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A B S T R A C T   

There is an increasing demand for manufacturing processes to improve product quality and production rates 
while minimising the costs. The quality of the products is influenced by several sources of errors introduced 
during the series of manufacturing operations. These errors accumulate over these multiple stages of 
manufacturing. Therefore, monitoring systems for product health utilising data and information from different 
sources and manufacturing stages is a key factor to meet these growing demands. This paper addresses the 
process of combining new measurement data or information with machine learning-based prediction information 
obtained as each product goes through a series of manufacturing steps to update the conditional probability 
distribution of the end product quality during manufacturing. A Bayesian approach is adopted in obtaining an 
updated posterior distribution of the end product quality given new information from subsequent measurements, 
and, in particular, On-Machine Probing (OMP). Following the steps of heat treatment, machining, and OMP, the 
posterior distribution of the previous step can be considered as the new prior distribution to obtain an updated 
posterior distribution of the product condition as new metrological information becomes available. It is 
demonstrated that the resulting posterior estimates can lead to more efficient product condition monitoring in 
multistage manufacturing.   

1. Introduction 

Manufacturing is concerned with transforming starting raw mate-
rials into finished parts or products designed usually with exceptionally 
tight tolerances. One of the most important manufacturing methods is 
the Computer Numerical Control (CNC) machining in which unwanted 
material is removed from a workpiece in the form of small chips by 
means of a rotary cutting tool that moves along certain multiple axes as 
indicated by a customised computer program [1,2]. In machining, part 
accuracy is affected by many sources of errors of varying magnitude, 
such as geometric and kinematic errors, thermal errors, cutting force- 
induced errors, fixturing errors, and tool wear [3,4]. In addition, a 
workpiece to be machined may have already gone through other pro-
cessing stages, such as metal-forming and heat treatment operations. 
Therefore, in Multistage Manufacturing Processes (MMPs), product 
quality variations are a result of the confluence of the errors generated at 
the current manufacturing stage, as well as the accumulated errors 
transmitted from preceding stages [5–7]. 

The manufacturing industry is currently undergoing a significant 

transformation towards the concept of smart manufacturing or Industry 
4.0 concerned with a new generation of manufacturing processes char-
acterized with autonomy and intelligence based on Cyber-Physical 
Systems (CPSs) [8,9]. The factory of the future will operate with 
manufacturing equipment and systems capable of being self-optimized 
and communicating with each other for making optimal decisions for 
example, in the event of producing out-of-specifications products. Metal 
fabrication processes are increasingly equipped with various sensing 
systems to gather data as the product is manufactured for process and 
product health monitoring as well as control [10]. Continuous condition 
monitoring and control of the process and product being manufactured 
make production more flexible with greater manufacturing efficiency 
and productivity. During recent years, a significant interest has been 
devoted to multisensor data fusion in dimensional metrology [11] for 
combining data from multiple sources, such as dimensional inspection 
data from a Coordinate Measuring Machine (CMM) and a structured line 
scanner [12]. Multisensor data fusion is a multidisciplinary field of in-
terest that aims to overcome the limitations of individual data acquisi-
tion devices and reduce the uncertainty of information estimates. It is 

* Corresponding author. 
E-mail address: m.papananias@sheffield.ac.uk (M. Papananias).  

Contents lists available at ScienceDirect 

Journal of Manufacturing Processes 

journal homepage: www.elsevier.com/locate/manpro 

https://doi.org/10.1016/j.jmapro.2022.01.020 
Received 28 January 2021; Received in revised form 7 January 2022; Accepted 9 January 2022   

mailto:m.papananias@sheffield.ac.uk
www.sciencedirect.com/science/journal/15266125
https://www.elsevier.com/locate/manpro
https://doi.org/10.1016/j.jmapro.2022.01.020
https://doi.org/10.1016/j.jmapro.2022.01.020
https://doi.org/10.1016/j.jmapro.2022.01.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmapro.2022.01.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Manufacturing Processes 76 (2022) 475–485

476

worth distinguishing between data fusion and information fusion 
though these terms are sometimes used interchangeably. The former 
refers to the combination of data obtained directly from multiple sensors 
while the latter refers to the combination of already processed sensor 
data and additional information, technical reports, models, etc. [13]. 

Over the years, several methods have been proposed to develop 
monitoring systems based on machine learning process models and in- 
process metrology data for observing product health, especially sur-
face quality characteristics such as surface roughness [14]. However, 
published work on intelligent dimensional product health monitoring 
systems is limited [15]. Also, most predictive monitoring methods are 
based on mapping single stage manufacturing data to quality charac-
teristics, though industrial production processes usually involve a large 
number of different stages, and do not take into account further 
metrological information obtained at a later manufacturing stage. 
Because of the complexity and diversity of manufacturing processes, 
developing a reliable and robust condition monitoring system that has 
minimal implementation and maintenance costs requires efficient and 
flexible modelling techniques. The use of Bayesian methods has greatly 
increased during recent years in many applications including 
manufacturing process monitoring and control [16,17]. Bayesian 
methods make use of probability distributions to quantify uncertainty in 
statistical inferences and can be seen as being equivalent to combining 
information from multiple sources [18–20]. In a Bayesian formulation, 
probability distributions are updated as more information becomes 
available. This paves the road to monitor the health of the process and 
product using statistical and machine learning techniques, as it goes 
through multiple manufacturing steps, and update our predictions about 
the product quality in the light of subsequent measurements through 
Bayes' theorem. This increases the reliability of metrological informa-
tion estimates through the different stages. For example, in situ 
dimensional inspection of finished or semi-finished parts on the machine 
with a Touch-Trigger Probe (TTP) enables the evaluation of dimensional 
metrological information about the product in a single setup and can be 
considered as an additional source of information for Bayesian data or 
information fusion. On-Machine Probing (OMP) using TTPs can reduce 
unnecessary downtime, re-work, scrap, and post-process inspection 
[21]. However, the use of a CNC machine tool as a Coordinate 
Measuring System (CMS) also has some drawbacks. In particular, OMP is 
fraught with the same error sources as CMMs, and, in addition, it cannot 
detect machine tool error-induced deviations. CMM measurement re-
sults are subject to many multivariate influence factors, such as geo-
metric and kinematic errors, probing system errors, and environmental 
effects [22,23]. Thus, the evaluation of the measurement uncertainty 
associated with such CMSs is not straightforward. In this work, a non- 
Cartesian CMS with a comparative method of operation (Equator 
gauging system) was used for post-process inspection to obtain the 
dimensional metrology characteristics of machined parts. Operating a 
CMS in comparator mode has the advantage of obtaining measurements 
that are devoid of constant systematic effects associated with the CMS 
[22,24]. 

The growing demand for improved product quality and production 
rates with reduced inspections have contributed significantly to the 
development of advanced process monitoring and control systems. 
However, the performance of machining processes, such as turning, 
drilling, milling, and grinding, depends on several parameters, including 
machine configuration, machining parameters and tool path trajectory, 
cutting tool type and wear, workpiece material and fixturing, process 
dynamics, etc. Therefore, the systems require training with a particular 
manufacturing method or fault type to provide an accurate prediction 
and then updating this prediction, given that new information is ob-
tained. The research of this article applies a Bayesian fusion method to 
provide an improved product health parameter estimate using proba-
bilistic machine learning and OMP. Unlike other studies in this domain, 
additional on-machine inspection data are utilized, so that the system 
can update its predictions as the product is manufactured when new 

metrology data become available. In the case presented, metrology data 
are obtained from a MMP consisting mainly of heat treatment, 
machining, and dimensional inspections. 

The aim of this paper is to present a novel approach to update the 
conditional probability distribution of the end product quality, by using 
Bayesian information fusion of machine learning based estimation and 
subsequent measurements, such as OMP. The advantages of the pro-
posed approach to product health monitoring for MMPs naturally arise 
from the sequential nature of Bayes' theorem for updating posterior 
distributions. The proposed method is validated using experimental data 
obtained from a case study involving multistage manufacturing (see 
Fig. 1). Section 2 reviews the literature relating to dimensional 
metrology and process monitoring and control methods. Section 3 in-
troduces the product health metric deviation matrix and the probabi-
listic model. Section 4 validates the model using data from an 
experimental case study concerned with the manufacture of steel 
bearing housing parts [25–27]. Section 5 presents the proposed Bayesian 
information fusion approach and the results obtained with this method. 
Section 6 provides the conclusions and suggestions for future work. 

2. Related literature 

Dimensional metrology deals with the measurement process of 
geometric features of a manufactured part to determine whether or not 
the part conforms to its geometric tolerance specifications (form, 
orientation, profile, runout, size, and location). Dimensional measure-
ments can be obtained by a variety of methods including both manual 
inspection methods, such as hard gauging and Articulated Arm Coor-
dinate Measuring Machine (AACMM) measurement, and automated 
inspection methods, such as OMP, CMM measurement, and flexible 
gauging [28]. Manual inspection methods are prone to a non-predictable 
error source, the operator, affecting the repeatability, reproducibility, 
and part throughput, and usually lead to high measurement un-
certainties. Coordinate metrology, particularly the use of CMMs has 
become vital for industrial dimensional metrology because of their ef-
ficiency, flexibility and accuracy. However, providing valid uncertainty 
statements associated with a particular CMM measurement task requires 
significant efforts as CMM measurement results are subject to a large 
range of influence factors including both random and systematic effects 
[22]. CMSs can also be used to perform coordinate measurements in a 
comparative method of operation in which dimensional measurements 
of a workpiece are compared with those of a calibrated master part 
nominally of the same geometry. Coordinate measurements made in a 
comparative method of operation benefit from the fact that a substantial 
proportion of the systematic effects associated with the CMS cancel out 
and thus need not be modelled when evaluating the uncertainties. 
However, the traceability path associated with comparative coordinate 
measurement is not easy to define because such dimensional quality 
results originate from relative measurements. In addition, the mea-
surement uncertainty for a given workpiece measured using a compar-
ator measurement system will always inherit an uncertainty component 
from the calibration process of the master part, but this uncertainty 
contributor is usually not difficult to quantify. Process variations, such 
as part misalignments due to the rotation of coordinate reference frames 
established during the master mode and the measure mode, are also 
possible uncertainty contributors for comparator measurement, partic-
ularly when using a non-repeatable fixturing setup [28]. Furthermore, 
establishing a master part for comparator measurement may be not 
straightforward and usually requires calibrating a precisely manufac-
tured part on a calibrated CMM. 

Traditional part quality assessment techniques are usually based on 
manually-operated measurement instruments and CMMs that can 
potentially create production bottlenecks limiting production rate. 
Therefore, in recent years, there has been a drive towards process 
monitoring and control strategies based on Artificial Intelligence (AI) 
techniques and live captured monitoring data to make timely decisions, 
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while minimising the volume of non-value adding processes, such as 
dimensional inspection. In particular, Industry 4.0 has become the new 
trend in the manufacturing industry and much research has focused on 
mapping process parameters and monitoring data to product quality 
characteristics, such as surface roughness, using machine learning pro-
cess models. Özel and Karpat [29] used Artificial Neural Networks 
(ANNs) to provide predictions of surface roughness and tool wear in 
finish dry hard turning, using material hardness, process parameters, 
and force data. Plaza et al. [30] analyzed different methods for feature 
extraction to improve surface finish monitoring in CNC turning using 
vibration data obtained by a single low-cost accelerometer sensor. Sal-
gado et al. [31] developed Least Squares Support Vector Machines (LS- 
SVMs) for surface roughness prediction in turning using cutting pa-
rameters, tool geometry parameters, and vibration data. Huang [32] 
developed a neural-fuzzy monitoring system for end-milling operations 
to predict surface roughness using process parameters and force data. 
Kovac et al. [33] used fuzzy logic and regression analysis for modelling 
surface roughness in dry face milling based on machining conditions and 
flank wear land width. Bolar et al. [34] performed a full factorial design 
to investigate the influence of feed per tooth, tool diameter, and axial 
and radial depths of cut on cutting forces and surface roughness during 
machining of thin-wall parts and developed second order regression 
models for the prediction of both measurand given the studied process 
parameters. Han et al. [35] proposed a varying-parameter drilling 
method for improved manufacturing efficiency over successive opera-
tions and ultimately increased hole surface roughness quality for multi- 
hole parts made of difficult-to-cut materials. The hole surface roughness 
was predicted by Radial Basis Function (RBF) networks using spindle 
speed, feed rate, crater wear, flank wear, outer corner wear, thrust force 
and torque. Moore et al. [36] proposed a machine learning-based ma-
chine and process monitoring system for milling using vibration and 
power signals. Correa et al. [37] applied Bayesian networks and ANNs to 
predict surface roughness in high-speed milling using various features, 
including workpiece geometry, material hardness, machining parame-
ters, and cutting forces. They showed that Bayesian networks are easier 
to interpret than ANNs and performed better in this classification 
problem. 

Beyca et al. [38] proposed a Bayesian Dirichlet Process (DP) multi-
sensor fusion decision theoretic approach to detect abnormal process 
drifts in ultraprecision machining by integrating multiple in situ sensor 
signals, such as force, vibration, and Acoustic Emission (AE). The results 
showed that their approach can classify ultraprecision machining pro-
cess drifts much more accurately in comparison to conventional classi-
fication methods, such as ANNs and SVMs. Karandikar et al. [39] 
implemented a Bayesian learning method for the identification of the 

stability lobe using milling test results and presented an adaptive 
experimental strategy to identify the optimal combination of parame-
ters, which maximise material removal rate. Wang et al. [40] proposed a 
multisensor fusion method of vision and sound to monitor the in-process 
material removal rate of grinding. They conducted belt grinding ex-
periments under different operating conditions and derived a predictive 
model for material removal rate monitoring based on the optimal 
feature subsets and an improved light gradient boosting machine algo-
rithm. Nazir and Shao [41] proposed an online tool condition moni-
toring system for ultrasonic metal welding using sensor fusion and 
machine learning techniques. They tested a variety of classification 
models using experimental data and concluded that displacement and 
AE sensor signals are more useful in predicting tool conditions than 
power and sound signals. Atoui et al. [42] presented a probabilistic 
framework for system monitoring based on Bayesian networks, but their 
approach was tested with a simulation of a water heater process. Zhao 
et al. [43] derived an algorithm based on a linear state-space model for 
sensor monitoring, which estimates the probability distributions of 
measurement noise covariance and state variable simultaneously, 
assuming completely uncorrelated sensors. The joint posterior distri-
bution was approximated by two independent proposal distributions 
under the variational Bayesian inference framework, but the algorithm 
was tested with a quadruple water tank experiment. Du et al. [44] 
developed a Bayesian monitoring method based on a linear state-space 
model to estimate the process control parameters and establish the 
control limits of the cause-selecting chart in the ramp-up phase of a 
MMP. Tran et al. proposed two one-sided Shewhart-type charts to 
monitor the ratio of two normal random variables for a finite horizon 
production to account for situations where the production run is finite, 
but they considered simulation data from the food industry for the 
quality control problem. Riaz et al. [45] presented Bayesian posterior 
predictive exponentially weighted moving average control charts under 
different loss functions for small to moderate process mean shift detec-
tion, but the applications considered for validation were not in the 
manufacturing sector. For a lab-scale distillation column and the Ten-
nessee Eastman (ET) industrial challenge problem, Ghosh et al. [46] 
used multiple heterogeneous fault detection and identification methods 
and fused their results to overcome the limitations of each method when 
used separately. Zhang and Ge [47] designed a fusion system by 
combining results of various methods for fault detection and identifi-
cation in industrial processes. They used the Dempster-Shafer evidence 
theory to combine decisions generated from different models and a 
resampling strategy as a data pre-processing step to enhance the per-
formance of the fusion system. The case study included the ET process. 
In summary, Bayesian and machine learning methods via sensor and 

Fig. 1. The experimental setup and the CAD model of the part. The subfigures indicate the different manufacturing and inspection stages with the arrows indicating 
the sequence of the processes. 
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decision fusion techniques had been applied to specific manufacturing 
stages and to other industrial processes involving a variety of formula-
tions ranging from classification to dynamic fault estimation, but ho-
mogeneously within the methods. 

To the best of our knowledge, no research has been undertaken 
regarding the fusion of in-process inspection data and in-process 
monitoring data for dimensional product health monitoring. The over-
whelming majority of published research works have proposed machine 
learning-based methods to identify the finish-machined part condition, 
particularly surface metrology characteristics, by monitoring only the 
machining process, and do not enhance their predictions when new 
information becomes available. The aim of this article is to fill this gap 
by introducing a multisensor fusion method to predict an improved 
product health parameter estimate. First, this research work develops an 
intelligent, dimensional product health monitoring system, which learns 
from experience using in-process monitoring data obtained from mul-
tiple different manufacturing stages and sources, to provide probabi-
listic predictions about the end product condition. Second, it develops a 
Bayesian information fusion algorithm to update this prediction as the 
product is manufactured, given new information from subsequent 
measurements, such as OMP. A Bayesian updating procedure is adopted 
in combining the information obtained from machine learning with the 
new information obtained from OMP. Its performance is evaluated on a 
case study of real industrial example in which bearing housing parts 
made by EN24T steel are manufactured. The manufacturing process 
involves heat treatment, grinding, hardness testing, machining, in- 
process inspection, and post-process inspection. 

3. Product health metric deviation matrix and the probabilistic 
model 

The concepts of basic probability and random variables that are used 
in this paper are first given. Let Y be a continuous random variable with 
Probability Density Function (PDF) g(y). This function must: i) be 
nonnegative, i.e., g(y) ≥ 0 for all y, and ii) have unit area, i.e., 

∫∞
− ∞ 

g(y)dy = P( − ∞ < Y < ∞) = 1. These two criteria must be strictly 
satisfied in order for a function to qualify as a PDF. The probability that 
the random variable Y is less than or equal to a value y is given by the 
Cumulative Distribution Function (CDF). The CDF G(y) for the random 
variable Y is defined by G(y) = P(Y ≤ y), − ∞ < y < ∞, and satisfies 
the marginal conditions lim

y→− ∞
G(y) = 0 and lim

y→∞
G(y) = 1. The expecta-

tion E(Y) of the random variable Y with PDF g(y) is E(Y) = μY =
∫∞
− ∞ yg(y)dy, the variance is V(Y) = σ2

Y = E
[
(Y − E(Y) )2

]
=

∫∞
− ∞ (y − μY)

2g(y)dy, and the standard deviation σY is the positive square 
root of the variance, thus σY =

̅̅̅̅̅̅̅̅̅̅̅
V(Y)

√
[48]. 

In this paper, the product health information is represented through 
a metric deviation matrix. Suppose independent observations y =
(
y1,…, ym

)T of the random variable Y are available from a CMS, such as 
a CMM or a comparator measurement system. More generally, the 
measurement y i, for i = 1, …, m, is regarded as an observation of the 
random variable Yi that has a PDF identical to that of Y. Consider now Yij 
independent random variables, for i = 1, …, m and j = 1, …, n, and let H 
be the corresponding product health metric deviation matrix: 

H =
(
hij
)
=

⎡

⎢
⎢
⎢
⎣

h11 h12 ⋯ h1n

h21 h22 … h2n

⋮ ⋮ ⋱ ⋮
hm1 hm2 … hmn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

ỹ1 − y11 ỹ2 − y12 ⋯ ỹn − y1n

ỹ1 − y21 ỹ2 − y22 … ỹn − y2n

⋮ ⋮ ⋱ ⋮
ỹ1 − ym1 ỹ2 − ym2 … ỹn − ymn

⎤

⎥
⎥
⎥
⎦
∈ R

m×n

(1)  

where hij = ỹ j − y ij denotes the element located in the ith row and the jth 
column of the product health metric deviation matrix H, ỹ j is the 
Computer-Aided Design (CAD) model based nominal value of the 
random variable or measurand Yj, and y ij is the ith observation of the 
measurand Yj. Given a tolerance specification Tj and a measured product 
health metric deviation hij, the product can be either accepted or 
rejected for the jth quality characteristic or, in some cases, it may be re- 
worked or re-measured with the same or more accurate measuring 
system. 

The focus of this paper is to reduce inspections by firstly, creating a 
predictive model of the post-process inspection results from the in- 
process metrology data. For each measurand j, the following form of 
model is considered: 

h = Xa+ ϵ, h ∈ H ,H ∼ Np
(
Xa, σ2

E Ip
)

(2)  

where h =
(
h 1,…, h p

)T is the response variable obtained from a CMS 
operating in comparator mode with h l = hl =

1
m
∑m

i=1hil for l = 1, …, p, X 
is a matrix of order p × (q + 1) known as the design matrix or matrix of 
covariates, a = (a0,a1,…,aq)T is the vector of unknown parameters, ϵ =
(ϵ1,…,ϵp)T is the error vector with ϵ ∈ Np

(
0,σ2

E Ip
)
, σ2

E is the unknown 
error variance parameter, and Ip is the p × p identity matrix. The vari-
ables h and ϵ are regarded as realizations of vectors of random variables 
H =

(
H 1,…,H p

)T, with E(H ) = Xa and Vh = V(H ) = σ2
E Ip, and E =

(
E 1,…,E p

)T, with E(E ) = 0 and Vϵ = V(E ) = σ2
E Ip, respectively. 

Suppose X: 

X =

⎡

⎢
⎢
⎣

1 x11 x12 ⋯ x1q
1 x21 x22 … x2q
⋮ ⋮ ⋮ ⋱ ⋮
1 xp1 xp2 … xpq

⎤

⎥
⎥
⎦ (3)  

is of full rank, rank(X) = q + 1, and that q + 1 ≤ p. Provided that (XTX)− 1 

exists since XTX also has rank q + 1 ≤ p, the ordinary least squares es-
timate α of a is: 

α = A (h ) = X†h ,X† =
(
XTX

)− 1XT (4)  

which is equivalent to the maximum likelihood estimate of a due to the 
assumptions of the linear model for the error term ϵ drawn from a 
multivariate normal distribution with mean of 0 and covariance matrix 
of σ2

E Ip. Note that, α is a realization of a vector of random variables A =

A (H ) = X†H with expectation E(A) = E(X†H ) = X†E(H ) =
(
XTX

)− 1XTXa = a. Therefore, α is an unbiased estimate of a. This 
parameter estimate can be used to make a prediction of the mean esti-
mate of the post-process inspection results. However, this does not 
provide a measure of uncertainty associated with this mean estimate. 

The uncertainty of the mean estimate will depend on the uncertainty 
covariance of the model parameter estimate. The covariance matrix Vα 

of A is Vα = V(A) = X†V(H )(X†)
T
=

(
XTX

)− 1XT( σ2
E Ip

)
X
(
XTX

)− 1
=

σ2
E

(
XTX

)− 1XTX
(
XTX

)− 1
= σ2

E

(
XTX

)− 1. The estimate α is also a sample 

from a multivariate normal distribution, α ∈ Nq+1

(
a, σ2

E

(
XTX

)− 1
)

, 

since α results from a linear transformation of the data vector h . The 
maximum likelihood estimate σ̂2

E = ϵ̂T ϵ̂/p of the error variance σ2
E is 

biased, but as p increases the bias of σ̂2
E shrinks towards 0. An unbiased 

estimate of the error variance σ2
E can be obtained from the Residual Sum 

of Squares (RSS) divided by its degrees of freedom: 

s2
E =

ϵ̂T ϵ̂
p − q − 1

=
(h − Xα)T

(h − Xα)
p − q − 1

(5) 

Therefore, the estimated covariance matrix V̂(A) = s2
E

(
XTX

)− 1 of A 

approximates the covariance matrix V(A) = σ2
E

(
XTX

)− 1 of A. 
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Computational methods based on matrix decompositions are used for 
numerical stability [49]. 

A Bayesian approach is employed in this research work to first esti-
mate the parameters a and σ2

E using only the in-process metrology data. 
A Bayesian approach to statistical estimation and inference of regression 
models considers the parameters a and σ2

E as random variables, and 
hence uses probability distributions to describe information about the 
model parameters. These probability distributions are updated using 
Bayes' theorem when information from measurement data becomes 
available to obtain posterior distributions of the parameters. This 
approach can incorporate prior knowledge (before the data are 
observed) about the model parameters by setting up an informative 
prior distribution for the parameters [18]. The prior knowledge may be 
available from various sources of information depending on the specific 
problem. For example, expert knowledge and historical data can be used 
to obtain a prior distribution. In cases where prior knowledge may be 
vague or not available then, a non-informative prior distribution can be 
specified. The posterior distribution captures all important information 
about the model parameters having observing the data by incorporating 
the prior beliefs through the prior distribution and the information from 
the measurement data through the likelihood function. With non- 
informative priors, the posterior distribution is dominated by the like-
lihood. On the contrary, the posterior is approximately proportional to 
the prior when the prior contains much more precise information about 
the parameters than the data. The posterior distribution is proportional 
to the product of the prior distribution and the likelihood function and 
appropriately normalized to ensure that it integrates to one. The data in 
a regression problem involve both h and X. Hence, the posterior density 
for the unknown parameter vector θ = (θh |x, θx)

Tis given by [19]: 

p(θ|h ,X)∝p(θ)p(h ,X|θ) (6)  

where p(θ) is the prior density and p(h ,X|θ) = p(h |X, θh |x)p(X|θx) is the 
likelihood. Assuming prior independence, p(θh |x, θx) = p(θh |x)p(θx), 
then, the posterior density factors as: 

p(θh |x, θx|h ,X) = p(θh |x|h ,X)p(θx|X) (7) 

Since the focus is only on θh |x =
(
a, σ2

E

)
then, the posterior density for 

the parameter vector θh |x is given by: 

p(θh |x|h ,X)∝p(θh |x)p(h |X, θh |x) (8)  

where p(θh |x) is the prior density and p(h |X, θh |x) is the likelihood given 
by: 

p(h |X, θh |x)∝
(
σ2

E

)− p/2exp
[
− (h − Xa)T

(h − Xa)
2σ2

E

]

(9) 

The posterior is derived analytically when prior knowledge can be 
expressed with conjugate priors. Conjugate priors for the parameter 
vector θh |x can be given by: 

a∣σ2
E ∼ Nq+1

(
α0, σ2

E V − 1
0

)
, σ2

E ∼ IΓ(a0, b0) (10)  

where the conditional prior for a is a (q + 1)-dimensional multivariate 
normal distribution with mean vector α0 and covariance matrix σ2

E V− 1
0 

and the marginal prior for σ2
E is an inverse Gamma distribution with 

shape a0 > 0 and scale b0 > 0. Note, V0 is a symmetric positive definite 
matrix of order (q + 1) × (q + 1). A non-informative prior usually used 
for the normal linear regression model is the improper density 
p
(
a, σ2

E

)
∝1/σ2

E . 

4. Model validation using experimental multistage 
manufacturing data 

Data have been obtained from an experiment with multiple stages of 
manufacturing, such as heat treatment of the workpiece material, metal 

grinding, surface hardness testing, CNC subtractive machining, and 
dimensional inspections [25–27]. The starting material blocks made of 
steel EN24T were heated up to 845 ◦C using a VECSTAR furnace and 
then rapidly cooled down via oil quenching to increase their hardness. 
After this process, the quenched material blocks were tempered at three 
different temperatures (450 ◦C, 550 ◦C and 650 ◦C) to introduce varia-
tion in material properties. High temperature thermocouples were used 
to measure the furnace temperature during the heat treatment opera-
tions. Following these operations, the material blocks were ground to 
improve their surface quality and Rockwell hardness tests were per-
formed to obtain their surface hardness. Then, a randomized full 
factorial experiment with four factors at two levels and one center point 
each, was implemented on DMG MORI NVX 5080 3-axis vertical 
machining center CNC. The Design of Experiments (DOE) factors 
comprised the Rockwell hardness of the workpiece material, the 
machining parameters including feed rate and spindle speed, and the X-, 
Y-axis-datum error when setting the workpiece in the opposite orien-
tation. During machining, an accelerometer sensor and the National 
Instruments (NI) LabVIEW SignalExpress software were employed to 
measure tool vibrations at a sampling frequency of 10 kHz. After each 
experimental run, a Leica microscope was used to evaluate the tool wear 
on each flute. The cutting tools were changed once they reached a 
certain flank wear width. The following features were generated in 
MATLAB from the in-process monitoring data: i) a three-state variable 
for the Rockwell hardness of the workpiece material obtained from 
repeated measurements at different locations on the material block; ii) 
the maximum tempering temperature obtained by five K-type thermo-
couples; and iii) a number of time domain features of vibration com-
ponents Vx, Vy, and Vz, including Root-Mean-Square (RMS) and sample 
kurtosis, skewness, variance and mean. The dataset was normalized by 
the 2-norm. After machining each side of the workpiece, OMP was 
performed for in-process inspection using a Renishaw OMP60 optical 
transmission probe. Fig. 1 shows a general overview of the experimental 
setup and the CAD model of the product. The measurand of interest in 
this work is the diameter of the circle labeled in Fig. 1. A Renishaw 
Equator 300 automated comparator system was used for shop floor post- 
process inspection using the scanning mode and the CMM Compare 
method. A Mitutoyo was employed in a metrology lab to calibrate the 
master part. 

Suppose that prior knowledge about θh |x is not available or ignored, 
e.g. it is considered as imprecise. Therefore, the improper prior density 
p
(
a, σ2

E

)
∝1/σ2

E is specified. Provided that XTX is invertible, with this 
prior distribution, the conditional posterior distribution for a is a (q +
1)-dimensional multivariate normal distribution: 

a∣σ2
E , h ,X ∼ Nq+1

(
α, σ2

E

(
XTX

)− 1
)

(11) 

The marginal posterior distribution for σ2
E becomes an inverse 

Gamma distribution: 

σ2
E ∣h ,X ∼ IΓ

(
p − q − 1

2
,
(h − Xα)T

(h − Xα)
2

)

(12) 

The marginal posterior distribution for a is a (q + 1)-dimensional 
multivariate t-distribution with p − q − 1 degrees of freedom: 

a∣h ,X ∼ tq+1,p− q− 1

(
α, s2

E

(
XTX

)− 1
)

(13) 

Now suppose the model is applied to a new set of data X̃ to predict 
unobserved data ̃h , where X̃ is a matrix of dimension m × (q + 1) and ̃h ∈

H̃ is a vector of dimension m. The uncertainty associated with the 
posterior predictive distribution for the vector of random variables H̃ is 
contributed by both the model variability and finite sample size p of h . 
Therefore, the posterior predictive distribution for H̃ is a m-dimensional 
multivariate t-distribution centered at X̃α with two uncertainty com-
ponents and p − q − 1 degrees of freedom: 
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H̃ ∣h ∼ tm,p− q− 1

(
X̃α, s2

E

(
Im + X̃

(
XTX

)− 1X̃
T ))

(14) 

The predictive model was fitted using the first four principal com-
ponents extracted from the input dataset and the diameter deviations 
extracted from the scanning comparator measurements using a sampling 
point density/distance (the distance between the current units and the 
points on the scan path) of 0.1 and a scanning speed of 40 mm/s. The 
expanded measurement uncertainties, U, for diameter for a coverage 
factor k = 2 and 95.45% confidence level were found to be less than 1 
μm for all parts tested. The procedure followed to evaluate the mea-
surement uncertainty is described in [27]. Principal Component Anal-
ysis (PCA) was performed via a Singular Value Decomposition (SVD) of 
the input data matrix [49,50]. Mean-centering the columns of the input 
data matrix was therefore a necessary pre-processing step. The leave- 
one-out cross-validation approach was used to evaluate the perfor-
mance of the model on unseen data. The average percentage variability 
explained by the first four components in the training phase was 
96.2878% and by taking into account only the first four components the 
average reconstruction Root Mean Squared Error (RMSE) was 0.0101. 
The fitted predictive model was tested using the test dataset by applying 
the PCA transformation obtained from the training data to the test 
dataset. The average reconstruction RMSE considering the first four 
components obtained from the trained PCA model using the test dataset 
was 0.0149. Fig. 2 shows the scree plot of the percentage variability 
explained by the first four components during training for a single fold 
data. For each validation case, sixteen parts were used for training and 
one part was used for testing the model and repeated across all folds. 
MATLAB was used to implement the PCA-based probabilistic model. 

The normal probability plot of the residuals of the classical linear 
fitted model for a single fold data is shown in Fig. 3, where can be seen 
clearly that the model residuals are normally distributed with non- 
substantive departures from normality. The coefficient of (multiple) 

determination R2 was 0.706 and the adjusted R̃
2 

was 0.599. The prior 
distributions and posterior distributions of the model parameters a and 
σ2

E are shown in Fig. 4. Table 1 shows the Bayesian linear regression 
model results for a single fold data including the mean value of the 
parameters, the Standard Error (SE) of the parameters, and the 95% 
Bayesian equal-tailed Credible Interval (CI) for the model parameters. 
Tables 2 and 3 show the cross-validation results of the PCA-based 

probabilistic model. The developed model was evaluated using the 
RMSE metric. The comparison between the training and testing data 
performances for PCA indicate that feature extraction process did not 
result in any adverse loss of information in the features from the in- 
process monitoring data. The cross-validation results show that the 
linear model predicts the diameter deviations with an average accuracy 
better than 6 μm. Again, the similarity of the order between the training 
and training errors across all parts suggest a good generalization with 
little overfitting to the data. 

5. Combining information from different sources via the normal 
approximation 

OMP has been used successfully in a variety of machining processes 
to replace hard gauging and improve the productivity and capability of 
the machining process, provided that the machine performs with suffi-
cient accuracy and repeatability. It can provide feedback to the 
machining process to compensate for inherent variations, such as tool 
wear, and verify the process before the machined part is moved. How-
ever, it provides measurement results with high levels of uncertainties, 
which can compromise the reliability of the inspection process. 
Depending on the accuracy requirements of an application, independent 
measurements, such as CMM measurements, may be required to sup-
plement this inspection strategy. 

Consider now a Bayesian information fusion approach to update the 
probability distribution p(h̃ |h ) of the end product quality by incorpo-
rating new information from subsequent measurements, such as OMP, 
h OMP ∈ H , as the product is manufactured. A Renishaw OMP60 optical 
transmission probe with tungsten carbide stylus (50 mm overall length) 
and ruby ball (2 mm ball diameter) was used for OMP. The unidirec-
tional repeatability of the OMP60 probe is 1 μm 2σ. A circle was fitted to 
the OMP data in the xy-plane in MATLAB in order to evaluate the 
diameter of the circular feature of interest from the OMP coordinate 
data. Given a two-dimensional set of m data points P =
{

pi =
(
xi, yi

)T
}m

1
, with m ≥ n, representing a circle specified by pa-

rameters b = (x0,y0, r0)T, where (x0,y0) is its centre coordinates, r0 is its 
radius, and n is the number of parameters and thus in this case n = 3, the 
least squares best-fit circle is a solution of the optimization problem: 

Fig. 2. Scree plot for a single fold data.  

M. Papananias et al.                                                                                                                                                                                                                           



Journal of Manufacturing Processes 76 (2022) 475–485

481

min
b

∑m

i=1
d2(pi, b) (15)  

where d(pi, b) = di =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − x0)
2
+
(
yi − y0

)2
√

− r0 is the (signed) dis-
tance from a point pi to the circle specified by b, with di > 0 for points 
outside the circle and di < 0 for points inside it. One of the most common 
approaches in solving this optimization problem is the Gauss-Newton 
algorithm [51]. This algorithm requires the m × n Jacobian matrix J 
of partial derivatives of di with respect to the parameters b [52,53]: 

Fig. 3. Normal probability plot of the residuals for a single fold data.  

Fig. 4. Prior and posterior distributions of the regression coefficients and disturbance variance for a single fold data.  

Table 1 
Results of the PCA-based probabilistic model for a single fold data.   

Estimate SE Bayesian CI95 

a0  0.05930  0.00162 [0.05608, 0.06252] 
a1  0.02427  0.00906 [0.00624, 0.04230] 
a2  0.04698  0.01934 [0.00848, 0.08548] 
a3  0.05821  0.02307 [0.01228, 0.10414] 
a4  − 0.06964  0.04720 [− 0.16360, 0.02433] 
σ2

E  
0.00004  0.00002 [0.00002, 0.00010]  
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∂di

∂x0
= −

(xi − x0)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − x0)
2
+ (yi − y0)

2
√

∂di

∂y0
= −

(yi − y0)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − x0)
2
+ (yi − y0)

2
√

∂di

∂r0
= − 1

(16) 

Note, for each part/circle, eight points were taken with the sample 
size of probing points being able to provide sufficient information on 
diameter deviation and is practical in order to maintain inspection cycle 
time within desired limits. Let h OMP be a single scalar circular feature 
characteristic (diameter) obtained from an OMP inspection cycle with 
h OMP ∈ N

(
μH , σ2

H

)
. If the variance σ2

H is a known constant then, the 
likelihood is represented by: 

p(h OMP|μH ) =
1

̅̅̅̅̅
2π

√
σH

exp
[
− 1

2σ2
H

(h OMP − μH )
2
]

(17) 

The likelihood, p(h OMP|μH ), considered as a function of the unknown 
mean parameter μH = E(H ) of the measurand H , is a one-dimensional 
exponential family and thus, a conjugate prior density for this likelihood 
is the normal density, i.e., μH ∼ N

(
μ0, σ2

0
)
. For the fusion process the 

posterior predictive distribution for H̃ , p(h̃ |h ), becomes the prior 

density for μH , p(μH ), and can be well approximated by a normal density 
as the degrees of freedom of the t-distribution increase. Thus, the prior 
for μH is chosen as: 

p(μH ) =
1
̅̅̅̅̅
2π

√
σ0

exp
[
− 1
2σ2

0
(μH − μ0)

2
]

(18)  

where μ0 = X̃α and σ2
0 = s2

E

(
Im + X̃

(
XTX

)− 1X̃
T )

. The influence of this 

approximation on the posterior inferences decreases as the sample size p 
increases. However, such an approximation may not be accurate for 
small sample sizes. With a conjugate prior density, the posterior density 
for μH is also a normal density μH ∣h OMP, X̃ ∼ N

(
μ1, σ2

1
)
. 

The Bayesian inference results in the posterior mean μ1 being a 
precision-weighted sum of the prior mean μ0 and the observed value 
h OMP, and the posterior precision (inverse of the variance) σ1

− 2 being the 
sum of the prior precision σ0

− 2 and the observation precision σ− 2
H : 

μ1 = wμ0 +(1 − w)h OMP, σ− 2
1 = σ− 2

0 + σ− 2
H (19)  

where w = σ− 2
0 /

(
σ− 2

0 + σ− 2
H

)
∈ (0, 1). If the product is measured on the 

machine mOMP times independently, under repeatability conditions 
then, the joint likelihood is the product of the individual likelihoods: 

p(h1OMP ,…, hmOMP |μH ) = p(h1OMP |μH ) × … × p(hmOMP |μH )

=
∏mOMP

i=1

1
̅̅̅̅̅
2π

√
σH

exp
[
− 1

2σ2
H

(hiOMP − μH )
2
]

∝exp

[
− 1

2σ2
H

∑mOMP

i=1
(hiOMP − μH )

2

]

(20) 

The new measurements based on OMP are subject to effects that are 
random and systematic, and are considered as the likelihood function 

that is also Gaussian. Therefore, μH has posterior μH ∣h OMP, X̃ ∼

N
(

μmOMP
, σ2

mOMP

)
with mean μmOMP and precision σmOMP

− 2: 

μmOMP
=

mOMPσ− 2
H h OMP + σ− 2

0 μ0

mOMPσ− 2
H + σ− 2

0
, σ− 2

mOMP
= mOMPσ− 2

H + σ− 2
0 (21)  

where h OMP = 1
mOMP

∑mOMP
i=1 h iOMP . The maximum likelihood estimate of μH 

is simply the sample mean h OMP. 
The measurement uncertainty associated with OMP was calculated 

based on the uncertainty evaluation methodology based on ISO 15530-3 
[54], which provides a method for CMM measurement uncertainty 
evaluation with calibrated parts of similar dimension and geometry. 
Measurement uncertainty and measurement error are often mistakenly 
used interchangeably because they are thought to be synonymous. 
However, this is incorrect since the measurement error is defined by the 
difference between the measurement based result and the measurand 
true value while the measurement uncertainty is an attribute of the 
measurement result, which quantifies the doubt about its validity [55]. 
Three uncertainty contributors were considered to evaluate the OMP 
uncertainty: i) the uncertainty, u(cal), associated with the CMM master 
part calibration; ii) the uncertainty, u(p), arising from the OMP mea-
surement process; and iii) the uncertainty, u(b), associated with the 
systematic error, b =

⃒
⃒y − ycal

⃒
⃒, of the OMP process evaluated using the 

master part, where y denotes the mean of all the measured values ob-
tained from OMP and ycal is the CMM calibrated value of the same part 
and measurand. The uncertainty component u(cal) arising from the 
CMM master part calibration, was evaluated by the sample standard 
deviation of the mean, s

(
ycal

)
= sycal

/
̅̅̅̅̅̅̅̅̅mcal

√ , using the CMM measure-

ment results on the master part, where sycal
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
mcal − 1

∑mcal
i=1

(
y ical

− ycal

)2
√

. 

The uncertainty components, u(p) and u(b), were computed by the 
sample standard deviation using the OMP results on the test and master 
parts, respectively. The uncertainty associated with OMP, u(y), for a 
coverage probability of 68.27% can be given by: 

Table 2 
Cross-validation results of the PCA model.  

Folds Sum of variance 
explained 

Training 
reconstruction RMSE 

Testing reconstruction 
RMSE 

1  96.2111  0.0102  0.0128 
2  96.2355  0.0100  0.0182 
3  96.2329  0.0102  0.0120 
4  96.2616  0.0101  0.0207 
5  96.0725  0.0104  0.0092 
6  96.2358  0.0102  0.0136 
7  96.3934  0.0100  0.0174 
8  96.3579  0.0099  0.0175 
9  96.3920  0.0102  0.0133 
10  96.0847  0.0103  0.0123 
11  96.0049  0.0105  0.0072 
12  96.6805  0.0095  0.0220 
13  96.1143  0.0103  0.0105 
14  96.3225  0.0101  0.0149 
15  96.2642  0.0102  0.0121 
16  96.4237  0.0100  0.0155 
17  96.6048  0.0095  0.0245 
Average  96.2878  0.0101  0.0149  

Table 3 
Cross-validation results of the predictive probabilistic model.  

Folds R2 
R̃

2 Training RMSE (mm) Testing RMSE (mm) 

1  0.706  0.599  0.0049  0.0019 
2  0.664  0.542  0.0042  0.0131 
3  0.746  0.654  0.0044  0.0092 
4  0.736  0.639  0.0046  0.0052 
5  0.711  0.605  0.0048  0.0055 
6  0.740  0.646  0.0045  0.0099 
7  0.695  0.584  0.0048  0.0050 
8  0.778  0.697  0.0042  0.0112 
9  0.726  0.627  0.0047  0.0060 
10  0.711  0.605  0.0049  0.0028 
11  0.692  0.580  0.0049  0.0021 
12  0.707  0.600  0.0046  0.0087 
13  0.700  0.591  0.0048  0.0017 
14  0.743  0.650  0.0045  0.0086 
15  0.710  0.605  0.0049  0.0005 
16  0.708  0.602  0.0049  0.0032 
17  0.592  0.443  0.0049  0.0029 
Average  0.710  0.604  0.0047  0.0057  
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u(y) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2(cal) + u2(p) + u2(b)

√
+ b (22) 

Table 4 shows the residual values between the Equator (post-process 
inspection results) and the PCA-based probabilistic model, the Equator 
and the OMP, and the Equator and the Bayesian information fusion al-
gorithm, obtained from the cross-validation process. The mean, RMSE 
and variance of the residuals obtained by the proposed algorithm are all 
lower compared to the PCA-based probabilistic model and OMP. The 
improvement in the uncertainty reduction as reflected by the variance 
measure is a result of the Bayesian fusion. This is an addition to the 
improved accuracy as reflected by the mean and RMSE of the residuals. 
MATLAB was used to implement the proposed algorithm. Fig. 5 shows 
the prior distribution, likelihood, and posterior distribution of the end 
product quality for a single fold data. The resulting posterior is a normal 
distribution representing a compromise between the new information 
obtained from OMP and machine learning-based prediction information 
and the practical appeal and achievement of this compromise can be 
clearly seen in Table 4, particularly in folds 3, 9, 11 and 14. Conjugacy is 
an important concept in Bayesian data analysis [56]. If more informa-
tion is available at a later manufacturing stage or time, the present 
posterior distribution can be used as the new prior distribution and the 
new information can be considered as the new likelihood function. In 
other words, the posterior distribution obtained at manufacturing step i 
acts as a prior distribution at step i + 1. The sequential nature of 
Bayesian approach allows us to quantify many sources of information 
and uncertainties in the form of posterior distributions. The fusion is 
made possible by the assumption of independence in the measurement 
process from which the probability distributions are obtained. Our 100 
(1 − Ҩ)% posterior interval for μH is μmOMP

± z Ҩ
2 × σmOMP , where the z- 

value can be found in the standard normal distribution table and Ҩ 
defines the amount of uncertainty and is predetermined. If an estimate 
s2

H = 1
mOMP − 1

∑mOMP
i

(
h iOMP − h OMP

)2 of σ2
H is used then, the correct poste-

rior interval for μH is μmOMP
± t Ҩ

2 × σmOMP , where similarly the t-value can 
be found in the Student's t-distribution table. Although linear models do 
not have a high precision of predicting the mean value of the health 
parameter, this can be improved with a nonlinear model. The key 
concept of the proposed method was to introduce the inclusion of the 
uncertainty in the model prediction and how this can be harnessed in 
improving the estimation of the health parameters with additional in-
formation. The expression for the uncertainty measure for a linear model 

can be computed efficiently and hence its choice in this research work. 
As can be seen from Table 4, the fused results show good performance in 
health parameter estimation. The RMSE performance metric of the 
linear model (prior prediction) is 6.7847 μm and that of OMP (likeli-
hood) is 16.9434 μm, which is significantly higher compared to the 
linear model. OMP using TTPs in the machine spindle is susceptible to a 
wide range of uncertainty sources and the main problem with this is that 
the measurement process is not independent of the machining process. 
The RMSE of the information fusion algorithm (posterior prediction) is 
6.2875 μm, which is lower than both of that of the linear model and 
OMP, thus demonstrating the value of fusing information from in- 
process monitoring and inspection data. 

6. Discussion and conclusions 

Manufacturing processes usually involve a series of operations 
fraught with several sources of errors. Incorporating intelligence in 
manufacturing systems can help increase production efficiency and 
reduce material waste, environmental impacts, and human intervention 
in manufacturing operations. Existing product health monitoring sys-
tems are usually limited to monitoring only a single stage manufacturing 
process to predict the final product condition and do not update their 
predictions when new metrological information, such as On-Machine 
Measurements (OMMs), becomes available at a later manufacturing 
stage. This paper has been concerned with developing a Bayesian in-
formation fusion approach to update the probability distribution of the 
end product quality given new information from On-Machine Probing 
(OMP) inspection data. Bayesian methods offer a natural framework to 
model uncertainty and combine information extracted from different 
types of data sources. The uncertainty associated with OMP was calcu-
lated following the methodology given in ISO 15530-3. Prior knowledge 
about the product condition was obtained from a linear probabilistic 
model, but other machine learning models, such as Artificial Neural 
Networks (ANNs), can be developed to predict the dimensional 
metrology characteristics of interest. The posterior distribution 
marrying the new information obtained from OMP with machine 
learning-based prediction information clearly represents a compromise 
between the two sources of information. 

The proposed methods have some limitations. The use of a linear 
model to capture the relationship between post-process inspection and 
in-process monitoring data can be improved upon by a nonlinear model 
that has the flexibility of representing more complex relationships [57]. 
The approximation of the probability distributions as Gaussians is also 
somewhat limiting. If extensive data are available, then these distribu-
tions can be more accurately represented by nonparametric methods. 
This in turn will require more computationally involved Bayesian 
inference algorithms, such as the use of sampling methods to compute 
the posterior probability distributions [18,19]. Finally, the choice of the 
health parameter estimate may also require a robust estimate from the 
non-Gaussian posterior distribution. 

The Bayesian fusion method proposed to predict an improved health 
parameter estimate introduces a novel means to include in-process in-
spection data with the in-process monitoring data. The approach has 
been demonstrated through a case study involving multiple 
manufacturing stages. The methods proposed here are generic to pro-
cesses involving both, the inspection of the products and a distinct in- 
process monitoring system. Industry 4.0 is driving this transformation 
in which more sensors are added, and intelligent decisions are made to 
increase throughput and avoid highly costly and time-consuming ac-
curate inspection processes taking place in controlled environments. 
Future work will look to apply the proposed method to laser welding and 
additive manufacturing processes. 
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Table 4 
Residuals of the different methods used for obtaining the product health 
parameters.  

Folds PCA-based probabilistic 
model and Equator (μm) 

OMP and 
Equator (μm) 

Information fusion 
algorithm and Equator 
(μm) 

1  1.8719  12.4367  3.5299 
2  13.0625  9.7696  12.6638 
3  9.2300  46.2653  1.7815 
4  5.1790  27.8882  8.4883 
5  5.5121  0.8522  4.5178 
6  9.8651  3.5189  8.9802 
7  4.9658  5.0737  4.9825 
8  11.2118  21.2005  12.4572 
9  5.9755  21.1973  1.8981 
10  2.8374  15.9113  4.8916 
11  2.1355  7.1975  0.6584 
12  8.6556  3.2939  7.8811 
13  1.6696  6.2824  2.3780 
14  8.5706  17.4240  4.9172 
15  0.4836  7.3260  0.7457 
16  3.2275  2.1101  3.0508 
17  2.8641  7.5718  3.6269 
Mean  5.7246  12.6658  5.1441 
RMSE  6.7847  16.9434  6.2875 
Variance 

(μm2)  
14.0905  134.5703  13.8877  
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