the other critical parameters used to train 

to train the model and the total Total params are given in table 3.1.  

Table 3.1: Model parameters 

Parameter  Neurons Dropout Rate 

Hidden 1 512 

0.4 

Hidden 2 256 

Hidden 3 128 

Hidden 4 64 

Hidden 5 32 

Hidden 6 16 

Hidden 7 8 

Output 1 

loss function MSE 

Activation function 

  
ReLU 

Optimizer Adam 

Learning rate  

  
0.1 

Evaluation metrics 

  
MSE and MAE 

Epochs  30 

Total params 

  
177793 

Trainable params 

  
177793 

 

3.3.3.4 Model design 

The dataset “Texas turbine dataset” is for is used for training, contains on various variables 

Wind speed, Wind direction, Pressure, Air temperature and divided inti three parts. The 

training part of the dataset is used as input for the proposed DDN model. The DDN model 

is structured with eight densely connected layers, featuring a descending hierarchy of 

neurons: 512, 256, 128, 64, 32, 16, 8, and 1. The activation function employed across these 

layers is Rectified Linear Unit (ReLU), except for the output layer which remains 

inactivated, facilitating direct regression. Dropout regularization is strategically 

incorporated after each dense layer with a dropout rate of 0.4, randomly deactivating 40% 

of neurons during training to forestall overfitting and enhance the model's generalization 

capabilities. Training the model involves utilizing the 'mean squared error' (MSE) loss 
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function, focusing on minimizing the average squared differences between predicted and 

actual values. This approach refines the model's weights and biases during training to 

enhance its predictive accuracy. Model performance is evaluated using both MSE and 

MAE. The detailed diagram in Figure 3-3 visually represents the architecture of the DDN 

model, elucidating the connectivity and flow of information through the network. Overall, 

the DDN model is meticulously crafted to capture intricate data relationships, mitigate 

overfitting through dropout regularization, and provide reliable predictions for continuous 

output in the context of wind energy generation. The proposed model is given in Figure 

3.3. 

 

Figure 3.2: Model architecture 

3.3.3.5 Dense Layers 

In the context of the 'Texas Turbine' dataset, the architecture of the dense layer in a neural 

network involves the manipulation of input features to produce meaningful predictions. 

The input vector (denoted as 'x') encapsulates the various parameters such as wind speed, 

wind direction, pressure, and air temperature. The weight matrix ('W') represents the 

learned weights assigned to each feature during the training process, influencing their 

significance in the prediction. The bias term ('b') is an adjustable parameter introduced to 

fine-tune the weighted sum of inputs. The core transformation occurs through the 
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application of a Rectified Linear Unit (ReLU) activation function to the sum of the 

weighted inputs and bias [6], [50]. 

Y= σ (W⋅X +b)  (1) 

where σ denotes the ReLU activation function. This process introduces non-linearity, 

enabling the neural network to capture intricate patterns and relationships within the data. 

The output ('Y') of the dense layer is fundamental for subsequent layers in the network and 

plays a crucial role in predicting the system power generated in the case of wind energy 

forecasting. 

3.3.3.6 Dropout layer  

Where dropout Layer is a regularization method employed   in neural networks to avoid 

overfitting. When a model develops strong performance on the training set but unable to 

generalize to brand-new, untried data, overfitting takes place. Dropout is intended to 

address this problem by randomly "dropping out" a part of neurons throughout each training 

session [5], [46]. Assume that x is the neuron's input, ware its weights, b is its bias, and 

dare its dropout mask (0s and 1s that indicate whether a neuron is dropped out or not)[31], 

[33], [43]. After employing dropout, the neuron's response y is given in equation (2) 

 

y=d⋅(w⋅x+b) (2) 

Were, d is a random binary mask, with entries that are each separately sampled from a 

Bernoulli distribution with a parameter p that represents the dropout rate, in this case the p 

value is 0.4. The dropout layer will drop 40% of the neurons randomely during each training 

cycle, preventing overfitting [21], [33], [45], [46].   

3.4 The model evaluation  

3.4.1 Mean Absolute Error  

The MAE is a statistic for assessing the performance of a regression model. It calculates 

the average absolute difference between the expected and actual values [54]. The 

mathematical definition is as follows. 

MAE=
1

𝑛
∑ |𝑛

𝑖=1 ytrue[𝑖]-ypred[𝑖]| (3) 

Where n   is number of datapoints 

ytrue[𝑖] are the ground truth, and the [𝑖] indicates the datapoints.        

ypred[𝑖]|are the predicted points and the  [𝑖]represents the datapoints. 



 52 

MAE is the MAE between expected and actual values. It is simple to evaluate because it 

provides the average amount of error without considering their direction (overestimation 

or underestimation). Lower MAE values indicate improved model performance. MAE is 

one of the metrics used to evaluate the proposed model. During training, the model seeks 

to reduce the MAE loss to enhance its forecast accuracy. Following training, the MAE on 

a separate validation or test dataset indicates how effectively the model generalizes to new, 

unseen data [19], [43]. 

3.4.2 Mean Squared Error (MSE) 

The MSE is a statistic that assesses the performance of a regression model by calculating 

the average squared difference between predicted and ground truth values [48]. 

MSE=
1

𝑛
∑ (𝑛

𝑖=1 ytrue[𝑖]-ypred[𝑖])
2 (4) 

Where n   is number of datapoints 

ytrue[𝑖] are the actual values, and the [𝑖] specifies the datapoints.        

ypred[𝑖]| are the predicted points and the  [𝑖]signifies the datapoints. 

The MSE computes the squared difference between each predicted value and the associated 

actual value. It then calculates the average of the squared differences across all data points. 

Squaring the differences has two primary functions: it penalizes greater errors more 

severely than smaller errors, and it assures that all differences are positive. A lower MSE 

indicates greater model performance, projected values are closer to actual values. MSE is 

one of the metrics utilized in the research to assess the performance of the wind energy 

prediction model[28], [44]. 

3.4.3 The Model Limitation 

The performance of the DDN model was assessed using two key metrics in regression 

tasks: Mean Squared Error (MSE) and MAE. MSE, defined as the average of squared 

differences between predicted and actual values, and MAE, which represents the average 

of absolute differences, were used as quantitative indications of the model's accuracy. The 

use of these criteria was intended to evaluate how effectively the DDN model reflected the 

complicated patterns in the Texas turbine dataset. The obtained results were judged 

promising, with a low MSE and MAE, indicating minor differences between anticipated 

and ground truth values. However, acknowledging the importance of complete model 

evaluation, the statement emphasizes the need for additional research. This includes testing 

the model on diverse datasets beyond the Texas turbine data and exploring additional 

evaluation metrics to provide a more nuanced understanding of the model's strengths and 
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weaknesses. The acknowledgment of "promising results" signifies an initial positive 

outcome while emphasizing the ongoing need for rigorous testing and validation to ensure 

the model's robustness across various wind energy prediction scenarios. 

3.4.4 Model evaluation before optimization.  

Initially, the dataset is preprocessed by scaling the features using a MinMaxScaler. A neural 

network model is then specified as a function, which allows for greater flexibility in altering 

hyperparameters. The architecture incorporates numerous thick layers with set activation 

functions and dropout rates to reduce overfitting. 

The KerasRegressor wrapper is used to incorporate the neural network model into the 

scikit-learn framework, making it compatible with GridSearchCV. The hyperparameter 

grid is defined to include learning rates, dropout rates, batch sizes, and epochs. The grid 

search is then performed using three-fold cross-validation to assess the model's 

performance on various subsets of the training data. 

Following the grid search, the best hyperparameters and their mean squared error (MSE) 

are extracted. The determined optimal hyperparameters provide insight into the setup that 

minimizes prediction errors. This information is critical to improving the model's accuracy 

and generalizability. The final output shows the best hyperparameters and their related 

MSE, giving a full overview of the grid search results and enabling further development of 

the neural network model for better regression performance. 

3.5 Summary 

The chapter describes a detailed study design for forecasting wind energy using the DDN 

model optimized with the Grid Search algorithm. The introduction discusses the global 

energy landscape, highlighting the importance of sustainable options owing to 

environmental concerns. Wind energy emerges as a possible alternative, but good 

forecasting is critical due to the nonlinear relationship between wind speed and power 

generation. 

The research philosophy takes a pragmatic approach, combining theoretical knowledge and 

real-world applications. The goal is to anticipate wind energy using the Texas Turbine 

dataset, deep learning, and Grid Search. The objectives include a literature review, model 

development, optimization, performance evaluation, visualization, and comparison to 

current models. 
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The research strategy takes a quantitative approach, focusing on numerical data and 

statistical analysis. A thorough literature review preceded the development and optimization 

of the DDN model. The model's architecture, parameters, and design are thoroughly 

detailed, including dropout layers for regularization. Mean Squared Error (MSE) and MAE 

are two common evaluation measures. 

Limitations acknowledge the need for more comprehensive dataset testing and evaluation 

metrics. Prior to optimization, the model is evaluated by preprocessing, defining the neural 

network, utilizing KerasRegressor with GridSearchCV, and extracting the ideal 

hyperparameters. The summary presents an organized and detailed framework for 

improving wind energy forecasts using deep learning and optimization techniques.  
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CHAPTER 4: Results and Discussions 

This chapter explores the complexities of wind energy forecasting, which is crucial for 

advancing sustainable energy solutions. The sections that provide a comprehensive 

overview of the various elements that contribute to the development and evaluation of a 

sophisticated forecasting model. From the initial introduction highlighting the global 

energy landscape and the growing importance of wind energy, progressing to a detailed 

evaluation of the model's performance metrics, key parameters and dataset characteristics 

are meticulously outlined, emphasizing the importance of data partitioning and 

preprocessing. The neural network architecture is also explored, including its design and 

the rationale behind the choice of specific parameters and techniques. The culmination of 

these efforts is the DDN model, an advanced deep learning approach aimed at enhancing 

the accuracy and efficiency of wind energy forecasting. This framework not only 

underscores the potential of deep learning in renewable energy applications but also paves 

the way for more reliable and precise energy management strategies. 

4.1 Introduction 
In recent years, the global energy landscape has undergone a significant transformation 

driven by technological advancements and growing environmental concerns [18]. The 

escalating demand for electricity, coupled with the urgent need to mitigate the adverse 

effects of fossil fuel consumption, has propelled the exploration of alternative energy 

sources [26]. Among these, wind energy has emerged as a promising solution due to its 

renewable nature and minimal environmental impact [24]. As a result, the wind power 

industry has witnessed substantial growth, contributing significantly to the global energy 

mix [32]. In 2020, the installed capacity of wind power worldwide reached an impressive 

93 GW, marking a substantial increase of 52.96% compared to the previous year [23]. This 

growth underscores the pivotal role of wind energy in addressing energy needs and 

sustainability challenges. However, despite its potential, the efficient harnessing of wind 

energy poses challenges, particularly in accurately forecasting energy production [7]. The 

nonlinear relationship between wind speed and power generation, compounded by the 

complexity and uncertainty of natural wind factors, necessitates sophisticated forecasting 

methods [20]. To address these challenges, this study introduces a novel deep learning-

based approach called DDN. Leveraging advancements in deep learning and optimization 

techniques, the DDN model aims to enhance the efficiency and accuracy of wind energy 

forecasting [46]. By integrating grid search optimization, the model systematically 
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identifies optimal hyperparameters, thereby improving predictive performance [22]. The 

significance of this research lies in its potential to revolutionize wind energy forecasting by 

providing a reliable and precise tool for energy producers and policymakers [19]. By 

accurately predicting energy production from wind turbines, the DDN model can facilitate 

more efficient energy management and distribution, contributing to the transition towards 

a sustainable energy future [21]. 

4.2 Dataset 

In the context of wind energy prediction, the dataset plays a crucial role as it serves as the 

foundation for training and evaluating forecasting models. Here's an elaboration on the 

dataset specifically tailored for wind energy prediction. The dataset utilized for wind energy 

prediction typically comprises various meteorological and environmental variables 

collected over a period. These variables include. 

Wind Speed: Wind speed is one of the primary factors influencing the generation of wind 

energy. It represents the velocity of the wind, measured typically in meters per second (m/s) 

or kilometres per hour (km/h) [75]. 

Wind Direction: Wind direction indicates the compass direction from which the wind is 

blowing. It is usually measured in degrees, with values ranging from 0° (north) to 360° 

(north again) [29]. 

Air Temperature: Air temperature refers to the degree of hotness or coldness of the air. It 

is measured typically in Celsius (°C) or Fahrenheit (°F) and can impact wind energy 

generation by influencing air density and turbine performance. 

Pressure: Atmospheric pressure, often measured in millibars (mb) or hectopascals (hPa), 

represents the force exerted by the weight of the air above a given point. Changes in 

atmospheric pressure can affect wind patterns and thus wind energy generation [59]. The 

given dataset is visualised as given in Figure 4.1. 
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Figure 4.1: Texas Turbine dataset 

The dataset is carefully partitioned into three distinct subsets, each playing a vital role in 

the model development and assessment process. The training set, comprising 80% of the 

data with dimensions of 7008 rows and 6 columns, serves as the primary source for the 

model to learn intricate patterns and correlations within the dataset. Meanwhile, the testing 

subset, representing 10% of the data (876 rows x 6 columns), remains segregated during 

the model's training phase and serves as a pivotal benchmark for evaluating its performance 

on novel, unseen data instances. Additionally, the validation set, also consisting of 10% of 

the data (876 rows x 6 columns), serves to fine-tune model parameters, ensuring heightened 

robustness and dependability. This meticulous pre-processing, involving deliberate 

allocation into training, testing, and validation sets, establishes a solid groundwork, 

fostering precise insights and trustworthy model training outcomes. 

4.3 Model Architecture 
The proposed DDN model is structured with eight dense layers, each utilizing the Rectified 

Linear Unit (ReLU) activation function except for the output layer, which remains un 

activated for direct regression. To enhance generalization and prevent overfitting, dropout 

regularization is incorporated after each dense layer, with a dropout rate set at 0.4, randomly 

deactivating 40% of neurons during training sessions. 
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Throughout the training process, the DDN model undergoes 50 epochs with a batch size of 

128 and a validation split of 0.1. The learning rate is set at 0.001, and the Adam optimizer 

is utilized along with an early call-back mechanism to optimize model performance. The 

model employs both Mean Squared Error (MSE) and MAE loss functions to measure the 

discrepancy between predicted and actual values. The layer architecture along with number 

of neurons is given in Figure 4.2.  

 

Figure 4.2: Proposed Model DDN architecture. 
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In Figure 4.2, a neural network architecture has shown which begins with an input layer 

that accepts data with 4 features. Following this, the network comprises a series of dense 

(fully connected) layers interspersed with dropout layers for regularization. The first dense 

layer transforms the 4 input features into 512 neurons, which is then followed by a dropout 

layer to prevent overfitting by randomly setting a fraction of input units to zero during 

training. This pattern continues with subsequent dense layers progressively reducing the 

number of neurons from 512 to 256, then 128, 64, 32, 16, and finally 8, each followed by 

a corresponding dropout layer. The final dense layer reduces the number of neurons from 

8 to 1, producing the network's output. This configuration of dense and dropout layers aims 

to build a robust model that can generalize well to new data, making it suitable for tasks 

such as regression or binary classification. 

4.4 Results and Discussion 

The training and validation curves depicted in Figure 4.3 provide crucial insights into the 

performance and generalization capability of the DDN model. 

 

Figure 4.3: Training and validation curve 

Initially, during the early epochs, both the training and validation losses decrease steadily, 

indicating that the model is effectively learning from the training data and improving its 

predictive performance. This phase reflects the model's ability to capture underlying 

patterns and relationships present in the training dataset. As training progresses, the training 

loss continues to decrease gradually, indicating that the model is refining its parameters to 

minimize errors on the training data. However, it is essential to monitor the validation loss 
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concurrently. If the validation loss begins to increase while the training loss decreases, it 

may suggest that the model is overfitting the training data, capturing noise rather than 

genuine patterns. 

In the case of the DDN model, the convergence of training and validation losses signifies 

effective generalization. A steady decrease in both losses without significant divergence 

suggests that the model is learning meaningful representations from the data while 

maintaining its ability to generalize well to unseen examples. Moreover, if there is a 

substantial gap between the training and validation losses, it may indicate that the model is 

overfitting, as it performs significantly better on the training data compared to the 

validation data. Conversely, if the validation loss is consistently lower than the training 

loss, it may suggest that the model is underfitting, failing to capture essential patterns in 

the data. Overall, a close examination of the training and validation curves allows for the 

assessment of model performance, ensuring that it achieves the right balance between 

learning from the training data and generalizing well to unseen examples. In the case of the 

DDN model, the convergence of training and validation losses indicates its effectiveness in 

learning from the data while maintaining robust generalization capabilities. Figure 4.4 

reflects the training MSE and Training MAE along with the Training loss and validation 

loss.  

 

Figure 4.4: Training MAE, MSE, training and validation loss. 
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Figure 4.4 provides valuable insights into the model's learning process and its ability to 

generalize to new, unseen data. The convergence of the training and testing curves indicates 

that the model is effectively learning underlying patterns present in the training data and 

can apply them to unseen examples. This convergence suggests that the model's 

performance on the testing data is consistent with its performance on the training data, 

indicating robust learning and generalization capabilities. Moreover, Figure 8 offers a 

comprehensive overview of the model's performance metrics, including MAE, MSE, 

training loss, and validation loss, across the training epochs. These metrics provide a 

detailed understanding of how the model's performance evolves over the course of training. 

The MAE and MSE metrics quantify the model's accuracy by measuring the average 

absolute difference and the average squared difference, respectively, between the predicted 

and actual values. A decreasing trend in both MAE and MSE indicates that the model is 

improving its predictive accuracy as training progresses. Similarly, the training and 

validation loss curves depict the evolution of the model's performance in terms of 

minimizing errors during training. A decreasing trend in both training and validation loss 

indicates that the model is effectively learning from the data and minimizing errors. The 

convergence of these curves suggests that the model is not overfitting or underfitting the 

data but rather achieving a balance between learning from the training data and generalizing 

well to unseen examples. 

Grid Search Cross-Validation is a systematic approach used to find the best combination 

of hyperparameters for a machine learning model. In the context of the proposed DDN 

model, Grid Search Cross-Validation is employed to identify the hyperparameter settings 

that minimize both Mean Squared Error (MSE) and MAE on the training data. During the 

Grid Search process, various combinations of hyperparameters are explored systematically. 

These hyperparameters may include parameters such as learning rate, dropout rate, number 

of neurons in each layer, and so on. For each combination of hyperparameters, the model 

is trained and evaluated using cross-validation, where the dataset is divided into multiple 

subsets, and the model is trained on different subsets and validated on the remaining subset. 

This helps to ensure that the model's performance is robust and not dependent on a 

particular subset of data. The table indicate the improvement in term of percentage.  
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Table 4.1: DDN before and after grid search 

Metric  DDN before Grid 

search  

DDN after Grid 

search  

Percentage (%) improved 

MSE 0.0785 0.0047 94.013 

MAE 0.2376 0.0548 76.8474 

 

In 

 

Figure 4.5, the graph provides a detailed visual depiction of the MAE and MSE values, 

offering insights into the model's performance both before and after optimization. By 

comparing the two sets of metrics displayed in the graph, viewers can easily discern the 

impact of optimization on the model's accuracy. The before optimization values serve as a 

baseline, indicating the initial performance levels, while the after-optimization values 

demonstrate the enhancements achieved through the refinement process. This comparison 

aids in understanding the effectiveness of the optimization techniques employed and 

highlights the tangible improvements in prediction accuracy. 
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Figure 4.5: DDN model before and after optimization. 

In Figure 4.6, the scatter plot vividly illustrates the relationship between the predicted 

values produced by the Denoising Deep Network (DDN) and the ground truth values 

extracted from the Texas Turbine dataset. Each data point on the plot symbolizes a specific 

data sample, showcasing the model's performance across the entire dataset. The red dashed 

line, representing the ideal prediction line, serves as a reference point for perfect alignment 

between predicted and actual values. By examining the deviations of data points from this 

ideal line, a nuanced understanding of the model's accuracy and precision in predicting 

wind energy output is gained, with the black line indicating the predicted values. This visual 

comparison provides valuable insights into the model's ability to generalize and make 

reliable predictions on unseen data, thereby aiding in the assessment of its overall efficacy 

and performance. 
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Figure 4.6: Predicted Vs True Values 

In Figure, residual plots are utilized to evaluate the performance of a regression model by 

visually depicting the discrepancies between the predicted values generated by the model 

and the actual observed values. Each data point on the plot represents the difference, or 

residual, between the predicted and observed values. The red dashed line at zero serves as 

a reference point, indicating perfect alignment between predicted and observed values. 

Deviations above or below this line signify overestimation or underestimation, 

respectively, by the model. By analysing the distribution of residuals across the range of 

observed values, patterns such as heteroscedasticity, non-linearity, and the presence of 

outliers can be identified. These insights are crucial for assessing the reliability of the model 

and making any necessary adjustments to improve its predictive accuracy. 
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Figure 4.7: Residual plot of DDN model. 

 

 

 

 

4.5 Summary 

In this study, the development of a Deep Dense Network (DDN) model designed is 

presented to enhance the efficiency of wind energy forecasting. Utilizing a combination of 

dense and dropout layers, a Grid Search Optimization is employed to fine-tune the model’s 

parameters. The analysis is based on the Texas turbine dataset, which includes four key 

variables. 

This research builds upon prior literature, which suggests that simpler models with dense 

layers and dropout regularization are more practical than complex, computationally 
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intensive models. The findings confirm that this streamlined approach provides comparable 

results while significantly reducing computational overhead. 

Grid Search Optimization allowed us to identify optimal hyperparameters, such as learning 

rate, activation function, batch size, dropout rate, and number of epochs. Fine-tuning these 

parameters led to substantial improvements in the model’s predictive performance. 

Specifically, the Mean Squared Error (MSE) decreased from 0.0785 to 0.0047, representing 

a 94.013% improvement, while the MAE reduced from 0.2376 to 0.0548, reflecting a 

76.8474% improvement. Additionally, the model's performance is compared to existing 

algorithms using RMSE and MAE as comparative measures. 

Dense layers are crucial in neural networks for learning and representing complex data 

interactions. By combining linear transformations with nonlinear activation functions, 

these layers facilitate hierarchical feature learning and adaptive parameter adjustments. The 

inclusion of dropout layers helps prevent overfitting by randomly deactivating neurons 

during training, promoting more generalized data representations and enhancing 

performance on unseen data. 

In comparison to more complex architectures, the DDN model demonstrates robustness 

and superior performance. Future research will focus on expanding the model’s depth and 

width using residual blocks and evaluating its effectiveness with larger datasets.  
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CHAPTER 5: Conclusion and Future Work 

Renewables have grown to be of prime interest to the today’s world because of their 

promising solution to the existing challenges faces by the world. Wind energy is one of the 

largest sources of renewable energy. Due to the variable nature of the environment, the 

wind energy never remains constant and keeps on changing depending on time, locations, 

weather, and other environmental factors. Forecasting involves the prediction of wind 

energy available at a certain time or within a certain period. Wind energy forecasting helps 

better planning and utilisation of resources. Furthermore, the forecasting provides an 

important insight to the economic viability of certain renewable energy project by shedding 

light on the available energy to be harvested in future. While conventional forecasting 

involves studying and predicting the climatic changes e.g. clouds, rains, wind speeds etc; 

however, the conventional forecasting is static and does not involve any intelligent decision 

making without human intervention. AI can prove to be a valuable tool for smart and 

continuous forecasting based on the historical data and patterns. 

The project streamlines its aims and objectives with this problem and performed a research 

and design of dense deep neural network for forecasting purposes. The model was 

extensively tested with benchmark results and the performance. 

5.1  Key Findings and Model Performance 

The proposed DDN model, which incorporates dense layers and dropout regularization, 

was successfully implemented and tested using a comprehensive dataset of wind energy 

variables, including wind speed, wind direction, wind pressure, and wind temperature. The 

model's architecture comprises eight densely connected layers with neurons in a descending 

hierarchy (512, 256, 128, 64, 32, 16, 8, and 1) and employs the Rectified Linear Unit 

(ReLU) activation function, except for the output layer, which remains unactivated for 

direct regression. Dropout regularization with a rate of 0.4 was applied to mitigate 

overfitting and improve generalization. Training was conducted using the 'mean squared 

error' (MSE) loss function to refine the model’s weights and biases. Performance metrics, 

including MSE and MAE, demonstrated substantial improvements due to the Grid Search 

Optimization. Specifically, the MSE decreased from 0.0785 to 0.0047, representing a 

94.013% reduction, while the MAE improved from 0.2376 to 0.0548, reflecting a 

76.8474% decrease. This indicates that the optimization process significantly enhanced the 

model’s predictive accuracy. 
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5.2 Discussion of Results 

Figures and graphs in the study illustrate the model's performance. Figure 4-3 shows a 

steady decrease in both training and validation losses, indicating effective learning from 

the training data and improved generalization to unseen examples. Figure 4-4 confirms the 

convergence of training and validation metrics, suggesting robust learning and performance 

consistency. Figure 4-5 provides a visual comparison of MAE and MSE values before and 

after optimization, highlighting the positive impact of Grid Search Cross-Validation on the 

model’s accuracy. The comparison underscores the enhancements achieved through the 

refinement process. Comparative analysis with the Texas Turbine dataset (Figure 4-6) 

confirms that the DDN model accurately forecasts wind energy generation. Figure 4-7 

illustrates the alignment between expected and observed values, demonstrating high 

accuracy with minimal deviations. 

5.3   Contributions and Implications 

The study highlights the potential of deep learning approaches, particularly the DDN 

model, in enhancing wind energy forecasting. The findings suggest that DDN, with its 

ability to capture complex temporal patterns and dependencies, is a promising tool for 

accurate prediction tasks. This model offers practical applications in various fields where 

precise forecasting is crucial, including renewable energy management and economic 

viability assessment. 

5.4 Future directions 

Renewable energy and deep learning are rapidly evolving fields with considerable potential 

for further research. Despite recent advancements, several critical research gaps persist, 

offering numerous opportunities for exploration. Based on the current study, the following 

future research directions are proposed: 

1. Expansion of Dataset Size and Quality: 

o Enhancing Data Availability: Deep learning models, particularly dense 

networks, require extensive and diverse datasets to achieve high forecasting 

accuracy. Future research should focus on acquiring larger datasets from 

various geographical regions and operational contexts to improve model 

performance. 

o Standardization and Quality Assurance: Developing techniques for 

standardizing and ensuring the reliability of datasets is crucial. Research 
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should address methods for data cleaning and consistency to enhance the 

robustness and generalizability of forecasting models. 

2. Optimization of Hyper-Parameters: 

o Advanced Optimization Techniques: The process of selecting optimal 

hyper-parameters can be resource intensive. Future work should explore 

advanced optimization methods, such as automated hyper-parameter tuning 

techniques (e.g., Bayesian optimization, genetic algorithms) to streamline 

this process. 

o Resource Efficiency: Investigating approaches to reduce the computational 

resources and time required for hyper-parameter tuning, including parallel 

computing and cloud-based solutions, will be beneficial. 

3. Variable Selection and Impact Analysis: 

o Feature Engineering: The performance of forecasting models is highly 

sensitive to the selection of independent variables. Future research should 

develop systematic approaches for feature selection and engineering to 

identify the most impactful variables. 

o Impact Assessment: Conduct studies to assess how the inclusion or 

exclusion of specific variables affects model outcomes. This will help in 

understanding their significance and improving model efficiency. 

4. Geographical and Temporal Scope Enhancement: 

o Diverse Regional Data: The applicability of forecasting models is often 

limited by the geographical scope of available data. Future research should 

aim to gather and analyze data from diverse regions to broaden the 

applicability of the models. 

o Addressing Temporal Variability: Incorporating long-term and seasonal 

data to account for temporal variations in energy trends will enhance model 

robustness and accuracy. 

5. Development of Hybrid Renewable Energy Systems: 

o Integration of Solar and Wind Energy: Combining solar and wind energy 

sources in hybrid systems can balance energy supply throughout the day and 

night. Future research should focus on designing and optimizing forecasting 

models for hybrid systems to improve efficiency and reliability. 

o System Design and Optimization: Explore the design and operational 

strategies for hybrid renewable energy systems, including energy storage 



 70 

solutions and grid integration. Research in this area can lead to more 

efficient and cost-effective energy systems. 

6. Exploration of Advanced Model Architectures: 

o Innovative Architectures: Investigate advanced deep learning 

architectures, such as attention mechanisms, transformers, and hybrid 

models, to enhance forecasting accuracy and efficiency. 

o Ensemble Learning: Study the application of ensemble learning 

techniques, where multiple models are combined to improve overall 

performance and robustness. 

5.5  Conclusion  

This study has developed and optimized a Deep Dense Network (DDN) model to 

significantly enhance wind energy forecasting accuracy. The DDN model, featuring dense 

layers and dropout regularization, demonstrated substantial performance improvements 

through Grid Search Optimization. Specifically, the Mean Squared Error (MSE) decreased 

by 94.013% and the MAE improved by 76.8474%. These results highlight the effectiveness 

of the DDN model in providing precise and reliable wind energy forecasts. 

The model's architecture and optimization process have proven superior compared to other 

neural network approaches, such as LSTM networks and GRUs, showcasing its robustness 

and efficiency. The study underscores the potential of deep learning techniques to advance 

wind energy forecasting and support effective resource planning and economic viability 

assessments for renewable energy projects. 

Overall, the findings confirm that the DDN model is a powerful tool for accurate wind 

energy prediction, offering valuable insights and practical applications for the renewable 

energy sector. 
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Appendix  

Code of the proposed DDN Model 

Uploading the dataset 

# Important Libraries 

from google.colab import drive 

import pandas as pd  

from google.colab import files 

#Mount the drive 

drive.mount('/content/drive') 

# GPU information 

!nvidia-smi 

uploaded = files.upload() 

#Read the file 

df = pd.read_csv('TexasTurbine.csv') 

 

 

 

Preprocess the dataset  

#check for missing values/ cleaning the file 

df.isnull().values.any() 

 

#Visualise the Give n Dataset, Wind speed, Wind Direction, Air 

pressure, Air temperature 

import matplotlib.pyplot as plt 

fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(20, 5)) 

# Scatter plot of system power generated vs. wind speed 

axes[0].scatter(df['System power generated | (kW)'], df['Wind speed 

| (m/s)']) 

axes[0].set_xlabel('System Power Generated (kW)') 

axes[0].set_ylabel('Wind Speed (m/s)') 

axes[0].set_title('System Power Generated vs. Wind Speed') 

 

# Scatter plot of system power generated vs. wind direction 

axes[1].scatter(df['System power generated | (kW)'], df['Wind 

direction | (deg)']) 

axes[1].set_xlabel('System Power Generated (kW)') 

axes[1].set_ylabel('Wind Direction (deg)') 

axes[1].set_title('System Power Generated vs. Wind Direction') 

 

# Scatter plot of system power generated vs. pressure 

axes[2].scatter(df['System power generated | (kW)'], df['Pressure | 

(atm)']) 

axes[2].set_xlabel('System Power Generated (kW)') 

axes[2].set_ylabel('Pressure (atm)') 

axes[2].set_title('System Power Generated vs. Pressure') 
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# Scatter plot of system power generated vs. air temperature 

axes[3].scatter(df['System power generated | (kW)'], df['Air 

temperature | (\'C)']) 

axes[3].set_xlabel('System Power Generated (kW)') 

axes[3].set_ylabel('Air Temperature (\'C)') 

axes[3].set_title('System Power Generated vs. Air Temperature') 

# Adjust the layout 

plt.tight_layout() 

# Show the plots 

plt.show() 

 

Split the dataset in training, validation and testing  

from sklearn.model_selection import train_test_split 

 

# Split the dataset into training and temporary sets (80% for 

training + 20% for temporary) 

train_temp, test_val = train_test_split(df, test_size=0.2, 

random_state=42) 

 

# Split the temporary set into testing and validation sets (50% each 

of the temporary set) 

test, val = train_test_split(test_val, test_size=0.5, 

random_state=42) 

 

# Calculate the percentage of data for each set 

total_samples = len(df) 

train_percentage = len(train_temp) / total_samples * 100 

test_percentage = len(test) / total_samples * 100 

val_percentage = len(val) / total_samples * 100 

 

# Print the sizes and percentages of each set 

print("Training set size:", len(train_temp), 

f"({train_percentage:.2f}%)") 

print("Testing set size:", len(test), f"({test_percentage:.2f}%)") 

print("Validation set size:", len(val), f"({val_percentage:.2f}%)") 

 

from sklearn.model_selection import train_test_split 

 

# Split the dataset into training and temporary sets (80% for 

training + 20% for temporary) 

train_temp, test_val = train_test_split(df, test_size=0.2, 

random_state=42) 

 

# Display the dimensions of the sets 

print("Training set dimensions:", train_temp.shape) 

print("Testing set dimensions:", test.shape) 
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print("Validation set dimensions:", val.shape) 

 

Proposed DDN model  

from keras.layers import BatchNormalization 

from keras.optimizers import Adam 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

from sklearn.preprocessing import MinMaxScaler 

from keras.models import Sequential 

from keras.layers import Dense, Dropout 

from keras.optimizers import Adam 

from keras.callbacks import EarlyStopping 

 

# Preprocess the data 

scaler = MinMaxScaler() 

scaled_train = scaler.fit_transform(train_temp.iloc[:, 1:])  # Scale 

features, excluding the timestamp 

 

# Split the features and target variable 

X_train = scaled_train[:, 1:]  # Input features 

y_train = scaled_train[:, 0]  # Target variable (system power 

generated) 

 

# Scale the test data 

scaled_test = scaler.transform(test.iloc[:, 1:]) 

 

# Split the features and target variable for testing 

X_test = scaled_test[:, 1:]  # Input features 

y_test = scaled_test[:, 0]  # Target variable (system power 

generated) 

 

# Build the ANN model with increased complexity 

model = Sequential() 

model.add(Dense(512, activation='relu', 

input_shape=(X_train.shape[1],))) 

model.add(Dropout(0.4)) 

model.add(Dense(256, activation='relu')) 

model.add(Dropout(0.4)) 

model.add(Dense(128, activation='relu')) 

model.add(Dropout(0.4)) 

model.add(Dense(64, activation='relu')) 

model.add(Dropout(0.4)) 

model.add(Dense(32, activation='relu')) 

model.add(Dropout(0.4)) 

model.add(Dense(16, activation='relu')) 

model.add(Dropout(0.4)) 

model.add(Dense(8, activation='relu')) 
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model.add(Dropout(0.4)) 

model.add(Dense(1)) 

# Compile and train the model 

learning_rate =1e-1 

optimizer = Adam(learning_rate=learning_rate) 

model.compile(loss='mean_squared_error', optimizer=optimizer, 

metrics=['mse', 'mae']) 

early_stopping = EarlyStopping(patience=10, verbose=0) 

  

Proposed model DDN training  

# Train the model 

history = model.fit(X_train, y_train, epochs=50, batch_size=128, 

validation_split=0.1, callbacks=[early_stopping]) 

 

# Evaluate the model 

y_pred = model.predict(X_test) 

mse = np.mean((y_test - y_pred)**2) 

mae = np.mean(np.abs(y_test - y_pred)) 

print("MSE:", mse) 

print("MAE:", mae) 

 

# Plot the training and validation loss 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.title('Training and Validation Loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

plt.show() 

 


