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Abstract—The rapid growth of vehicle-to-network (V2N) com-
munication demands efficient handover decision-making strate-
gies to ensure seamless connectivity and maximum throughput.
However, the dynamic nature of V2N scenarios poses challenges
for traditional handover algorithms. To address this, we propose
a deep reinforcement learning (DRL)-based approach for opti-
mizing handover decisions in dynamic V2N communication. We
leverages the advantages of transfer learning and meta-learning
to generalize across time-evolving source and target tasks. In
this paper, we derive generalization bounds for our DRL-
based approach, specifically focusing on optimizing the handover
process in V2N communication. The derived bounds provide
theoretical guarantees on the expected generalization error of the
learned handover time function for the target task. To implement
our framework, we propose a meta-learning framework, Adapt-
to-evolve (A2E), based on the double deep Q-networks (DDQN)
with Thompson sampling approach. The A2E framework enables
quick adaptation to new tasks by minimizing the error upper
bounds with divergence measures. Through transfer learning, the
meta-learner dynamically evolves its handover decision-making
strategy to maximize average throughput while reducing the
number of handovers. We use Thompson sampling with the
DDQN to balance exploration and exploitation. The DDQN
with The Thompson sampling approach, ensuring efficient and
effective learning, forms the foundation for optimizing the meta-
training process, resulting in improvement in cumulated packet
loss by 48.02 % in highway settings and 46.32 % in rural settings.

Index Terms—V2N, DRL, HO, generalization, meta-learning.

I. INTRODUCTION

INTELLIGENT transportation systems (ITS) are emerging
as an essential element to enhance daily existence, tackling

the fundamental objective of enhancing on-road security and
vehicular gridlock while offering diverse utility-oriented on-
board amenities [1], [2]. Internet-of-Vehicles (IoV) networks
plays a crucial role in facilitating data exchange within the
ITS domain. The purpose of IoV networks is to guarantee
roadway security, enhance transportation effectiveness, and
offer a fresh degree of on-vehicle amusement. To accom-
plish these objectives, a vehicle must establish communica-
tion with any vehicle and entity that may affect or may be
affected by the vehicle, and this is generally termed vehicle-
to-everything (V2X) communication [3]. Diverse categories
of interaction exist within V2X networks depending on the
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entity with which a vehicle establishes a connection, encom-
passing vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P),
vehicle-to-network (V2N) and vehicle-to-infrastructure (V2I)
[4]. Evaluating quality-of-service (QoS) within these networks
involves assessing critical technological aspects like reliability,
scalability, and network congestion, measured through metrics
such as throughput, packet loss, error rates, and latency [5].
The integration of V2N communications is set to have a pivotal
role in enabling the advancement of forthcoming vehicular
networks [6]. This integration will enable the delivery of on-
board infotainment services by ensuring good connectivity to
the network. This, in turn, will necessitate a significant data
transfer rate between vehicles and base stations (BSs), which
parallels the operational requirements of conventional cellular
network user equipments (UEs). In wireless networks, the
movement of UEs is managed through the handover (HO)
process, which transfers ongoing communication sessions
from one BS to another, allowing UEs to transition between
coverage regions of various BSs seamlessly while ensuring
uninterrupted sessions. The significantly growing numbers of
BSs and links which necessitates additional HO operations will
result in exceedingly intricate mobility management. Authors
in [7] propose two traffic-aware spectrum handover schemes
for cognitive radio heterogeneous networks to enhance spec-
trum utilization and ensure quality of service for licensed
primary users. These schemes are designed to operate in both
distributed and centralized manners, balancing performance
and complexity. However, traditional HO algorithms often
struggle to cope with the dynamic and evolving nature of
V2N communication, necessitating innovative approaches to
optimize the HO process.

The utilization of machine learning (ML)-based methods
can make a substantial impact on handover optimization by
reducing latency, overhead, and frequent handovers [8]. Deep
reinforcement learning (DRL) has emerged as a promising
approach for addressing complex decision-making problems
[9]. By leveraging neural networks and reinforcement learn-
ing algorithms, DRL enables agents to learn optimal poli-
cies directly from raw input data. Artificial Neural Network
(ANN) empowered DRL has achieved notable progress in
domains characterized by complexities and fluctuations [10],
[11]. It stands as a propitious approach for devising efficient
remedies to overcome the challenges associated with HO
and has garnered substantial research impetus. Thus far, a
substantial amount of investigation has been conducted re-
garding the subject matter of HO optimization using ML,
employing diverse sets of input variables and incorporating
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a range of network architecture configurations [12], [13].
Nevertheless, a significant portion of the prevailing literature
primarily concentrates on particular application scenarios and
the design of system architectures, rarely delving into the
exploration of real-world implementation scenarios [14]. In
recent times, ML-based approaches have been extensively
investigated within diverse studies related to wireless commu-
nication, covering resource allocation, power control, and HO
management across multiple platforms [15]. ML algorithms
have the capability to harness the abundant dataset produced
by wireless systems and uncover concealed patterns within the
data that typically prove challenging to extract using analytical
optimization methods [16]. Different studies have been carried
out to enhance the effectiveness of triggering and decision-
making in HO [12]. There are three primary categories of
ML approaches for optimizing HO: ML-driven parameter op-
timization for conventional HO, ML-powered direct decision-
making for HO, and ML-assisted optimization for HO [17].
An algorithm utilizing Q-learning, presented by [18], was
suggested to enhance the HO parameters. By configuring
the reward function to encompass system-wide factors, the
proposed approach effectively optimized the values associated
with time-to-trigger (TTT) and hysteresis. An instance of
employing machine learning can be found in the research
conducted in [19], where a novel ML technique was introduced
and investigated. This approach aimed to ascertain optimal
timing and positioning for HOs within 5G radio networks, and
also to determine how the acquired model could be utilized
to initiate HOs based on predicted radio conditions. Likewise,
the study conducted by authors in [20] employed Q-learning in
conjunction with an analytic hierarchy process technique for
prioritizing similarities to an ideal solution. This approach was
employed to enhance two parameters of higher-order systems,
namely hysteresis and TTT.

For the purpose of ML-driven HO decision-making, au-
thors in [21] presented a K-means clustering technique, with
the objective of grouping UEs according to their movement
patterns. Subsequently, an asynchronous multi-agent DRL
algorithm was employed to achieve optimal HO decisions.
In [22], the researchers introduced a novel approach utilizing
Reinforcement Learning (RL) to establish a framework for
managing HO in heterogeneous networks (Het-Nets). They
focused on collectively acquiring knowledge on traffic load
and determining the optimal expansion range of both macro
and small cells. Furthermore, users were prioritized based on
their velocities and past HO rates to improve the overall user
throughput. The work in [23] employs a two-tier ML-driven
model for the management of HO in vehicular networks. The
first tier of the model utilized Recurrent Neural Networks
(RNN) to forecast the Received Signal Strength (RSS) required
for HO activation. Subsequently, a stochastic Markov model
was employed in the second tier to determine the selection of
BS for HO. In [24], a novel approach was devised to create
a cohesive HO algorithm for LTE-A systems. The foundation
of this algorithm relied on discrete stochastic dynamic pro-
gramming, taking into account the combined factors of UE
measurements such as reference signal received power (RSRP)
and reference signal received quality (RSRQ), along with the

holistic assessment of resource utilization. The outcome of
this methodology was a set of HO decisions that effectively
achieved load balance. Authors in [25] employed simulated
signal-to-interference-and-noise ratio (SINR) maps and the
deep Q-learning technique to determine dynamic HO in a
vehicular network. Their research utilized event A2 to initiate
HOs, leveraging its ability to detect potential obstructions
while simultaneously expediting the training of ANNs by
bypassing unimportant states. Moreover, an integrated HO
and power distribution strategy was formulated for Het-Nets
employing multi-agent DRL [26]. The algorithm enhanced the
selection of BSs and power levels for every UE by employing
a reward scheme that relied on system efficiency and penalty
for HO. Authors in [27] investigated a distributed Q-learning
approach to address the challenges associated with HO in
the context of network slicing. The goal was to enable a UE
to determine whether a HO was necessary within a network
slicing configuration. The work in [28] introduces a novel
federated learning (FL) training framework aimed at predicting
signal-to-noise ratio (SNR). This innovative approach seam-
lessly integrates both the macro BS and the dynamic local
UEs. The traditional HO algorithm was enhanced with SNR
predictions, which allowed for dynamic HOs in a vehicular
network. Using advanced vehicle trajectory predictions aligned
with established BS locations, the approach presented in [29]
possesses the ability to preemptively initiate optimal HOs,
thereby minimizing the complexities of HO decision-making.
Hybrid ML-based HO schemes also exist in addition to the
above types. In [30], an approach was devised for optimizing
HO by employing a combination of a RNN and a multi-layer
perception neural network. These networks expertly harnessed
diverse information collected across the LTE protocol stack,
and contributing invaluable assistance to the decision-making
process for optimal HO. Authors in [31] proposed a long short-
term memory (LSTM)-based RNN approach to forecast subse-
quent received signal strength indication (RSSI) for proactive
HO triggering. Subsequently, a Hidden Markov Model [32]
was employed to improve the HO decision-making procedure.

The literature discussed typical cellular networks with slow-
moving UEs, but scenarios involving vehicular UEs moving
at fast speeds and stringent QoS demands were very few.
However, only a few research has examined how well ML-
based solutions perform compared to conventional methods
using the same information. Furthermore, only a few studies
have explored the performance of various ML-based solutions
using standardized datasets and test environments [33],[17].
Out of those, just [17], [24], [30], and [31] used a full-
stack simulator (e.g., ns-2 and ns-3) to assess and compare
the performance of their proposed schemes. According to the
author’s knowledge, no investigation has been carried out on
how the ML-based HO optimization will perform when a
different set of information is fed to the model compared
to the training data. Existing literature considers a similar
set of information for the duration of training and testing.
However, this assumption is unrealistic in the context of a
real-time V2X environment scenario. Existing studies lack
the ability to adapt to various environments. The existing
DRL-centric methodologies are formulated under the premise
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that there exists a consistent and unchanging environment for
both training and testing. Nevertheless, this assumption proves
to be unfeasible within V2X communication contexts, given
the substantial mobility and ever-changing attributes exhibited
by vehicular surroundings. Consequently, it can give rise to
a disparity predicament as the environment changes. This
implies that such algorithms are incapable of promptly making
accurate decisions in a fast varying channel environment.
These challenges remain unresolved and impede the progress
of effective HO methodologies in V2X communications.

In this paper, we aim to tackle the fast-changing channel
conditions in the V2N HO scenarios by combining transfer
learning and meta-learning with DRL. We create practical
simulation scenarios of a V2N communication using the full-
stack ns-3 simulator. Using transfer learning and meta-learning
can tackle challenges like limited computational resources and
generalization. Thus, making them more practical, scalable and
crucial for unlocking their full potential in future transportation
and smart city applications. To address these challenges,
this paper proposes a novel framework for optimizing V2N
communication HO using a DRL-based approach. The key
objective of our research is to develop an intelligent HO
decision-making mechanism that can adapt to the dynamic
V2N environment, maximize average throughput, and mini-
mize the number of HOs. Achieving this requires leverag-
ing the capabilities of transfer learning and meta-learning
to generalize across time-evolving source and target tasks.
Our framework enables the agent to learn from historical
data, transfer knowledge across tasks, and dynamically evolve
its HO decision-making strategy to optimize network per-
formance. Incorporating transfer learning and meta-learning
in V2N communication handover addresses challenges by
leveraging prior knowledge, enhancing adaptability, facilitat-
ing rapid deployment and scalability, improving robustness
and generalization, and optimizing resource utilization. The
proposed approach exclusively employed the RSRP as the
input. The dataset used for training was directly collected from
the cellular protocol stack’s network layer through simulation.
The cellular network module provided by ns-3 was employed
in conformity with the established guidelines set forth by the
3rd Generation Partnership Project (3GPP) [34]. The main
contributions of this work are as follows:

• We introduce a comprehensive framework that addresses
the challenges of dynamic HO decision-making in V2N
communication. The framework combines transfer learn-
ing, meta-learning, and the double deep Q-networks
(DDQN) with the Thompson sampling (TS) approach to
enable intelligent HO optimization.

• We derive generalization bounds specific to the HO
optimization problem in dynamic V2N communication.
These bounds provide theoretical guarantees on the ex-
pected generalization error of the learned HO time func-
tion for the target task.

• A meta-transfer learning framework adapt-to-evolve
(A2E) based on the DDQN with TS algorithm is proposed
to facilitate efficient and effective HO optimization. The
meta-learner quickly adapts to new tasks by minimizing

Fig. 1: System model of V2N communication

the error’s upper bound. This allows the agent to optimize
HO decisions while considering the specific characteris-
tics of each task, leading to improved performance and
generalization capabilities.

• We conduct extensive experiments using different re-
alistic V2N communication scenarios to evaluate the
performance of our proposed approach. We compare our
framework against traditional HO algorithms and state-of-
the-art approaches in terms of average throughput, SINR
improvement, and HO frequency.

The remaining portion of this paper is structured as follows:
The system model and problem statement are presented in
Section II; the DRL-based solution is specified in Section
III, followed by the generalization bound and the proposed
framework in Section IV and V, respectively. Section VI
presents the simulation results. Finally, the conclusion and
future research insight are presented in Section VII.

II. SYSTEM MODEL & PROBLEM FORMULATION

In this work, we explore a cellular V2N network design,
comprising vehicular UEs (VUEs) and BSs, aiming to op-
timize the HO efficiency. Fig. 1 depicts the V2N scenario
where only VUEs are connected with the BSs. In cellular
networks, each VUE measures and reports two important
values, RSRP and RSRQ, to determine the strength and quality
of the connection to the BSs. These measurements help in
making decisions on HO connections between BSs. Following
the 3GPP standard [35], RSRP represents the combined power
of resource elements from BS-specific reference signals within
the given bandwidth. RSRQ, on the other hand, encompasses
channel interference and thermal noise as well. The following
equation shows how RSRP and RSRQ are related:

RSRQ = ℘× RSRP

RSSI
, (1)

where ℘ represents the number of resource blocks (RBs). HO
decision-making relies on VUE measurement reports, with a
particular focus on events A2 and A3 for intra-radio access
technology HO initialization [36]. Event A2 occurs when the
measured RSRP or RSRQ drops below a certain threshold.
On the other hand, event A3 occurs when the neighboring BS
RSRP/RSRQ is above that of the serving BS by a predefined
margin. Cellular networks use two distinct and standardized
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Fig. 2: A3-based HO trigger, where, τ0 depicts the optimal
HO triggering instant, ω and γ specify the hysteresis and TTT,
respectively, while σt is the time delay. Note that the figure is
generated via a simple simulation, with on X and Y axis only
reflecting the values obtained by the simulation.

HO algorithms namely A2A4 and A3 to trigger and make
HO decisions [37]. In Fig. 2, we show the A3-based HO
approach, which uses two HO control parameters, hysteresis
ω and TTT γ [38]. The hysteresis ω ensures the target cell’s
RSRP exceeds the serving cell’s RSRP by a margin, reducing
unnecessary handovers.The TTT γ imposes a waiting period to
consistently meet this condition, minimizing ping-pong effects
and enhancing network stability.

A. Handover Delay Cost

Existing cellular networks use hard HO, which cuts the
connection between the device and its current BS before
establishing a new one [39]. During hard HO, choosing the
best BS becomes crucial because the UE won’t receive any
meaningful information about services during the HO. The
HO delay time td refers to the time taken by the UE to switch
connections from its serving BS to the target BS after the HO
trigger. The gradual aggregation of HO delay time causes the
UE’s average throughput to degrade. HO cost βc refers to the
result of cumulative HO delay time and it can be expressed as
the product of td and total number of HO Mho in a specific
trajectory [40] such that:

βc =Mho × td. (2)

The normalized HO delay cost ζc of a VUE for a specific time
period T can be expressed as:

ζc = min

(
βc

T
, 1

)
. (3)

The parameter ζc ranges between 0 and 1, and it represents
the proportion of time invested in the HO procedure. As ζc
approaches 1, it implies that the UE has used nearly the entire
time span T on HOs. Consequently using Shannon’s equation,
the average throughput can be computed as:

Ω = B × (1− ζc)× log2 (1 + ℵ) (4)

where B and ℵ refers to the bandwidth and SINR, respectively.
Hence, given a constant bandwidth B and HO delay time td,
the number of HOs Mho and SINR ℵ, play an important
role in achieving high throughput in a specific trajectory and
transverse time. Consequently, we look to maximize system
throughput by making the HO decision process optimal while
avoiding the frequent HOs. The optimization problem can be
formulated as follows

argmax
Mho

Ω (5a)

s.t. ζc ≤ 1, ζc ∈ [0, 1] (5b)

III. DDQN WITH THOMPSON SAMPLING

In this section, we present a DRL-based approach to in-
telligently optimize the HO decision-making with the aim
of maximizing the throughput of VUE in a given trajectory.
In RL, an agent takes decisions according to the present
observed environment, future state observations, and rewards.
Although traditional RL approaches work well in simple
settings, they struggle to cope with highly complex outdoor
radio environments, where optimal decision-making for HO
tasks is required due to the large amount of data involved.
Consequently, alternative approaches emerged to address this,
such as linear value function approximation and policy gradi-
ent methods [41]. Deep learning (DL) techniques, employing
ANN and DRL approaches, led to the creation of a pow-
erful method known as Deep Q-network (DQN) [42]. DQN
combines Q-learning, a model-free RL algorithm, with ANN
to excel in training RL tasks in challenging environments
where traditional RL struggles. In RL training, the Bellman
equation [41] holds the key, the Q-value in DQN is calculated
as follows:

Q(st, at; θ) =r(st, at)+ΛQ

(
s′t, argmax

a′
t

Q(st, a
′
t; θ); θ

)
, (6)

where st and at refer to the state space and action space,
respectively. Furthermore, r and Λ are the received reward
and the discount factor (with values ranging from 0 to 1).
The parameter θ represents the Q-table’s approximation in the
form of a ANN. Using a single network, DQN calculates
the prediction Q value Q(s′, a′) and the updated Q value
Q(s, a). However, the shared parameter θ can cause instability
during training, leading to potential non-convergence as the
current Q(s, a; θ) alters the values of future states when its
parameters are updated. In [43], authors utilized DDQN to
address the overestimation of action values by using two
separate neural networks to independently estimate the action
values. One network is used to select the best action for the
next state in the target network θ′, while the other network
estimates the Q-values in the current state. By decoupling the
target and online networks, DDQN reduces the overestimation
bias and stabilizes the learning process, resulting in improved
performance. During DDQN training, θ is continually updated,
whereas θ′ periodically aligns with θ by adopting every
parameter to maintain up-to-date information. Hence, (6) can
be updated as:

Q(st, at; θ) = r + ΛQ

(
s′t, argmax

a′
t

Q(s′t, a
′
t; θ); θ

′
)
. (7)
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DQN and the target network are the two different deep neural
networks utilized by DDQN. The DDQN can be expressed as:

y ← rt+1 + ΛQ̂(st+1, â), (8)

where

â = max
a

QDQN (st+1, a) (9)

and Q̂(st+1, â) denotes the target network. The loss function
can be expressed as:

∇(Q, Q̂) = E
[
(Q(st, at)− Q̂(st, at))

2
]
. (10)

In this work, we aim to develop and enhanced HO approach for
V2N communications and compare its performance with the
simple DDQN approach [17]. The centralized agent is trained
on RSRP values collected from the V2N communication
network. During training, the agent learns to estimate the
expected rewards of different HO decisions, considering the
uncertainty in the environment. The HO problem is modeled
as a Markov Decision Process (MDP), defined by the tuple
(s, at, P, r), where s and at are the state and action spaces
defined above, P is the transition probability, and r is the
reward function.

1) State space: Researchers have extensively studied strate-
gies for selecting BSs in vehicular networks based on mobility
by using a user’s location and speed [12]. Instead of directly
measuring a user’s location, it is more practical to estimate
the RSRP information [44]. A clear connection is established
between a specific geographic spot in a defined region and
a collection of RSRP values from the BSs within that area.
So, this research takes into account the combination of RSRP
values measured by a VUE from all nearby BSs. We assume
that all VUEs are at the same height. For a number of BSs
k and a VUE located at location l in a given trajectory, the
RSRP measurements Γl can be expressed as

Γl =
{
rsrp1l , rsrp

2
l , ..., rsrp

k
l

}
. (11)

Thus, the state space vector sl contains the RSRP and serving
BS identifier (ID).We use the one-hot encoding [45] method
to illustrate the state space. Let’s assume that if there are 4
BSs in the given trajectory and a VUE’s serving BS’s ID is
3, then the serving BS ID is denoted by {0, 0, 1, 0}. So, the
state space can be expressed as:

sl = {Γl;BSid} . (12)

We assume that the VUE observes and reports the environment
at regular intervals of time during training and evaluation.

2) Action space: An action space can be described as the
process of connecting a VUE to the next state which involves
choosing a BS from the ones listed in the given trajectory,
including the serving BS when necessary. If the action chosen
instructs the device to connect to a nearby BS, HO will occur.
However, if the action indicates the current serving BS, the
device will stay connected without the need for HO. Thus,
the action space can be expressed as:

at = {BS0, BS1, ..., BSk} , (13)

where vector comprises the IDs of local BSs.

3) Reward: The purpose of the reward function is to
encourage the agent to take actions that will maximize the
overall reward over time. Our objective is to attain the highest
system throughput Ω by reducing the ζc, as highlighted in (4).
To achieve this, the number of HOs and time delay should be
minimized. The number of HOs can be managed by executing
the HO skipping policy. Usually, the agent starts indirect TTT
without a fixed value,1 but it must be done smartly such that
VUE attains maximum throughput, even if some HO steps are
skipped. Furthermore, during HO the centralized agent may
choose BS that offers less numbers of HO events in the future.
Hence, we design the reward, which measures the impact of an
action in reaching the agent’s objective. The reward function
can be expressed as:

r(sl, a; sl+1) =



B × (1− ζc)× log2 (1 + ℵ) ,
if HO happens

B × log2 (1 + ℵ) ,
otherwise.

(14)

A. Thompson Sampling

TS is a method for online decision-making under uncer-
tainty [46]. It is used for balancing exploration and exploitation
in reinforcement learning. In this work, we introduce TS-
based DDQN centralized agent to optimize HO decisions in
cellular networks. Instead of maintaining Q-values or action
probabilities, TS uses probability distributions to model un-
certainty about the true values of actions. The algorithm then
samples from these distributions and selects actions based on
the sampled values. This stochastic approach allows the agent
to explore different actions while favoring actions that have
shown promise in the past. In HO decisions, the network may
face uncertain conditions such as changing wireless channel
conditions, varying user demands, or mobility patterns. TS can
effectively handle uncertainty by incorporating a probabilistic
approach. This makes it well-suited for scenarios where the
quality of the communication link is subject to fluctuations
and uncertainties. Its probabilistic nature encourages the agent
to explore different HO decisions, ensuring that it doesn’t
get stuck in suboptimal choices. At the same time, DDQN
provides a mechanism to exploit the knowledge gained from
the DNN, helping the agent make informed decisions based
on historical data. In the exploration-exploitation trade-off, TS
selects actions based on their probability of being optimal.
It maintains a posterior distribution over the Q-values, and
samples from this distribution to select actions. TS can be
applied by modeling the rewards of different actions in a
probabilistic manner. Instead of directly selecting the action
with the highest estimated reward (as done in traditional Q-
learning), TS randomly samples from the posterior distribution
of the rewards and selects the action associated with the high-
est sample. In this work, we use a Gaussian distribution as the
posterior, with the mean and variance estimated by maintaining
a probability distribution for each action’s expected reward.

1Indirect TTT refers to a method where the TTT value is not fixed but
rather determined indirectly based on various network and device conditions.
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We use Bayesian linear regression (BLR) to handle the distri-
bution over Q-values. BLR can provide a posterior distribution
over the Q-values given a set of observations. The Q-value
of each state-action pair is modeled as a linear function of
the state-action features with additive Gaussian noise, and the
model parameters (i.e., the coefficients of the linear function)
have a Gaussian prior. By observing a set of transitions, we
can update the posterior of the model parameters using the
Bayesian rule, and hence obtain the posterior distribution over
the Q-values. Let’s assume the Q-value of a state-action pair
is a linear function of a set of features ϕ(s, a) extracted from
the state-action pair, i.e., Q(s, a) = ϕ(s, a)Tw, where w is a
vector of model parameters, and ϕ(s, a) is a feature vector.
Given a set of observed transitions (s, a, r, s′), the target of
the Q-value update is y = r+Λ∗max′a Q(s′, a′), and we have
y = ϕ(s, a)Tw+ϵ, where ϵ is an additive Gaussian noise with
zero mean and variance υ2. The prior of w is assumed to be
a Gaussian distribution N(w|0,Ψprior), where Ψprior is the
prior covariance matrix, typically chosen as a scaled identity
matrix. Given a set of observations D = (s, a, r, s′), the pos-
terior of w is also a Gaussian distribution N(w|µpost,Ψpost),
where the mean µpost and covariance Ψpost can be computed
by using the Bayesian as

Ψpost =

(
Ψ−1

prior +
1

υ2
ϕTϕ

)−1

(15)

and
µpost = Ψpost

(
1

υ2
ϕTY

)
, (16)

respectively, where ϕ is a matrix whose rows are the feature
vectors ϕ(s, a) of the observed transitions, and Y is a vector
of the targets y of the observed transitions. The posterior
distribution of the Q-value Q(s, a) = ϕ(s, a)Tw is therefore
a Gaussian distribution N(Q(s, a)|µs,a, υ

2
s,a), where µs,a =

ϕ(s, a)Tµpost and υ2
s,a = ϕ(s, a)TΨpostϕ(s, a). In TS, when

we are in state s and need to select an action, we sample a Q-
value from the posterior distribution N(Q(s, a)|µs,a, υ

2
s,a) for

each action and choose the action with the maximum sampled
Q-value. This allows us to capture the uncertainty over the
Q-value estimates and make efficient exploration-exploitation.
Algorithm 1 provides the training details.

IV. GENERALIZATION BOUND

In the previous section, we present an intelligent DRL-
based approach to address the HO problem in a stationary
environment. The TS-based DDQN framework considers the
same environment for the duration of training and testing.
However, this assumption is non-ideal in the context of a
real-time V2N HO scenario, where the information changes
rapidly. Existing research does not highlight the generalization
aspects for different environment scenarios because there will
be a discrepancy if the testing data has a different distribution
compared to the training data. In this section, we derive
generalization bounds specific to the HO optimization problem
in a dynamic V2N communication scenario. The error upper
bounds provide a measure of how well the model is expected
to perform on the target task based on its performance on
the source tasks. By minimizing the error upper bounds, we

Algorithm 1 DDQN with Thompson sampling

1: Initialize the replay buffer capacity
2: Initialize the Gaussian BLR model with prior mean 0 and

prior covariance
3: Initialize θ, and θ′

4: for each episode do
5: Observe the network state st = {RSRP,BSID}
6: Select an action according to TS: sample a Q-value

from the posterior distribution N(Q(s, a)|µsa,, υ
2
s,a) for

each action, and choose the action with the maximum
sampled Q-value.

7: Take this action and then observe the reward and the
next state.

8: Store transition (st, at, rt, st+1) in replay memory
9: if replay memory is full then

10: Sample a mini-batch from the replay memory
11: Compute the target y = r + Λ ∗ max′a Q(s′, a′)

for each transition in the mini-batch, and update the
posterior of the model parameters using the Bayesian
rule.

12: end if
13: Every 7 steps, update the target network by copying the

weights from the online network.
14: end for

can ensure that the model is well-suited for the target task
during the HO, while also leveraging the knowledge that it
has acquired from the source tasks. The error bounds theo-
rem provides a theoretical guarantee that the expected error
between the predicted optimal HO time and the true optimal
HO time can be bounded by a constant term and a complexity
term that depends on the distance measure between the source
tasks and the target task. To measure the discrepancies between
all tasks we utilize H-divergence [47].

Let us assume that Ds and {Dt
k}Kk=1 refer to the static

source task and dynamic target task at time slot k, respec-
tively. Let zs denote the total number of labeled training
samples in the source task, which can be represented as
Ds = {(asj , bsj)}z

s

j=1. We assume that there are ztk unlabeled

target task training samples, Dt
k = {atjk}

zt
k

j=1. In this work,
we look to learn the estimation function for the newest
target task {Dt

N+1} by capitalizing on the past source and
target task. We define the expected error on source task as
Es(h) = E(a,b)∼Ds [L(h(a), b)],∀h ∈ H, where L refers
to the loss function. The empirical error can be defined
as Ês(h) = 1

zs

∑zs

j=1 L(h(aj), bj). The following theorem
presents the error bounds for dynamic transfer learning with
time-evolving source and target tasks in the context of HO.

Theorem 1. Let H be the hypothesis class of all possible HO
time functions, such that h : a → b. Here, a is the HO time
function learned by Algorithm 1 for the target task based on
the source domain task. And let b be the optimal HO time for
the target task. We assume that at each time slot k we have
z number of labeled source samples from the source task Ds

(can be represented as Dt
0) and z labeled target samples from

the target task. Given a certain learning rate β and probability
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threshold δ > 0, the expected error of the newest target task
can be bounded as

Et
k(h) ≤

K∑
j=0

K+1∑
k=j+1

νjk

(
Êt

j(hj) + ϱjk.d̂H∆H(Dt
j ,Dt

k)
)
(17)

+O

[
K∑
j=0

(
1

z

z∑
i=1

||∇θh̄(aij)||

)2

+ ξ

+

√
log(2z) + log(2/δ) +

∑K
j=0

∑K+1
k=j+1 ν

2
jk log(1/δ)

z

]
where ξ refers to the total error over all the tasks, i.e.,
ξ = minh∈H

∑K+1
j=0 Et

j(h), and d̂H∆H(., .) indicates the
empirical estimate. Parameter νjk refers to the sampling
probability which plays an essential part in the generalization
error bound. ϱjk indicates the hyper-parameter which helps to
achieve a balance between reducing classification errors and
discrepancies.

Proof: See the Appendix

V. ADAPT-TO-EVOLVE (A2E) FRAMEWORK

In this section, we present a meta-transfer learning-based
approach named ADAPT-TO-EVOLVE (A2E) and look to
minimize the error bound derived in the previous section.
Theorem 1 demonstrates that we can limit the expected error
of the newest target task by considering the past source and
target information. We develop a method to automatically
create meta-tasks from the dynamic target task. Our aim is to
dynamically learn the sampling probability parameter ν which
is associated with the classification error on the target task. The
objective function to learn the estimation function of Dt

K+1 at
time K + 1 can be formulated as:

min
θ

min
ν

J(θ, ν) =
K∑
j=0

K+1∑
k=j+1

νjk

(
Êt

j(Fjk(θ))+ (18a)

ϱ.d̂H∆H

(
Dt

j ,Dt
k;Fjk(θ)

))

s.t.
K∑
j=0

K+1∑
k=j+1

νjk = 1 (18b)

s.t. Fjk(θ)) = θ − ℧∇θL
(
Dt

j ,Dt
k

)
(18c)

where L
(
Dt

j ,Dt
k

)
indicates the meta-training loss and θ refers

to the trainable parameter. ℧ and ∇ refer to the learning
rate and gradient over weight parameters, respectively, and
Fjk(θ) refers to the mapping function. (18b) refers to the
sampling probability constraint, whereas (18c) ensures that the
mapping function Fjk(θ) should be updated in a way that is
consistent with gradient descent. This helps in maintaining
the consistency and stability of the optimization process while
learning the sampling probability parameter ν and estimating
Dt

K+1 at time K + 1.

A. Meta-tasks

Theorem 1 states that parameter νjk depends significantly
on the classification error on the target task and the difference
in empirical distributions between Dt

j and Dt
k. We have only

unlabeled training samples for the target task, making it
challenging to precisely predict the classification error for the
target task. However, we adopts a easy approach where we
determine the sampling probability by examining the differ-
ence in empirical distributions between Dt

j and Dt
k, specifically

considering the unlabeled samples. Thus, the parameter νjk
can be learned as follows:

νjk =
exp

(
1/d̂H∆H

(
Dt

j ,Dt
k

))
Ξ

, (19)

where Ξ refers to the normalization parameter. By using
this normalization term, tasks with less difference in their
distributions are more likely to be selected for meta-training
[48]. This helps the meta-learning algorithm to emphasize
tasks that are more relevant to the task at hand, thus improving
its ability to quickly adapt to new tasks that share similar
data distributions. When the distribution difference is lesser,
it ensures better transfer of information between tasks [49].
Hence, we can create a collection of tasks S by using a
sampling probability and train them by using Algorithm 1.

B. Meta-Training

Meta-training plays a crucial role in training the initialized
parameters such that they can quickly adjust to the new
task. Meta-training is essentially about training the model to
“learn how to learn”. It aims to improve the model’s ability
to generalize and transfer knowledge from one scenario to
another, making it more capable of handling unseen scenarios
effectively. This process can lead to a more efficient and ef-
fective decision-making system for V2N handover in dynamic
vehicular environments. The θ can be learned as follows [50]:

θ ← argmin
θ

∑
(j,k)∈S

Υjk(θ), (20)

where

Υjk(θ) = Êt
j(Fjk(θ)) + ϱ.d̂H∆H

(
Dt

j ,Dt
k;Fjk(θ)

)
(21)

refers to the loss function. Furthermore,

Fjk(θ))← θ − ℧∇θL
(
Dt

j ,Dt
k

)
(22)

where Fjk : θ → θjk refers to the function which transforms
the θ into the optimal parameter for the given task θjk, and
F is updated by using the gradient descent approach. The
adaptation updating capability is evaluated by using (21) on
a new task and calculating the loss function according to
its corresponding validation set on meta-tasks. Every task
incorporates the latest experience by adding the corresponding
loss function.

C. Meta-adaptation & testing

Meta-testing refers to the evaluation of a learning model’s
performance on unseen tasks or scenarios after it has un-
dergone meta-training. When it comes to meta-training, the
objective is to train a model to learn how to learn effectively
across a range of tasks, enabling it to adapt quickly during
meta-testing. The proposed approach can quickly adapt to the
latest target task (e.g. new channel conditions) with fewer
steps, using training parameters learned from previous source
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Algorithm 2 A2E Framework
Input: Learning rates, source task Ds

k , batch size and target
task Dt

K+1.
Output: Meta-trained agent with a HO decision-making pol-
icy.

———META-TRAINING——
1: Initialize meta-tasks S = {}, replay buffer B
2: for each time step do
3: Create experience set (st, at, rt, st+1) according to Al-

gorithm 1.
4: Save experience data into B.
5: Sample mini-batch from the B.
6: Generate tasks and approximate the ν using (19).
7: Update θ according to (20).
8: Compute the gradient of the loss function on validation

data.
9: Create the pseudo-label for the target task.

10: end for

——META-ADAPTATION AND TESTING—–
1: for each time step do
2: Create experience sets of data according to Algorithm

1.
3: Store the experiences into B.
4: Sample mini-batch from the memory and fine-tune on

Dt
K+1 according to (23).

5: end for
6: return Predicted HO time function on the newest target

task.

and target tasks. The best way to learn the optimal parameters
θK+1 for the latest target task Dt

K+1 is by updating the θ on
a carefully chosen tasks.

θK+1 = Fi(K+1)(θ)← θ − ℧∇θL
(
Dt

i,Dt
K+1

)
, (23)

where θ refers to the initialized parameter learned in the meta-
training stage. Once the parameters are adopted for the new
target task, we can assess the performance of the proposed
algorithm in the testing phase.

D. Algorithm formulation

We introduce a comprehensive framework that addresses
the challenges of dynamic HO decision-making in V2N
communication. The framework combines transfer learning,
meta-learning, and the DDQN-TS algorithm to enable adap-
tive HO optimization. It leverages historical data, generalizes
across time-evolving source and target tasks, and dynamically
evolves the HO decision-making strategy to maximize average
throughput while minimizing the number of handovers.

First, we collect a set of time-evolving source tasks and a
target task and train on the source task using Algorithm 1 to
learn a HO time function for the target task. Then, we use
the error bound derived in the previous section to estimate
the expected generalization error of the HO time function on
the target task. A meta-learning objective function is presented

Fig. 3: Block diagram of proposed A2E framework

that minimizes the upper bound of the expected generalization
error. We optimize the meta-learning objective function and
update the meta-learner parameters θ using stochastic gradient
descent. In the adaptation phase, the trained meta-learner is
utilized to adapt the HO time function learned on the source
task to the current state of the target task. The A2E framework
allows the agent to adapt to the target task by leveraging
knowledge from the time-evolving source tasks. It enables
the centralized DDQN agent to learn effective HO decision-
making strategies in dynamic V2N communication environ-
ments, maximizing average throughput while minimizing the
number of HOs. Algorithm 1 serves as the core DRL algorithm
in the process, facilitating efficient and effective learning of
the HO policy. Algorithm 2 provide details of the proposed
A2E approach. Moreover, Fig. (3) presents the block diagram
of the proposed A2E framework.

VI. SIMULATION RESULTS

It is of vital importance to use high-quality datasets to train
and evaluate ML algorithms. However, collecting real-world
HO data is highly complex and challenging. In this research,
we used ns-3 network simulation to generate datasets and eval-
uate the effectiveness of our proposed solution [51]. The ns-3
simulator is an open-source, discrete-event full-stack simulator
that provides realistic simulation and a standardized evaluation
platform. It allows the tracing of internal events with flexible
configurations and supports multiple communication technolo-
gies. To configure an LTE cellular V2N network, we chose
ns-3’s official standard-compliant LTE module LENA [52]. 2

For training and testing the algorithm, we configured three
scenarios based on the 3GPP specifications for V2X perfor-
mance evaluations as in Annex A of [55]:

• Urban setting: This scenario’s configuration strictly fol-
lows the Manhattan grid model for the urban case in Table
A-1 of [55]. It contains 9 grids (433 m × 250 m grid
size), 2 lanes (3.5 m in width) in each direction for each
grid, and thus a total simulation area size of 1299 m ×
750 m.

• Rural setting: This is highly similar to the urban config-
uration above but with grid size set to 1000m× 1000m
and wider lane width of 5 m.

2The reason for this choice was that the 5G and LTE network HO
mechanisms are very similar, while the 5G-LENA module [53] (the 5G version
of the LENA module), although open for public access, has not implemented
the 5G HO mechanism and interfaces, and is currently reusing the LTE X2
interface [54].
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TABLE I: Simulation configurations
Urban Rural Highway

Properties Parameters and values
Simulation time (s) 800 1000 600

LTE Network 5 sites with 3 cells/site 3 sites with 3 cells/site

BS Antenna model 15 dB Cosine model,
65°half power beamwidth

15 dB Cosine model,
40°half power beamwidth

BS height 25 m 35 m 35 m
VUE speed 50 km/h 108 km/h 120 km/h

Pathloss model 3GPP UMa 3GPP RMa log-distance
BS Transmit power 40 dBm
Carrier frequency 2115 MHz, downlink only

Channel bandwidth 2×10 MHz (2×50 RBs)

Noise figure BS: 9 dB
UE: 5 dB

Scheduling algorithm Proportional Fair

Applicaiton setup
UDP, downlink only

packet interval: 20 ms (50 packets/s)
individual packet size: 4096 bits

Data collection frequency RSRP: every 200 ms
Other HO information: Event-triggered

• Highway setting: Also based on Table A-1 of [55], this
scenario is set to 1500 m in length, with 3 lanes in each
direction, hence, 6 lanes in total for a highway segment.
The lane width is set to 5 m and wrap-around is also
implemented.

For VUE mobility, we used the Simulation of Urban Mobility
(SUMO) software to generate realistic moving trajectories
for the corresponding scenarios. For the urban and rural
scenarios, we utilized the Manhattan Grid mobility model
as specified in 3GPP TR 37.885 [55], where a VUE goes
straight and turns left or right with a probability of 0.5,
0.25, and 0.25, respectively, in an area of street grid. For the
Highway scenario, a VUE is randomly placed at a lane, goes
straight along that lane, and turns at the end of the road (i.e.,
wrap-around) to the other direction. To guarantee reproducible
results, we configured one trajectory for a VUE to fully explore
the simulated area for each scenario, which was manually
checked via SUMO’s graphical interface during the generation
and reflected by varying the simulation times of each scenario.
Note that the different simulation times are for the trajectories
to cover the simulation areas in each scenario, as recorded in
Table I. After generation, the trajectories from SUMO were
imported to ns-3 for network simulation.

For the BSs, we randomly set their locations in each sce-
nario with predefined rules to guarantee the overall coverage
in each scenario. We also configured each BS to have 3
sectorized antennae with random yet non-overlapping antenna
orientations, and we used the cosine antenna model for all
BSs. Fig. 4 shows the above configurations in urban scenario
including a demonstrative VUE’s trajectory, the placement of
BSs, and demonstrative antenna orientations with horizontal
beam-widths for the red BS.

To also consider small-scale fading, we applied trace-based
fading generated via the script provided in the LENA module
[56]. The fast fading model is derived from the Jake’s Model
for Rayleigh fading and this generation approach is considered
the official approach for fast fading implementation [57]. The
“vehicular” mode was chosen for fading trace generation and
the moving speed was set according to the scenarios’ setups.
As for other network configurations such as the carrier fre-
quency, we set the parameters according to the 3GPP standards

BS1

BS2

BS3

BS4

BS5

Fig. 4: Illustration of the urban scenario used in the simulation,
with 5 BSs placed randomly in the area ensuring coverage
and a VUE moving along the arrowed-line trajectory. The
background urban grid image is exported from SUMO. For
demonstration, the triangles represent the antenna orientations
and horizontal beam widths of the sectorized antennae of BS1.

[55]. Table I lists the detailed network configuration. Note
that we also configured different path loss models to reflect
different communication environments in each scenario. We
introduce the benchmarks where DDQN-TS and DDQN [17]
are evaluated based on 1) using similar-scenario for training
and testing and 2) different-scenario for training and testing. In
[17], the approach utilized for the DDQN involves employing
an ϵ-greedy strategy. We evaluate the generalization ability
of A2E using different-scenario for training and testing. All
learning-based approaches were trained offline with datasets
generated via ns-3, and evaluated in an online manner sup-
ported by the “ns3-ai” module [58]. At both stages, RSRP
data is sampled every 200 ms, while other related information
for a HO trigger is recorded when the HO happens, including
time stamps and corresponding serving / target cell.

A. Highway setting

Initially, we assess the outcomes of the proposed schemes in
a highway scenario. For this, we train the model in the baseline
setting (urban environment) and then test it in the highway en-
vironment. It is well established that the more the DDQN agent
experiences new channel conditions, the better it performs.
Yet, gaining enough experience takes a considerable amount of
time. Hence, we have proposed the A2E approach to maximize
learning with fewer steps, where A2E model trained and tested
in different environment. The convergence results presented in
the Fig. 5 demonstrate that the DDQN-TS (similar-scenario)
algorithm acts as a performance upper bound, achieving the
highest normalized reward and demonstrating good conver-
gence behaviour. The A2E algorithm also exhibits the fastest
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Fig. 5: Convergence analysis

convergence rate and achieves the highest normalized reward,
indicating its superior performance in optimizing handover
decisions and quickly adapting to the environment compared
to DDQN-TS (different-scenario). Conversely, the DDQN-TS
(different-scenario) algorithm shows significant improvements
over the standard DDQN, with faster convergence and higher
rewards, underscoring the adaptability of TS in varying con-
ditions. The standard DDQN (different-scenario) algorithm,
however, exhibits the slowest convergence and lowest rewards,
highlighting its limitations in dynamic environments. This
result emphasizes the superiority of TS and the efficacy of the
A2E algorithm in enhancing the adaptability and performance
of handover decision algorithms in rapidly changing vehicular
network environments.

Next, we show the analysis of adaptation on the throughput
performance of the proposed A2E approach in Fig. 6. We
collect samples at each time step. As shown in Fig. 6, the
throughput performance gets better with more samples. The
A2E approach outperforms the DDQN-TS approach in a
different scenario. When there are more than 40 samples, the
A2E method performs better in terms of average throughput.
A significant difference in performance exists between training
a model in similar scenarios and training it in different
environments. This gap occurs because the model trained in
a different environment serves as the baseline case. The A2E
algorithm adapts to new channel conditions after processing
40 samples. Therefore, we will use this sample size for
adaptation. Afterwards, we evaluate how Algorithms 1 and
2 perform in the highway setting compared to DDQN (ϵ-
greedy) approach. HO triggering moments are presented in
Fig. 7, where fading is considered. It can be observed from
Fig. 7 that the optimal triggering moment of the HO from BS2

to BS3 is around 104 seconds. While striving to minimize
repetitive HOs, we sometimes opt to let go of a connection to
the BS with the higher SINR, which may trigger a HO shortly.

The proposed A2E approach triggers the HO at around
106.61 seconds, immediately when the optimal triggering
moment happened. Whereas, DDQN-TS (different-scenario)
triggers the HO at 112.4 seconds, which is trained in the
urban setting and tested in the highway setting. On the other

Fig. 6: Learning performance of the proposed methodologies

Fig. 7: The triggering moments of proposed algorithms plotted
as vertical for a highway HO case

hand, DDQN (ϵ-greedy) triggers the HO at 115.20 seconds.
The proposed A2E approach performs better compared to the
other approaches. It is because the A2E approach can deal with
the effects of environmental changes due to its generalization
ability. DDQN-TS performs better than DDQN with the ϵ-
greedy approach because the ϵ-greedy strategy might get stuck
in local optima and have difficulties in finding the optimal
solution. Whereas, TS can adapt to varying uncertainties and
perform well due to better exploration properties. DDQN-TS
(similar-scenario) provides the performance lower bound as it
has been trained and tested in similar-scenario.

Next, we examine the probability of HO which shows the
percentage of HOs events. Fig. 8 shows the HO probability
for all schemes in the highway scenario. It can be seen that
the A2E approach possessing generalization ability consid-
erably reduces the HO probability compared to the other
approaches. A2E has achieved HO probability of less than
14%, while the DDQN-TS (different-scenario), and DDQN
(different-scenario) obtained HO probabilities of 29%, and
38%, respectively. On the other hand, DDQN-TS (similar-
scenario) achieves the HO probability of 11 % providing a
performance lower bound because it has been trained and
tested in similar communication scenarios. Next, we present
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Fig. 8: HO probability in Highway scenario

Fig. 9: HO ping-pong probability in the highway scenario

the HO ping-pong probability in the highway case. The 3GPP
[59] defines a metric known as ping-pong rate to assess how
effectively a BS manages HOs. In Fig. 9, we show the HO
ping-pong probability performance of all the schemes. It can
be observed that the proposed A2E approach reduces the ping-
pong probability compared to other schemes. A2E achieves a
ping-pong probability of 17 %, whereas DDQN-TS (different-
scenario) and DDQN (different-scenario) achieve probabilities
of 32 % and 43 %, respectively.

The better performance of HO is evident in the reduction
of packet loss. In our work, we do not assume the constant
availability of unengaged resource blocks at the target base
station. We consider the realistic scenario where resource
blocks may be fully engaged, leading to potential handover
failures and packet drops. The cumulative dropped packets
metric provides a comprehensive evaluation, where we have
analysed the packet loss resulting from incomplete handovers
due to resource block unavailability. This analysis helps to
quantify the impact of traffic load on handover performance
and the resulting packet loss. In Fig. 10, we show the packet
loss comparison where the Packet Data Convergence Protocol
(PDCP) packet loss is measured during HOs for the proposed
algorithms. The A2E algorithm outperforms other algorithms
when considering different scenario for training and testing. It

Fig. 10: Packet-loss comparison in the highway scenario

Fig. 11: The triggering moments of proposed algorithms in
the rural setting

leads to 93 fewer lost packets during all HOs compared to the
DDQN-TS (different-scenario), indicating a 48.02 % reduction
in cumulated packet loss. Each HO results in an average
reduction of 29.32 % in packet loss. Note that our application
configuration does not lead to a high packet burden, and more
demanding applications can lead to more significant packet
loss results.

B. Rural setting

In the previous section, we looked at how well the system
performed in the highway communication scenario. Now, we
evaluate the suggested methods in the rural setting to see how
effective they are. Fig. 11 presents the HO triggering moments
in rural settings. It can be seen that the optimal triggering
moment of the HO from BS2 to BS3 is around 156 seconds.
DDQN-TS (similar-scenario) triggers the HO at 156.8 seconds,
providing the performance lower bound where we train and
test the algorithm in the same scenario. The proposed A2E
and DDQN-TS (different-scenario) trigger the HO at 158.1
and 163.02 seconds, respectively. Whereas, DDQN (different-
scenario) performs poorly as it triggers the HO at 164 seconds.
The proposed A2E approach provides the gain in time delay
of 5 seconds compared to DDQN-TS (different-scenario). It
is to be noted that the urban setting has been used to train
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Fig. 12: HO probability in the rural setting

Fig. 13: HO ping-pong probability in the rural setting

the DDQN-TS (different-scenario) approach and tested in the
rural setting. Next, we compare the probability of HO based
on the algorithms in Fig. 12. The proposed A2E approach
considerably reduces the HO probability compared with the
DDQN-TS and DDQN under different scenarios by achieving
the lowest HO probability of less than 11%. Afterwards, we
show the HO ping pong probability in the rural setting in Fig.
13. The proposed A2E approach outperforms the DDQN and
DDQN-TS under different scenario by reducing the ping-pong
probability to less than 13%. The DDQN and DDQN-TS under
different scenario implementation performs poorly due to the
lack of generalization ability. Finally in Fig. 14, we present
the packet loss comparison in the rural setting during the HO
processes. It can be observed that the A2E approach performs
better compared to the DDQN and DDQN-TS under different
scenario implementations. It leads to 87 fewer lost packets
compared to the DDQN-TS (different-scenario), indicating a
46.32 % reduction in cumulated packet loss. This shows that
the suggested A2E method can quickly adjust to different
channel situations, and has good generalization ability.

VII. CONCLUSION

In this paper, we have proposed a novel meta-learning
framework for optimizing dynamic V2N communication HO
using a DRL-based approach. By combining transfer learning,

Fig. 14: Packet loss comparison in the rural setting

meta-learning, and the DDQN-TS algorithm, we empower
the agent to adapt to dynamic network conditions, optimize
HO decisions, and improve overall system performance. The
framework addresses the challenges of HO decision-making in
V2N scenarios, where the dynamic nature of the environment
requires adaptive strategies to maintain seamless connectivity
and maximize average throughput while reducing the number
of HOs. A key contribution of our work is the derivation of
generalization bounds for the expected generalization error of
the learned HO time function. These bounds provide valuable
insights into the performance and scalability of our approach,
giving theoretical guarantees on the effectiveness of the HO
decision-making mechanism in varying V2N environments.
The proposed A2E algorithm allows the agent to efficiently
learn HO decision-making policies. Through extensive exper-
iments using the ns-3 full-stack network simulator with the
standard-compliant LENA module and a realistic simulation
setup, we have demonstrated the effectiveness of our approach
in optimizing dynamic V2N communication HO. With its abil-
ity to dynamically evolve and adapt, our framework provides
a promising solution to the challenges of HO decision-making
in dynamic V2N communication scenarios, contributing to the
advancement of intelligent and efficient transportation systems.
Future research can pave the way for even more sophisticated
and adaptive V2N communication systems by incorporating
energy efficiency considerations into the HO optimization
process. This may involve introducing energy-related rewards
or constraints to encourage the agent to make energy-aware
HO decisions.

APPENDIX

Proof of Theorem 1: According to [60], we
define a function f over sample set D ={
{(aj0, bj0)}zj=1 , ..., {(ajK , bjK)}zj=1

}
as:

f(D) = sup
h∈H

Et
K+1(h)−

K∑
j=0

K+1∑
K=j+1

νjkÊ
t
j(h) (24)

= sup
h∈H

K∑
j=0

K+1∑
K=j+1

νjk

(
Et

K+1(h)− Êt
j(h)

)
.
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Assuming D and D′ are the two sample sets for estimating
νjkÊ

t
j(h) =

νjk

z

∑z
i=1 L(h(a

t
jz), b

t
jz). Then we have

|f(D)− f(D′)|= 1

z
sup
h∈H
|L(h(a), b)− L(h(a′), b′)|≤ νjk

z
(25)

By using McDiarmid’s inequality [61], we analyze how the
meta-learner’s performance on a new task deviates from its
expected performance.

Pr

[
f(D)− ED[f(D)]≥E

]
≤exp

(
−2zE2∑K

j=0

∑K+1
K=j+1 ν

2
jk

)
(26)

Next, we apply Hoeffding’s inequality which ensures that
the model’s performance on individual tasks doesn’t deviate
significantly from the expected performance, given a finite
number of training samples.

Pr

[
|Et

j(h)− Êt
j(h)|≥ E

]
≤ 2 exp

(
−2zE2/Z2

)
(27)

By taking the expected value of the expression for f(D) over
the distribution of D in (24), we have

ED[f(D)] = ED

sup
h∈H

K∑
j=0

K+1∑
K=j+1

νjk(E
t
K+1(h)− Êt

j(h))


(28)

= ED

[
sup
h∈H

K∑
j=0

K+1∑
K=j+1

νjk

(
Et

K+1(h)− Et
k(h)

+ Et
k(h)− Et

j(h) + Et
j(h)− Êt

j(h)

)]

≤ ED

[
sup
h∈H

K∑
j=0

K+1∑
K=j+1

νjk(E
t
k(h)− Et

j(h))

]

+ ED

[
sup
h∈H

K∑
j=0

K+1∑
K=j+1

νjk(E
t
K+1(h)− Et

k(h))

]

+ ED

sup
h∈H

K∑
j=0

K+1∑
K=j+1

νjk(E
t
j(h)− Êt

j(h))


≤

K∑
j=0

K+1∑
K=j+1

νjk

(
1

2
dH(Dt

j ,Dt
k) + ξjk

)

+
K∑
j=0

K+1∑
K=j+1

νjk

(
1

2
dH(Dt

k,Dt
K+1) + ξk(K+1)

)

+
K∑
j=0

K+1∑
K=j+1

νjk

(√
log 2/δ

2z

)

=
K∑
j=0

K+1∑
K=j+1

νjk

(
1

2
dH(Dt

j ,Dt
k) +

1

2
dH(Dt

k,Dt
K+1)

+ ξjk + ξk(K+1)

)
+

√
log 2/δ

2z

≤
K∑
j=0

K+1∑
K=j+1

νjk

(
1

2
dH(Dt

j ,Dt
k)

+
1

2
dH(Dt

k,Dt
K+1) + 2ξ

)
+

√
log 2/δ

2z

≤
K∑
j=0

K+1∑
K=j+1

νjkϱjkdH(Dt
j ,Dt

k) + 2ξ +

√
log 2/δ

2z

≤
K∑
j=0

K+1∑
K=j+1

νjkϱjkd̂H(Dt
j ,Dt

k) + 4√
log(2z) + log(2/δ)

z
+ 2ξ +

√
log(2/δ)

2z

=
K∑
j=0

K+1∑
K=j+1

νjkϱjkd̂H(Dt
j ,Dt

k) +O

(
ξ

+

√
log(2z) + log(2/δ)

z

)

where; ϱjk =

{
1
2 if 1 ≤ k ≤ K

1
2

(
1 +

∑j−1
k=0 νkj

νjk

)
if k = K + 1

Therefore,

f(D) = sup
h∈H

Et
K+1(h)−

K∑
j=0

K+1∑
K=j+1

νjkÊ
t
j(h) (29)

≤ ED[f(D)] +

√∑K
j=0

∑K+1
K=j+1 ν

2
jk log(1/δ)

2z

≤
K∑
j=0

K+1∑
K=j+1

νjkϱjkd̂H(Dt
j ,Dt

k) +O

(
ξ+√

log(2z) + log(2/δ) +
∑K

j=0

∑K+1
K=j+1 ν

2
jk log(1/δ)

z

)
Now the hypothesis term. We represent the output of the h(a)
by 1st order taylor expansion such that

hj(a)− h(a) ⪆ ∇θh(a)

(
−℘1

z

z∑
i=1

∇θL(h(aij), bij)

)
(30)

Then,

Êt
j(h) = Êt

j(hj) + Êt
j(h)− Êt

j(hj) (31)

≤ Êt
j(hj) +

1

z

z∑
i=1

L(h(aij), bij)−
1

z

z∑
i=1

L(hj(aij), bij)

≤ Êt
j(hj) +

1

z

z∑
i=1

|h(aij)− hj(aij)|

≤ Êt
j(hj) +

1

z

z∑
i=1

∣∣∣∣∣∇θh(aij)

(
℘
1

z

z∑
i=1

∇θL(h(aij), bij)

)∣∣∣∣∣
= Êt

j(hj)+
1

z

z∑
i=1

∣∣∣∣∣|∇θh(aij)

(
℘
1

z

z∑
i=1

sign(h(aij)− bij).

∇θh(aij)

)∣∣∣∣∣
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≤ Êt
j(hj) +

℘

z2

z∑
i=1

||∇θh(aij)||.

∣∣∣∣∣
∣∣∣∣∣

z∑
i=1

sign(h(aij)

− bij).∇θh(aij)

∣∣∣∣∣
∣∣∣∣∣

≤ Êt
j(hj) +

℘

z2

z∑
i=1

||∇θh(aij)||.
z∑

i=1

∣∣∣∣∣
∣∣∣∣∣sign(h(aij)

− bij).∇θh(aij)

∣∣∣∣∣
∣∣∣∣∣

By using the Cauchy–Schwarz inequality:

Êt
j(h) ≤ Êt

j(hj) + ℘

(
1

z

z∑
i=1

||h(aij)||

)2

It completes the proof.
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