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Abstract 

3D bioprinting techniques enable the precise deposition of living cells, biomaterials 

and biomolecules, emerging as a promising approach for engineering functional 

tissues and organs. Meanwhile, recent advances in 3D bioprinting enable researchers 

to build in vitro models with finely controlled and complex micro-architecture for drug 

screening and disease modelling. Recently, artificial intelligence has been applied to 

different stages of 3D bioprinting including medical image reconstruction, bioink 

selection and printing process with both classical AI and machine learning approaches. 

The ability of AI to handle complex datasets, make complex computations, learn from 

past experiences, and optimize processes dynamically makes it an invaluable tool in 

advancing 3D bioprinting. The review highlights the current integration of AI in 3D 

bioprinting and discusses future approaches to harness the synergistic capabilities of 

3D bioprinting and AI for developing personalized tissues and organs. 

 

Keywords: 3D bioprinting; hydrogel materials; artificial intelligence; machine learning.
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1. Introduction  

The shortage of organs for transplantation is a global problem that has been around 

for decades. Meanwhile, ethical considerations regarding animal experimentation are 

always a concern and the use of alternatives to in vivo testing is needed. 3D printing 

and artificial intelligence (AI) technologies have emerged to profoundly impact 

humanity. 3D bioprinting, a 3D printing technique which involves layer-by-layer 

precise processing of bioink consisting of cells and biomaterials, has emerged as a 

promising biofabrication method 1, 2. It has the advantages of cell encapsulation and 

precise spatiotemporal control of tissue scaffolds with desired composition, 

architecture and cell density which greatly increases the level of biomimicry of the cell 

niche 3. 3D bioprinting could fabricate complex structures customizable to each 

patient and personalized medicine and provide a highly relevant biological systems 

and less invasive model in the laboratory for systemic investigations and evaluations. 

The extrusion-based, inkjet, and laser-assisted bioprinters are among the bio-

fabrication methods that fabricate heterogeneous cell-laden structures such as kidney, 

heart, and cancer tissue mimics 4, 5. 

3D bioprinting significantly enhances the fields of tissue/organ regeneration and in 

vitro model testing by utilizing its capabilities in precision, customization, and 

scalability 6. In tissue and organ regeneration, bioprinting allows for the creation of 

complex, functional tissue constructs with well-defined architectures, improving their 

viability and integration within the body. This technology is essential for developing 

advanced organoids and large-scale tissue replacements 7, 8. For in vitro model testing, 

3D bioprinting is capable of producing of highly accurate and patient-specific models 

that mimic the architecture and functions of human tissues. This progresses the 

current in vitro models from a static 2D mono-layer culture towards dynamic and 3D 

culture systems, such as microbeads, organoids, and more recently 4D structures 9, 

10. These customized models are invaluable for precise drug testing and the 

development of personalized treatment strategies, offering a more relevant and 

efficient pathway from research to clinical application 11. 

The capacity of AI to manage intricate datasets, perform complex computations, 

automate processes, learn from historical data, and dynamically optimize operations 

renders it an indispensable tool in advancing 3D bioprinting. It has been used in 

different stages of 3D bioprinting including medical image reconstruction, bioink 

selection and printing process with two approaches, classical AI and machine learning. 

The classical AI approach has been used to automate medical image reconstruction 
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at the designing phase of bioprinting, build intelligent printing systems capable of in 

situ printing on complex surfaces or defect sites of patients, and auto-adjusting 

printing parameters in real-time. Machine learning, capable of learning from big data 

for making predictions and finding patterns, has been used to optimize image 

processing and diagnosis, guide bioink selection, and optimize printing parameters.  

 

Figure 1 The schematic of 3D bioprinting and AI application in regenerative engineering. 

This review explores 3D bioprinting techniques and bioinks for tissue and organ 

engineering, examines the current role of artificial intelligence in 3D bioprinting, and 

discusses future perspectives and solutions to harness the combined potential of 3D 

bioprinting and AI for creating tissues and organs for the global needs. 

2. 3D bioprinting 

2.1. 3D bioprinting technique 

Bioprinting techniques can be classified by several criteria, including the stimuli 

applied for bioink deposition, the type of bioink deposition from the reservoir (orifice-

free or orifice-based), and the printing modality (drop-based or extrusion-based) 3, 12. 

This review centers on bioprinting technologies involving stimuli-responsive 

depositions, categorized into three categories: inkjet bioprinting (using thermal and 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
9
0
2
0
8



6 

piezoelectric effects), extrusion-based bioprinting (utilizing air pressure or mechanical 

forces), and laser-assisted bioprinting (harnessing light energy). Figure 2 depicts the 

various types of 3D bioprinting technologies and their standard workflows for 

therapeutic applications. 

 

Figure 2. (A) The typical bioprinting workflow for therapeutic applications involves isolating and 
expanding human cells, printing cell-laden scaffolds, and using these scaffolds for therapy, 
drug testing, or disease modelling. C. Mandrycky, et al. Biotechnol. Adv., 34, 422-434, 2016; 
licensed under a Creative Commons Attribution (CC BY). (B) Three types of bioprinters. D. A. 
Foyt, et al. Adv. Healthc. Mater. 7, 1700939, 2018; licensed under a Creative Commons 
Attribution (CC BY). 

Inkjet bioprinters dispense tiny droplets of bioink in picolitre range 3, 13-15. For inkjet 

bioprinting, two commonly used methods are thermal and piezoelectric inkjet printing. 

Thermal inkjet bioprinters use an heating component in the print head to locally heat 

the bioink, causing vaporization which creates pressure pulses that propel droplets13. 

Piezoelectric inkjet printers use a piezoelectric component to generate acoustic 

waves in the printhead, breaking the bioink into droplets for ejection 16. In general, 

inkjet printing has advantages of wide availability, low cost, while it also has significant 

disadvantages, such as the risk of exposing cells and biomaterials to high 

temperatures or sound frequencies, inconsistent droplet size and directionality and 

nozzle clogging12. 

Extrusion-based bioprinters utilize mechanical (driven by screw or piston) or 

pneumatic dispensing systems and can precisely move the printhead relative to the 

substrate on the x, y, and z axes 17. Bioink is extruded into continuous, cylindrical 
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filaments of cells-capsulated materials in a controlled manner onto a substrate 

through an extrusion printhead. Overall, the extrusion-based bioprinting technique is 

capable of dispensing materials with a wide of rheological properties 18, 19. Higher 

viscosities are often necessary for providing structural support for the printed products, 

while lower viscosities are typically better for preserving cell viability and function. This 

technique is particularly notable for its capability to print bioinks with varying cell 

densities and mechanical properties 20, 21. 

Laser-assisted bioprinting utilizes the laser-induced forward transfer (LIFT) technique 

for printing bioinks in a drop-on-demand manner with potentially cell-level resolution. 

Laser pulse was used to vaporize the metal film and/or adjacent molecular layers of 

the bioink, creating bubbles that propel the bioink into droplets depositing onto the 

substrate 22, 23. Laser-assisted bioprinting can precisely pattern bioink droplets to 

within 5.6 ± 2.5 μm of the intended design, enhancing control over cell density and 

3D patterning 23, 24. However, disadvantages include a low flow rate, high costs, 

metallic residues in the printed construct, and a limited printing size. These factors 

greatly restrict its application in bioprinting tissues or organs12, 23. 

2.2. Bioinks 

During the bioprinting process, the biomaterial solution or mixture of multiple 

biomaterials, usually encapsulating the desired cell types, used for constructing tissue 

structures is termed bioink. 25. Bioink is the crucial component of 3D bioprinting and it 

also has many vital requirements that need to be considered during the selection 

process as they significantly influence its capability to develop functional organs or 

tissue structures. The bioinks need to be biocompatible (not only non-toxic to 

surrounding cells or tissues but also maintain the cell viability) to fulfil the function of 

3D bioprinted products. Rheological and mechanical properties are important to 

provide high resolution during printing and be mechanically stable after printing to 

maintain the structure of the bioprinted products. Hydrogel is becoming the gold 

standard material for bioinks due to its ability to hold great amounts of water while 

maintaining the structure 26, 27. The high water content is essential for cell survival and 

also controls the permeation of nutrients and cellular products providing a 

microenvironment mimicking the natural extracellular matrix (ECM) which facilitates 

the adhesion, proliferation, differentiation, and migration of cells 26, 28-30. Various 

natural and synthetic hydrogels with or without functional fillers have been used as a 

base structure encapsulating the cells for tissue deposition and to maintain cell 

morphology and function with varying degrees of success 31. 
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Natural hydrogels are derived from biological sources, such as bovine fibrinogen and 

rat tail collagen, and possess inherent biocompatibility and bioactivity. They closely 

mimic the natural ECM, providing a desirable microenvironment for cell activities. 

However, due to their natural origins, the composition and properties of these 

hydrogels may vary between batches32, 33. Common natural hydrogels used in 

formulating bioinks include alginate, collagen, gelatin, and cellulose. Alginate, a 

natural water-soluble material primarily sourced from brown seaweed and bacteria, is 

favored for its ionic crosslinking properties that allow for the creation of stable 

structures34. Collagen, the main structural protein found in the ECM of articular 

cartilage and meniscus, is isolated from various biological tissues and retains key 

signalling and adhesive biochemical cues. It is biodegradable by metalloproteases in 

the body and is noted for its excellent cross-species compatibility 35, 36. Gelatin, a 

biodegradable polypeptide derived from the hydrolysis of collagen, is often mixed with 

natural or synthetic hydrogels to improve their biological properties and has been 

added to alginate to enhance its printability while preserving the viability of embedded 

cells for bioprinting37, 38. Cellulose, a major structural component of plants, and its 

derivative, hydroxypropyl methylcellulose (HPMC), a water-soluble non-ionic polymer, 

are commonly used in 3D bioprinting for tissue engineering and drug delivery39, 40. 

Synthetic hydrogels are valued for the reproducibility and tailorability of their chemical 

properties and characteristics 34. Commonly used synthetic hydrogels in tissue 

engineering include polyethylene oxide (PEO), Pluronic F-127, modified cellulose, 

and their composites. PEO(CH2CH2O)n, a polymer of ethylene oxide monomers with 

molecular weights above 30,000 g/mol, is referred to as polyethylene glycol (PEG) 

when the molecular weight is below 30 kDa41. Due to its good biocompatibility and 

swelling properties, PEO is predominantly used in drug delivery applications42. 

Pluronic F127, also named Poloxamer 407, is a synthetic, amphiphilic copolymer 

approved by the FDA. Its amphiphilic nature allows self-assembling into small micelles 

in aqueous solutions, which are suitable for drug loading. Its thermogelling property 

enables F127 to encapsulate cells within its structure and supports cell adhesion to 

the defect site, facilitating tissue regeneration43-45. 

Functional fillers, such as ceramic nanoparticles, are added to bioinks to enhance the 

properties of the inks and the functions of printed products, including rheological 

properties, printability, mechanical strength, and bioactivity. For example, Laponite 

nanoclay (LP) is a commonly used bioactive filler and viscosity enhancer in bioinks 

due to its high efficiency in enhancing the viscosity, modulus and shear-thinning 

behavior of bioinks 46. Hydroxyapatite (nHA), renowned for its role in bone tissue 
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engineering, closely resembles the inorganic component of human bone. This high 

chemical similarity results in a strong affinity for the host natural bone tissues, making 

it highly effective for reconstruction purposes 47, 48. Bioactive glass, a type of 

bioceramic, is celebrated for its exceptional biocompatibility and ability to bond with 

bone and soft tissues, presenting significant properties of biocompatibility and 

osseointegration49, 50.  

The varying bioinks used for 3D bioprinting and their applications are summarized in 

Table 1 
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Table 1 Ink materials for bioprinting and their applications. 

 

N
at

ur
al

 h
yd

ro
ge

l 

Hydrogel matrix 
Functional 

fillers 
Cell type 

Post-
printing 
viability 

Application Ref 

3 wt% Alginate + 3 
wt% methyl 

cellulose 

6 wt% 
Laponite 

Human 
chondrocytes 

and pre-
osteoblasts 

80% 
Osteochondral 

tissue 
51 

6% (w/w) sodium 
alginate+16% (w/w) 

gelatin 
- Human kidney 

fibroblasts 
90% Kidney tissue 52 

2.5 w/v% Alginate 
2 w/v% 
nanoHA 

Chick 
chondrocyte 86% 

Calcified 
cartilage 

53 

10 w/v% GelMA - Mouse 
fibroblast cell 90% 

High viability 
tissue construct 

54 

0.5% w/v alginate 
2 w/v% 

nanocellulose 
Human 

chondrocytes 86% Cartilage 55 

4% w/v alginate+ 
2% w/v collagen 

- Human breast 
cancer cells 

90% 
Breast cancer 

model 
56 

5-10% w/v GelMA 
1-3.5% w/v 

Laponite 
Human PDAC 

cells 
- Pancreatic 

tissue 
57 

Sy
nt

he
tic

 
hy

dr
og

el
 

20% w/v 
Poly(ethylene glycol 

dimethacrylate) 
- Human 

chondrocytes 95% Cartilage 58 

25%w/v Pluronic 
F127 

- Mouse 
fibroblasts 80% 

Osteochondral 
tissue 

59 

 2.5% w/v PVP - 
Human lung cell 

lines and lung 
fibroblasts 

97% Lung tissue 60 

Co
m

po
sit

e 
hy

dr
og

el
 

1 w/v% Alginate + 5 
w/v% poly(2-ethyl-

2-oxazoline) 

2 w/v% 
cellulose 

nanofibrils 

Rat bone 
marrow-derived 

stem cells 
90% Cartilage 61 

30 w/v% F127 + 3 
w/v% collagen 

- 
Human 

mesenchymal 
stem cells 

88% 
Cornea; 

Cartilage; Skin 
62 

5 w/v% GelMA + 2 
w/v% alginate + 1 

w/v% PEG 

2 w/v% 
Laponite 

Human 
endothelial cells 95% 

Vascularized 
tissues 

46 

13 wt% F127 + 6 
wt% alginate 

- 
Rat bone 

marrow stem 
cells 

87% Osteochondral 63 

6wt% polyvinyl 
alcohol + 18.2 wt% 

alginate 
- - - Bone tissue 64 

 
10% w/v PCL +   

collagen 
- 

Human 
colorectal 

cancer cell line 
- Colorectal 

cancer model 
65 

 
2.5%GelMA + 2.5% 
Polyethylene glycol 
diacrylate (PEGDA) 

- Human 
melanoma cells 

80% Skin tissue 66 
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2.3. 3D bioprinting applications 

With the advantages of precision, customization, scalability, and versatility, the 3D 

bioprinting technique is capable of creating tissue constructs and models that were 

previously unattainable with traditional methods. The diverse applications of 3D 

bioprinting in tissue engineering, regenerative medicine, cancer research, disease 

modelling, and illustrate the transformative potential of this technology. These 

applications are summarized in Table 1 

In tissue and/or organ regeneration, the precision of 3D bioprinting allows for the 

creation of constructs with specific microarchitectures that enhance tissue 

functionality 67. The ability to customize and precisely fabricate scaffolds that mimic 

the ECM enhances cell attachment, proliferation, and differentiation and is critical for 

developing effective biomedical devices and implants for clinical use 20. The versatility 

in material uses and the capability in fabricating intricate structures are also crucial 

for developing multi-layered and vascularized tissues for creating functional tissue 

implants and advancing organ replacement therapies. 

The customization capability enables the development of patient-specific in vitro 

models that mimic the morphological heterogeneity of human cancer tissues. This 

allows for more accurate drug response simulations and the development of 

personalized treatment strategies. 56. For disease modeling and drug testing, the 

reproducibility and high-throughput capability of 3D bioprinting facilitate the creation 

of consistent and scalable models, essential for effective drug screening 51.  

To adapt to dynamic physiological environments, stimuli-responsive materials are 

used in 3D bioprinting to enable shape or functional transformations, closely 

mimicking the dynamic behaviours of native tissues 68, 69. This approach, known as 

4D bioprinting, adds 'time' as a fourth dimension, allowing the bioprinted products not 

only to replicate the complex geometry of natural organs but also to adapt to dynamic 

environments or undergo maturation and evolution in a programmed manner68, 70, 71. 

Overall, 3D bioprinting, a pioneering field at the intersection of medicine, material 

science, engineering, and biology, holds immense promise for advancing medical 

research and clinical applications. Despite its potential and wide applications, it faces 

numerous challenges across technical, biological, and operational aspects. These 

include achieving high structural integrity of the printed products, maintaining the 

viability and functionality of cells, and ensuring reproducibility and reliability of 

bioprinting processes. 
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To overcome these obstacles, optimizing bioinks, print design and printing parameters 

and incorporating advanced printing modalities are crucial for enhancing precision 

customizability and reducing human error. Additionally, the ability to process and 

optimize data can significantly accelerate bioprinting development compared to the 

traditional trial-and-error methods, which are resource- and time-consuming 72, 73. In 

response to these demands, Artificial Intelligence (AI) emerges as a critical tool. It 

addresses various challenges by enhancing the capabilities and impact of bioprinting 

technologies. AI can be integrated into various stages of the bioprinting workflow, 

processing vast amounts of data to accelerate and optimize designs, materials, and 

printing processes. This capability not only speeds up the development cycle but also 

introduces a level of precision difficult to achieve manually74-76.  

3. Artificial intelligence in 3D bioprinting 

The term artificial intelligence (AI) was coined by John McCarthy and can be defined 

as the intelligence demonstrated by machines 77. As the computational speed of 

machines has improved rapidly, the early approach of rule-based systems has been 

widely used to store, analyse and manipulate data 78. The rule-based system consists 

of a set of rules, particularly if-then rules, coded through expert knowledge or learning 

from real data 79. Classical AI leverages the rule-based system's approach with a more 

complex and nuanced knowledge base that represents the expertise of human 

specialists in specific domains 80. Using rule-based algorithms and expert knowledge, 

classical AI provides a structured approach to reliable problem-solving and 

automation on specific tasks with explicit reasoning 81, 82. The advent of machine 

learning (ML) methods marks another crucial shift in AI. It leverages learning systems 

that can process and learn from a large number of data and perform pattern 

recognition and predictive analytics on new data for complex decision-making 

processes and optimization. As ML does not rely on handcrafted features or explicit 

rules, it provides an alternative and powerful approach to completing complex tasks 

with new situations not directly covered by the original knowledge base, which can be 

challenging using the unaided human brain or traditional approaches 83-85. ML is 

significantly influencing healthcare and biomedical applications such as diagnosis 

with medical images 86, 87, and recognizing a specific gene in a DNA sequence 88, 89. 

Basic ML methods can be classified into two main categories: supervised and 

unsupervised machine learning according to task 88. Unsupervised learning methods 

are trained with unlabeled data to discover hidden patterns or group the inputs without 

target variables 90, 91. Examples of unsupervised learning include identifying latent 
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infectious diseases by mining social media data 92 and autonomous defect detection 

in laser powder bed 3D printing with anomaly detection techniques 93. Supervised 

learning algorithms are trained with labelled data to establish the function that 

connects the inputs X to the unknown outputs Y and make predictions. It is currently 

the most widely used machine-learning method 91. The function is based on the 

extrapolation of patterns discovered in the labelled input 94, 95. The supervised learning 

method is widely used to solve classification and regression problems. Examples of 

classification problems include disease diagnosis 96 and risk gene identification 97.  

In the 3D bioprinting field, ML algorithms have been used in major aspects including 

material selection, optimization of the model design and printing parameters, and in 

situ monitoring 75, 76, 98, 99. The amount of data generated from these aspects is huge 

and the ML approach has demonstrated to be a prominent tool to overcome time-

consuming, physics-based challenges efficiently 72, 73. This can significantly 

accelerate the design-test cycle, reducing the time, resources and cost in the 

development of new biomaterials and printing techniques. 

“Advancements in AI have substantially broadened its interdisciplinary applications, 

notably through the adoption of machine learning (ML) techniques in recent years 100, 

101. In 3D bioprinting, AI has been used across several stages of bioprinting including 

print design, bioink selection, and bioprinting process. Machine learning (ML) has 

experienced a surge in popularity and has been the focus of several review papers in 

recent years. It is even sometimes used interchangeably with AI. However, also as a 

part of AI, classical AI has not been well reviewed in the bioprinting field, although it 

has been playing a significant role in the foundational techniques of bioprinting. This 

review fills the gap in the literature by providing a systematic review of the full 

spectrum of AI in bioprinting, encompassing both classical AI and machine learning 

techniques. The schematics of how these two approaches of AI have been utilized in 

bioprinting are shown in Figure 3. This dual approach not only emphasizes the depth 

of AI's integration into bioprinting but also sets the stage for future advancements 

where both classical AI and machine learning can synergistically enhance bioprinting 

technologies. 
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Figure 3 Schematics illustrating the use of artificial intelligence in 3D bioprinting. Both classical 
AI and learning systems of artificial intelligence have been integrated in different stages of 
bioprinting including print design, ink formulations and properties, and the bioprinting process. 

3.1. Medical image reconstruction  

The designing stage at the start of 3D bioprinting usually involves image acquisition 

from patients which guides the design of the 3D printing structure 102. Raw imaging 

data of target tissues or organs is obtained with medical imaging technologies 

including magnetic resonance imaging (MRI), and computed tomography (CT) which 

generate slice-by-slice images of target tissues or organs. The subsequent step is the 

meticulous segmentation of these images, wherein specific regions of interest within 

the organ are delineated and distinguished from the surrounding tissue. The 

segmented data are then converted into computer-aided design (CAD) software, 

which facilitates the reconstruction of a digital 3D representation of the organ. This 

model serves as a blueprint for the generation printpath and printing parameters for 

the bioprinting process 103-105. The accuracy of each step is critical to the quality and 

functionality of the printed structures. Traditional medical image segmentation and 

process methods are often time-consuming and error-prone 103. Artificial intelligence 

has introduced automated segmentation algorithms and enhancement tools that 

significantly reduce manual input, increase efficiency, and minimize errors.  

Classic AI has been used to improve and automate the processes of image 

enhancement and segmentation, medical image reconstruction and printpath 
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generation 106-108. Bouzon, Albertini, Viana, Medeiros and Rodrigues 109 have 

employed a bio-inspired algorithm alongside computer vision and computer graphics 

techniques for medical image reconstruction, which is particularly challenging in 

unstructured scenes such as internal biological organs. The algorithms optimized 

image segmentation by minimizing entropy, detecting key points and mismatched 

point pairs in the images to extract and discard them respectively, which collectively 

enhanced the quality of reconstruction. Sainz-DeMena, García-Aznar, Pérez and 

Borau 106 have developed the im2mesh python library for the automation of 

transforming segmented slices into detailed 3D meshes, integrating scattered data 

through slice interpolation, and improving the usability and integration of these models 

into patient-specific simulations. The resultant 3D mesh has shown higher intersection 

over union (IoU) scores when comparing surfaces generated by established software 

like 3D Slicer. With the reconstructed 3D model, classic AI has also been used to 

generate reliable printpath autonomously. Nguyen, Phung and Bui 110 integrated 

computer-aided process planning systems and macro programming techniques to 

automate and enhance the generation of G-codes for CNC machining. With the 

recognition of the geometric features of the CAD model and the subsequent 

generation of G-code, this system has enhanced the flexibility customizability, and 

speed of the process. 

As ML methods excel in pattern recognition and making predictions, it has been used 

for optimizing image segmentation for medical image reconstruction. Roth, Oda, Zhou, 

Shimizu, Yang, Hayashi, Oda, Fujiwara, Misawa and Mori 111 have developed 

cascaded FCNs for segmentation from CT images. It utilizes a two-stage, coarse-to-

fine approach that allows for effective segmentation of complex anatomical structures 

across varying scales, from large organs to thin vessels. This approach refines the 

segmentation, particularly around the boundaries of smaller organs and vessels, and 

improves the mean Dice score significantly, demonstrating a substantial 

enhancement in the accuracy of segmentation. Chowa, Azam, Montaha, Bhuiyan and 

Jonkman 112 introduced a novel method that can transform traditional 2D ultrasound 

images into 3D meshes, capturing detailed geometrical features of breast tumours 

which are often lost in conventional imaging techniques by extracting clinically 

significant features from these 3D representations and utilizing a graph attention 

network. 

3.2. Ink selection 

The variety of available biomaterials for 3D bioprinting offers a diverse array of natural 

and synthetic polymers and functional fillers as shown in Table 1. Each material 
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comes with its unique set of physical, chemical, and biological characteristics. These 

properties, including viscosity, gelation behaviour, degradation rate and 

biocompatibility can profoundly influence the outcomes of 3D bioprinting. For instance, 

a bioink's rheological properties can affect its printability and resolution, while its 

biochemical attributes might determine cell-matrix interactions and tissue maturation. 

Given the myriad combinations and the interplay of these properties, developing the 

optimal ink formulation is extremely empirical and requires expert knowledge in 

various fields 113-115.  

ML presents a groundbreaking approach to ink development with its capacity to sift 

through vast datasets and discern patterns that might be considered large and 

complex for humans 115, 116. The printability of inks is a fundamental property for 3D 

printing as it can greatly influence the integration and function of printed implants 117. 

It is evaluated by assessing the shape fidelity of printed products. ML has been utilized 

to forecast the printability of biomaterial formulations, aiding in the development of 

bioinks. Chen, Liu, Balabani, Hirayama and Huang 113 have used ML learning 

algorithms to predict printable biomaterial formulations for direct ink writing (DIW), an 

extrusion-based printing technique. The data used in their study consists of 210 ink 

formulations with two ink systems (hydrogel-based and polymer organic solution-

based), 16 biomaterials, both natural and synthetic, and 4 solvents. The biomaterials 

include polymers of a range of molecular weights and properties and functional fillers 

with different sizes and functions. The inks were 3D printed into 4-layer lattice 

structures using DIW technique and their printability was assessed. The ML 

algorithms including decision tree, random forest, and deep learning have 

successfully predicted the printability of biomaterial formulations using their 

formulations with high accuracy (>88%) as shown in Figure 4 (A). In addition, a 

printability map of biomaterial composites can be generated using the trained ML 

algorithms to guide the ink design (Figure 4(B)). This study has opened the gate for 

using ML in guiding the selection of materials with a range of properties for DIW 3D 

printing, including hydrogels for bioprinting. 

Nadernezhad and Groll 114 have used a random forest algorithm to predict the 

printability of hyaluronic acid-based hydrogel inks using their rheological properties. 

In addition, the importance of different rheological properties was quantitatively 

assessed and 13 critical rheological measurements that define the printability of 

hydrogel formulations have been identified (Figure 4 (D)). From a statistical 

perspective, the trained model predicts that a printable formulation should exhibit high 

yield viscosity and minimal plasticity before flowing. Additionally, the shift from 
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Newtonian to non-Newtonian flow characteristics should happen at comparatively low 

shear rates. 

 

Figure 4. Machine learning in material selection for bioprinting. (A) Machine learning in 
predicting the printability of inks consisting of both hydrogel-based and polymer/organic 
solvent systems. (i) Evaluation metrics of accuracy, precision, recall, and F1 score of ML 
models in predicting printability. (ii) The predicted printability table of F127/Laponite hydrogel 
nanocomposite. (iii) hydroxyapatite nanoparticles loaded polycaprolactone polymer 
nanocomposite ink. Chen, et al., Research., 6, 0197. 2023; licensed under a Creative 
Commons Attribution (CC BY). (B) SHAP values of different features (rheological properties) 
of inks compare their contributions to the prediction on a global scale (left) and a local scale 
(right). A higher value indicates a higher contribution to the change in printability. Nadernezhad, 
et al., Adv. Sci., 9, 2202638. 2022; licensed under a Creative Commons Attribution (CC BY). 

3.3. Printing process 

3.3.1. AI-enabled in situ printing 

The current bioprinting approach involves bioprinting a cellular tissue structure at the 

fabrication site which is then transferred to the surgery room for transplantation 12, 118. 

Despite its great potential, intrinsic challenges of conventional 3D bioprinting exist 

which may hinder the fulfillment of its full potential. The bioprinting process is typically 

on a flat substrate, however, the defect site is often irregular and complicated leading 

to issues in achieving geometric alignment between the printed and target surfaces. 

The handling, transferring and implantation processes pose risks of damaging the 

micro- or macro-architectures of the mechanically weak bioprinted cellular structures. 

The risk of contamination during these processes is also a major concern 118-121. 

In situ 3D bioprinting has emerged to address these challenges. It involves the 

deposition of bioinks directly on the defect site in a clinical setting for the regeneration 
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of tissues or organs with a minimally invasive route. This technique is capable of 

regenerating and reconstructing damaged tissues with non-planar surfaces or 

complex geometries. After printing, the human body acts as an "in vivo bioreactor," 

overseeing the post-printing development and maturation which eliminates the need 

to create an artificial microenvironment for the maturation of bioprinted products in 

vitro with bioreactors 118, 122. Surface acquisition and print path planning are crucial for 

in situ printing. Properly determining the surface geometry ensures accurate 

deposition of material, and efficient print path planning ensures the printing process 

is optimized for speed, material use, and final product quality.  

Classical AI systems have been used to acquire geometric information, create printing 

paths and incorporate intelligent printing systems. This has enabled in situ 3D printing 

on complex and non-planar surfaces 123. In a review paper by Zhu, Ng, Park and 

McAlpine 123 these AI systems were categorized into open-loop, closed-loop and 

predictive AI systems. In open-loop AI systems, the target surface is static, and the 

geometry is prescribed to generate the print path. In a closed-loop AI system, a 

feedback-control system adapts the print path during the printing process allowing 3D 

printing on moving surfaces. A schematic showing the use of AI in 3D bioprinting is 

shown in Figure 3. 

Open-loop 3D printing involves obtaining information about the target surface 

geometry before the printing process that is operated offline. Subsequently, AI can 

analyze this geometric data to design the printpath and ink deposition for in situ 

printing. Various imaging techniques, such as CT scanners 124, laser scanners 125 and 

structured-light scanners 126 have been used to acquire the 3D geometric data of the 

target surface.  

Li, Shi, Ma, Jin, Wang, Liang, Cao, Wang and Jiang 127 used a robotic manipulator-

based 3D printer for in situ printing in living animal models (Figure 5(A)). They 

performed 3D scanning to acquire the long segmental defect surface on the tibia of 

pigs for path planning with reverse engineering. Porous scaffold structures were 

printed on the defects in 12 minutes (Figure 5 (B)). Micro-CT scans revealed that the 

3D bioprinting group exhibited a continuous cortical bone structure at the defect site 

after three months, whereas the control group displayed gaps and cavities. 

Histological analysis also showed improved morphology of the healed bone tissue in 

the 3D bioprinting group. This demonstrates the feasibility of using the robotic printer 

to repair large segmental bone defects. Zhou, Yang, Wang, Wu, Gu, Zhou, Liu, Yang, 

Tang, Ling, Wang and Zang 128 introduced a ferromagnetic soft catheter robot (FSCR) 

system for intelligent and minimally invasive bioprinting (Figure 5 (C)). The FSCR 
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utilizes magnetic actuation and can be remotely controlled, allowing for precise and 

automated printing of various materials with a small incision. The 3D surface of a living 

rat's liver was reconstructed using CT, and a printing path was defined on the upper 

surface of the liver. The FSCR successfully printed conductive hydrogel in a spiral 

pattern on the liver's surface in vivo within 70 seconds (Figure 5 (D)). 

 

Figure 5. AI-guided in situ 3D bioprinting with open-loop system. (A) In situ bioprinting on a 
porcine long segmental bone defect using a robotic manipulator-based 3D printer. A porous 
bone scaffold was printed in the bone defect. Reproduced with permission from Li, et al. J. 
Adv. Res., 30, 75-84. (2021). Copyright 2021 Elsevier. (B) Schematics illustrate the minimally 
invasive printing process using a ferromagnetic soft catheter robot (FSCR) system. Functional 
inks, such as conducting polymers and living materials, are printed through the skin via a small 
incision. (ii) Minimally invasive printing of conductive hydrogel on the liver surface and (ii) 
resulting printed spiral pattern. (iii). Zhou, et al. Nat., Commun., 12, 5072. 2021; licensed under 
a Creative Commons Attribution (CC BY). 

Closed-loop AI approach for in situ printing involves online 3D printing with real-time 

operational adaptations to changes including target surface motion and deformation, 

defects in printing and ink flows, and nozzle function 123. This allows for improved 

printing quality through real-time correction and on-site printing on non-static surfaces. 

Zhao, Hu, Lin, Wang, Liu, Wang, Zhu and Xu 129 developed a closed-loop minimally 

invasive in situ bioprinting technique. This system includes a 7-axis bioprinting robot, 

a binary chromatic ring array (BCRA) marker for identifying the trocar, a vision system 

for capturing the trocar's movement, and a real-time control component (Figure 6(A)). 

The BCRA marker ensures precise positioning and poses estimation of the trocar, 
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while the bioprinting robot guides the end-effector through the trocar to carry out 

procedures within the small incision. The vision system captures the trocar's 

orientation, which is then used for real-time alignment and compensation of the 

printing end-effector's orientation. The system has printed hydrogels through an 

artificial skin on a porcine liver model with submillimetre accuracy, ensures minimal 

contact force at incisions and improved adaptability for intracorporal operations 

affected by respiration. (Figure 6 (B)). Zhu, Park and McAlpine 130 have developed a 

system capable of estimating the real-time movement of the target surface and adapt 

the printing process accordingly allowing in situ 3D printing on a moving lung model 

(Figure 6(C)). They used a stereo camera system to track fiducial markers on the 

tissue surface in a real-time shape basis model to estimate the deformation of the 

target surface. The system is capable of dynamically adapting the printing process 

from the real-time geometric states of the substrates. They successfully printed 

conductive hydrogel on a porcine lung and integrated it into a strain sensor with the 

ability of continuous spatial mapping of deformation. This adaptive 3D printing 

approach has the potential to enhance robot-assisted medical treatments and enable 

the printing of bioinks direct on and within the human for tissue regeneration or 

wearable electronics applications. 

 

Figure 6. AI-guided in situ 3D bioprinting with closed-loop system. (A) A closed-loop minimally 
invasive 3D bioprinting system. (i) Experiment setup of the system hardware. Reproduced with 
permission from Zhao, et al. Addit. Manuf. 73, 103701 (2023). Copyright 2023 Elsevier. (ii) 
Schematics of minimally invasive in situ printing on the surface of a porcine liver in respiration 
conditions. (iii) Printed hydrogel patch on a porcine liver with minimally invasive operation. (B) 
3D printing of the conductive hydrogel layer on a lung model undergoing respiration motion. 
Zhu, et al. Sci. Adv. 6, eaba5575 2020; licensed under a Creative Commons Attribution (CC 
BY). 

3.3.2. Optimization of printing parameters 

Printing parameters involved in the printing process directly influence various aspects 

of the bioprinted products, such as structural integrity, resolution, and cell viability. 

These parameters include the speed of printing, temperature settings, extrusion rate, 

and layer thickness.  
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As ML methods excel in pattern recognition and making predictions, it has been used 

to process images of printed structures and assess the quality. Jin, Zhang, Shao and 

Gu 131 developed an anomaly detection system based on machine learning algorithms 

and layer-by-layer images of printed hydrogel lattice structures. Neural network (CNN) 

models were used in combination with advanced image processing techniques to 

distinguish and classify imperfections such as discontinuity, nonuniformity, and 

irregularity. This anomaly detection system has the potential to be integrated into the 

real-time correction of process parameters autonomously, enhancing printing quality.  

The automation from classical AI techniques can be combined with the image 

processing capability of ML to achieve real-time adjustment in the printing process. 

Chen, Dong, Ruelas, Ye, He, Yao, Fu, Liu, Hu, Wu, Zhou, Li, Huang, Zhang and Zhou 
132 have developed an artificial intelligence-assisted high-throughput printing-

condition-screening system that can assess the printing quality of deposited filaments 

and adjust the printing parameters in real-time accordingly (Figure 7 (A)). 3D printed 

hydrogel patterns were imaged using a smartphone, and an AI-assisted image-

analysis algorithm assessed the images in real-time and synergistically adjusted the 

printing parameters including printing pressure, speed, and distance, accordingly. 

Deep learning ML algorithm was used to analyze the acquired images and assess the 

shape fidelity of the filaments. Classical AI enables automated control systems that 

input the images to the ML algorithm and adjust the printing parameters with high 

throughput. The hydrogel scaffolds produced through the printing process 

demonstrated enhanced biological performance and proved to be highly effective in 

expediting the healing process of diabetic wounds. 
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Figure 7. AI in optimization of the printing process. (A) AI-enabled high-throughput printing-
condition-screening system capable of screening and adjusting the extrusion-based 
(bio)printing conditions with high throughput. Reproduced with permission from Chen, et al. 
Adv. Funct. Mater. 32, 2201843 (2022). Copyright 2022 Wiley-VCH. (B) Comparison of the 
inkjet printing of bio-inks with initial and optimized voltages. This optimization process has 
been shown to generate homogeneous primary droplets. Shi, et al., Engineering. 5, 586-593 
2019; licensed under a Creative Commons Attribution (CC BY) license. (C) The process of 
using machine learning (ML) in 4D printing design involves several steps: recognizing the 
drawn profile as the target shape, applying the ML-EA (Machine Learning-Evolutionary 
Algorithm) for design optimization, generate grayscale slices from the optimal design, 3D 
printing, and expanding the printed structure for actuation. Reproduced with permission from 
Sun, et al. Adv. Funct. Mater. 32, 2109805 (2022). Copyright 2022 Wiley-VCH. 

Besides extrusion-based printing, ML has also been used to assess droplet forming 

of drop-on-demand printing to optimize the printing parameters. Shi, Song, Song and 

Lu 133 have developed fully connected neural networks to optimize the inkjet printing 

parameters. By solving a single-objective optimization problem, they determined the 

optimal voltage for each bio-ink, which was then successfully used to print a single 

primary droplet. A hybrid multi-subgradient descent bundle method with an adaptive 

learning rate algorithm (HMSGDBA) was used to search for the Pareto-optimal set for 

a multi-objective optimization problem. The optimized parameters obtained through 

the proposed method improved the printing precision and stability as shown in (Figure 

7 (B)). 

ML has been used to assess and optimize the shape actuation for 4D printing. Sun, 

Yue, Yu, Shao, Peng, Zhou, Demoly, Zhao and Qi 134 have developed machine 

learning and evolutionary algorithms in the design of 4D printing active composite 

structures (Figure 7 (C)). The goal is to optimize a design to achieve a target shape 

transformation. The approach involves training a recurrent neural network (RNN) 

model using finite element simulations for predicting the shape change and using an 
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evolutionary algorithm (EA) empowered with machine learning to find the optimal 

design. The ML-EA algorithms demonstrate high efficiency in designing 4D-printed 

active composites for achieving multiple target shapes. The authors propose a new 

paradigm that integrates computer vision algorithms with ML-EA, streamlining the 

design and 4D printing process to enable the rapid 4D printing of beams from hand-

drawn lines. This ML-EA approach achieves high accuracy, is computationally faster 

than finite element simulations, and can be applied to different material and fabrication 

systems with varying active strain mechanisms. 

As both materials and printing parameters contribute to the shape fidelity of the printed 

products, ML has been utilized to predict the desired ink formulations and printing 

parameters collectively. In the study conducted by Kim, Lee, Han, Kang, Park, Kim, 

Lee, Kim, Na, Oh, Bang, Jang, Kim, Park, Shin and Jung 135, the Gaussian process 

regression machine learning model was used to optimize the hydrogel concentration 

and printing parameters for 3D printing functionalized alginate hydrogel for diabetic 

wound dressing. Using ML, the team predicted optimal hydrogel concentrations and 

printing parameters to achieve desirable printability. The model's accuracy reached 

an R2 value of 82%. This predictive modelling enabled the precise fabrication of 

dressings that protect the wounds from mechanical deformations. 

4. Conclusions and Future Perspective 

The burgeoning field of 3D bioprinting has made substantial strides in recent years. It 

integrates advances in biomaterials, printing technologies, and computational 

methods to push the boundaries of tissue engineering and regenerative medicine. 

While advancements have been made, several challenges persist in bioprinting. 

Currently, it struggles to replicate the complex micro- and macro-architecture and 

mechanical and biochemical cues of native tissues and ensure the cell activities and 

functionality of printed tissues over time 18, 136, 137.  

The interplay of AI with 3D bioprinting is poised to revolutionize this landscape by 

surmounting the current challenges of 3D bioprinting and unlocking new possibilities. 

Comprising both classical AI and machine learning approaches, AI is capable of 

processing and interpreting large datasets generated from high throughput 

experiments and has pushed advances in 3D bioprinting by generating printpaths for 

printing on complex surfaces, selecting bioink materials and refining designs and 

printing parameters. The classical AI approach has been used to regulate and 

automate different processes for bioprionting. In the print design phase, it has been 

used to automate the medical image processing and printpath generation based on 
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medical image reconstruction. In the printing process, it allows in situ bioprinting by 

automating the movement of the nozzle based on the complex surface geometry of 

the substrate and in situ monitoring and adaptation of the printing parameters. The 

machine learning approach excels in finding patterns and making predictions from 

large amounts of data and guides the bioprinting process including image 

segmentation, bioink selection and parameter optimization. 

In the future, the importance of AI in bioprinting will continue to grow. As the field of 

bioprinting advances, it will inevitably become more complex, with an increasing 

accumulation of data throughout its processes. Simultaneously, as AI technology 

evolves, improvements in computational speed and robustness are expected. This 

advancement will undoubtedly magnify the role of AI in bioprinting, especially in 

managing and optimizing the vast datasets that inform printing design, bioink 

selection and printing parameters. 

AI is currently an isolated computing block in the bioprinting process. Looking ahead, 

integrating concepts from the latest advancements, such as digital twins and big data, 

could further integrate AI into bioprinting 138. The creation of digital twins of human 

organs, informed by vast arrays of big data derived from medical imaging, bioink 

formulations, printing parameters and assessments of printed products, will enable AI 

systems to simulate and predict the outcomes of bioprinting processes with high 

accuracy. Additionally, this predictive capacity, rooted in comprehensive data analysis, 

facilitates the ability of AI-enabled bioprinting systems to become fully autonomous in 

printing and evolving themselves. Such systems would be capable of identifying 

tissue defects from medical imaging, initiating print design, selecting appropriate 

bioinks, and executing printing with optimized parameters autonomously. This level of 

automation would not only minimize human errors but also allow surgeons and 

clinicians to conduct or supervise complex bioprinting processes without expert 

knowledge of bioprinting. In addition, the use of ML for bioprinting is currently focused 

on achieving adequate structure integrity, by selecting bioinks with high printability 

and optimized printing parameters. While the structure integrity is fundamental for 3D 

bioprinting, other factors such as mechanical properties, cell viability, proliferation and 

differentiation are also vital for the function of the bioprinted products 117, 139-141. By 

integrating big data, which encompasses these diverse aspects, along with the 

concept of digital twins, bioprinting can be significantly enhanced across various 

dimensions of the process. 

In conclusion, as AI technology advances in capability and sophistication, its 

integration into bioprinting becomes increasingly essential. AI is set to play a pivotal 
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role not only in enhancing existing processes but also in driving innovation within the 

field. By continuing to utilize AI, the bioprinting field can look forward to overcoming 

current limitations and unlocking new potentials in the creation of complex, functional, 

and patient-specific tissues.  
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