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Abstract—In this paper, we present the Large Language
Model-based combinatorial optimizer (LMCO) for wireless net-
work optimization and planning tasks, focusing on optimizing the
number and the placement of wireless access point placement.
The performance and efficiency of LMCO are evaluated and
compared with the well-established Ant Colony Optimization
(ACO) algorithm. The results indicate that LMCO exhibits
superior performance, particularly as the complexity of the
problem increases. These findings also underscore the significant
potential of LLM-based algorithms in revolutionizing combina-
torial optimization across a wide range of applications.

Index Terms—Large language model, network optimization,
combinatorial optimization, access point placement

I. INTRODUCTION

OPTIMIZATION tasks are critical in identifying the most
effective solutions within a complex decision space,

and they have become increasingly important in the evolving
landscape of wireless communication. Moving from second-
generation networks, supporting voice calls and text messages,
to fifth-generation and beyond (B5G) networks, there has been
a giant leap in capacity and capability. These networks are
expected to provide an umbrella to the Internet of Things,
machine-to-machine communications, virtual reality, and other
emerging applications [1]. Commensurate progress has been
observed in network planning techniques that have evolved to
address increasing network complexity and the diverse needs
of our ever-increasing digitalized society [2].

In wireless network planning, the traditional approach has
been heavily dependent on the experience of network en-
gineers, especially in the crucial task of selecting positions
for the installation of Access Points (APs). In more recent
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times, their strategic decisions have been supported by radio
propagation models, for example, the empirical Okumura-Hata
model [3] or deterministic ray-tracing algorithms [4] to predict
the received signal strength and so confirm the suitability of
chosen sites.

The advent of advanced computational capabilities has
shifted network planning towards an algorithmic-based ap-
proach, often supplementing or replacing human expertise with
optimization algorithms. These methods, particularly meta-
heuristic algorithms such as evolutionary strategies [5], [6],
optimize AP placement and network coverage using detailed
radio propagation models. Successful network planning relies
on the optimization algorithm’s ability to identify optimal de-
ployment configurations and the performance of optimization
is confirmed through the use of propagation models. Recent
innovations, such as optimization algorithms integrating Large
Language Models (LLMs) [7]–[9], show promising results in
efficiently addressing optimization issues describable using
natural language. However, there is little research studying
their applications in complex scenarios such as wireless net-
work optimization, where integration with expert models is
reuqired.

Against this above background, here, we aim to address the
challenge of network deployment within the wireless com-
munication sector by seamlessly incorporating an LLM-based
framework with sophisticated propagation models. We intro-
duce a first of its kind LLM-based optimization framework,
termed Large Language Model-based combinatorial optimiza-
tion (LMCO), which to our knowledge is a unique implemen-
tation in the field of wireless communications. This innovative
framework demonstrates notable advantages over conventional
optimization techniques. Specifically, our experiments suggest
that LMCO not only surpasses traditional solutions in terms
of performance, but also reveals its adaptability to address an
extensive range of analogous optimization challenges.

II. INTRODUCTION OF LLM AND NETWORK PLANNING
MODELING

A. Preliminary

A fundamental component of the LLM-based framework
is the “prompt”, which refers to a dynamically generated
input that includes (i) the user’s question, (ii) several brief
examples to tune and improve the model’s response, and (iii)
instructions for processing the user’s input.

The proposed LMCO framework aspires to replace legacy
single-target optimizers, e.g., evolutionary algorithms and
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Fig. 1. The LMCO framework has 3 groups of crucial prompts that are employed to guide and instruct LMCO to solve wireless deployment optimization
problems. The segments enclosed in “{}” within the prompt are placeholders that will be substituted with the relevant content when communicating with the
LLM. Note that there is also a block identified with red text providing expert knowledge to the LLM. Prompt 1 is associated with LLM Initializer and Prompt
2 and Prompt 3 are associated with Module 1 and 2 respectively

ant colony optimization [10], [11] in the wireless network
planning and optimization process. Unlike conventional ap-
proaches that require step-by-step programming of combi-
natorial optimizers, LMCO does not necessitate providing
the LLM with detailed instructions on precisely executing
each optimization step. Instead, it relies minimally on domain
expertise supplied as domain information. Lastly, to facilitate
LMCO’s interpretation of the output, the prompt strictly spec-
ifies the format in which the LLM should present its results.
The following subsections will outline the details of the AP
placement optimization problem formulation, the structure of
the LMCO framework, its inputs and outputs, as well as the
implementation of its constitutive components.

B. AP Placement Task for Network Optimization
The primary objective of network planning optimization

frameworks is to determine the network topology, i.e., the
number of APs and their locations, that optimize and meet
some target key performance indicators (KPIs), e.g., coverage,
delay, power supply, or installation and administration costs
[12]. In this work, we consider the optimization task of
meeting a target coverage level, ϕ, while minimizing the in-
stallation costs, i.e., the number of APs, N . The corresponding
optimization problem T can be formulated as follow:

min{xn,yn} N

s.t.
N∑

k=1

Rk ≥ ϕ,

xmin ≤ xn ≤ xmax,∀n ∈ N ,
ymin ≤ yn ≤ ymax,∀n ∈ N ,
min {|xi − xj | , |yi − yj |} ≥ L,∀n, l ∈ N

(1)

where (xn, yn) indicates the location of the n-th AP, Rk is
a function that evaluates the coverage for each AP and is

calculated as the proportion of area where its pathloss value
is lower than 90dB. We are using 3D-ray-tracing software
(Ranplan Professional) [13] for coverage evaluation in this
paper, but it can be replaced by other pathloss simulation
tools. xmin, xmax, ymin, ymax refer to the boundary constraints
of the AP locations in a square scenario, L is the minimum
distance between APs. It is set to 1 m in the following exper-
iments, ensuring that APs do not overlap, and the constraint√
(xi − xj)2 + (yi − yj)2 ≥ L, ∀i ̸= j guarantees that the

distance between any two APs is greater than or equal to L.
Next, we will show how we can use the proposed LLM-based
framework, i.e., LMCO to address the above problem.

III. LMCO FRAMEWORK

A. LMCO

A block diagram depicting the LMCO framework is pre-
sented in Fig. 1, showing the workflow and the prototype
prompts crafted for the utilization of an LLM in the context
of network planning. The framework entails two modules,
leveraging the in-context learning potential of the LLM, or-
chestrated by strategically formulated prompts: (i) an ini-
tialization and (ii) an LLM-driven deployment optimization
module, whose details are presented in Algorithms 1 and 2,
respectively. The initialization module is used to automatically
determine the minimum number, Nmin, of APs to be deployed,
i.e., its output is Nmin. Then, given this upper bound, the
LLM-driven optimization module outputs the required number
of APs, N (N ≥ Nmin), and their respective locations,
s loc, resulting in a network deployment that meets the target
coverage levels.

The input for both modules is the optimization task, T ,
the floor plan, F , of the indoor environment where the APs
will be deployed, and the target coverage level, P (note that
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the second module also receives as input Nmin, provided by
the first module). The floor plan comprises a grid of points
depicting the wall layout, and the construction materials used,
and it is represented as a two-dimensional (2D) array with its
elements set to values depending upon the type of materials.
Finally, the target coverage refers to the percentage of grid
points at which the received signal strength (RSS), evaluated
by Rk in (1), is larger than a threshold.

The functionality of the LLM for each module is configured
through meticulously designed prompts. The selected prompts
for the other two modules, along with their implementation
specifics, are detailed in the following subsections. Notably,
we utilize the LLM in a zero-shot setting, with diverse prompts
enabling it to handle various tasks effectively.

1) Module 1: AP number Initializer: As mentioned previ-
ously, the goal of the AP number initializer is to determine the
minimum number of APs to deploy without human interven-
tion. Consequently, in the first instance, a designed prompt for
the initialization module is provided to the LLM. Based on this
prompt, the LLM will generate a location s loc, where the AP
will be deployed. Then, a ray tracing simulator is employed
to simulate the RSS distribution in the indoor environment
and calculate the coverage. This output, in turn, is utilized by
LMCO to ascertain a preliminary AP count, setting the stage
for subsequent optimization processes.

2) Module 2: LLM Optimizer: The second module inte-
grates an LLM as a combinatorial optimizer, operating in
a zero-shot fashion. Again, a designed prompt informs the
LLM about (i) the geometry layout, (ii) the initial number
of APs indicated by Module 1, (iii) the network topology,
(iv) the attained coverage, through a binary coverage heatmap
representation (with 0 or 1 indicating the pathloss at a certain
location is below or above the threshold, respectively) and an
aggregated coverage percentage. Note that the latter constitutes
the objective function of (1) that the LMCO aspires to max-
imize. In addition, an expert knowledge prompt is embedded
in the LLM optimizer prompt, to induce common network
engineering knowledge to the LLM and orchestrate its actions.
Given these pieces of information, the LLM is asked to provide
the number of APs, N , and their 2D locations (different from
the previous ones) such that the coverage is improved. As
shown in Algorithm 2, this process is repeated iteratively until
the desired coverage level is reached, and at each iteration,
the RSS and the coverage are evaluated with a ray-tracer for
the network deployment indicated by the LLM. Based on our
observations of the LLM’s optimization process, we found
that after a certain number of attempts with a fixed number
of APs, it stops proposing new candidate solutions, typically
after six steps. Consequently, during this iterative process, if
the achieved coverage does not improve after six consecutive
iterations, we increase the initial number of available APs
by one. This approach helps to avoid wasting computational
resources.

B. Coverage Evaluation via Ray Tracing

Our target is to identify an optimized configuration of
an AP locations such that when they are deployed in our

Algorithm 1 AP Number Initialization algorithm
Input: Optimization task: T , floorplan: F , target coverage: P
Feedback Input: Coverage map: M , AP locations: s loc,
Coverage: s cov
Output: Initial number of APs: N

1: Prompt 1 ← construct prompt 1 with T , F , P .
2: s loc ← instruct LLM with initialization prompt
3: s cov ← set AP at s loc in F and calculate with ray

tracer.
4: Prompt 2 ← construct prompt 2 with F , s cov, s loc.
5: Initial AP number N ← instruct LLM with prompt 2
6: return N

Algorithm 2 LLM-driven Optimization for AP Placement
Input: Optimization task T , floorplan F , target coverage P .
Feedback Input: Coverage map M , AP count N .
Output: N optimal AP locations: s loc.

1: N ← get initial AP number with algorithm 1
2: while s cov < P do
3: Optimization prompt ← construct prompt 3 with T ,

F , P , N , s cov, s loc.
4: s loc ← instruct LLM with optimization prompt.
5: s cov ← set AP at s loc in F and calculate M with

ray tracer.
6: N = N + 1 if s cov

P < 0.6 or after 6 attempts
7: end while
8: Confirm s cov meets P with s loc
9: return s loc

target environment and the path loss is calculated using the
propagation model, the resulting coverage fulfills our specified
criteria. Figure 2 showcases a scenario with a floor plan and
includes a path loss map derived from a particular placement
of AP. We begin by setting a path loss threshold— where any
location with path loss exceeding this threshold is classified
as an uncovered zone. We then measure coverage as the
percentage of the area that achieves satisfactory signal strength
within the established path loss threshold.

‘
Fig. 2. A sample scenario encompasses details of the floorplan and the path
loss map computed with ray-tracer

C. Baseline Metaheuristic Optimization Algorithm

The performance of LMCO will be benchmarked against
ACO, a powerful and widely used metaheuristic algorithm
inspired by the foraging behavior of ants, and it is particularly
effective for combinatorial optimization problems.
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Fig. 3. Comparative Results of AP Placement in Two Buildings, the upper row building has 2 APs and the lower row building has 7 APs: Iteration Efficiency
of LMCO versus ACO

In ACO, ‘artificial ants’ identify a nearly-optimal solution
by iteratively traversing different points of the optimization
space, in an analogous way that real ants use pheromone trails
to identify the most efficient routes to resources. Specifically,
starting from some initial random solutions, at each iteration
the results of each ant are compared to determine a weight
that signifies the goodness of the considered solution in a
similar way that ants use pheromone to mark desirable paths.
Then, new solutions are chosen probabilistically for the next
iteration based on the estimated weights, i.e., the pheromone
levels, and this process is repeated until the objective cost
function converges. The way the weights and the path selection
probability are computed depends on the implementation of
the ACO algorithm. Throughout this paper, we adopt a greedy
ACO implementation similar to the one discussed in [14].

In network planning, ACO uses a given number of simulated
ants to investigate possible AP topologies and evaluate their
coverage through ray tracing simulations. Throughout this
process, the ant’s decision on the number of APs and their
locations is informed by the intensity of the pheromone
trails that indicate the achieved coverage at each point of
the optimization space. Relying on these decisions, the ants
explore the optimization space, aiming at maximizing network
coverage.

IV. EVALUATION IN PRACTICAL USE CASES

To showcase the potential of LMCO to solve combinatorial
problems and assist network planning we consider two use
cases. The first experiment is conducted in a controlled envi-
ronment, where a fixed number of APs, N , is predetermined
and the aim is to achieve an optimal coverage metric. In
the second experiment, we do not fix the number of APs
and seek solutions that would meet our predefined coverage
requirements. This approach allows us to evaluate the models’
adaptability and efficiency in achieving the target coverage
levels, which can entail different numbers of APs. In both
experimental setups, our goal is to ensure that at least in 90%
of the intended coverage area, i.e., P = 0.9, the pathloss is
lower than 90dB.

Fig. 4. Result of Real-world Scenario Optimization for AP Placement by
LMCO without Prior Knowledge of the Number of APs

To ensure a fair evaluation, we design two experimental
protocols, each representing a common scenario in wireless
network design. These scenarios are selected to assess different
aspects of performance. For each experimental setup, we
conduct 20 tests using OpenAI’s gpt-4-turbo-preview iteration
as the LLM within the LMCO strategy. The evaporation rate
ρ for the baseline ACO algorithm is set to 0.1.

LMCO is an LLM-based framework that significantly dif-
fers from existing optimization algorithms in that it lacks
a quantitative representation of the algorithms used to (1)
propose candidates and (2) search for subsequent candidates
within the search space. Consequently, at this stage, we
propose only comparing the number of iterations required by
LMCO and ACO algorithms to suggest new candidates and
the time taken to achieve final convergence.

1) Experiment to find a solution for a given number of
APs: In this experiment, we skip the initialization phase in the
LMCO algorithm due to the use of a predetermined number
of APs and we conduct tests in two indoor environments. The
first one assumes a simple geometric space measuring 23.8m
by 20.2m and a more complex configuration with dimensions
of 58.8m by 63m. In both cases, the number of APs used in
each scenario was determined by prior experimentation, which
established the number of APs required to meet the coverage
criteria.
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TABLE I
COMPARISON OF AVERAGE ITERATIONS REQUIRED FOR LMCO AND

ACO IN A REAL-WORLD COMPLEX SCENARIO.

Algorithms LMCO ACO
Iterations 16 2275

Time used(s) 197 11802

Figure 3 illustrates the results for a fixed number of APs. In
both scenarios, the LMCO strategy significantly outperforms
the ACO method. On average, LMCO requires only 9.2 itera-
tions to meet the coverage criteria in a simple scenario with 2
APs, whereas ACO requires 63.4 iterations. The average time
taken by LMCO, including communication and ray-tracing
simulation, is 85 s, compared to 357 s for ACO, including
ray-tracing simulation time.

In the more complex scenario with 7 APs, LMCO averages
10.9 iterations and 94 s to execute, while ACO requires a
substantial 1394 and 7206s respectively to achieve comparable
coverage levels. Given the inherent stochastic nature of both
algorithms, the results are presented as a bar plot, illustrating
the distribution of iterations used across 20 independent tests
for both scenarios.

2) Experiment on finding a solution without fixing the num-
ber of APs: In an advanced experiment, we did not provide
either algorithm with information regarding the number of APs
needed to meet coverage requirements. Figure 4 illustrates the
superior configuration determined by LMCO and depicts its
optimization process over a series of iterations. We executed
20 independent trials for each algorithm, incorporating an early
stop mechanism. Suppose that the initial random configuration
for ACO, or the prompt-based initialization for LMCO, with N
APs yields a solution where only 60% of the intended coverage
area satisfies the maximum threshold of pathloss of 90dB. In
this case, the algorithm proceeds to test the scenario with N+1
APs. After the initial setup, both algorithms iteratively opti-
mize the positioning of the APs under the current fixed number
of APs. This optimization process continues until the coverage
criterion is met. If the coverage criterion cannot be satisfied
with the existing number of APs, the algorithm increases the
number of APs by one and resumes the optimization process.
This iterative process of adjusting the AP locations and the
number of APs is repeated until the coverage criterion is
successfully met.

Table 1 presents the average number of iterations and time
required by both optimization algorithms in this scenario, and
the results indicate a clear difference in performance between
the LMCO and ACO algorithms for AP placement.

V. CONCLUSION AND FUTURE WORK

The result shows that the LMCO algorithm consistently
required fewer iterations to achieve the desired coverage
criterion across both simple and complex environments, and
the bar plot in Figure 3 further supports the robust performance
of LMCO over ACO, reinforcing the former’s reliability and
potential as a practical solution for network design. Moreover,
an experiment in a real-world scenario, as depicted in Figure

4, provides evidence of LMCO’s adaptability and further
confirms its robustness.

In conclusion, LMCO introduces a novel framework for
LLM-based optimization in wireless communications. It
presents a flexible and generalized LLM-based optimizer
that incorporates expert knowledge, enabling its application
across domains to address increasingly complex problems. The
LMCO algorithm demonstrates significant improvements in
iteration efficiency and robustness, which are crucial for the
requirements of large-scale wireless network deployments and
real-time applications. The comparison highlights LMCO’s
superiority in handling complex and dynamic network con-
figurations, substantially reducing time and computational
overhead. This establishes LMCO as the preferred choice for
optimizing wireless communication systems, with potential
benefits extending to other optimization scenarios. Continuing
this work will enhance the existing capabilities of LMCO
within wireless network optimization and explore its scala-
bility and adaptability to challenges across diverse domains.
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