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Abstract: Leukemia is a malignant disease that impacts explicitly the blood cells, leading to life-
threatening infections and premature mortality. State-of-the-art machine-enabled technologies and
sophisticated deep learning algorithms can assist clinicians in early-stage disease diagnosis. This
study introduces an advanced end-to-end approach for the automated diagnosis of acute leukemia
classes acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML). This study gathered a
complete database of 44 patients, comprising 670 ALL and AML images. The proposed deep model’s
architecture consisted of a fusion of graph theory and convolutional neural network (CNN), with
six graph Conv layers and a Softmax layer. The proposed deep model achieved a classification
accuracy of 99% and a kappa coefficient of 0.85 for ALL and AML classes. The suggested model was
assessed in noisy conditions and demonstrated strong resilience. Specifically, the model’s accuracy
remained above 90%, even at a signal-to-noise ratio (SNR) of 0 dB. The proposed approach was
evaluated against contemporary methodologies and research, demonstrating encouraging outcomes.
According to this, the suggested deep model can serve as a tool for clinicians to identify specific
forms of acute leukemia.

Keywords: ALL; AML; deep learning networks; leukemia; graph

1. Introduction

Leukemia is a hematologic malignancy originating in the bone marrow, characterized
by the excessive generation of abnormal blood cells [1,2]. Leukemia presents flu-like
symptoms such as bleeding, bruising, bone pain, and fever. Leukemia can lead to infection
within the body and, in certain instances, result in untimely mortality [3]. Generally, this
disease is characterized by an elevated count of aberrant blood cells relative to normal cells,
leading to the uncontrolled growth of leukocytes [4]. This condition can be diagnosed at
any age but is more commonly detected in those under 15 and over 55 [5].

Based on 2018 reports, the United States alone has seen over 60,000 new cases of
leukemia, which makes up about 3.5% of all cancer cases in the country. Leukemia is
categorized into four distinct types: AML, ALL, chronic myeloid leukemia (CML), and
chronic lymphocytic leukemia (CLL), as depicted in Figure 1. This disease can spread
to other organs, including the spleen, brain, liver, and kidney, by traveling through the
circulation [6–8]. Leukemia is diagnosed through a blood test or a biopsy involving
bone marrow sampling. Following the blood test, the pertinent pathologist examines the
blood-sample under the microscope and assesses the blood samples by analyzing their
morphology [9,10]. Therefore, the determination of a leukemia diagnosis relies on the
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pathologist’s expertise, experience, and level of weariness [11]. Visual diagnosis has low
accuracy due to the resemblance between healthy and diseased blood samples, requiring
a significant amount of time to complete. The rapid detection of this disease is crucial
to prevent the deterioration of the patient’s health. Hence, an automated approach to
diagnosing leukemia was developed [11]. In light of this, recent research has focused on
developing automated methods for leukemia detection, which will be examined in the
following sections.

Figure 1. Different types of acute leukemia, including (a) AML, (b) ALL, (c) CML, and (d) CLL.

Zhou et al. [12] introduced a comprehensive leukemia diagnosis system that relies
on deep learning networks. The researchers employed CNNs to carry out feature selec-
tion/extraction and classification. The solution devised by these researchers utilized the
end-to-end approach and did not necessitate any further pre-processing. Their proposed ap-
proach achieved an ultimate accuracy of approximately 85%. One of the drawbacks of this
research was the limited precision in classification. Khandkar et al. [13] employed the ALL-
IDB1 and CNMC 2019 databases to categorize two distinct types of leukemia using machine
learning networks. The researchers employed the thresholding approach to classify data
and attained an impressive accuracy rate of 95%. One of the drawbacks of this research was
the high level of computational complexity associated with the approach. Chola et al. [14]
used deep learning to identify and classify eight types of blood cells: basophils, eosinophils,
erythroblasts, immature granulocytes, lymphocytes, monocytes, neutrophils, and platelets.
The researchers compared their suggested model against pre-learned networks such as
DenseNet, ResNet, Inception, and MobileNet and reached a maximum accuracy of 98%.
One of the benefits of this study was the presentation of the eight-class situation, while
one of the drawbacks was the sizeable computational volume. Bhute et al. [15] employed
deep learning networks to categorize acute leukemia. The researchers utilized pre-trained
networks to train their model. The researchers used pre-trained networks such as Inception
V3, ResNet50, and VGG16.

The classification achieved a remarkable accuracy of 90%. One advantage of this re-
search was its low computer complexity, whereas one disadvantage was the small database
available for evaluation. Rastogi et al. [16] proposed a new two-step approach for classi-
fying leukocytes in the diagnosis of acute leukemia. Their proposed model was built on
Leufeutx, which is a modification of pre-trained VGG networks. These researchers acquired
a detection accuracy of approximately 96% using the ALL-IDB2 database. Dese et al. [17]
proposed a machine learning-based automatic diagnosis system for acute leukemia. Their
approach was capable of categorizing four common forms of leukemia. One of the benefits
of this study was the ability to achieve 95% classification accuracy, albeit the restricted
number of classes in the experiment can be considered a drawback.

Ansari et al. [18] utilized deep learning networks to automate the identification of acute
leukemia. Using a combination of deep convolutional networks and type 2 fuzzy functions,
the researchers could effectively differentiate between the two categories of AML and ALL.
The use of this method resulted in an accuracy rate that surpassed 90%. Binary classification
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is one of the research problems. Abhishek et al. [19] introduced a novel database consisting
of 750 images derived from blood microscopic smears. The researchers’ collection com-
prised photos of chronic lymphocytic leukemia, acute lymphoblastic leukemia, chronic
myeloid leukemia, and acute myeloid leukemia. A modified VGG16 pre-trained network
was utilized to classify these photos. Their modified architecture incorporated alterations
in the last three convolutional layers, resulting in an enhanced classification accuracy of
84%. One of the drawbacks of the research was the absence of presenting several scenarios
to categorize the classes.

Despite extensive studies in the automatic diagnosis and categorization of acute
leukemia, certain limitations still exist. Several researchers employed manual feature
selection/extraction techniques, necessitating a fundamental understanding of the topic.
Furthermore, studies have used deep learning techniques, such as utilizing pre-trained
networks, to categorize various forms of leukemia accurately. Nevertheless, their suggested
networks lack end-to-end functionality, exhibit computational complexity, and are not
operational. Moreover, a notable obstacle in prior research can be attributed to the need
for a standardized benchmark database. Many current databases frequently have limited
samples and are not easily accessible. The present study aims to address the obstacles above
by employing a fusion of graph theory and deep convolutional networks by acquiring an
accessible database.

The contribution of this study can be summarized as follows:

1. Providing a standard database based on two classes, ALL and AML.
2. Presenting an automatic (end-to-end) model for diagnosing acute leukemia using

graph theory and deep convolutional networks.
3. Providing the highest level of accuracy when classifying two groups, ALL and AML.

The remaining portion of this article is structured in the following manner:
The second section analyzes the algorithms employed in this investigation. The

third section delineates the recommended methodology of this research, encompassing
the specifics of data registration, architectural design, and other relevant aspects. The
fourth section discusses the simulation findings and compares the current study with
algorithms and recent research. Lastly, the fifth section pertains to the conclusion.

2. Materials and Methods

This part offers a comprehensive elucidation of generative adversarial networks
(GANs) and the use of graph theory in deep CNNs.

2.1. General Model of Generative Adversarial Networks

GANs have garnered considerable interest in recent years as a crucial subfield of deep
learning. In 2014, J. Goodfellow and colleagues presented these networks [20,21]. GANs
are utilized in machine learning to address unsupervised learning tasks. These networks
have two models that autonomously detect and recognize patterns in the input data. The
two models are commonly referred to as the discriminator and the generator. The discrimi-
nator and the generator engage in a competitive process to examine, record, and replicate
alterations in the dataset. GANs can generate new samples that are rationally selected from
the original dataset. The discriminator is trained using synthetic data generated by the gen-
erator. The generator acquires the capacity to produce practical data that may be utilized.
Negative training samples refer to the data generated specifically for the discriminator. The
generator produces a sample using a random noise vector of a predetermined length as
input. The main goal of the generator is to trick the discriminator into correctly labeling
its output. The discriminator distinguishes between real data and bogus data generated
by the generator. The discriminator has two separate sources of training data. During the
training process, the generator generates synthetic samples, which are then classified as
negative samples by the discriminator. In contrast, genuine data samples are classified as
positive samples.
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Mathematically, GANs aim to minimize the following equation during the train-
ing phase:

log(1 − D(G(Z)))
minmax

GD V(G, D) = Ex − Pdata[log D(x)]
+Epz(z)[log(1 − D(G(Z))]

(1)

In the above equation, the discriminator (D) must be obtained to enable a distinction
between genuine and counterfeit data. The equation previously mentioned is unsolvable
using a mathematical statement and requires iterative approaches. To mitigate overfitting,
the generator function (G) is tuned iteratively, with each optimization of function D [20,21]
occurring once per k iterations.

2.2. General Model of Graph Convolutional Network

Building models that are capable of data analysis, optimization [22,23], spatial encod-
ing [24], spatial ability [25–27], learning content management systems [28,29], prediction,
and other tasks is the aim of machine learning [30,31] and its subsets, including federated
learning [32–34], recurrent neural networks [35], deep learning networks, etc. In this regard,
Michael Deferard and his colleagues first introduced the fundamental notion of the graph
convolutional network. The researchers utilized signal processing techniques in graph
spectral theory for the first time [35]. This enabled the development of convolutional
functions and the application of convolutional networks in graph theory. The adjacency
and degree matrices hold particular importance in graph theory. An adjacency matrix
establishes connections between each vertex in the graph.

Furthermore, the degree matrix can be derived from the adjacency matrix. The diago-
nal elements of this matrix, which is a diagonal matrix, are equivalent to the total of the
edges linking to the corresponding vertex of the matrix. The degree matrix can be denoted
as D ∈ RN×N and the graph matrix as W ∈ RN×N , where the i-th diagonal element of the
degree matrix is defined as follows [36]:

Dii = ∑
i

Wij (2)

The Laplacian matrix can be alternatively expressed using the following equation:

L = D − W ∈ RN×N (3)

L = UΛUT (4)

As stated in the above equation, the Laplacian matrix is formed by subtracting the degree
matrices from the adjacency matrix. The matrix is utilized for the computation of graph
basis functions. The basis functions of a graph can be derived by applying Singular Value
Decomposition (SVD) to the Laplacian matrix. The Laplacian matrix can be defined by
considering the matrix of eigenvectors and the matrix of singular values, as expressed in
Equation (5). The eigenvectors of the Laplacian matrix are represented by the columns of
the eigenvector matrix, as stated in Equation (5). The Fourier transform can be computed
using these eigenvectors. Fourier bases can be defined by having diagonal eigenvalues that
include Λ = diag([λ0,...,λN−1]), as expressed by the following relationship:

U = [u0, . . . , uN−1] ∈ RN×N (5)

To enhance comprehension, the Fourier transform and inverse Fourier transform of a signal,
such as the one depicted, can be precisely specified in Equations (6) and (7) correspondingly:

q̂ = UTq (6)

q = UUTq = Uq̂ (7)
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q̂, as defined by Equation (6), denotes the Fourier transform of the graph. Furthermore, it is
feasible to obtain the feature vector for a signal, denoted as q, by utilizing Fourier bases and
the Fourier transform of the graph, as indicated by Equation (7). The graph convolution
operator can be computed by convolving two signals in the graph domain using the Fourier
transform of each signal. The convolution of two signals, z and y, using the operator ∗g, is
defined as the following relationship to enhance comprehension:

z∗g = U((UTz)⊙ (UTy)) (8)

The equation above uses the g() filter function to define a graph convolution operator with
neural networks. Based on the above equation, z represents the version filtered by g(L).

z∗g = U((UTz)⊙ (UTy)) (9)

Graph convolution can be defined by utilizing the Laplacian matrix and dividing it into
singular values and eigenvectors [36,37].

y = g(L)z = Ug(Λ)UTz
= U(g(Λ))⊙ (UTz)
= U(UT(Ug(Λ)))⊙ (UTz)
= z ∗g (Ug(Λ))

(10)

3. Proposed Model

This part will comprehensively explain how to register the proposed database, perform
data pre-processing, construct a graph, design a network architecture, optimize parameters,
and allocate data. This study’s suggested flowchart is graphically depicted in Figure 2.

Figure 2. The proposed primary framework for the automated diagnosis of acute leukemia involves
categorizing it into two classifications: ALL and AML.

3.1. Data Collection

The dataset included in this work comprised photos of both ALL and AML. These
images were obtained from Ghazi Tabriz Medical Sciences Center under the ethical code
IR.1401.1.15. The suggested database consisted of 44 patients, 12 males and 32 females,
aged 12 to 70 years. Each participant was diagnosed with distinct forms of leukemia, and an
oncologist verified their diagnoses. Before data collection, explicit agreement was acquired
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from all patients to utilize the data gathered in this study. A total of 190 ALL and AML
images were obtained from 44 patients who participated in this study. Out of this quantity
of photographs, five to seven images could be utilized for each individual.

Typically, there were three sequential procedures required to acquire the planned
database. Initially, individuals who were suspected of having leukemia had clinical evalu-
ations and blood tests. If the blood test of the suspect showed any abnormal symptoms,
the next stage involved quantifying the number of healthy cells and blast cells in both the
peripheral blood smear and bone marrow smear. Once the condition was verified, the
advanced-stage oncologist labeled the individual’s blood sample to ascertain the specific
type of acute leukemia (ALL or AML). The leukemia classification was determined by
visually examining and analyzing the morphological features of lymphocyte and monocyte
cells. The data collection process is shown graphically in Figure 3. Figure 4 displays
exemplar images of acute leukemia types ALL and AML for one of the individuals. Based
on this figure, it is evident that visually distinguishing between different kinds of acute
leukemia necessitates specialized expertise, is a time-consuming process, and is susceptible
to mistakes.

Figure 3. The data collection process for ALL and AML classes.

Figure 4. An example of the images taken in the proposed database for (a) ALL and (b) AML.
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3.2. Pre-Processing

This section explains the pre-processing of the images in the proposed database before
entering the proposed architecture. In the first step, because the dimensions of the collected
images were not the same, all the images were changed to 226 × 226 and converted to a
grayscale output format to reduce the computational volume. As indicated in the data
collection section, there was an inequality in the number of class ALL and AML images.
This problem can result in a tendency to favor the dominant class in data classification.
GAN networks were employed in the second step to address this issue to achieve inter-
class balance and data augmentation. To achieve this objective, the generator network
was provided with an input of size 1 × 100, which followed a uniform distribution and
generated an output of size (226 × 226). This network comprised six convolutional layers
with 512, 1024, 2048, 4096, 8192, and 51,076 dimensions. The network utilized the Relu
and hyperbolic tangent activation functions in both the hidden and final layers. The D
network consisted of six completely connected layers that determined the authenticity of
the G-generated image, distinguishing between real and fraudulent. The learning rate in
this network was 0.001, and the number of iterations was set to 100. After utilizing this
network, the number of photos in both classes became equivalent, with the data increasing
from 190 to 500. During the third stage, the data were standardized using the Min–Max
normalizer [38,39] to simplify the training process. The normalization ensured that the data
values were scaled between 0 and 1.

3.3. Graph Design

It was necessary to perform a clustering process [40–42] on the obtained images to
form a graph. To achieve this objective, we obtained a series of superpixels representing
distinct regions inside the image. The size of the regions in this study was considered to
be 150 for clustering based on trial and error. Subsequently, the mean intensity of pixels
inside each extracted region was regarded as the feature vector of each node. Further-
more, the examination of graph edges was conducted by considering the distance and
neighborhood of each area. This process resulted in the creation of a graph adjacency
matrix, where neighboring places were connected to each other, while non-neighboring
areas remained disconnected.

3.4. Architecture

This section introduces a dedicated network architecture for acute leukemia diagnosis.
After the dropout layer was applied, the input was routed to the six graph convolutional
layers enabled by the Relu activation function. Following batch normalization, the data
were passed through a dropout layer to prevent overfitting. Finally, the output was treated
as a flattening layer divided into ALL and AML classes, using a fully connected layer and
the Sofmax. Each node in the constructed graph had a sample because its feature vector
represented the average pixel intensity in each region. The input dimension of the graph
convolution layer was assumed to be 32. The second layer generated a pi-node graph,
with 32 samples per vertex. This operation continued up to the sixth layer and caused the
sixth layer to create an A-node graph with dimensions of two. A vector of elements was
created, with two samples at each node. The samples were then divided into ALL and
AML, based on the number of points scored, using the softmax function. In this context,
P1–6 also denoted the coefficients of Cheby Sheff polynomials, whose value was assumed to
be 1 through trial and error. The method of forming a graph in the proposed architecture is
shown in Figure 5. Also, the details of the different layers are clear in Figure 6. The number
of layers and their dimensions are shown in Table 1.
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Figure 5. Graphic view of the proposed architecture.

Table 1. Layers, weight, bias, and parameters in the proposed architecture.

Layer Shape of Weight
Tensor Shape of Bias Number of

Parameters

Graph Conv1 (P1, 32, 32) 32 1024 × P1 + 32
Batch Norm (32) 32 64
Graph Conv2 (P2, 32, 32) 32 1024 × P2 + 32
Batch Norm (32) 32 64
Graph Conv3 (P3, 32, 32) 32 1024 × P3 + 32
Batch Norm (32) 32 64
Graph Conv4 (P4, 32, 32) 32 1024 × P4 + 32
Batch Norm (32) 32 64
Graph Conv5 (P5, 32, 32) 32 1024 × P5 + 32
Batch Norm (32) 32 64
Graph Conv6 (P6, 32, 2) 2 64 × P6 + 32
Batch Norm (16) 16 32
Softmax - 2 2 × A × P6
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Figure 6. Details of the layers in deeply organized architecture.
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3.5. Training, Validation, and Test Series

The hyperparameters used in the proposed model were organized using the trial and
error method. Table 2 shows the tested parameters for various network sections and the
optimal parameters. Thus, we attempted to consider the most influential parameter in the
proposed model.

Table 2. Choice of suggested network architecture’s ideal parameters.

Parameters Values Optimal Value

Batch Size in GAN 4, 6, 8, 10, 12 12
Optimizer in GAN Adam, SGD, Adamax Adamax
Number of CNN Layers 3, 4, 5, 6 6
Learning Rate in GAN 0.1, 0.01, 0.001, 0.0001 0.001
Number of Graph Conv Layers 2, 3, 4, 5, 6, 7 6
Batch Size in GCN 8, 16, 32 32
Batch normalization Relu, Leaky-Relu Relu
Learning Rate in GCN 0.1, 0.01, 0.001, 0.0001, 0.00001 0.0001
Dropout Rate 0.1, 0.2, 0.3 0.2
Weight of optimizer 4 × 10−3, 4 × 10−4, 4 × 10−5, 4 × 10−6, 4 × 10−7 4 × 10−4

Error function MSE, Cross Entropy Cross Entropy
Optimizer in GCN Adam, SGD, Adadelta, Adamax SGD

To assess the network’s performance, a random selection was made, allocating 70% of
the data from the dataset to the training set, 20% to the validation set, and 10% to the test
set. We also used 5-fold cross-validation to evaluate the data. This criterion ensured that all
the data would be included in both the training and test processes. Figure 7 depicts the
5-fold cross-validation process.

Figure 7. Five-fold cross-validation operation.

4. Results

The results of the proposed model will be presented in this section. The proposed
architecture was implemented using the Python programming language, while the data
preparation simulations were conducted in the MATLAB 2019a environment. In addition,
the findings were produced by the Google Colab Premium edition, which was equipped
with a GPU t60 and 64 GB of RAM.

Two subsections make up this section. To visually demonstrate that the architecture
considered for the current application was in an ideal state, the optimization findings for
the network architecture are displayed in the first section. The outcomes of the suggested
model for the automated detection of lie detectors are shown in the second subsection.
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4.1. Optimization Results

The proposed network architecture was structured according to a process of exper-
imentation, as elucidated in the third part. In the suggested model for the automatic
categorization of acute leukemia, we made efforts to carefully evaluate the most optimal
architecture based on speed and accuracy criteria. In this subsection, we will visually
demonstrate the effectiveness of the proposed architecture.

To construct the proposed architectural framework, we considered the number of
distinct layers and assessed the model based on its speed and correctness. The outcomes
acquired for selecting the number of layers are displayed in Figure 8. Based on the same
data, it was evident that opting for six convolutional graph layers was a cost-effective
choice in terms of both speed and accuracy. The chosen numbers for the Chebyshev
polynomial were also regarded as variables. Figure 9 displays the accuracy results of
the network for various selected numbers of Chebi Sheff. Based on the given figure, it is
evident that selecting P1 − P6 = 1 resulted in a 99% accuracy rate for the suggested model.
As per Section 3, we employed the clustering technique to ascertain the dimensions of
the regions. This approach utilized a heuristic method for graph embedding, involving
iterative experimentation and refinement. Figure 10 depicts the separate diameters of the
regions for two samples, ALL and AML. Table 3 presents the accuracy of the recommended
model based on different aspects of the regions. The table demonstrates that the choice of
100 regions for the proposed model proved successful.

Figure 8. The graph convolutional architecture was tested with various polynomial coefficients.

Figure 9. Different polynomial coefficients were examined in the graph convolutional architecture.
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Figure 10. Specific locations were chosen for the ALL and AML samples for graph embedding.

Table 3. Performance of the proposed model by changing the clustering regions.

Regions 50 100 150 200

Accuracy 94.1% 99.4% 91% 82%

4.2. Simulation Results

This subsection will present the outcomes derived from the suggested model. Figure 11
displays the accuracy and error of the proposed deep network during the training and
validation of the model across 150 iterations. Based on the same data, it was evident that the
model successfully completed the learning process. Furthermore, the model’s validation
confirmed that it attained stability after 120 iterations and obtained an accuracy of 99%.
Furthermore, the model error dropped as the number of repeats increased and eventually
achieved its lowest level. Table 4 displays the results obtained for classifying acute leukemia
into ALL and AML classes, using several evaluation criteria such as accuracy, sensitivity,
precision, specificity, and kappa coefficient. The binary classification of ALL and AML
exceeded 95% for all evaluation indicators. Figure 12 depicts the classification results of ALL
and AML classes using the 5-fold cross-validation criterion. According to this figure, the
classification results in different folds were greater than 95%, indicating that overfitting did
not occur during network training. Figure 13 displays the confusion matrix and statistical
analysis of the receiver operating characteristic (ROC) for categorizing acute leukemia into
two distinct classes, ALL and AML. Based on the scatter matrix, it was evident that the
suggested model misclassified only two samples belonging to class AML. Furthermore,
the statistical analysis demonstrated that the graph fell within the permitted range of
values (0.9–1), thus confirming the accuracy of the binary classification and indicating
that overfitting was not present during the training of the model. Figure 14 displays the
T-SNE graph for both the raw data and the data that were treated in the last layer. Based
on the diagram, it is evident that the samples were distinctly segregated from each other
according to the designed model. The available information indicated that the suggested
model for the automatic diagnosis of ALL and AML leukemia demonstrated high reliability
and promising performance.
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Figure 11. The suggested model’s accuracy and error for training and validation assessed across
150 iterations.

Table 4. The performance of the proposed network assessed using various assessment indices.

Measurement Index Performance (%)

Accuracy 99.4

Sensitivity 99.2

Precision 98.1

Specificity 97.3

Kappa coefficient 0.85
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Figure 12. The classification accuracy results based on 5-fold cross-validation criteria.

Figure 13. Performance of confusion matrix and ROC curve in the proposed model.

Figure 14. Examples of two categories of veracity and falsity for unprocessed data and the fully
connected network layer.

5. Discussion

In this section, the proposed deep model, based on the combination of graph theory
and convolutional networks, will be examined in relation to other recent studies and
algorithms used to classify acute leukemia.

The performance results related to recent studies, the method used, and the proposed
method are presented in Table 5. According to Table 5, as can be seen, the proposed
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method achieved the highest performance compared to previous studies. So, the binary
classification accuracy for the proposed model was 99.4. However, a one-to-one comparison
with prior studies is unfair due to the different databases. Future studies can evaluate their
proposed models using the database collected in this study (which is open-access). To make
the comparison with previous studies fair, we used recent methods such as CNN, ResNet60,
and VGG 16 compared to our model. These methods have been widely used in recent
studies. Accordingly, the proposed database was used to train the CNN, ResNet60, and
VGG 16 networks. Also, the proposed architecture without graph layers was considered
for the CNN architecture. The performance obtained in 150 iterations is shown in Figure 15.
Accordingly, as it is known, the proposed network performed at the best level compared to
other networks, which indicated the optimal architecture.

Table 5. Evaluating the efficacy of the proposed approach against recent research findings.

Ref. Dataset Classification Methods Accuracy

Zhou et al. [12] ALL-IDB1 ALL FCNN 85%

Khandkar et al. [13] ALL-IDB1 and CNMC 2019 ALL, AML Thresholding 95%

Chola et al. [14] HPBC Leukemia types BCNet 98.51%

Bhute et al. [15] Private dataset Leukemia Pre-trained networks (VGG16,
Resnet60, Inception V3) 90%

Rastogi et al. [16] ALL-IDB2 ALL-AML Leufeatx 96.15%

Dese et al. [17] Private dataset Leukemia types Deep learning methods 95%

Ansari et al. [18] Private dataset ALL-AML Type 2 fuzzy + CNN 98%

Abhishek et al. [19] Private dataset Leukemia types VGG 16 85%

Areen et al. [43] ALL-IDB Leukemia types Pre-trained networks (VGG16,
Resnet60, Inception V3) 94%

Awais et al. [44] Private dataset ALL CNNs 99.15%

Proposed method New dataset (ALL + AML) ALL-AML Graph theory + CNN 99.4%

Figure 15. The performance of the proposed network compared to other networks.

The acquired images could contain ambient noise. Therefore, it was imperative to
assess the suggested model in noisy settings. To achieve this objective, we intentionally
added white Gaussian noise to the images at various signal-to-noise ratios (SNRs) and
assessed the effectiveness of the suggested model in this noisy setting. Figure 16 displays
the noise introduced to the photographs at various SNRs. Furthermore, Figure 17 illustrates
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the performance of the suggested model compared to previous models. Based on Figure 17,
it is evident that the proposed network effectively preserved its resilience against ambient
noise. The suggested model’s ability to withstand external influences was advantageous
when utilizing convolutional graph networks and their distinctive architecture.

Figure 16. A sample of images with varying decibels of noise applied.

Figure 17. The performance of the proposed network in relation to other networks.

Utilizing the approach outlined in this paper, employing transfer learning and in-
tegrating filters emerges as the most effective strategy based on current state-of-the-art
methodologies [45]. Utilizing the machine learning approach outlined in this paper has
yielded superior outcomes, emphasizing its efficacy in optimizing results and fortifying the
model’s resilience and adaptability across different platforms [46]. Although the proposed
model performed well, this study, like others, has drawbacks. One of the drawbacks of
this research is the use of binary categorization. In future studies, the number of classes
can be expanded to include more classes such as ALL, AML, and so on, in addition to the
existing classes ALL and AML. Furthermore, it is feasible to evaluate the efficacy of data
augmentation by comparing the performance of traditional algorithms, such as rotation
and shift, with GANs.
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6. Conclusions

This study introduced an advanced end-to-end approach for the automated diagnosis
of acute leukemia classes ALL and AML. The end-to-end deep model consisted of a fusion
of graph theory and CNNs. It included six graph Conv layers and a Softmax layer in the
output for the computation of AML and ALL scores. This work involved the collection of a
standard database consisting of images of blood samples from 44 individuals, together with
their corresponding labels ALL and AML. The evaluation metrics, namely, accuracy and
kappa coefficient, were reported as 99% and 0.85%, respectively. Furthermore, the proposed
model was tested in a noisy environment and demonstrated the ability to maintain an
accuracy rate greater than 90% for categorizing two classes, ALL and AML, across a wide
range of SNRs. Given the model’s outstanding performance, it can serve as a valuable tool
for oncologists to classify different leukemia types accurately.
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