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Abstract
The emergence of highly instrumented manufacturing systems has enabled the paradigm of smart manufacturing that
provides high levels of prognostics functionality. Of particular interest is to precisely determine geometric conformance
or non-conformance of workpieces during manufacturing. This paper presents a new dimensional product health moni-
toring system that learns from in-process sensor data and updates the prediction of the product quality as the product is
manufactured. The system uses data from multiple manufacturing stages, unlike from a single stage at a time, to predict
the dimensional quality of the finished product that is updated with subsequent measurements such as On-Machine
Measurements (OMMs), in on-line incremental learning fashion. It is based on self-supervised neural networks for dimen-
sionality reduction, Gaussian Process Regression (GPR) models for probabilistic prediction about the end product condi-
tion and the associated uncertainty, and Bayesian information fusion for updating the conditional probability distribution
of the end product quality in the light of new information. The monitoring approach was tested on the prediction of dia-
meter deviations with validation results showing its ability to achieve an average accuracy better than 5 mm in terms of
the Root Mean Squared Error (RMSE). Having obtained a Probability Density Function (PDF) for the measurand of inter-
est, the conformance and non-conformance probabilities given the tolerance specifications are computed to support the
principle of inspection by exception. This ability to construct a conformance probability-based product quality monitor-
ing system using probabilistic machine learning methods constitute a step change to manufacturing prognostics.
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Introduction

Today’s manufacturing enterprises face many chal-
lenges to remain innovative, flexible, competitive and
sustainable. One of the focuses of the upcoming fourth
industrial revolution is the application of advanced
data analytics and Artificial Intelligence (AI) algo-
rithms in manufacturing systems to minimise the vol-
ume of non-value adding processes such as inspection
while elevating end product quality. There are different
terms used to describe the fourth industrial revolution
including ‘Industry 4.0’ and ‘Smart Manufacturing’.
Industry 4.0 envisions the factory of the future with
interlinked, intelligent autonomous manufacturing

systems to enable manufacturing with enhanced cap-
abilities, such as time-effective decision-making for
energy and resource efficiency as well as production
agility.1,2 It combines features of other earlier
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manufacturing paradigms, such as lean manufacturing
(eliminating all kinds of waste and non-added value
operations without sacrificing quality and productivity)
and agile manufacturing (enabling manufacturing sys-
tems to respond quickly to changing conditions and
customer demand without compromising cost and
quality), with the main concept being to develop intelli-
gent Cyber-Physical Systems (CPSs) to allow machin-
ery to make informed decisions from real-time data.3,4

Therefore, data analytics and machine learning are
essential tools to achieve manufacturing intelligence.

Machine learning is a branch of AI, aimed at devel-
oping computer algorithms that can learn from a given
set of data to perform specific tasks, such as classifica-
tion, regression, and clustering, efficiently and accu-
rately. These algorithms have the ability to
progressively improve their performance over time,
provided that more data are used for learning.5 With
the impressive amounts of manufacturing data avail-
able today, there has been growing interest in develop-
ing software systems capable of learning from their
experience for complex decision-making.6 More specifi-
cally, process and product health monitoring and con-
trol has received a great deal of attention in recent
years as a means of addressing some of the long-lasting
challenges in the manufacturing sector. One such chal-
lenge involves reducing the volume of non-added value
processes and, hence, the manufacturing cycle time and
cost without making concessions to product quality.7

The main goal of product health monitoring and con-
trol systems is to ensure that the manufacturing process
under consideration produces parts or products with
desired properties, such as geometric dimensions and
surface finish. Manufacturing processes typically
involve several workstations or operations, such as heat
treatment, subtractive Computer Numerically
Controlled (CNC) machining, dimensional inspection,
and assembly, to produce products of complex shapes
with the desired properties and functional performance.
Each operation is fraught with various sources of
errors, many of which are difficult to quantify. In addi-
tion, because multiple manufacturing steps are usually
performed to obtain the final product, the product
quality deviations from nominal at a specific step are a
combination of the errors generated at the current step,
and the accumulated errors transmitted from preceding
steps.8

The purpose of product health monitoring in manu-
facturing is to map the sensor signal data to the prod-
uct conditions and determine conformance or non-
conformance of the product to the tolerance specifica-
tions. This typically involves generating sensor signal
features that are sensitive to changes in process condi-
tions and then mapping these process features, or a
portion of them, to the product quality characteristics
using machine learning techniques. Over the years,
there have been many attempts to monitor product
quality in manufacturing using machine learning tech-
niques and sensor signals.9,10 However, most research

studies have focused on predicting surface metrology
characteristics. The application of machine learning
algorithms for predicting dimensional metrology char-
acteristics, which are typically of greater concern and
importance depending on the product and application,
is considerably limited.11 In addition, most approaches
to product health monitoring have focused on simple
mappings that typically involve relating machining pro-
cess signals such as tool vibrations and cutting forces
to the finish-machined part condition whilst neglecting
the variations propagated from previous manufactur-
ing stages.7,12 Therefore, this research work will focus
on the modelling of the product dimensional variations
using in-process data from multiple different manufac-
turing stages. The data will be used to accurately pre-
dict the final part condition and determine compliance
or non-compliance of manufactured parts to their
design specifications. We formulate the regression
problem in a probabilistic framework for monitoring
the dimensional deviations of features of a product as
it goes through a series of production operations using
Gaussian Process Regression (GPR) modelling and
Bayesian information fusion. A GPR model is a non-
parametric kernel-based probabilistic model that pro-
vides predictions with uncertainty information.13 To
handle the high dimensionality of the input data,
Principal Component Analysis (PCA) or replicator
neural networks are used initially for dimensionality
reduction. The features are derived from the bottleneck
nonlinear hidden layer of the replicator network (or the
extracted principal component scores in the case of
PCA). Then, the GPR model uses the features as inputs
and predicts the product health metric deviation vector
obtained by a comparative Coordinate Measuring
System (CMS).

A major research goal for product health monitor-
ing is to develop intelligent monitoring systems able to
function properly under various manufacturing condi-
tions (e.g. milling at different speeds, feeds and depths
of cut) in spite of inherent variability of the manufac-
turing process and uncertainty of the data used to train
the predictive models.14 Therefore, this paper proposes
a new product health monitoring system that learns
from in-process metrology data obtained from multiple
manufacturing stages and updates a prediction of the
product quality using new metrological information
obtained from additional sensor data, such as On-
Machine Probing (OMP) data. In fact, the robustness
issue is particularly important when designing monitor-
ing and control systems for process and product health.
It is a key enabler for the manufacturing industry to
adopt machine learning solutions for product quality
assessment. The prediction of conformance probability
developed in this paper will facilitate the idea of inspec-
tion by exception7 by which parts that have high or low
probabilities of conformance do not undergo time-
consuming inspection. This results in significant savings
in the manufacturing value chain. Another major
enabler is to achieve robust performance with limited
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training datasets due to the high cost associated with
experiment-based data gathering from manufacturing
processes. Design of Experiments (DOE) is a powerful
statistical technique enabling us to design, perform and
analyse experiments efficiently and increase our under-
standing of the relationship between manufacturing
process variables or controllable factors and product
quality characteristics.15 The novel contributions can
be summarised as follows:

� The monitoring system learns from in-process mul-
tistage manufacturing data to provide probabilistic
predictions of the dimensional product health qual-
ity including uncertainty.

� Unlike other dimensional quality prediction stud-
ies, and given new metrological data, the system
can update its probabilistic predictions during
manufacturing.

� The proposed system can compute the conformance
and non-conformance probabilities for a given tol-
erance interval leading to the minimisation of risks
relating to incorrect accept/reject decisions.

The remainder of the paper is organised as follows:
Section 2 reviews the literature relating to dimensional
metrology, manufacturing process monitoring, and
quality assessment. Section 3 describes the problem for-
mulation and manufacturing case study that includes
the experiments performed. Section 4 presents the pro-
posed methodology, its application, and the analysis of
the results. Concluding remarks are given in section 5.

Literature review

Dimensional metrology relates to the use of measure-
ment or gauging devices to check whether the dimen-
sional and form properties of a manufactured part
conform, or not, to tolerance specifications. Tolerances
are assigned to the product by the designer to ensure
that the manufactured product will satisfy its functional
requirements. In addition to dimensional inspection,
manufactured products may undergo other inspections
and tests such as surface analysis and mechanical and
chemical tests to guarantee the overall quality of the
product.16–18 Dimensional metrology is usually accom-
plished using automated measurement systems, such as
Coordinate Measuring Machines (CMMs), because of
their immense flexibility and low measurement uncer-
tainty relative to the tolerance specifications of the
products being manufactured, given that some calibra-
tion of the CMM has been undertaken.19 However,
CMMs require temperature control of their working
environment to adequately meet their measuring capa-
bility and thus sacrificing part throughput. In addition,
significant efforts have to be made towards evaluating
the uncertainties associated with CMM measurements
due to the large range of influence factors, such as envi-
ronmental effects, kinematic and geometric errors,

software errors, and probing effects.20,21 Techniques
for task-specific Coordinate Measuring System (CMS)
uncertainty evaluation and uncertainty sources associ-
ated with CMSs are described in Wilhelm et al.22 The
term ‘task-specific uncertainty’ refers to the uncertainty
associated with the measurement of a specific feature of
the workpiece by following a specific measurement
strategy.

With advances in coordinate metrology, manufac-
turing enterprises have been able use CMSs to measure
parts accurately on the shop floor, for example,
enhanced CMMs (CMMs integrated with thermal error
compensation techniques) as an alternative to tradi-
tional inspection approaches based on conventional
CMMs and labour-intensive methods, such as hard
gauging.19 However, CMMs are based on heavyweight
Cartesian structures which make rapid operation diffi-
cult and can cause hysteresis. In recent years, auto-
mated comparative gauges based on parallel kinematic
structure have been developed for shop floor inspection
tasks. These gauging systems are CMSs operating in
comparator mode via software to minimise the influ-
ence of systematic effects associated with the CMS.23

Parallel mechanisms, in contrast to serial mechanisms,
have higher structural stiffness and lower moving mass
and exhibit smaller inertial effects when under accelera-
tion. However, they also possess important disadvan-
tages, such as limited operational workspace compared
to machine size and highly nonlinear kinematics and
dynamics, which make their calibration and control
schemes more difficult and challenging.24 In terms of
uncertainty evaluation, a major advantage of employ-
ing a CMS as a gauging/comparator measurement sys-
tem is that the effort required to evaluate the
uncertainties associated with absolute CMSs is greatly
simplified because many of the systematic errors associ-
ated with the comparative CMS need not be mathema-
tically modelled.25–27 Nevertheless, the traceability path
associated with comparative coordinate measurement
is not strictly defined as it originates from indirect
measurement.28

CNC machine tools are often employed as CMSs
for in-process dimensional inspection of finish or semi-
finish machined parts by loading a machine tool probe
into the spindle. Although On-Machine Measurement
(OMM) can reduce workpiece dimensional errors and
allows immediate re-work of the machined part based
on the inspection results of critical features, product
quality deviations due to machine tool-induced errors,
such as geometric errors, cannot be detected by this
inspection approach. OMM is influenced by the same
sources of error as CMM measurement, but differences
may be found in their magnitude and dynamics.29

Although shop floor CMSs are increasingly
employed to claim conformance to tolerance specifica-
tions, manufacturers need to adopt more efficient
methods for product quality assessment in order to
remain competitive, increase revenue, and optimise the
use of labour, machines, material, energy, and natural
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resources. Along with the rise of shop floor CMSs for
dimensional inspection, the amount of in-process sen-
sor data obtained from a manufacturing process has
increased dramatically during the last years due to the
recent developments in sensor and computing technolo-
gies. Therefore, smart manufacturing strategies are
being developed and implemented to make timely deci-
sions based on real-time data during manufacturing.
They also aim to minimise or eliminate non-added
value production stages, such as dimensional inspec-
tion, without compromising product quality.30 In fact,
customers’ requirements for ever more precise parts,
shorter lead times, and greater product complexity and
variability at lower cost have been the driving force for
many advances in the manufacturing sector. In recent
years, manufacturing informatics has emerged as an
interdisciplinary and promising field of study to the
development of technology that meets these growing
demands. Manufacturing informatics aims to optimise
the use of data and information within and between
manufacturing processes in order to obtain gains in
quality, agility, productivity and sustainability. A
major component of manufacturing informatics is con-
cerned with developing and implementing AI-based
metrology informatics systems for process and product
health monitoring and control since mathematical or
physical models cannot precisely represent the true
manufacturing system behaviour.31,32 The majority of
research work performed in this area has focused on
monitoring strategies for cutting tool wear and surface
metrology characteristics, such as surface roughness
heights.33 However, the literature contains very few
results on the development of monitoring and control
systems for dimensional metrology characteristics.11

Gao et al.34 focused on online product quality
assessment and developed a Support Vector Regression
(SVR)-based product health monitoring system to pre-
dict the dimensions of the final parts in injection
moulding from measured melt pressure, temperature,
velocity and viscosity. Papananias et al.12 applied a
Bayesian linear regression model to predict the surface
flatness of machined parts from OMP data and other
in-process sensor data or available information during
multistage manufacturing. Papananias et al.7 also pre-
sented a machine learning-based approach to reduce
the volume of dimensional inspections by actively
detecting and then inspecting only those products
whose health status is uncertain. Fernández-Pérez
et al.35 studied the influence of cutting parameters
including cutting speed and feed on tool wear and hole
quality for composite fibre reinforced plastics drilling
operations using carbide countersink drill bits with dia-
mond coating. Mondal et al.36 focused on drilling
experiments and developed Adaptive Neuro-Fuzzy
Inference System (ANFIS) and SVR models to predict
burr height and burr thickness using drill diameter,
point angle and spindle speed. They then applied
genetic algorithms to optimise both models and deter-
mine the optimum drilling process parameters in order

to minimise burr height and thickness. Imani et al.37

used genetic algorithms and Artificial Neural Networks
(ANNs) to predict and optimise cutting force and sur-
face roughness in milling of nickel-based super-alloys
using various input parameters, such as cutting speed,
feed rate, the axial depth of cut and coolant presence.
Wang et al.38 focused on improving the performance of
product quality monitoring systems and developed a
generative ANN model to predict product quality for a
powder metallurgy process. Da Silva et al.39 correlated
hole quality parameters (roughness and cylindricity),
power and electric current signals, and Acoustic
Emission (AE) signals with tool condition to determine
the best output parameter for tool wear monitoring in
drilling of high-strength compacted graphite cast irons.
They concluded that the electric current signal was the
best output parameter for tool wear monitoring. Leco
and Kadirkamanathan40 focused on multi-robot coun-
tersinking applications and developed a perturbation
signal based data-driven GPR model using multiple
sensors, such as accelerometers, power transducers, and
AE sensors, for monitoring the machined countersink
depths in composite aircraft components. Liu et al.41

proposed an adaptive ensemble learning framework for
GPR models to monitor quality-related, but hard-to-
measure variables in industrial processes. Duro et al.42

proposed a multi-sensor data fusion framework for
machining process monitoring to overcome the major
limitations of AE-based monitoring, such as the sensi-
tivity to sensor location and machining parameters.
Measurement of AE from machining operations has
become very popular as AEs can provide a cost-
effective approach to machining process monitoring.
McLeay et al.43 presented an unsupervised learning
method to observe the changing state of a milling pro-
cess over time for the identification of faulty machining
conditions using AE, vibration and spindle power data.
Unlike other studies in this domain, the system is appli-
cable to unfamiliar processes due to its unsupervised
learning nature and another advantage is its sensing
setup, which is minimally intrusive to the manufactur-
ing process. Bai et al.44 investigated three different
dimensionality reduction techniques including PCA,
Locally Linear Embedding (LLE), and Isometric
Mapping (Isomap) to tackle the problem of multi-
parameter manufacturing quality prediction using
Support Vector Machines (SVMs), concluding that the
Isomap-SVM model outperforms the other studied
models. Moore et al.45 proposed a machine learning-
based method for machine tool and process condition
assessment using various sensor signals including vibra-
tion and power to rapidly indicate that the machine
tool or machining process has exceeded acceptable lim-
its. Xia et al.46 proposed a fault diagnosis method of
flexible production line machining centre using a com-
bination of the PCA and the Artificial Bee Colony
based Learning Vector Quantisation (ABC-LVQ)
neural network, using vibration signals. Su et al.47

developed prediction models based on SVR for specific
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energy consumption of machine tools and surface
roughness taking into account the tool wear evolution.
They used as input variables the cutting depth, feed
rate, spindle speed and tool flank wear. The results
obtained from wet turning of AISI 1045 steel showed
that the models built using cutting parameters and tool
wear are more accurate compared to the models con-
sidering only cutting parameters.

A manufacturing system usually involves a combina-
tion of equipment, systems, materials and labour, and
a series of production steps, involving material forming
and heat treatment for material preparation, machining
of the part, in-process and post-process inspection for
part quality, followed by assembly, and testing. For a
Multistage Manufacturing Process (MMP), each pro-
duction step brings the workpiece closer to the
designed, final form of the product, but additional
variability in the workpiece is also introduced due to
the local variations and the propagated variations from
previous steps.8 Interest in manufacturing process and
product health monitoring and control has grown sig-
nificantly during recent years. However, the implemen-
tation challenges and more demanding conditions and
scenarios posed by shop floor environments have made
the manufacturing industry to adopt few monitoring
and control systems towards reducing the volume of
non-added value processes, replacing manual, skill-
based tasks, etc. Therefore, more practical solutions for
industrial exploitation are required. This research work
presents a new intelligent product health monitoring
system that learns from in-process monitoring data
obtained from various manufacturing stages and
updates a prediction of the end product quality given
new information obtained from subsequent measure-
ments, such as OMP. In small-batch manufacturing,
the main challenges for variation control of manufac-
tured parts are the nonlinearity, uncertainty, high-
dimensionality and sparsity of the data. Therefore,
data-driven product health monitoring and control
requires scalable and robust machine learning algo-
rithms to adequately deal with these issues. We propose
a kernel-based probabilistic framework for manufac-
turing process monitoring and control using feature-
extracting self-supervised neural networks-based GPR
modelling and information fusion via a Bayesian for-
mulation. Having obtained a Probability Density
Function (PDF) for the measurand of interest, the con-
formance and non-conformance probabilities for a
given tolerance interval can be computed. To balance
the risks associated with making an incorrect accept/
reject decision for prediction results close to the toler-
ance specifications, an acceptance interval, such as an
uncertainty interval may also be adopted.

Problem formulation and manufacturing
case study

This section presents the manufacturing case study that
provides a platform for the development of the

machine learning approach to predict the final product
quality and its conformance to manufacturing require-
ments. The case study involved experimental work for
the generation of multi-operation manufacturing pro-
cess data. The problem formulation is defined by the
nature of the data and the monitoring requirements
leading to the development and validation of a prob-
abilistic AI framework for intelligent manufacturing.
The manufacturing process included heat treatment,
grinding, material surface hardness testing, subtractive
CNC machining, in-process inspection, and shop-floor
post-process inspection. The starting material blocks
(steel EN24T) were hardened by heating at 835�C–
845�C using a VECSTAR furnace and then quenched
in oil. The quenched blocks were then tempered at dif-
ferent temperatures of 450�C, 550�C and 650�C to add
variation in material properties. Five K-type tempera-
ture thermocouples were placed within the furnace to
measure variation in the temperature gradient during
this process. Following heat treatment, the heat-treated
material blocks were ground to improve their surface
quality and then mechanically tested for surface hard-
ness using a Rockwell device.

A 3-axis CNC vertical milling machine (DMG
MORI NVX 5080) was used for subtractive machining.
The X-axis maximum travel, Y-axis maximum travel,
and Z-axis maximum travel are 800, 530 and 510mm,
respectively. A full factorial DOE was performed for
machining, considering four input variables (factors):
surface hardness of the workpiece material, feed rate,
spindle speed, and datum error in both X and Y axes
when setting the workpiece in the second orientation
(see Table 1). All the factors included two levels and
one centre point. Before each experimental run, a Leica
microscope was used to evaluate the level of wear of
each flute of the cutting tools used for machining. The
tools were replaced when exceeding specific flank wear

Table 1. Experimental design for machining.

Block
index

Surface
hardness

Feed
rate

Spindle
speed

Datum error
in both X
and Y (mm)

13 Hard Programmed + 20% 0
14 Middle + 10% + 10% 0.01
10 Hard + 20% Programmed 0.02
12 Soft Programmed Programmed 0.02
22 Hard Programmed Programmed 0.02
15 Soft + 20% + 20% 0.02
9 Soft Programmed + 20% 0.02
19 Hard Programmed + 20% 0.02
16 Hard Programmed Programmed 0
24 Soft Programmed Programmed 0
21 Soft + 20% Programmed 0.02
7 Hard + 20% + 20% 0.02
2 Soft + 20% + 20% 0
18 Soft Programmed + 20% 0
6 Soft + 20% Programmed 0
23 Hard + 20% + 20% 0
1 Hard + 20% Programmed 0
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width values. During machining, force and tool vibra-
tion signals were obtained at 10 kHz using a plate
dynamometer and an accelerometer sensor, respec-
tively. The dynamometer was a Kistler multicompo-
nent dynamometer (9255B). The Kistler DynoWare
and the National Instruments (NI) LabVIEW
SignalExpress software packages were used to measure
cutting forces and tool vibrations, respectively. The
workpiece was fixed using a vice bolted to the dynam-
ometer. Coolant was used for all the experimental runs.
Besides the 17 parts manufactured according to the full
factorial design, another part was produced to be
employed as a master part during dimensional post-
process inspection.

After machining each side of the workpiece, OMP
was performed using a Renishaw OMP60 optical trans-
mission probe whose unidirectional repeatability is
1mm 2s. The probing cycles were developed using the
Renishaw Inspection Plus software package. A
Renishaw Equator comparator measurement system
was also employed for close-to-manufacturing mea-
surement using the CMM Compare Method and a
Mitutoyo CMM located in a metrology lab. With this
method, the uncertainty of comparator measurement
achieved is dependent on the CMM used to calibrate
the reference master part. The comparator measure-
ment system was used in both probing and scanning
modes. Because the Equator applies a point-to-point
comparison, careful consideration of the scan measure-
ment is required, for example, scanning over the same
section of a geometric feature twice may lead to prob-
lems with the comparative analysis software used to
compare the production parts to the master part. The
fixturing design and methodology for comparative
coordinate measurement were validated using the

Golden Compare method prior to actual tests. Figure 1
shows the developed MMP and the product Computer-
Aided Design (CAD) model. The measurand of interest
in this work is the diameter of the circular feature
labelled in Figure 1. The nominal value of the measur-
and is 40mm.

The proposed framework for
manufacturing process monitoring and
control

The majority of machine learning applications in the
context of manufacturing systems for process monitor-
ing and control are concerned with learning from in-
process monitoring data obtained during a single-stage
process. However, multiple different processes are typi-
cally involved to produce a metallic product and thus,
the end product quality variation is an accumulation of
variations from all the manufacturing stages the prod-
uct went through. The steps towards developing and
validating the proposed probabilistic machine learning-
based framework for monitoring all equipment and
processes required to manufacture a part are the fol-
lowing: the pre-processing of the collected data, for
example, data cleansing and feature generation for
transforming the sensor signals into useful features; fea-
ture extraction/transformation using statistical and
machine learning techniques, such as PCA and unsu-
pervised ANNs, for using the most meaningful features
which best characterise the manufacturing process con-
ditions; training and testing a certain machine learning
model, such as ANNs and GPR models, and an infor-
mation fusion algorithm in case of subsequent mea-
surements during manufacturing; and finally decision

Figure 1. The experimental setup and the CAD model of the part. The manufacturing stages are indicated above the panel of
subfigures as are the measurement instruments.
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making for conformity assessment given the product
tolerance specifications and metrological information
about the measurand of interest in the form of prob-
ability distributions. The product health measure prob-
ability distributions are used to describe the uncertainty
associated with the computed value of the measurand
obtained by probabilistic machine learning or an
inspection report. MATLAB was used to implement
the proposed framework. The framework relies on the
inherent assumption that part dimensional quality
parameter is predictable using in-process multistage
manufacturing data. Furthermore, it also relies on the
assumption that the uncertainty in the model predic-
tion has a Gaussian distribution. These assumptions
are common in engineering applications including man-
ufacturing and have underpinned successful applica-
tions. Figure 2 shows the proposed methodology for
intelligent manufacturing.

Feature generation and extraction/transformation

The following features were generated from the MMP
monitoring data: (i) the maximum tempering tempera-
ture; (ii) a three-state variable associated with the mate-
rial hardness; (iii) the Root-Mean-Square (RMS) and
sample kurtosis, skewness, variance and mean features
of tool vibration components (Vx, Vy, Vz) and average

values of force components (Fx, Fy, Fz). Normalisation
by the 2-norm of the extracted features was followed by
scaling to achieve zero mean and unit variance. The
dimensional metrology characteristics of the product
were obtained using the Equator comparator measure-
ment system based on CMM Compare. For modelling
the final product quality, the product health metric
deviations computed as the difference between the post-
process inspection measured value and the nominal value
were used as output data. Figure 3 shows a number of
bivariate histogram plots of the force and vibration data
to emphasise the challenges of the resulting data-driven
modelling problem characterised by high dimensionality
and sparseness. Such data characteristics are encoun-
tered in many manufacturing processes, for example,
low-volume aerospace manufacturing applications.

Due to the multidimensionality and the limited sam-
ple size available for training a data-driven model for a
specific machine learning task, dimensionality reduc-
tion tools such as PCA and unsupervised ANNs are
used to identify low-dimensional structures in high-
dimensional data. To linearly transform the set of mea-
sured variables into a smaller set (\\ n) of new vari-
ables that capture most of the information in the
measured variables, PCA was performed via a Singular
Value Decomposition (SVD) of the standardised in-

process monitoring data matrix, X 2 Rp3 n:

Figure 2. Proposed methodology.
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X=USVT, ð1Þ

where both U 2 Rp3 p and V 2 Rn3 n are orthogonal
matrices, and the singular value matrix S=diag
(s1,s2, . . . ,smin p, nf g) 2 Rp3 n with s1 ø s2 ø . . . ø

smin p, nf gø 0.
ANNs can also be used as unsupervised learning

models for dimensionality reduction. These networks
are known as autoencoders or bottleneck MLPs
because the size of the hidden layer is smaller than the
size of the input and output layer. In particular, an
autoencoder is an ANN that learns from experience to
reconstruct the input at the output in order to act as a
feature detector. Therefore, the input layer and the out-
put layer have the same size, n. The simplest form of an
autoencoder has the MLP architecture with a single
hidden layer of q nonlinear units, but with q\ n so the
hidden layer is an information bottleneck. Autoen
coders represent a nonlinear generalisation of PCA, but
only when multiple hidden layers of nonlinear neurons
are used though for other learning problems, such as
regression, an ANN with a single hidden layer of non-
linear neurons can be used to perform nonlinear map-
ping between the inputs and the outputs.48 Figure 4
shows an MLP network used as an autoencoder. The
output of the hidden layer of the autoencoder shown in
Figure 4 is viewed as the feature space z 2 Rq defined
in terms of a vector function f:

f : x 2 Rn 7!z 2 Rq, zj = fj xð Þ, j=1, 2, . . . , q: ð2Þ

The mapping f is implemented by the input and hidden
layer. The mapping from the hidden layer to the output
layer is another function g:

g : z 2 Rq 7!x̂ 2 Rn; x̂l ¼ gl zð Þ, l ¼ 1; 2; . . . ; n: ð3Þ

As manufacturing systems are highly complex and
uncertain, preliminary simulations were carried out to
determine the key parameters for the modelling prob-
lem. In this work, logistic sigmoid activation functions

Figure 3. Bivariate histogram plots of the force and vibration data.

Figure 4. Autoencoder with a single hidden layer.
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were used for the hidden layer and linear transfer func-
tions for the output layer. The size of the hidden layer
was set to five. The cost function used for training was
an adjusted Mean Squared Error (MSE) function in
order to construct a sparse autoencoder and ensure
good generalisation properties. The training criterion
involved three terms: the MSE loss function Lðx; x̂Þ
which calculates the differences between the original
input data and the consequent reconstructed data; the
L2 regularisation term Oweights which discourages the
autoencoder from overfitting; and the sparsity regulari-
sation term Osparsity. The scaling parameters for the L2

weight regulariser and the sparsity regulariser were set
to 0.004 and 4, respectively. The sparsity proportion
parameter of the sparsity regulariser was set to 0.15.

Predictive probabilistic modelling

In this paper, we use predictive probabilistic models for
supervised learning, and specifically, linear probabilis-
tic regression and GPR models. Although linear regres-
sion models are interpretable and straightforward to
implement, it may lead to poor predictions if the target
function cannot be well modelled by a linear function.
A different modelling approach is to approximate the
input-output mapping function using a set of basis
functions whose parameters are optimised during train-
ing. However, instead of explicitly specifying a set of
basis functions, we use a probabilistic framework based
on GPR modelling which combines kernel methods (a
class of algorithms that solve the modelling problem
using a similarity function over pairs of data points)
with Bayesian inference. This approach treats the
unknown input-output mapping function f :ð Þ as a ran-
dom function using the Bayesian modelling framework
which defines a Gaussian process with mean function
m :ð Þ and covariance function k :,:ð Þ, which is in fact a
kernel function, as a prior distribution for f :ð Þ.

Consider a model of the form as follows13:

yi ¼ f zið Þ+ Ei; e 2 N 0;s2
EI

� �
; i ¼ 1; 2; . . . ; p; ð4Þ

where s2
E is the error variance typically estimated by the

data and I is the p3 p identity matrix.
A Gaussian process is a distribution over functions

and is completely specified by its mean function:

m zð Þ=E f zð Þð Þ, ð5Þ

and covariance function:

k z, z0ð Þ=E f zð Þ � m zð Þð Þ f z0ð Þ � m z0ð Þð Þð Þ: ð6Þ

The mean function m zð Þ reflects the expected function
value at input z. It is common to assume that the mean
vector of the Gaussian process prior is zero, that is,
m zð Þ= 0. Therefore, the primary interest in this model-
ling approach is all in the covariance. The covariance

function (or kernel) k z, z0ð Þ has the interpretation as a
correlation measure between the function values at dif-
ferent input points, z, z0 2 Rq. The Gaussian process
can be written as:

f zð Þ;GP m zð Þ, k z, z0ð Þð Þ: ð7Þ

A common kernel function choice is the squared expo-
nential kernel function

k z, z0ð Þ=s2
f exp �

z� z0j j2

2l2

 !
, ð8Þ

where sf is an unknown parameter which controls the

magnitude of the function, l is an unknown parameter
which controls the smoothness of the function, and

z� z0j j2 is the squared Euclidean distance between the
input variables z and z0. It should be noted that the ini-
tial values of the parameters were obtained as follows:
l was obtained by the mean of standard deviations of
the predictors; sf was obtained by the standard devia-

tion of the responses divided by square root of 2. The
GPR model was trained using the input-output training

dataset D of p observations, D= Z, yf g= zi, yið Þf gp1
= zi1, . . . , ziq, yi

� �� �p
1
: The trained GPR model was

applied to the test set ~Z 2 R~p3 q not used for training
the machine learning model in order to make predic-

tions ~y, given D and ~Z. For zero prior mean, the joint
density of the post-process comparator inspection

results y and the function values f at test data ~Z is a
multivariate normal13:

y
~f

� �
;N 0;

K Z;Zð Þ+s2
EI K Z; ~Z

� �
K ~Z;Z
� �

K ~Z; ~Z
� �

 ! !
: ð9Þ

Hence, the posterior predictive density for ~f at test data
~Z is:

~fjD; ~Z;N ~f; cov ~f
� �� 	

; ð10Þ

where,

~f ¼D E ~fjD; ~Z
� �

¼ Kð ~Z,ZÞ K Z;Zð Þ+s2
EI

� ��1
y; ð11Þ

cov ~f
� �
¼K ~Z; ~Z

� �
�K ~Z;Z

� �
K Z;Zð Þ+s2

EI
� ��1

K Z; ~Z
� �
ð12Þ

Using a more compact notation, that is, K=K Z,Zð Þ
and ~K ¼ K Z; ~Z

� �
, and, in the case of a single test input

~z, equations (11) and (12) reduce to:
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~f ¼ ~k
T
K+s2

EI
� ��1

y; ð13Þ

and

V ~f
� 	
¼ k ~z; ~zð Þ � ~k

T
K+s2

EI
� ��1 ~k; ð14Þ

with ~k ¼ kð~zÞ denoting the vector of covariances
between the test input ~z and the p training data
points.13

The leave-one-out cross validation approach was
used to measure the performance of the product health
monitoring system on unseen data. This validation
approach was chosen to maximise the amount of data
available for building the predictive model given the
challenges of the cost and time associated with manu-
facturing parts. For each validation case, 16 parts were
used for training the intelligent dimensional product
health monitoring system and one part was used for
testing it and repeated across all folds. The average per-
centage variability captured by the first five compo-
nents on the training data was 95.31% and by
considering only the first five components the average
reconstruction Root Mean Squared Error (RMSE) was
0.0160. The average testing reconstruction RMSE con-
sidering the first five components extracted with the
trained dimensionality reduction model using the test
dataset was 0.0314. The average training RMSE of the
autoencoder was 0.0474 and the average testing RMSE
was 0.0614. The average training RMSE obtained by
the PCA-based linear regression model was 0.0040mm
and the average testing RMSE was 0.0060mm. The
average training RMSE obtained by the PCA-based
GPR model was 0.0025mm and the average testing
RMSE was 0.0063mm. The average training RMSE
obtained by the autoencoder-based GPR model was
0.0024mm and the average testing RMSE was
0.0044mm. Table 2 shows the RMSE results obtained
by the predictive models. Table 2 shows that the predic-
tive model with the lowest RMSE is the autoencoder-
based GPR model.

Finally, we can update our predictions and predic-
tion intervals by considering any future metrological
information, such as OMP computed results yOMP. For
example, consider a single scalar observation obtained
from OMP yOMP 2 N mY,s

2
Y

� �
with s2

Y known. The
likelihood, p yOMPjmYð Þ, required for the Bayesian infor-
mation fusion process is viewed as a function of the

unknown mean parameter mY =E(Y) of the random
variable Y for fixed yOMP:

p yOMPjmYð Þ= 1ffiffiffiffiffiffi
2p
p

sY

exp
�1
2s2

Y

(yOMP � mY)
2

� �
: ð15Þ

With the use of a conjugate prior distribution, that is,

mY;N m0,s
2
0

� �
where m0 is the predicted response and

s2
0 is the associated variance for the test data using the

trained GPR model, the posterior distribution of mY is
known analytically. In particular, if prior beliefs about
mY can be well approximated by a Gaussian distribu-
tion, then, given a Gaussian measurement model for
OMP, the posterior distribution of mY is also Gaussian

with posterior mean m1 and precision s�21 given by:

m1 =
s�20 m0 +s�2Y yOMP

s�20 +s�2Y

,s�21 =s�20 +s�2Y : ð16Þ

Decision making – Conformity assessment

In a conventional manufacturing process, the determi-
nation that a machined part conforms to its specified
tolerance specifications usually relies on a CMS inspec-
tion report, such as a CMM. However, because of the
measurement uncertainties and sampling effects
(reflecting the fact that the metrological information
obtained by the CMM provides only partial informa-
tion about the complete part geometry as the part is
only measured at a finite number of coordinate data
points), there is always the risks of incorrect accept/
reject decisions. During recent years, there is an increas-
ing interest in monitoring the manufacturing process to
evaluate the end product quality through in-process
measurements and machine learning. This section pre-
sents a framework for calculating the conformance and
non-conformance probabilities, given a tolerance inter-
val and a PDF for the product quality characteristic of
interest.

A tolerance interval is used to specify permissible
values for the measurand Y. We deem a manufactured
product to be conforming if

TL4Y4TU, ð17Þ

where TL and TU are the lower and upper tolerance lim-
its, respectively. However, the part will pass the inspec-
tion if

TL4h4TU, ð18Þ

where h denotes the measured value of Y. If equation
(17) is true and equation (18) is false, then a conform-
ing part is rejected (the producer’s risk). Alternatively,
if equation (17) is false but equation (18) is true, a non-
conforming part is accepted (the consumer’s risk).

The measurand is characterised as a continuous ran-
dom variable Y because it is a quantity about which

Table 2. Simulation results.

Average training
RMSE (mm)

Average testing
RMSE (mm)

PCA-based linear model 0.0040 0.0060
PCA-based GPR model 0.0025 0.0063
Autoencoder-based
GPR model

0.0024 0.0044
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there is uncertain knowledge. When Y is measured in
repeatability and reproducibility conditions, measure-
ment data hi, for i=1, 2, . . . ,m, are gathered with
hi 2 Y, that is, the measured value hi is a realisation of
the observable random variable Yi whose PDF is iden-
tical to that of Y. In a Bayesian formulation, knowl-
edge about Y is encoded and conveyed by conditional
PDFs derived from the available information.49 The
prior PDF (before performing the measurement) for
the measurand Y is hjIð Þ where the symbol I is used
to denote the initial information. The prior distribution
is updated as more information is obtained through
measurements. The form of the prior distribution typi-
cally depends on knowledge acquired by historical data
and is independent of the method used to measure Y.
The posterior PDF (after performing the measurement)
for Y is hjhi, Ið Þ. The prior and posterior distributions
are linked by the Bayes’ theorem (the dependence on
the initial information I is omitted for clarity)

hjhið Þ=C hijhð Þ hð Þ ð19Þ

where C is a constant chosen to ensure thatÐ ‘

�‘
hjhið Þdh=1 and hijhð Þ= ‘(h; hi) is the likeli-

hood function whose form depends on the measure-
ment system, measurement task, and other available
information, such as calibration and historical data.
Suppose that measurement information about Y is
obtained using a comparative CMS. In such a case, the
measurement results hi will deviate from Y due to the
random effects from the comparative CMS and the
drift of the system behaviour from the last mastering
process. Gauge R&R studies have been conducted to
determine the capability of the comparative coordinate
measurement system.28 Compared to traditional CMM
measurement, comparator measurement is mainly sub-
ject to random effects because many of the systematic
errors associated with the comparative CMS are elimi-
nated via mastering. This principle requires the use of a
calibrated master artefact for calibrating the compara-
tive CMS for a given task. The variability in ambient
temperature will determine the frequency at which the
calibrated artefact is measured by the comparator mea-
surement system, relative to comparator measurements
of the production parts.25,26 Traditional CMMs are
calibrated using measurements of calibrated and trace-
able standards for achieving accurate measurement of
any part geometry within the whole working volume
using any probe stylus. However, CMMs require the
environmental conditions to be maintained within spec-
ified limits. Measurements performed repeatedly and
independently are usually summarised by giving a
mean y as a measure of location of the measurand Y
and an associated dispersion parameter u yð Þ, referred
to as the standard uncertainty. If the estimate y is asso-
ciated with the random variable Y, then the uncertainty
u(y) associated with y is the standard deviation of Y,

that is, the positive square root of the variance. The
expectation and the variance are defined as49:

E Yjhið Þ= y=

ð‘

�‘

h hjhið Þdh, ð20Þ

V Yjhið Þ= u2 yð Þ=
ð‘
�‘

h� yð Þ2 hjhið Þdh: ð21Þ

A supplementary uncertainty measure is given by the
expanded uncertainty U= ku(y), where k is the cover-
age factor chosen to achieve a particular level of confi-
dence associated with the uncertainty interval
y�U, y+U½ �. The evaluation of comparative CMS
uncertainty was performed based on ISO 15530-3
resulting in the combined standard uncertainty repre-
sented as follows50:

uc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2(cal)+ u2(p)+ u2(b)

p
+ bj j, ð22Þ

where u(cal), u(p), and u(b) are the standard uncertain-
ties associated with the CMM calibration of the master
part, the Equator measurement on the test part, and
the systematic error component (b) of the Equator mea-
surement using the calibrated master part, respectively.
Following inspection measurement experiments hi, the
conformance probability given a two-sided tolerance
interval with tolerance limits TL and TU is

pc =

ðTU

TL

hjhið Þdh: ð23Þ

The non-conformance probability is given by
�pc =1� pc. Suppose that the PDF hjhið Þ for Y can
be well approximated by a Gaussian PDF

hjhið Þ= 1

u(y)
ffiffiffiffiffiffi
2p
p exp � 1

2

h� y

u(y)

� �2
" #

: ð24Þ

For a two-sided tolerance interval with tolerance limits
TL and TU and a normal PDF for Y, the conformance
probability is

pc =F
TU � y

u(y)

� �
�F

TL � y

u yð Þ

� �
, ð25Þ

where F is the distribution function of the standard
normally distributed random variable of zero mean and
unit variance.

Our manufacturing capability can be represented as
a probability distribution using historical dimensional
inspection results from the production of the same item
and Monte Carlo simulation (see Figure 5). Provided
the product tolerance specifications for diameter,
TL =39:93 and TU =40:07, the probability of
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conformance for a specific product quality characteris-
tic with no information about the specific product is
shown in Figure 6. There is an 95% chance the feature
dimension will meet the specification. Then, by includ-
ing the knowledge we have of the current part from
feature-extracting self-supervised neural networks-
based GPR modelling, we can estimate the chance the
feature will meet specification for the part being manu-
factured (see Figure 7). This part (23) is a non-
conforming product and based on GPR model predic-
tions, the probability of conformance is just 32%. The
probability of conformance based on Equator inspec-
tion is almost equal to zero.

In addition, we can update our prediction results in
the light of new data using Bayesian statistical infer-
ence. For example, by combining the information
obtained by an OMP inspection cycle with the predic-
tion results via Bayes rule allows us to obtain a poster-
ior distribution of the end product quality. The OMP
inspection data were obtained using a 3D Touch-

Trigger Probe (TTP) with optical signal transmission.
For example, for part 24, the probability of confor-
mance with no information about the specific product
is 87% (see Figure 8). This part (24) is a conforming
product. Figure 9 shows the probability of conformance
based on the prior probability distribution obtained by
probabilistic machine learning while Figure 10 shows
the probability of conformance based on the posterior
probability distribution that combines the prior knowl-
edge gained by predictive modelling and the new infor-
mation gained after machining using OMP. In this way,
we can predict the feature dimension and calculate the
conformance probability on a specific part over the full
manufacturing chain. Note that, in this example, both
sources of information are well represented with normal
distributions. The evaluation of uncertainty associated
with OMP measurement was also performed based on
ISO 15530-3.50

Figure 7. Probability of conformance for Part 23 based on
probabilistic machine learning.

Figure 5. Manufacturing capability (without part 23).

Figure 6. Probability of conformance with no information
about Part 23 being manufactured.

Figure 8. Probability of conformance with no information
about Part 24 being manufactured.
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The risks of incorrect accept/reject decisions can be
reduced by adopting the concept of inspection by
exception method7 according to which the value of con-
formance and non-conformance probabilities based on
the prediction results can illustrate the need for post-
process inspection. For example, the part being manu-
factured can either be accepted or rejected if the confor-
mance and non-conformance probabilities, respectively,
are high. However, if they fall below a user-specified
limit, then, the part will need to be measured by
an accurate CMS in order to evaluate its conformance
or non-conformance to tolerance specifications.
Nevertheless, accepting or rejecting a part may lead to
an incorrect accept/reject decision, given prediction
results close to tolerance specifications. To balance such
risks, a compressed version of the tolerance interval
}= TL,TU½ � can be considered.49 The compressed

version of the tolerance interval is called the acceptance
interval U ¼ AL;AU½ �. The limits AL and AU of the
acceptance interval are defined according to the
requirements of each application and the uncertainty
associated with the predictions. For example, the limits
AL and AU can be offset from the corresponding toler-
ance limits TL and TU by ¼ TL +U and
¼ TU �U, respectively, with U=2u(y), for a confi-

dence level of 95.45%. The limitations of this study are
the degree of violations of the inherent assumptions
made to build the predictive model. These relate to the
dimensional feature predictability and to the assump-
tion that the uncertainty comes from a Gaussian distri-
bution. The amount of data is also a limiting factor
although this is partially addressed through the uncer-
tainty estimation framework. Nevertheless, the novel
framework we have developed has the potential to
make significant gains in the manufacturing value chain
most notably by the inclusion of prediction uncertain-
ties and their influence on conformity of part dimen-
sional features.

Conclusions

As manufacturers strive to satisfy customers’ require-
ments, there is a drive towards intelligent manufactur-
ing processes that produce ever more accurate parts
while giving a reduction in manufacturing times, costs
incurred by re-working or scrapping out-of-
specification parts, and human intervention. Most pre-
vious research studies have not investigated the use of
machine learning in multistage manufacturing for
dimensional product health monitoring, inclusion of
additional measurements, and prediction of confor-
mance and non-conformance measures in an integrated
manner. The main aim of this research was to develop
and validate a probabilistic framework for manufactur-
ing process monitoring and control using machine
learning and live captured sensor data from different
manufacturing stages. The Multistage Manufacturing
Process (MMP) presented in this research work
involved various manufacturing stages of heat treat-
ment of the material, machining, On-Machine Probing
(OMP), and shop-floor post-process inspection. The in-
process monitoring processes from which the data were
derived included the tempering temperature, material
surface hardness, force, and tool vibration. The prod-
uct health metric deviations based on post-process
inspection were used as output data. The paper has
proposed using unsupervised neural networks and
Gaussian processes to assess the dimensional product
condition and Bayesian updating for exploiting subse-
quent measurements, such as OMP data, and pooling
information. The prediction results compared well with
the experimental measurement results obtained by a
comparator measurement system. Adopting the
concept of inspection by exception method allows
the reduction of the volume of non-added value pro-
cesses including dimensional inspections during

Figure 10. Probability of conformance for Part 24 based on
Bayesian information fusion.

Figure 9. Probability of conformance for Part 24 based on
probabilistic machine learning.

Papananias et al. 1307



manufacturing while also reducing the risks of incorrect
decisions. The paper has also advised to consider a
user-specified acceptance interval, such as an uncer-
tainty interval, in order to balance the risks of incorrect
accept/reject decisions for predictions close to tolerance
specifications. Future work will look to incorporate
this technology into a manufacturing system. In addi-
tion, investigation of this approach to the process qual-
ity monitoring in additive manufacturing will be
explored.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest
with respect to the research, authorship, and/or publi-
cation of this article.

Funding

The author(s) disclosed receipt of the following finan-
cial support for the research, authorship, and/or publi-
cation of this article: This research was funded by the
UK Engineering and Physical Sciences Research
Council (EPSRC) under the Grant Reference EP/
P006930/1.

ORCID iD

Moschos Papananias https://orcid.org/0000-0001-
7121-9681
Thomas E McLeay https://orcid.org/0000-0002-
7509-0771

References

1. Mittal S, Khan MA, Romero D, et al. Smart manufac-

turing: characteristics, technologies and enabling factors.

Proc IMechE, Part B: J Engineering Manufacture 2019;

233(5): 1342–1361.
2. Ding K, Lei J, Zhang F, et al. Analyzing the cyber-

physical system–based autonomous collaborations

among smart manufacturing resources in a smart shop

floor. Proc IMechE, Part B: J Engineering Manufacture

2020; 234(3): 489–500.
3. Tan C, Hu SJ, Chung H, et al. Product personalization

enabled by assembly architecture and cyber physical sys-

tems. CIRP Ann 2017; 66(1): 33–36.
4. Hallgren M and Olhager J. Lean and agile manufactur-

ing: external and internal drivers and performance out-

comes. Int J Oper Prod Manag 2009; 29: 976–999.
5. Bishop CM. Pattern recognition and Machine Learning,

Springer New York, NY, 2006
6. Garcı́a JI, Cano RE and Contreras JD. Digital retrofit:

A first step toward the adoption of Industry 4.0 to the

manufacturing systems of small and medium-sized enter-

prises. Proc IMechE, Part B: J Engineering Manufacture

2020; 234(8): 1156–1169.

7. Papananias M, McLeay TE, Obajemu O, et al. Inspec-

tion by exception: A new machine learning-based

approach for multistage manufacturing. Appl Soft Com-

put J 2020; 97: 106787.

8. Shi J. Stream of variation modeling and analysis for multi-

stage manufacturing processes. Boca Raton, FL: CRC

Press, 2006.
9. Abellan-Nebot JV and Romero Subirón F. A review of

machining monitoring systems based on artificial intelli-

gence process models. Int J Adv Manuf Technol 2010;

47(1-4): 237–257.
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Appendix

Notation

� much less than.
2 belongs to.
¼D an equality which acts as a

definition.
; distributed according to.
0 vector of all 0s.
U acceptance interval.
AL lower acceptance limit.
AU upper acceptance limit.
b systematic error component.
C a constant chosen to ensure that the

posterior distribution integrates to 1.
cov ~f
� �

Gaussian process posterior
covariance.

D input-output training dataset:

D= Z, yf g= zi, yið Þf gp1
= zi1, . . . , ziq, yi

� �� �p
1
.

Ei random effect.
E expectation.
E(Y) expectation of a measurand Y.
E Yjhið Þ conditional expectation of Y, given

hi.
f f : x 2 Rn 7!z 2 Rq, the vector

function f maps x into z (vector
mapping function from the input
layer to the hidden layer).

~f Gaussian process (posterior)
prediction.
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~f Gaussian process posterior mean.
f zð Þ or f Gaussian process (or vector of)

latent function values.
F standard normal distribution

function.
g g : z 2 Rq 7!x̂ 2 Rn, the vector

function g maps z into x̂ (vector
mapping function from the hidden
layer to the output layer).

hð Þ prior PDF for Y.
hjIð Þ prior PDF with explicit display of

initial information I
hijhð Þ likelihood function.
hjhið Þ posterior PDF for Y.
GP Gaussian process.
I the identity matrix with 1s on the

diagonal and 0s elsewhere.
k coverage factor.
k z, z0ð Þ covariance (or kernel) function

evaluated at z and z0.
kð~zÞ or ~k vector, short for K Z; ~zð Þ, when there

is only a single test case.
K or K Z,Zð Þ p3 p covariance matrix.
~K p3 ~p matrix K Z; ~Z

� �
, the

covariance between training and test
cases.

l horizontal scaling factor (hyper-
parameter of the squared
exponential kernel function).

m zð Þ the mean function of a Gaussian
process.

m0 and m1 Bayesian information fusion process
prior and posterior means,
respectively.

n number of in-process measured
variables.

hi the i th measured value of Y.
N m,s2
� �

univariate Gaussian or normal
distribution with mean m and
standard deviation s

N m,Sð Þ Gaussian or normal distribution
with mean vector m and covariance
matrix S.

p and ~p number of training and test cases.
pc conformance probability.
�p
c

non-conformance probability.
p yOMPjmYð Þ likelihood of OMP observation.

q number of hidden units in the
autoencoder.

R the set of real numbers.
Rn the set of all n-dimensional real

vectors.
Rp3 n the set of all p3 n-dimensional real

matrices.
s2
E the error variance.

sf the vertical scaling factor (hyper-
parameter of the squared
exponential kernel function).

s2
0 and s2

1 Bayesian information fusion process
prior and posterior variances,
respectively.

S p3 n diagonal matrix.
} tolerance interval.
TL lower tolerance limit.
TU upper tolerance limit.
u(y) the standard uncertainty associated

with y.
u(cal) the standard uncertainty associated

with the CMM measurement on the
master part.

u(p) the standard uncertainty associated
with the comparator measurement
on the test part.

u(b) the standard uncertainty associated
with the comparator measurement
on the calibrated master part.

uc combined standard uncertainty.
U p3 p orthogonal matrix.
U expanded uncertainty.
V n3 n orthogonal matrix.
V Yjhið Þ conditional variance of Y, given hi.
x the network input vector.
x̂ the reconstructed input vector.
X p3 n matrix of the standardized

input data.
yi the i th observed target value.
yOMP OMP observation.
~y the prediction of output at the input

data ~z.
Y measurand taken to be a random

variable.
zi the i th regression vector.
Z p3 q matrix of the training inputs
~Z ~p3 q matrix of test inputs
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