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decades, cognitive neuroscience has utilized group-level 
averaging of EEG data to identify specific components of 
evoked activity that are associated with distinct cognitive 
functions. However, there is a growing need to qualify brain 
responses from individual subjects and single-trial EEGs, 

Introduction

Electroencephalography (EEG) is a non-invasive neuro-
imaging technique that records electrophysiological brain 
activity using multiple electrodes placed on the scalp. For 
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In event-related potential (ERP) analysis, it is commonly assumed that individual trials from a subject share similar proper-
ties and originate from comparable neural sources, allowing reliable interpretation of group-averages. Nevertheless, tradi-
tional group-level ERP analysis methods, including cluster analysis, often overlook critical information about individual 
subjects’ neural processes due to using fixed measurement intervals derived from averaging. We developed a multi-set 
consensus clustering pipeline to examine cognitive processes at the individual subject level. Initially, consensus clustering 
from diverse methods was applied to single-trial EEG epochs of individual subjects. Subsequently, a second level of con-
sensus clustering was performed across the trials of each subject. A newly modified time window determination method 
was then employed to identify individual subjects’ ERP(s) of interest. We validated our method with simulated data for 
ERP components N2 and P3, and real data from a visual oddball task to confirm the P3 component. Our findings revealed 
that estimated time windows for individual subjects provide precise ERP identification compared to fixed time windows 
across all subjects. Additionally, Monte Carlo simulations with synthetic single-trial data demonstrated stable scores for 
the N2 and P3 components, confirming the reliability of our method. The proposed method enhances the examination 
of brain-evoked responses at the individual subject level by considering single-trial EEG data, thereby extracting mutual 
information relevant to the neural process. This approach offers a significant improvement over conventional ERP analysis, 
which relies on the averaging mechanism and fixed measurement interval.
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especially in clinical investigations. Due to the complexity 
and high noise in raw EEG data, averaging EEG trials—
resulting in ERPs—has traditionally been used to study ERP 
components, which, in turn, are associated with specific per-
ceptual, motor, or cognitive processes. Averaging is justified 
based on the assumption that single-trial EEG signals repre-
sent similar properties of the cognitive process in question, 
which can be identified through ERPs.

Although the ERP technique is popular due to its high 
signal-to-noise ratio (SNR), simplicity in statistical analy-
sis, and interpretability of brain information processing via 
different ERP components, it does not fully capture poten-
tially valuable information available in individual trials 
(Cohen and Cavanagh 2011; Delorme et al. 2002). Addi-
tionally, studying the variability of single trials is crucial in 
clinical studies due to the inhomogeneity among individual 
subjects (Knuth et al. 2006). This variability highlights the 
differences among participants within a single group and, 
notably, between distinct groups such as control and patient 
groups. The variability arises from two primary sources: 
the duration of the response and the variance between the 
means of response latencies. In contrast, ERP identifies the 
time-locked response to stimulus onset, reducing the con-
tributions of physiological and recording noise that are not 
time-locked.

Various methods, including advanced statistical tech-
niques, have been employed to investigate single-trial EEG 
data and extract ERP components. A significant portion of 
ERP studies have utilized independent component analysis 
(ICA; Makeig et al. 1997) and principal component analysis 
(PCA; Schölkopf et al. 1998) to extract shared ERP compo-
nents from concatenated ERP data across all subjects (Bugli 
and Lambert 2007; Calhoun et al. 2009; Dien et al. 2007), as 
well as from single-trial EEG of individual subjects (Cong 
et al. 2010; Huster et al. 2020; Rissling et al. 2014; Zhang 
et al. 2023). Some studies have applied ICA to single-trial 
EEG (Delorme et al. 2002) with the objective of identify-
ing brain responses by subjectively confirming the ERP 
component of interest. A key challenge for these methods 
is the variability in latency and phase across individual tri-
als. Temporal PCA has been used to extract variable ERPs 
from single-trial EEG epochs, demonstrating subject-spe-
cific variations in the number of PCs associated with spe-
cific ERP components (Zhang et al. 2023). This suggests 
that the timing of neural responses (latency) and the brain 
oscillatory synchronization across brain regions (phase) dif-
fer across subjects. To mitigate trial inconsistency, some 
researchers have aligned brain responses within trials by 
adjusting stimulus and responses based on the averaged 
response and employed ICA decomposition for component 
selection (Jung et al. 2001; Onton et al. 2006).

Cluster analysis of EEG/ERP, as another objective 
approach, has gained attraction as a valuable tool for mod-
eling event-related and resting-state EEG, aiming to isolate 
ERP components. The concept of EEG cluster analysis was 
first described by Lehmann et al. (Lehmann et al. 1987), 
introducing the ‘atom of thoughts’—quasi-stable electri-
cal potentials (EEG microstates) that remain unchanged 
for brief periods, typically 80–100 ms (D’Croz-Baron et 
al. 2021). The cluster analysis of microstates involves two 
steps: calculating canonical cluster maps (template maps) 
that represent high explained variance, followed by reas-
signing these template maps to time points based on spatial 
correlation (Khanna et al. 2014). Two popular clustering 
techniques have been used in microstate analysis, modi-
fied k-means (Pascual-Marqui et al. 1995) and atomize and 
agglomerate hierarchical clustering (AAHC; Murray et al., 
2008) on global field power (GFP)/GFP maxima points. 
However, microstate analysis disregards the polarity of the 
time point, which is substantial for ERP component analysis.

Various advanced clustering methods, such as the Gauss-
ian mixture model for individual subjects (De Lucia et al. 
2007b) and single-trial EEG (De Lucia et al. 2007a), as well 
as stimulus-related statistical information from single-trial 
responses (Tzovara et al. 2012b), have been employed in 
EEG analysis. Particularly, consensus clustering (Abu-
Jamous et al. 2015; Liu et al. 2017) has demonstrated con-
sistent and reliable outcomes for identifying ERPs from 
group-averaged ERP data (Mahini et al. 2020, 2022b). 
However, the low SNR and high degree of variety in single-
trial EEG data present a challenge for clustering analysis, 
potentially leading to uncertain or erroneous results. More-
over, the extraction of ERPs from single-trial EEG for indi-
vidual subjects remains underexplored in previous studies.

This study aims to develop a robust method that effec-
tively captures evoked responses for each condition/group 
at the individual subject level, introducing a multi-set con-
sensus clustering-based pipeline (see Fig. 1). The pipeline 
begins by evaluating and selecting single trials based on 
spatial characteristics of obtained cluster maps compared to 
the elicited ERP components identified in group-averaged 
ERP data. Subsequently, the consensus clustering of single-
trial EEG epochs aims to generate aggregated cluster maps 
from each trial, capturing the most relevant ERP responses. 
Second-level consensus clustering is then applied to iden-
tify consistent cluster maps across selected trials for each 
subject. A modified time window determination method is 
employed to explore the latency of the target ERP precisely 
at the individual subject level. We used simulated and real 
EEG data to assess the proposed pipeline’s efficacy. The 
goal is to develop a robust method that effectively captures 
evoked responses for each condition/group at the individ-
ual subject level. Ultimately, this approach aims to reliably 
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Fig. 1 The proposed pipeline for identifying the ERP component 
shown in an individual subject using multi-trial consensus cluster-
ing. A) Selection of clustering methods for individual subjects based 
on ERP data and trial examination. Trials in the ‘critical area’ (i.e., 
selected based on the experimental mechanism for the expected ERP) 
are chosen, while trials with low or no correlation with the template 

map are discarded. B) Initiation of multi-set consensus clustering with 
the single-trial EEG epochs of the subject, followed by across-trials 
consensus clustering. C) Exploration for the optimal time window, 
examining inner similarity and spatial correlation of candidate maps. 
Abbreviations: Cond (condition), TW (time window), CC (consensus 
clustering)
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with random latencies between 250 and 450 ms, 350 to 500 
ms durations, and 4 to 6 µV magnitudes. Additionally, for 
EEG epochs, random deviations of 50 ms in latency, 2 µV 
in amplitude, and 50 ms in duration were applied for the N2 
component, and random deviations of 100 ms in latency, 3 
µV in amplitude, and 100 ms in duration were applied for 
the P3 component. Finally, the electrode sites of interest for 
the N2 and P3 components were Fz and Cz, respectively. 
Figure 2 demonstrates the spatial and temporal properties of 
the pre-defined ERP components.

Real EEG Data

Real EEG data from a previous study (Kappenman et al. 
2021) from an active visual oddball task was used for 
assessment. The P3 component, originally designed to 
assess ‘stimulus evaluation times,’ focuses on response time 
duration rather than the component’s latency (Luck et al. 
2009). In the prior study (Kappenman et al. 2021), letter 
stimuli (A, B, C, D, and E) were used, with one letter desig-
nated as the target and the others serving as nontargets. The 
P3 component was defined as the maximum positive peak 
occurring around 300 to 600 ms, which served as the critical 
area for the ERP component in this paper.

EEG data were recorded from 40 participants (25 female 
and 15 male) using 30 scalp electrodes according to the 
international 10/20 system in two conditions: ‘Rare’ and 
‘Frequent.’ The recorded signals were digitized at a resolu-
tion of 1024 Hz, then downsampled to 256 Hz for faster 
processing, and referenced offline to the average of P9 and 
P10. Approximately 50 to 70 trials for each subject’s con-
dition were selected in the prior study, with fewer trials 
in some cases. Epochs were selected from 200 ms before 

identify consistent ERP components within the single-trial 
EEG data of individual subjects.

Materials and Methods

Simulated EEG Data

EEG data were simulated using the SEREEGA MATLAB 
toolbox (Krol et al. 2018), incorporating four pre-defined 
ERP components: N1, P2, N2, and P3. Data were simulated 
for two conditions and 20 subjects, with 70 trials per con-
dition, using 32 simulated scalp electrodes. The ERP com-
ponents were first generated as ground truth with defined 
latency, amplitude, and width, and then random variations 
in amplitude, width, and duration were applied to generate 
individual subjects’ data. Additional white Gaussian noise 
(e.g., 1 µV) was added to the EEG signals. White noise was 
used in our simulations due to its flat power spectral den-
sity, simplifying initial signal processing and providing a 
baseline for testing the method (Niedermeyer and da Silva 
2005). The EEG signals were epoched from − 100 to 700 
ms, and the sampling rate was set at 500 Hz (i.e., each EEG 
epoch had 400 time points) to expedite processing.

Significant effects were mathematically incorporated into 
the P2, N2, and P3 components. The N2 and P3 compo-
nents were examined as examples of negative and positive 
polarity ERP components, respectively. More specifically, 
for subjects’ data, the N2 component, characterized by a 
negative amplitude, was generated with random latencies 
between 200 and 250 ms, durations of 100 to 200 ms, and 
magnitudes of -2.5 to -1.5 µV. Similarly, the P3 component, 
characterized by a large positive amplitude, was generated 

Fig. 2 Illustration of the topographical configuration and temporal properties of four pre-defined ERP components: N, P2, N2, and P3
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Here, F  is the number of electrodes, and u  and v  are the 
topographical maps of the two time points. The mean or 
centroid of the topographies within the cluster map’s dura-
tion is used when comparing cluster maps.

For cluster analysis, each single-trial EEG epoch was 
treated as a dataset for clustering, with time points as obser-
vations and electrodes as features (e.g., dataset size: 256 
time points × 28 electrodes). Section ’“Multi-Set Consen-
sus Clustering” details the clustering design. Two sensitiv-
ity parameters controlled trial examination: inner similarity 
(e.g., > 0.90) and spatial correlation (e.g., > 0.50 with the 
template map). These parameters could be adjusted if no 
map was found. Therefore, the proposed method aimed to 
retain at least 50% of trials per subject and condition by 
decrementing the spatial correlation threshold from 0.70 to 
0.50, depending on the data, to ensure sufficient trials for 
reasonable analysis.

Multi-Set Consensus Clustering

The consensus clustering method was designed using clus-
tering methods implemented in our toolbox (Mahini et al. 
2022b) and was applied at two levels: individual trial clus-
tering and ensemble clustering across the trial results for 
each subject/condition. This two-step procedure is referred 
to as multi-set consensus clustering in this context. Before 
cluster analysis, a pre-clustering method selection step was 
implemented using the M-N plot method (Abu-Jamous et 
al. 2014; Mahini et al. 2022b) on each subject’s temporally 
concatenated ERP dataset to select appropriate clustering 
methods for feeding consensus clustering. Two criteria were 
used: the inner similarity of samples (threshold, e.g., > 95) 
and the duration of the identified ERP (threshold, e.g., > 50 
ms).

Aside from that, while estimating the optimal num-
ber of clusters from individual subject ERP data could be 
more precise, we determined the optimal number of clusters 
(Mahini et al. 2022b) by testing the inner similarity of the 
estimated time window from the group average ERP data 
to maintain simplicity. This approach to determining the 
optimal number of clusters examines a range of clusters, for 
example, from 2 to 15, seeking where the inner similarity 
of the estimated time windows is stable and high (e.g., > 
0.95). Selected trials were then clustered using consensus 
clustering. We used the cluster-based similarity partitioning 
algorithm (CSPA) consensus function (Karypis and Kumar 
1998; Nguyen and Caruana 2007), which was chosen based 
on hypergraph partitioning, using the ‘supra’ test (Ghosh et 

the stimulus onset to 800 ms after the stimulus onset. DC 
noise was removed, and high-pass and low-pass filters 
were meticulously applied at 0.1 and 20 Hz, respectively, 
to minimize any influence on stimulus onset latency. ICA 
was subsequently applied to address component-related 
artifacts, including eyeblinks and eye movements, which 
were removed via visual inspection and topographic rep-
resentation of the components. Statistical power analysis 
was performed on the Pz electrode (as recommended by 
the experimenters) and the selected trials (see Sect. “Trial 
Selection”).

Proposed Method

This section details each stage of our proposed pipeline, as 
depicted in Fig. 1. This pipeline is designed to identify the 
event-related potential (ERP) of interest for individual sub-
jects through three main steps: trial selection, multi-set con-
sensus clustering, and time window determination of ERP. 
Additionally, to facilitate further research, we have made 
the proposed pipeline’s simulated data and demo code avail-
able on GitHub at the following link: https://github.com/
remahini/Single_trial_EEG_MSCC.

Trial Selection

Each trial was examined to eliminate those with low or no 
correlation to the pre-defined (in the simulated data) or iden-
tified component from the group average ERP data, referred 
to as the template map. To achieve this, each trial was clus-
tered using consensus clustering, and the resulting cluster 
maps were assessed for the presence of the specific ERP 
component via spatial correlation comparison. The ERP 
template map’s topographical configuration was used to 
mask clustering results by measuring the spatial correlation 
(Murray et al., 2008) between candidate cluster maps—those 
with high inner similarity within the expected experimental 
interval—and the ERP template map. The inner similarity is 
defined as the Pearson correlation coefficient between any 
two time points i  and j  where i �= j .

Following the microstates analysis for EEG/ERP, we 
have used the Pearson cross-correlation coefficient for cal-
culating the spatial correlation (Koenig et al. 2008; Murray 
et al., 2008), which can be defined for two time points as:

Corru,v =
∑F

i=1 ui · vi

||u|| · ||v||
, (1)

where,

1 3

1014

https://github.com/remahini/Single_trial_EEG_MSCC
https://github.com/remahini/Single_trial_EEG_MSCC


Brain Topography (2024) 37:1010–1032

Given the CSPA consensus function’s mechanism of 
aggregating the most consistent cluster sets from diverse 
input clusterings, this approach ensures that consecutive 
time points are assigned to a cluster map sharing similar 
information across most cluster sets.

Time Window Determination

Once clustering results were obtained from the individual 
subjects, a modified version of the time window deter-
mination was applied for each subject. The time window 
determination (Mahini et al. 2020) was modified through 
two criteria in two steps. First, candidate cluster maps with 
high inner similarity (e.g., > 0.95) were detected within the 
experimentally interesting interval. Experimental param-
eters, including expected response latency, estimated dura-
tion, and region of interest, were derived from prior studies 
(Kappenman and Luck 2012). Next, among the selected 
candidate cluster maps, those with a better fit and higher 
spatial correlation with the template map of the interest-
ing ERP (e.g., > 0.90, adjustable if needed) were chosen. 
It is important to note that time window determination was 
used at the trial level to calculate statistical scores (see 
Sect. “Performance Analysis and Reproducibility Test”) and 
at the subject level to identify ERP components from the 
clustering results.

Performance Analysis and Reproducibility Test

We designed a reproducibility assessment method encom-
passing both experimental and signal processing evalu-
ations. To this aim, a Monte Carlo test was implemented 
on the trials’ clustering, testing the reliability of consensus 
clustering on single-trial EEG to quantify (scoring) the ERP 
of interest, which can be used in similar signal processing 
methods. This method ensures high reproducibility and sta-
bility, making it valuable for the community in hypothesis 
testing. The primary goal of this study is to develop a robust 
clustering analysis for identifying specific cognitive pro-
cesses of individual subjects.

Inter-Trial and Inter-Subject Reproducibility Tests

Inter-trial and inter-subject reproducibility measure the 
consistency and predictability of stimulus-locked response 
properties at the individual trial and subject levels. Unlike 
repeatability, which assesses the consistency of repeated 
results, reproducibility evaluates consistent results from 
different sources (e.g., trials, subjects) that are not identi-
cal. In this context, reproducibility refers to the consistency 
of scores calculated using the proposed pipeline. This con-
cept, inspired by the standard measurement error (SME ) 

al. 2002) to find the best ensemble clustering solution for 
trial and subject-level consensus clustering. Using CSPA 
allows for some tolerance of variations in information dis-
tribution across single trials.

Let us consider the consensus clustering prob-
lem for dataset X={x1,x2,...,xn }, with n  samples into 
K  groups, where each group is represented by a cen-
troid µ k

, k = {1,2, . . . , K} . Each sample xt ∈ RF

, t = {1,2, . . . , n}  and F  denotes the number of fea-
tures (electrodes in the EEG scalp). A set of m clusterings 
L(1,2, ... , m)  is used for combining clusterings into a final 
clustering L . The objective function for cluster ensemble 
from m clusterings can be defined as Γ  : Nn× m → Nn , 
which maps the clusterings to a set of clusters.

Γ :
{

L(i)
∣∣∣ i ∈ {1,2, . . . , m}} → L,  (2)

thus, given a set of clusterings 
{
L(i)

∣∣ i ∈ {1,2, . . . , m}},  
the goal is to explore the firmest clustering that shares the 
most information from all clusterings. Therefore, the opti-
mal clustering from m  clusterings can be defined as:

L∗
tm = argmaxL∈ L

∑ m

l=1
Γ (NMI) (Ll) , (3)

where Γ  denotes a similarity measurement, NMI (Meila, 
2007), which measures mutual information between a set of 

m  clusterings. L∗
tm  is the optimally combined clustering 

with maximum average similarity to all other clusterings Ll  
for the individual trial.

Next, we combine the clustering results of trials using 
further trial-level consensus clustering. The consensus func-
tion across the trials can be presented as follows:

L∗∗p
c = argmaxL∈LT

T
p
c∑

i=1

Γ (Li) , (4)

where, Tp
c  denotes the number of selected trials for subject 

p in condition c.L∗∗p
c  denotes the result of consensus clus-

tering across the trials. These two steps—clustering of each 
trial and across the trials—are collectively called multi-set 
consensus clustering, and for each subject p  can be noted 
by:

L∗∗p
c = argmaxL∈ LX,T

∑ T
p
c

i=1

∑ Rp

j=1
Γ

(
Li

j

)
. (5)

Here, Li
j   represents all clusterings for the ith  subject’s trials 

under condition c , using the jth  set of clustering methods 
from Rp  (i.e., the subject’s selected clustering methods).
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can be simulated by generating an adequate number of tri-
als multiple times for each condition and subject rather than 
repeating the experiment many times.

Hence, given R  repeats of the selection procedure and 
scores, m̂cSE

c

s
, i.e., the estimated standard error of the 

Monte Carlo for subject s = {1,2, . . . , S} , is calculated as 
averaged squared errors as:

m̂cSEc
s =

√
∑ R

r=1ŜEr

2

R
, (7)

where the standard error (ŜEr ) for each of the repeats 
r = {1,2, . . . , R}  is calculated as:

ŜEr =
ŜDr√

Ns
c

, (8)

and Ns
c  denotes the number of trials for subject s  in condi-

tion c  for each iteration. Therefore, the scores from each 
generation can be calculated followed by obtaining the mea-
surement error for all the individual subjects as aggregated 
error:

MS
(
ŜE

)
=

ŜE2
1 + ŜE2

2 + . . . + ŜE2
S

S
.  (9)

Furthermore, an additional parameter called total error 
V̂ arall  is calculated from the individual subjects V̂ arpar  
called true variance, and the measurement error (calculated 
from Eq. 8). This calculation can be illustrated as:

V̂ arall = V̂ arpar + MS
(
ŜE

)
, (10)

Although this metric was not originally designed for sin-
gle-trial EEG analysis, we adapted it to generate simulated 
clusterings obtained from individual trials during the Monte 
Carlo test. This adaptation assumes that sufficient trials are 
available for consensus clustering. The clustering generation 
procedure reduces the complexity of applying consensus 
clustering since no generation step (clustering) is required 
in the trials. Consequently, we seamlessly integrated the 
scoring results of the trials with individual subject scores, 
ensuring robust evaluations. Therefore, the reliability of the 
measurement can be calculated as follows:

̂Reliability = 1 −
MS

(
ŜE

)

V̂ arall

.  (11)

introduced by Luck et al. (Luck et al. 2021) for ERP, evalu-
ates the quality of scores and data measurement. Here, scor-
ing refers to the estimated component’s properties, such as 
time window properties, mean amplitude at the electrode 
site, spatial correlation, and inner similarity obtained from 
individual subjects/trials. Two evaluation methods—ana-
lytical and Monte Carlo-based measurements—were used 
to assess the identified ERP components.

For analytical scores, we calculated the standard error 
(SE ) of estimated scores at two levels: single-trial EEG and 
individual subject ERP. Generally, the estimated ŜE  from 

n  results in a given score item can be calculated as:

ŜE =
ŜD√

n
, (6)

where the ŜD  is the estimated standard deviation (SD) of 
the scores, and n  is the number of contributed scores. Note 
that the true value of SE is unknown; thus, its estimation 
is denoted as ŜE  in the subsequent sections. Leveraging 
that, given n  selected trials of one condition and calculated 
scores from each trial, the standard error can be calculated 
from Eq. 6. Score items used in our measurement process 
include: (i) at the single-trial EEG level, spatial correlation 
is assessed between the estimated ERP of trials and the tem-
plate map from the mean topography in the determined time 
window. For example, the result of ŜE  across the spatial 
correlation scores reflects the spatial error at the individual 
trial level. Similarly, the temporal reproducibility is evalu-
ated by examining the consistency of estimated time win-
dows across trials. (ii) At the individual subject level, the 
reproducibility of spatial and temporal properties of esti-
mated time windows is evaluated for qualifying ERP.

To evaluate the proposed method, a Monte Carlo test was 
conducted, assuming sufficient scorers for hypothesis test-
ing. Details of the Monte Carlo procedure are described in 
the following subsection.

Monte Carlo and Reliability Tests

A Monte Carlo test was established by creating a pool of 
selected trials’ clusterings for each condition and regenerat-
ing the same number of trials for each subject with replace-
ment. Consensus clustering was then performed across 
the generated trials’ clusterings from each iteration of the 
Monte Carlo procedure, repeated 1000 times to calculate 
the scores and test their reproducibility. The test was spe-
cifically designed for simulated data with a significant effect 
size for the ERP components, namely the N2 and P3 com-
ponents. Thus, the null hypothesis tests the absence of an 
effect size while repeating the pipeline from generated trials 
of simulated subjects in the iterations. Notably, trials/results 
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pre-defined ERP components served as ground truth in the 
simulated data. The optimal number of clusters determined 
was 6 for simulated and real data from the group average 
ERP data.

Clustering Results for the Simulated Data

The set of clustering methods identified from the M-N 
plot examination on the ERP data of each subject (see 
Sect. Multi-Set Consensus Clustering) was applied to single 
trials of each subject. Table 1 illustrates the selected cluster-
ing methods for each subject. Figure 3 presents the cluster-
ing results, displaying ERP waveforms at the Cz electrode 
with estimated time windows for N2 and P3 components 
(highlighted in blue and red, respectively). Detailed infor-
mation regarding the identified N2 and P3 components 
for individual subjects is provided in Tables 2 and 3. The 
analysis of these results, including cluster analysis and ERP 
determination, reveals reasonable consistency in deter-
mined time windows and spatial correlations, although with 
noticeable variability across conditions and subjects.

Specifically, Table 2 shows that the average temporal 
properties of the N2 component ranged from 163.9 ms to 
275.15 ms in ‘Cond1’ and from 165.16 ms to 276.63 ms 
in ‘Cond2’. Similarly, the average time window for the P3 
component (refer to Table 3) ranged from 283.50 ms to 
537.80 ms in ‘Cond1’ and from 285.20 ms to 536.44 ms in 
‘Cond2’ across all subjects. Evaluation of the inner similar-
ity, an important criterion, across identified time windows 
for individual subjects showed high reproducibility and 
consistency in N2 and P3 components. The average inner 
similarity among subjects was 0.91 and 0.92 for N2 in 
‘Cond1’ and ‘Cond2’, respectively. A higher inner similar-
ity was observed for the P3 component, with values of 0.98 
and 0.97 for ‘Cond1’ and ‘Cond2’, respectively.

Clustering Results for the Real Data

Four clustering methods were selected using the M-N plot 
method for the real data: k-means, self-organizing map 
(SOM), modified k-means (with polarity adjustment), and 
k-medoids clustering (KMD). Figure 4 shows the cluster-
ing results, determined time windows, topographical maps 
of the identified P3 component, and the ERP waveform at 
the Pz electrode. In Fig. 4, cluster maps 4 represent the P3 
component for both ‘Rare’ and ‘Frequent’ conditions, with a 
high inner similarity of 0.92. These identified P3 component 
properties were used as a reference to analyze the spatial 
properties of single trials and spatial correlation scores.

At the single-trial clustering level, Table 4 lists the 
selected clustering methods for each subject’s single trials 
determined from the M-N plot examination. In cases where 

Furthermore, we used Cronbach’s alpha and standard error 
of measurement (SEM) to calculate the reliability, estimat-
ing the error in individual scores within the subjects. The 
Cronbach’s alpha is calculated as:

α =
q

q − 1
(1 −

∑ q
i=1V̂i

V̂tot

),  (12)

where, q  is the number of items (the number of scoring 
tests), V̂i  denotes the variance associated with each mea-
sure, and V̂tot  is the variance associated with all the scores. 
The ŜEM  is then calculated as:

ŜEM = ŜD ×
√

1 − α  (13)

Statistical Analysis

Repeated measures statistical analyses of variances 
(ANOVA) was conducted to assess the null hypothesis 
where there was no significant difference between condi-
tions for both pre-defined ERP components in the simu-
lated data. The within-subject factor was condition assessed 
at the Fz electrode site for the N2 component and the Cz 
site for the P3 component. For the real data, repeated mea-
sures ANOVA was performed with a within-subject fac-
tor of stimulus (conditions: ‘Rare’ and ‘Frequent’) at the 
Pz electrode site, matching the original study’s focus. The 
null hypothesis tested was that there is no significant differ-
ence between conditions in the determined time windows 
from individual subjects. The mean amplitude was calcu-
lated within these estimated time windows to investigate the 
effect of the stimulus on the P3 component. Statistical com-
parisons were made at an alpha level of 0.05.

Results

Here, we present the clustering outcomes and the spatial-
temporal characteristics of the identified ERPs for individual 
subjects in both simulated and real datasets. Additionally, 
we conduct an in-depth performance analysis and present 
reproducibility results.

Multi-Set Consensus Clustering Results and 
Temporal Properties

Two series of consensus clustering were performed. Firstly, 
consensus clustering on group average ERP data aimed to 
identify the P3 component (used as the reference) in the real 
data. Secondly, multi-set consensus clustering was applied 
to single-trial EEG data in simulated and real datasets. The 
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for the majority of the subjects, averaging 0.91 and 0.92 for 
the ‘Rare’ and ‘Frequent’ conditions, respectively.

Spatial Properties of Individual Subjects’ ERPs

Spatial Properties of ERPs in Simulated Data

Figure 6 presents the mean topographical map patterns 
within the estimated time windows for the individual sub-
jects, illustrating the electrical configuration of the ERP 
components across subjects. The results shown in Fig. 6 and 
the spatial correlation scores in Tables 2 and 3 (based on 
obtained results, e.g., 100 runs of clustering) reveal a high 
spatial correlation between the topographical maps of most 
subjects and the pre-defined components (N2 and P3) in the 
simulated data, particularly with P3 showing a higher cor-
relation than N2 across most subjects.

Specifically, for the identified N2 components from the 
subjects, the results (see Table 2) revealed a mean correla-
tion of 0.97 and 0.98 for the individual subjects and the cor-
responding template maps of N2 in ‘Cond1’ and ‘Cond2’, 
respectively. Notably, a larger negative amplitude was iden-
tified in ‘Cond1’ (average − 0.70 µV) compared to ‘Cond2’, 
with an average of -0.45 µV across most subjects, aligning 
with the design of the simulated data. Similarly, for identify-
ing the P3 component (refer to Table 3), the results revealed 
a perfect spatial correlation, with a mean correlation (across 

no suitable clustering methods were found (e.g., subjects 
13, 38, 40), we replaced the clustering list with the meth-
ods selected at the group average level. Figure 5 shows the 
clustering results for individual subjects, presenting ERP 
waveforms at the Pz electrode with estimated time windows 
highlighted in red rectangles. The determination of time 
windows reveals both variety and consistency in the identi-
fied ERPs between conditions and across subjects. However, 
some subjects, such as subject 39, did not exhibit distinct P3 
components, possibly due to the absence of highly corre-
lated cluster maps and many noisy clusters. This case will 
be discussed more in Sect. “Discussion”.

Table 5 provides the scoring results, including esti-
mated time windows, the inner similarity of time windows, 
mean amplitude at the Pz electrode, and spatial correlation 
between the mean map and the template map topographies, 
facilitating the qualification of the P3 component for indi-
vidual subjects. Specifically, the average time window of 
the P3 components across subjects in the ‘Rare’ condition 
ranged from 351.08 ms to 495.91 ms, while in the ‘Fre-
quent’ condition, it ranged from 366.01 ms to 498.62 ms. 
These results indicate suitable consistency across subjects 
and complement the findings from the group-averaged ERP 
data in the original study. Additionally, in assessing the 
quality of the identified cluster maps as the time windows 
(refer to Table 5), representatives revealed a high inner simi-
larity of the identified time window for the P3 component 

Table 1 Selected clustering methods for individual subjects’ data in the simulated data. The examination of the clustering method was performed 
via the M-N plot test (Mahini et al., 2022a). The replacement list was employed if no suitable method was found or if an individual method was 
selected. The number of clusters was determined to be six (the optimal number of clusters)
Subj_ID Selected methods Replacement List
S1 KM, HC, MKM, KMD, GMM -
S2 KM, HC, SOM, DSPC, SPC, KMD -
S3 One method (KM) KM, HC, MKM, SPC, KMD, GMM
S4 KM, HC, FCM, SOM, DSPC, MKM, KMD, GMM -
S5 HC, FCM, DSPC, MKM, SPC, KMD, GMM -
S6 KM, HC, SOM, MKM, SPC, KMD, GMM -
S7 KM, FCM, SOM, SPC, KMD, GMM -
S8 KM, HC, FCM, DSPC, MKM, SPC, GMM -
S9 KM, HC, FCM, SOM, MKM, SPC, KMD, GMM -
S10 HC, FCM, MKM, SPC, KMD, GMM -
S11 KM, HC, FCM, SOM, DSPC, SPC, KMD, GMM -
S12 KM, HC, FCM, SOM, DSPC, MKM, SPC, KMD, GMM -
S13 KM, HC, SOM, DSPC, MKM, KMD, GMM -
S14 KM, HC, FCM, SOM, DSPC, MKM, SPC, KMD, GMM -
S15 KM, HC, DSPC, MKM, SPC, KMD, GMM -
S16 KM, HC, FCM, DSPC, MKM, SPC, KMD, GMM -
S17 KM, HC, DSPC, MKM, SPC, KMD, GMM -
S18 KM, FCM,DSPC, MKM, KMD, GMM -
S19 KM, HC, FCM, SOM, DSPC, MKM, SPC, KMD, GMM -
S20 KM, HC, FCM, DSPC, MKM, SPC, KMD, GMM -
Abbreviations KM (k-means), HC (hierarchical clustering), SOM (self-organizing map), DSPC (diffusion map spectral clustering), MKMS 
(modified k-means), SPC (spectral clustering), KMD (k-medoids clustering), and GMM (Gaussian mixture model)
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Spatial Properties of ERP in Real Data

For the real data, Fig. 7 and Table 5 illustrate a significant 
correlation between the individual subjects’ topographical 
activity and the template maps (topographical maps derived 
from the group average ERP results). The spatial analysis 
conducted on the identified P3 components of individual 

subjects) of 1.00 between the individual subjects’ P3 and 
the corresponding template maps of P3 in both conditions. 
Additionally, a larger positive amplitude was identified in 
‘Cond1’ (average 1.31 µV) compared to ‘Cond2’, with 0.64 
µV from the subjects.

Fig. 3 The obtained clustering results, with colored areas representing 
cluster maps, using multi-set consensus clustering on the original sub-
jects’ ERP waveforms (in Cz electrode) from two conditions. Cluster-
ing was applied in six clusters as the optimal number of clusters based 

on the group’s average ERP data. The colored rectangles denote the 
corresponding time windows of N2 (indicated in green) and P3 (indi-
cated in red) for ‘Cond1’ and ‘Cond2’, respectively. Abbreviations: 
Cond1(condition 1) and Cond2 (condition 2)
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between the calculated amplitudes using analytical and 
Monte Carlo test methods in ‘Cond1’. Additional details can 
be found in the supplementary Tables S1 to S8.

Further reliability tests on the obtained scores from dif-
ferent items in Tables 2 and 3 revealed a Cronbach’s alpha 
of 0.59 for N2 and 0.74 for P3. These values were derived 
from the scores in two conditions, indicating relatively con-
sistent results in P3 compared to N2, although not necessar-
ily high, across subjects. This variability between subjects 
was pre-defined based on the nature of the subjects’ evoked 
responses. A similar interpretation is valid, as Cronbach’s 
alpha, calculated from the real data for the obtained scores 
(Table 5), was 0.70.

Statistical Analysis Results in Simulated and Real Data

Two sets of repeated measures ANOVA were conducted on 
the simulated data. First, statistical analysis was performed 
using analytical results, and second, the ANOVA test was 
applied to timing scores from the Monte Carlo test. The 
mean amplitude within the selected time windows and the 
electrode sites from individual subjects was calculated for 
the statistical test.

For the simulated data, the results from the analytical 
latencies of the subjects revealed a significant main effect 
of condition for N2 (F(1,19) = 22.26, p-value < 0.0001, η 2

p

= 0.463) and for P3 (F(1,19)= 219.40, p-value = 0.00, η 2
p= 

0.914). Similarly, significant main effects of condition for 
N2 (F(1,19)= 64.43, p-value < 0.0001, η 2

p= 0.742) and P3 
(F(1,19)= 115.26, p-value = 0.00, η 2

p= 0.853) were found 
from the Monte Carlo scores. As expected from the simula-
tion design, a larger potential was elicited in the first con-
dition for both N2 and P3 components. Note that we have 
reported the averaged results from 1000 iterations for both 
sets of statistical analyses (simulated subjects and Monte 
Carlo-generated subjects) independently.

For the real data, the repeated measures ANOVA on the 
selected time windows from individual subjects revealed 
a significant main effect of the stimulus (F(1,39) = 74.69, 
p-value < 0.0001, η 2

p= 0.651), indicating a large effect of 
the P3 component. Notably, a large positive potential in the 
central lobe region was observed in the ‘Rare’ condition 
compared to the ‘Frequent’ condition, confirming previous 
findings from the original study.

Hence, the statistical analysis results from both simulated 
and real data underscore the recognition of individual vari-
ability in the precise timing of neural processes associated 
with given specific cognitive functions using single-trial 
cluster analysis.

subjects revealed a reasonable correlation between the sub-
jects and the template maps, averaging 0.74 in the ‘Rare’ 
condition and 0.64 in the ‘Frequent’ condition. Notably, the 
correlation between the topography of P3 and the template 
map was not observed in some subjects, such as subjects 
9 and 36, suggesting potential overlapping components or 
diminished brain responses in the trials. We will discuss this 
in Sect. “Discussion” in more detail. Additionally, a larger 
amplitude was observed in the ‘Rare’ condition (average 
13.44 µV) compared to the amplitude in the ‘Frequent’ con-
dition (average 7.16 µV) across most subjects, indicating a 
consistent effect size in the majority of the subjects in the 
determined time windows.

Evaluation Metrics and Performance Results

Here, we present the performance results, including the 
scoring and statistical analysis outcomes for the simulated 
data, along with analytical tests and statistical tests for the 
real data. First, we provide the designed Monte Carlo test 
results for the simulated data, followed by the performance 
results.

Performance Results for the Simulated and Real Data

Figures 8 and 9 compare the scoring items, including ana-
lytical scores derived from subjects’ trials and Monte Carlo 
scores obtained through 1000 iterations of trial clustering 
with replacement. The scoring items encompassed mean 
amplitude, inner similarity, time window properties, and 
correlation (i.e., between the mean topography of identi-
fied N2 and P3 and pre-defined components). The aSE  
results were derived from single trials of individual sub-
jects, while mcSEs  were obtained from the Monte Carlo 
procedure. Our aim in evaluating the SE  of the scores is 
to understand how the scores might fluctuate with repeated 
experiments (in terms of processing method). Additionally, 
the repeated measurement offers an overall estimation of 
the scores through the Monte Carlo test, signifying the con-
sistency in scoring results from single-trial cluster analysis. 
From the experimental design perspective, this can indicate 
the quality of experiment conduction and signal processing 
performance.

To assess the difference between the obtained correspond-
ing âSE  and m̂cSE , we conducted two-sample t-tests. The 
statistical test revealed no significant difference between the 
obtained scores from analytical and Monte Carlo testing 
results for N2 identification. However, for the P3 compo-
nent, a significant difference (p-value = 0.000) was observed 
in the time window endpoint property due to variation in 
the identified endpoints of P3 from both conditions. Further-
more, a significant difference (p-value < 0.001) was noted 
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from single trials and assessing inner similarity (stable spa-
tial configuration) during time window determination. In 
contrast, conventional microstate analysis methods typically 
focus on evaluating spatial properties to classify microstates 
into dominant classes of maps (e.g., four classic classes) for 
event-related and resting-state EEG (Antonova et al. 2022; 
Michel and Koenig 2018; Zappasodi et al. 2019). Specifi-
cally, for ERP data, the microstate analysis method assigns 
GFP points from individual subjects’ ERP data into template 
maps obtained from clustering group average ERP data 
(Murray et al., 2008; Ruggeri et al. 2019). Thus, the tempo-
ral structure of the ERP of interest is statistically identified 
where specific topography is dominant, typically obtained 
through clustering of single-trial data. Meanwhile, identi-
fying the temporal occurrence of template maps relies on 
statistical analysis (De Lucia et al. 2007a; Tzovara et al., 
2012a; Tzovara et al. 2012b).

Secondly, the proposed pipeline incorporates an adap-
tive clustering configuration during the consensus cluster-
ing generation phase for each subject. This involves using 
the M-N plot-based clustering selection and a data-driven 
approach to determine the optimal number of clusters 
(Mahini et al. 2022b). In contrast, conventional microstate 
studies and consensus clustering methods on EEG/ERP 
data typically adopt a fixed set of clustering methods for all 
subjects (Koenig et al. 2014; Mahini et al. 2022b; Ruggeri 
et al. 2019). It is worth noting that the proposed method 

Discussion

We introduced a multi-set consensus clustering pipeline for 
analyzing single-trial EEG data to quantify brain-evoked 
responses in individual subjects. Our approach involved 
applying consensus clustering first at the single-trial level 
and then combining these results across trials through sub-
ject-level consensus clustering. This method aims to extract 
consistent cognitive responses by identifying the consecu-
tive time points with stable contributions across trials, 
aggregating clustering outcomes, and mitigating the impact 
of noisy clusters. We evaluated our method using simulated 
and real data to quantify ERP components and conduct 
reproducibility tests. Through Monte Carlo and analyti-
cal tests, we demonstrated the consistency and robustness 
of our pipeline, providing reliable clustering and scoring 
results from evoked single-trial EEG epochs of individuals. 
Notably, the estimated time windows offered a realistic rep-
resentation of individual subjects’ brain activities, making 
them suitable for both group-level and individual analyses 
rather than relying on constant measurement intervals for 
all subjects.

The proposed method differs from conventional 
approaches in two main aspects. Firstly, it explores the spa-
tial and temporal properties of cognitive processes from 
single-trial EEG data at the individual subject level. This 
is achieved by investigating mutual temporal information 

Fig. 4 Consensus clustering results on group-averaged ERP data and 
the identified P3 component derived from the group mean data in six 
clusters (the optimal number of clusters). The waveform is shown in 
the Pz electrode. The spatial property of the elicited P3 serves as the 

template map reference, facilitating the selection of trials and compari-
son of scoring results (i.e., spatial correlation scores) across individual 
subjects
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with other components, particularly during the processing 
of group average ERP data where trials from all subjects are 
averaged. Our approach addresses this by analyzing indi-
vidual subjects’ responses from actual trials, thus recogniz-
ing the diverse timing of neural processes across individuals 
and providing a more precise representation of their cogni-
tive functions compared to traditional averaging methods.

The reproducibility test results from both simulated and 
real data demonstrated the robustness of the proposed pipe-
line, as evidenced by stable analytical and Monte Carlo 
scores (refer to supplementary materials, Table S1 to S8). 
The variability observed across subjects, particularly in 
spatial correlation, aligned with experimental expectations. 

may encounter suboptimal clustering performance in low 
SNR data, leading to many noisy clusters—a common chal-
lenge in clustering-based approaches (Mahini et al. 2023). 
To mitigate this, we introduced a post-hoc processing step 
that can be applied at different clustering levels. This step 
involves identifying thin cluster maps with a small number 
of samples (e.g., < 10 ms) and assigning them to neighbor-
ing cluster maps if they exhibit sufficiently high spatial cor-
relation (e.g., > 0.90 between mean topography maps).

Another consideration involves the challenge of iden-
tifying highly overlapped components using clustering 
methods, given the variability in individual subjects. This 
challenge arises because real brain responses can be mixed 

Subj_ID Selected methods Replacement List
S1 KM, SOM, DSPC, SPC, KMD, GMM -
S2 KM, SOM, DSPC, MKM, KMD, GMM -
S3 KM, HC, SOM, DSPC, SPC, GMM -
S4 KM, HC, SOM, DSPC, MKM, GMM -
S5 SOM, DSPC, MKM, SPC -
S6 KM, HC, SOM, DSPC, MKM, SPC, KMD, GMM -
S7 KM, HC, DSPC, MKM, SPC, GMM -
S8 KM, SOM, DSPC, MKM, SPC, KMD -
S9 KM, SOM, MKM, KMD, GMM -
S10 KM, HC, DSPC, MKM, KMD, GMM -
S11 KM, HC, SOM, MKM, SPC, KMD, GMM -
S12 DSPC, MKM, SPC, KMD, GMM -
S13 No Method determined KM, SOM, MKM, KMD
S14 DSPC, MKM, SPC, KMD, GMM -
S15 KM, HC, SOM, DSPC, MKM, SPC, KMD, GMM -
S16 HC, SOM, DSPC, MKM, SPC, KMD, GMM -
S17 KM, SOM, DSPC, MKM, KMD, GMM -
S18 KM, SOM, MKM, SPC, KMD -
S19 DSPC, GMM -
S20 KM, HC, SOM, DSPC, MKM, KMD, GMM -
S21 KM, MKM, SPC, KMD, GMM -
S22 KM, SOM, DSPC, MKM, SPC, KMD, GMM -
S23 SOM, MKM, KMD -
S24 KM, HC, SOM, DSPC, MKM, KMD, GMM -
S25 KM, HC, SOM, DSPC, MKM, KMD, GMM -
S26 KM, SOM, DSPC, MKM, KMD, GMM -
S27 KM, HC, SOM, DSPC, GMM -
S28 KM, HC, SOM, DSPC, MKM, GMM -
S29 KM, SOM, DSPC, MKM, KMD,GMM -
S30 KM, HC, SOM, DSPC, MKM, KMD, GMM -
S31 KM, SOM, DSPC, MKM, KMD, GMM -
S32 KM, SOM, DSPC, MKM, KMD, GMM -
S33 HC, SOM, DSPC, KMD, GMM -
S34 KM, HC, DSPC, SPC GMM -
S35 KM, HC, SOM, DSPC, MKM, KMD, GMM -
S36 KM, HC, SOM, MKM, KMD, GMM -
S37 KM, HC, MKM, SPC, KMD -
S38 One method (GMM) KM, SOM, MKM, KMD
S39 KM, HC, SOM, MKM, KMD, GMM -
S40 One method (DSPC) KM, SOM, MKM, KMD

Table 4 Clustering methods 
selected for individual subjects’ 
ERP data, identified using the 
M-N plot test in real data. The 
optimal number of clusters was 
determined to be six clusters
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Fig. 5 Clustering results in six clusters and estimated time windows (red rectangle) for each subject’s P3 components by condition. ERP and trial 
waveforms are displayed at the Pz electrode site
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lacked statistical reliability within the estimated time win-
dows. Secondly, the trials selected during the preprocess-
ing phase may not have contained sufficiently strong ERP 
responses, potentially leading to the inclusion of trials with 
lower spatial correlation to maintain a minimum number 
of individual trials. Lower m̂cSEs  were interpreted as 

However, anomalies were noted in a few subjects where the 
corresponding Monte Carlo standard error m̂cSE  did not 
necessarily indicate lower values than the analytical stan-
dard error âSE . For instance, subjects 9 and 39 displayed 
relatively aberrant results in the real data. These divergences 
could arise from two potential factors. Firstly, the obtained 
topographical maps might have exhibited lowSNR  and 

Table 5 Scores derived from individual subjects’ determined time windows using the proposed pipeline in real data, encompassing time window 
properties (start and end), inner similarity, amplitude at Pz electrode, and correlation of mean topography with the template maps

Rare Frequent
Subj-ID TW

start(ms)
TW
end(ms)

Innsim Amp(µv) Corr TW
start(ms)

TW
end(ms)

Innsim Amp(µv) Corr

S1 382.03 507.03 0.92 11.12 0.71 456.25 550.00 0.93 2.04 0.53
S2 342.97 577.34 0.98 33.37 0.97 350.78 432.81 0.98 16.50 0.95
S3 288.28 612.50 0.87 15.78 0.91 303.91 444.53 0.87 8.86 0.71
S4 280.47 397.66 0.96 17.79 0.89 280.47 452.34 0.91 13.48 0.82
S5 342.97 467.97 0.86 6.42 0.63 573.44 647.66 0.95 5.82 0.38
S6 303.91 487.50 0.89 23.23 0.84 319.53 444.53 0.92 9.98 0.88
S7 296.09 503.13 0.97 20.29 0.52 249.22 479.69 0.92 12.47 0.65
S8 198.44 346.88 0.83 7.52 0.69 202.34 350.78 0.88 4.12 0.34
S9 342.97 444.53 0.84 18.48 0.47 405.47 604.69 0.90 -1.73 -0.12
S10 303.91 366.41 0.86 17.06 0.73 346.88 428.91 0.92 6.20 0.75
S11 421.09 577.34 0.89 6.68 0.74 471.88 573.44 0.89 3.56 0.50
S12 300.00 389.84 0.97 21.60 0.76 296.09 413.28 0.96 11.66 0.89
S13 241.41 417.19 0.93 13.27 0.78 292.19 464.06 0.94 10.89 0.85
S14 311.72 452.34 0.85 9.39 0.64 319.53 409.38 0.93 6.94 0.85
S15 467.97 596.88 0.87 5.56 0.82 499.22 577.34 0.95 4.71 0.89
S16 327.34 471.88 0.95 20.70 0.74 237.50 319.53 0.91 8.96 0.72
S17 323.44 428.91 0.96 7.35 0.78 374.22 491.41 0.90 1.42 0.56
S18 467.97 526.56 0.90 12.58 0.63 428.91 503.13 0.89 6.24 0.51
S19 436.72 635.94 0.96 20.22 0.91 300.00 546.09 0.93 13.88 0.96
S20 495.31 581.25 0.85 5.36 0.73 409.38 522.66 0.88 7.52 0.88
S21 303.91 452.34 0.89 8.37 0.80 346.88 510.94 0.89 4.61 0.72
S22 350.78 499.22 0.92 14.78 0.92 428.91 573.44 0.96 11.32 0.89
S23 436.72 573.44 0.91 12.24 0.68 553.91 647.66 0.96 9.18 0.28
S24 257.03 522.66 0.86 11.63 0.89 315.63 471.88 0.93 7.39 0.78
S25 292.19 385.94 0.92 11.60 0.66 467.97 565.63 0.88 6.63 0.76
S26 346.88 495.31 0.91 15.60 0.81 319.53 491.41 0.94 9.43 0.64
S27 467.97 514.84 0.84 7.19 0.62 346.88 428.91 0.90 8.98 0.95
S28 452.34 772.66 0.90 8.83 0.49 452.34 643.75 0.93 4.60 0.44
S29 362.50 413.28 0.99 14.10 0.77 339.06 499.22 0.87 2.47 0.56
S30 257.03 479.69 0.92 25.06 0.81 350.78 452.34 0.94 10.91 0.80
S31 260.94 335.16 0.94 7.93 0.77 264.84 428.91 0.95 3.35 0.61
S32 440.63 542.19 0.98 15.44 0.77 378.13 534.38 0.98 6.36 0.66
S33 323.44 425.00 0.93 12.39 0.75 276.56 350.78 0.89 2.59 0.58
S34 389.84 620.31 0.96 13.84 0.77 479.69 639.84 0.87 6.72 0.77
S35 245.31 385.94 0.85 14.49 0.77 288.28 358.59 0.90 11.52 0.79
S36 350.78 460.16 0.89 0.14 0.32 491.41 635.94 0.97 0.05 -0.38
S37 405.47 589.06 0.95 11.75 0.80 210.16 331.25 0.91 1.65 0.27
S38 362.50 510.94 0.92 16.37 0.77 296.09 428.91 0.83 10.40 0.84
S39 510.94 573.44 0.88 8.70 0.82 550.00 796.09 0.86 7.72 0.61
S40 346.88 421.09 0.98 19.80 0.85 335.16 483.59 0.93 9.48 0.91
Mean 351.08 495.91 0.91 13.44 0.74 366.01 498.62 0.92 7.16 0.64

ŜD 76.12 90.64 0.05 6.34 0.13 94.32 100.99 0.03 4.03 0.28
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score items obtained from single-trial EEG epochs. Monte 
Carlo testing in simulated data reaffirmed the reliability of 
quantifying N2 and P3 across both conditions while using 
multi-set consensus clustering. The developed pipeline 
elucidated spatially correlated brain activity with similar 

indicative of greater reproducibility in the clustering results 
of the selected trials and the obtained scores.

Moreover, the determination of significant effect sizes 
for N2 and P3 in simulated data, coupled with Monte Carlo 
testing, demonstrated suitable stability across all examined 

Fig. 6 Topographical representation of the ERP components isolated 
from simulated data (original subjects) under two conditions, high-
lighting the N2 component (A) and the P3 component (B). Notably, 

the topography of both N2 and P3 components is more pronounced in 
the first condition compared to the second
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trials) disclosed significant main effects of N2 and P3 (see 
Table 6) in the simulated data. Importantly, the statistical 
analysis in the real data highlighted a significant effect 
alongside the identified time windows, which showed a 
larger positive potential in the ‘Rare’ condition compared 
to the ‘Frequent’ condition in most subjects, thereby con-
firming the findings of a previous study (Kappenman et al. 
2021). Ultimately, our method is not confined to identifying 
the standard P3 component, as demonstrated in this study; 

temporal properties (though not necessarily identical), sup-
porting the idea of consistent brain responses across single 
trials and individual subjects. The reproducibility assess-
ment highlighted result consistency, indicating the reli-
ability of the proposed cluster analysis with an iterative 
generation of random trials.

From a statistical analysis perspective, two sets of statis-
tical analyses from the estimated time windows of the sub-
jects (i.e., from real simulated and randomized generating 

Fig. 7 Topographical maps of P3 (within determined time windows) derived from subjects’ ERP data. A) Obtained template maps from grand 
mean ERP data. B) Identified P3 topographical maps from individual subjects
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individual subject investigations. However, more compre-
hensive studies and reliability tests are warranted to address 
potential risks and ethical concerns before deploying this 
method in critical applications.

it holds the potential for identifying other ERP components 
from event-related single-trial EEG data. Furthermore, the 
proposed method instills confidence in exploring the ERP of 
interest for individual subjects, which is crucial for various 

Fig. 8 Comparison of analytical standard measurement error (âSE ) 
and Monte Carlo SE (m̂cSE ) for N2 component scores in simulated 
data. A)ŜEs  for inner similarity scores from single trials’ estimated 
time windows in 1000 Monte Carlo iterations. B)ŜEs  for spatial 

correlation scores with pre-defined N2 from estimated time windows. 
C)ŜEs  for amplitude scores at Cz electrode site from mean topogra-
phy within the estimated time window. D)ŜEs  for latency scores at 
the ‘start’ and ‘end’ of the estimated time window
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data, indicating appropriate estimations of brain responses. 
Furthermore, our pipeline enhances the likelihood of detect-
ing the real components by providing an unbiased approach 
to identifying interesting ERPs. This study holds prom-
ise as a valuable tool for reliably investigating individual 
subject brain activity, particularly in clinical applications, 
which remain open research questions in single-trial EEG 
data analysis. Future advancements may take advantage 
of multi-dimensional single-trial EEG processing, offering 
a robust method to explore brain responses across various 
domains and perspectives through clustering analyses.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10548-
024-01074-y.
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Conclusions

Our method successfully addresses the challenge of iden-
tifying ERPs of interest from single-trial EEG data by 
integrating clusterings investigated from individual trials, 
even with minimal prior knowledge about the component 
of interest. Our findings suggest that single-trial EEG clus-
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the ‘start’ and ‘end’ of the estimated time window

 

1 3

1030

https://doi.org/10.1007/s10548-024-01074-y
https://doi.org/10.1007/s10548-024-01074-y


Brain Topography (2024) 37:1010–1032

of EEG microstates during Post-encoding Rest. Brain Topogr 
34(1):19–28. https://doi.org/10.1007/s10548-020-00802-4

De Lucia M, Michel CM, Clarke S, Murray MM (2007a) 2007). Sin-
gle-trial topographic analysis of human EEG: A new `image’ of 
event-related potentials. 6th International Special Topic Confer-
ence on Information Technology Applications in Biomedicine, 
https://doi.org/10.1109/itab.2007.4407353

De Lucia M, Michel CM, Clarke S, Murray MM (2007b) Single sub-
ject EEG analysis based on topographic information. J I J o B 
9(3):168–171

Delorme A, Makeig S, Fabre-Thorpe M, Sejnowski T (2002) From 
single-trial EEG to brain area dynamics. Neurocomputing, 44–46, 
1057–1064. https://doi.org/10.1016/s0925-2312(02)00415-0

Dien J, Khoe W, Mangun GR (2007) Evaluation of PCA and ICA of 
simulated ERPs: Promax vs. infomax rotations. Hum Brain Mapp 
28(8):742–763. https://doi.org/10.1002/hbm.20304

Ghosh J, Strehl A, Merugu S (2002) A consensus framework for inte-
grating distributed clusterings under limited knowledge sharing. 
Proc. NSF Workshop on Next Generation Data Mining

Huster RJ, Messel MS, Thunberg C, Raud L (2020) 2020/11/01/). The 
P300 as marker of inhibitory control – fact or fiction? Cortex 
132:334–348. https://doi.org/10.1016/j.cortex.2020.05.021

Jung T-P, Makeig S, Westerfield M, Townsend J, Courchesne E, 
Sejnowski TJ (2001) Analysis and visualization of single-trial 
event-related potentials. Hum Brain Mapp 14(3):166–185. 
https://doi.org/10.1002/hbm.1050

Kappenman ES, Luck SJ (2012) ERP components: the ups and downs 
of brainwave recordings. 3–30. https://doi.org/10.1093/oxfor
dhb/9780195374148.013.0014

Kappenman ES, Farrens JL, Zhang W, Stewart AX, Luck SJ (2021) 
2021/01/15/). ERP CORE: an open resource for human event-
related potential research. NeuroImage 225:117465. https://doi.
org/10.1016/j.neuroimage.2020.117465

Karypis G, Kumar V (1998) 1998/01/10/). Multilevelk-way parti-
tioning Scheme for Irregular Graphs. J Parallel Distrib Comput 
48(1):96–129. https://doi.org/10.1006/jpdc.1997.1404

Khanna A, Pascual-Leone A, Farzan F (2014) Reliability of resting-
state microstate features in Electroencephalography. PLoS ONE 
9(12):e114163. https://doi.org/10.1371/journal.pone.0114163

Knuth KH, Shah AS, Truccolo WA, Ding M, Bressler SL, Schro-
eder CE (2006) 2006/05/01). Differentially variable component 
analysis: identifying multiple Evoked Components using trial-
to-trial variability. J Neurophysiol 95(5):3257–3276. https://doi.
org/10.1152/jn.00663.2005

Koenig T, Melie-García L, Stein M, Strik W, Lehmann C (2008) Estab-
lishing correlations of scalp field maps with other experimental 
variables using covariance analysis and resampling methods. 
Clin Neurophysiol 119(6):1262–1270. https://doi.org/10.1016/j.
clinph.2007.12.023

Koenig T, Stein M, Grieder M, Kottlow M (2014) Jan). A Tutorial 
on Data-Driven methods for statistically assessing ERP topog-
raphies. Brain Topogr 27(1):72–83. https://doi.org/10.1007/
s10548-013-0310-1

Krol LR, Pawlitzki J, Lotte F, Gramann K, Zander TO (2018) 
2018/11/01/). SEREEGA: simulating event-related EEG activ-
ity. J Neurosci Methods 309:13–24. https://doi.org/10.1016/j.
jneumeth.2018.08.001

Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-
states by space-oriented adaptive segmentation. 67(3):271–288. 
https://doi.org/10.1016/0013-4694(87)90025-3

Liu C, Abu-Jamous B, Brattico E, Nandi AK (2017) Towards Tunable 
Consensus Clustering for studying functional Brain Connectivity 
during Affective Processing. Int J Neural Syst 27(02):1650042. 
https://doi.org/10.1142/S0129065716500428

Luck SJ, Kappenman ES, Fuller RL, Robinson B, Summerfelt A, 
Gold JM (2009) 2009/07/01). Impaired response selection in 

script. All authors have read and agreed to publish the final version of 
the manuscript.

Funding The authors have no relevant financial or non-financial inter-
ests to disclose. The authors have no funding for this study.
Open Access funding provided by University of Jyväskylä (JYU).

Declarations

Consent to Participate This study does not include data collection 
from individual participants, and public data has been used.

Competing Interests The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Abu-Jamous B, Fa R, Roberts DJ, Nandi AK (2014) 4–9 May 2014). 
M-N scatter plots technique for evaluating varying-size clus-
ters and setting the parameters of Bi-CoPaM and Uncles meth-
ods. 2014 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP), https://doi.org/10.1109/
ICASSP.2014.6854902

Abu-Jamous B, Fa R, Roberts DJ, Nandi AK (2015) Jun 4). UNCLES: 
method for the identification of genes differentially consistently 
co-expressed in a specific subset of datasets. BMC Bioinformat-
ics 16:184. https://doi.org/10.1186/s12859-015-0614-0

Antonova E, Holding M, Suen HC, Sumich A, Maex R, Nehaniv 
C (2022) 2022/06/01/). EEG microstates: functional signifi-
cance and short-term test-retest reliability. Neuroimage: Rep 
2(2):100089. https://doi.org/10.1016/j.ynirp.2022.100089

Bugli C, Lambert P (2007) Comparison between Principal Compo-
nent Analysis and Independent Component Analysis in Electro-
encephalograms Modelling. Biom J 49(2):312–327. https://doi.
org/10.1002/bimj.200510285

Calhoun VD, Liu J, Adalı T (2009) 2009/03/01/). A review of group 
ICA for fMRI data and ICA for joint inference of imaging, genetic, 
and ERP data. Neuroimage, 45(1, Supplement 1), S163-S172. 
https://doi.org/10.1016/j.neuroimage.2008.10.057

Cohen M, Cavanagh JF (2011) 2011-February-28). Single-Trial 
Regression Elucidates the Role of Prefrontal Theta Oscillations 
in Response Conflict [Original Research]. Frontiers in Psychol-
ogy, 2. https://doi.org/10.3389/fpsyg.2011.00030

Cong F, Kalyakin I, Huttunen-Scott T, Li H, Lyytinen H, Ristaniemi 
T (2010) SINGLE-TRIAL BASED INDEPENDENT COM-
PONENT ANALYSIS ON MISMATCH NEGATIVITY IN 
CHILDREN. Int J Neural Syst 20(04):279–292. https://doi.
org/10.1142/s0129065710002413

D’Croz-Baron DF, Bréchet L, Baker M, Karp T (2021) 2021/01/01). 
Auditory and visual tasks influence the temporal dynamics 

1 3

1031

https://doi.org/10.1007/s10548-020-00802-4
https://doi.org/10.1109/itab.2007.4407353
https://doi.org/10.1016/s0925-2312(02)00415-0
https://doi.org/10.1002/hbm.20304
https://doi.org/10.1016/j.cortex.2020.05.021
https://doi.org/10.1002/hbm.1050
https://doi.org/10.1093/oxfordhb/9780195374148.013.0014
https://doi.org/10.1093/oxfordhb/9780195374148.013.0014
https://doi.org/10.1016/j.neuroimage.2020.117465
https://doi.org/10.1016/j.neuroimage.2020.117465
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1371/journal.pone.0114163
https://doi.org/10.1152/jn.00663.2005
https://doi.org/10.1152/jn.00663.2005
https://doi.org/10.1016/j.clinph.2007.12.023
https://doi.org/10.1016/j.clinph.2007.12.023
https://doi.org/10.1007/s10548-013-0310-1
https://doi.org/10.1007/s10548-013-0310-1
https://doi.org/10.1016/j.jneumeth.2018.08.001
https://doi.org/10.1016/j.jneumeth.2018.08.001
https://doi.org/10.1016/0013-4694(87)90025-3
https://doi.org/10.1142/S0129065716500428
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICASSP.2014.6854902
https://doi.org/10.1109/ICASSP.2014.6854902
https://doi.org/10.1186/s12859-015-0614-0
https://doi.org/10.1016/j.ynirp.2022.100089
https://doi.org/10.1002/bimj.200510285
https://doi.org/10.1002/bimj.200510285
https://doi.org/10.1016/j.neuroimage.2008.10.057
https://doi.org/10.3389/fpsyg.2011.00030
https://doi.org/10.1142/s0129065710002413
https://doi.org/10.1142/s0129065710002413


Brain Topography (2024) 37:1010–1032

Onton J, Westerfield M, Townsend J, Makeig S (2006) 2006/01/01/). 
Imaging human EEG dynamics using independent component 
analysis. Neurosci Biobehav Rev 30(6):808–822. https://doi.
org/10.1016/j.neubiorev.2006.06.007

Pascual-Marqui RD, Michel CM, Lehmann DJ (1995) I. T. o. B. 
E. Segmentation of brain electrical activity into microstates: 
model estimation and validation. 42(7), 658–665. https://doi.
org/10.1109/10.391164

Rissling AJ, Miyakoshi M, Sugar CA, Braff DL, Makeig S, Light 
GA (2014) 2014/01/01/). Cortical substrates and functional cor-
relates of auditory deviance processing deficits in schizophre-
nia. NeuroImage: Clin 6:424–437. https://doi.org/10.1016/j.
nicl.2014.09.006

Ruggeri P, Meziane HB, Koenig T, Brandner C (2019) Mar 6). A 
fine-grained time course investigation of brain dynamics dur-
ing conflict monitoring. Sci Rep 9:3667. https://doi.org/10.1038/
s41598-019-40277-3

Schölkopf B, Smola A, Müller K (1998) Nonlinear Component Analy-
sis as a Kernel Eigenvalue Problem. Neural Comput 10(5):1299–
1319. https://doi.org/10.1162/089976698300017467

Tzovara A, Murray MM, Michel CM, De Lucia M (2012a). A tutorial 
review of electrical neuroimaging from group-average to single-
trial event-related potentials. Dev Neuropsychol 37(6):518–544. 
https://doi.org/10.1080/87565641.2011.636851

Tzovara A, Murray MM, Plomp G, Herzog MH, Michel CM, De Lucia 
M (2012b) 2012/06/01/). Decoding stimulus-related information 
from single-trial EEG responses based on voltage topographies. 
Pattern Recogn 45(6):2109–2122. https://doi.org/10.1016/j.
patcog.2011.04.007

Zappasodi F, Perrucci MG, Saggino A, Croce P, Mercuri P, Romanelli 
R, Colom R, Ebisch SJ (2019) EEG microstates distinguish 
between cognitive components of fluid reasoning. NeuroImage 
189:560–573. https://doi.org/10.1016/j.neuroimage.2019.01.067

Zhang G, Li X, Lu Y, Tiihonen T, Chang Z, Cong F (2023) 
2023/02/01/). Single-trial-based temporal principal component 
analysis on extracting event-related potentials of interest for an 
individual subject. J Neurosci Methods 385:109768. https://doi.
org/10.1016/j.jneumeth.2022.109768

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

schizophrenia: evidence from the P3 wave and the lateralized 
readiness potential. Psychophysiology 46(4):776–786. https://
doi.org/10.1111/j.1469-8986.2009.00817.x

Luck SJ, Stewart AX, Simmons AM, Rhemtulla M (2021) Standardized 
measurement error: a universal metric of data quality for aver-
aged event-related potentials. Psychophysiology 58(6):e13793. 
https://doi.org/10.1111/psyp.13793

Mahini R, Li Y, Ding W, Fu R, Ristaniemi T, Nandi AK, Chen G, Cong 
F (2020) 2020-October-21). Determination of the Time window 
of event-related potential using multiple-set Consensus Cluster-
ing [Methods]. Front NeuroSci 14(1047). https://doi.org/10.3389/
fnins.2020.521595

Mahini R, Xu P, Chen G, Li Y, Ding W, Zhang L, Qureshi NK, 
Hämäläinen T, Nandi AK, Cong F (2022a) 2022/11/01). Correc-
tion: optimal number of clusters by measuring similarity among 
topographies for spatio-temporal ERP analysis. Brain Topogr 
35(5):558–558. https://doi.org/10.1007/s10548-022-00918-9

Mahini R, Xu P, Chen G, Li Y, Ding W, Zhang L, Qureshi NK, 
Hämäläinen T, Nandi AK, Cong F (2022b) Optimal number of 
clusters by measuring similarity among topographies for spatio-
temporal ERP analysis. Brain Topogr. https://doi.org/10.1007/
s10548-022-00903-2

Mahini R, Li F, Zarei M, Nandi AK, Hämäläinen T, Cong F (2023) 
2023/09/01/). Ensemble deep clustering analysis for time window 
determination of event-related potentials. Biomed Signal Process 
Control 86:105202. https://doi.org/10.1016/j.bspc.2023.105202

Makeig S, Jung T-P, Bell AJ, Ghahremani D, Sejnowski TJ (1997) 
Blind separation of auditory event-related brain responses into 
independent components. Proceedings of the National Acad-
emy of Sciences, 94(20), 10979–10984. https://doi.org/10.1073/
pnas.94.20.10979

Meila M (2007, May) Comparing clusterings - an information 
based distance. J Multivar Anal 98(5):873–895. https://doi.
org/10.1016/j.jmva.2006.11.013

Michel CM, Koenig T (2018) 2018/10/15/). EEG microstates as a 
tool for studying the temporal dynamics of whole-brain neuro-
nal networks: a review. NeuroImage 180:577–593. https://doi.
org/10.1016/j.neuroimage.2017.11.062

Murray MM, Brunet D, Michel CM (2008, Jun) Topographic ERP 
analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–
264. https://doi.org/10.1007/s10548-008-0054-5

Nguyen N, Caruana R (2007) 28–31 Oct. 2007). Consensus Cluster-
ings. Seventh IEEE International Conference on Data Mining 
(ICDM 2007), https://doi.org/10.1109/ICDM.2007.73

Niedermeyer E, da Silva FL (2005) Electroencephalography: basic 
principles, clinical applications, and related fields. Lippincott 
Williams & Wilkins

1 3

1032

https://doi.org/10.1016/j.neubiorev.2006.06.007
https://doi.org/10.1016/j.neubiorev.2006.06.007
https://doi.org/10.1109/10.391164
https://doi.org/10.1109/10.391164
https://doi.org/10.1016/j.nicl.2014.09.006
https://doi.org/10.1016/j.nicl.2014.09.006
https://doi.org/10.1038/s41598-019-40277-3
https://doi.org/10.1038/s41598-019-40277-3
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1080/87565641.2011.636851
https://doi.org/10.1016/j.patcog.2011.04.007
https://doi.org/10.1016/j.patcog.2011.04.007
https://doi.org/10.1016/j.neuroimage.2019.01.067
https://doi.org/10.1016/j.jneumeth.2022.109768
https://doi.org/10.1016/j.jneumeth.2022.109768
https://doi.org/10.1111/j.1469-8986.2009.00817.x
https://doi.org/10.1111/j.1469-8986.2009.00817.x
https://doi.org/10.1111/psyp.13793
https://doi.org/10.3389/fnins.2020.521595
https://doi.org/10.3389/fnins.2020.521595
https://doi.org/10.1007/s10548-022-00918-9
https://doi.org/10.1007/s10548-022-00903-2
https://doi.org/10.1007/s10548-022-00903-2
https://doi.org/10.1016/j.bspc.2023.105202
https://doi.org/10.1073/pnas.94.20.10979
https://doi.org/10.1073/pnas.94.20.10979
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1016/j.neuroimage.2017.11.062
https://doi.org/10.1016/j.neuroimage.2017.11.062
https://doi.org/10.1007/s10548-008-0054-5
https://doi.org/10.1109/ICDM.2007.73

	Brain Evoked Response Qualification Using Multi-Set Consensus Clustering: Toward Single-Trial EEG Analysis
	Introduction
	Materials and Methods
	Simulated EEG Data
	Real EEG Data
	Proposed Method
	Trial Selection
	Multi-Set Consensus Clustering
	Time Window Determination


	Performance Analysis and Reproducibility Test
	Inter-Trial and Inter-Subject Reproducibility Tests
	Monte Carlo and Reliability Tests
	Statistical Analysis

	Results
	Multi-Set Consensus Clustering Results and Temporal Properties
	Clustering Results for the Simulated Data
	Clustering Results for the Real Data


	Spatial Properties of Individual Subjects’ ERPs
	Spatial Properties of ERPs in Simulated Data
	Spatial Properties of ERP in Real Data

	Evaluation Metrics and Performance Results
	Performance Results for the Simulated and Real Data
	Statistical Analysis Results in Simulated and Real Data

	Discussion
	Conclusions
	References


