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1. Introduction

Manufacturing is the process of altering the geometry and 
properties of a given starting material to produce parts. Metal 
manufacturing processes usually involve multiple operations 
such as forming, machining, inspection, assembly and testing
to produce a high-quality part or product that performs
according to its design specifications. Forming is an important 
step in manufacturing metallic products to obtain the desired 
shape and dimensions of the workpiece through mechanical 
deformation. In addition, once the desired geometry of the 
workpiece is obtained, it is often necessary to modify the 
microstructure and mechanical properties of the workpiece,
without changing its geometry, using heat treatment techniques. 
Machining typically includes a series of metal-removing 
operations to achieve parts with the desired shape, dimensions 
and surface finish. However, there are many factors, such as 
cutting parameters, tool wear, cutting forces, vibration, 

geometric errors, human errors, and environmental effects, that 
affect the machining process and thus the quality of machined 
parts [1, 2]. In addition, in multistage manufacturing, where
each product goes through multiple processing stages, part 
quality is also affected by the accumulated errors transmitted
from previous processing stages. Therefore, the final part 
variation is subject to the accumulation of variations from all 
operations [3]. 

To ensure product quality and process safety, each operation 
in a manufacturing system is often monitored using various 
sensors and software systems [4, 5]. For example, in machining, 
key process performance indicators such as force, vibration, 
temperature and Acoustic Emission (AE) data can be obtained 
during part production. Therefore, manufacturing data belong 
to the typical family of big data characterized by high volume, 
velocity, variety and veracity [6, 7].

Statistical Process Control (SPC) is a necessary process to 
detect early abnormal operating conditions during the 
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manufacturing process and diagnose their sources. A major 
advantage of SPC over post-process inspection is that 
compensating adjustments can be made in the manufacturing 
process as the product is manufactured in order to reduce 
variability and scrap levels. A review of the development of 
Statistical Process Monitoring (SPM) technology can be found 
in [7]. Traditional SPC is based on univariate statistical 
methods. One of the main disadvantages of this approach is the 
complexity in monitoring the control charts as the number of 
variables increases. Control charts are SPC tools that have been 
traditionally used in the manufacturing industry to monitor 
variability. Multivariate Statistical Process Control (MSPC) 
approaches treat the variables simultaneously and often use 
latent variable methods to exploit the correlation of measured 
variables and deal with missing and noisy data [7, 8]. In order 
to cope with dimensionality reduction, multivariate statistical 
techniques such as Principal Component Analysis (PCA) are 
generally used. PCA projects the information in the process 
variables into a low-dimensional space defined by a few latent 
variables. Ferrer [9] illustrated the practical benefits of PCA-
based MSPC over conventional SPC in an autobody assembly 
process.

The fourth industrial revolution (Industry 4.0) moves from 
automated to autonomous intelligent/smart manufacturing. 
Therefore, efficient big data and predictive analytics tools are 
required to extract useful information from a manufacturing 
process and improve manufacturing efficiency for a wide range 
of manufacturing conditions using Artificial Intelligence (AI) 
models. Artificial Neural Networks (ANNs) are one of the most 
commonly used AI tools in SPC applications due to their ability 
to learn and model complex and nonlinear relationships [10-
12].

Over the years, many research efforts have been made to 
develop intelligent monitoring systems for machining processes 
using sensor measurements of the process and machine learning
models. Most publications are focused on tool wear and 
machined surface roughness monitoring systems. Özel and 
Karpat [13] developed models based on feedforward neural 
networks to predict both surface roughness and tool flank wear 
in finish hard turning using workpiece hardness, cutting speed, 
feed rate, axial cutting length and the mean values of cutting 
forces. Salgado et al. [14] presented a method based on Least
Squares Support Vector Machines (LS-SVMs) to predict 
surface roughness for turning processes using cutting 
parameters, tool geometry parameters and features extracted 
from vibration signals by utilizing Singular Spectrum Analysis
(SSA). Huang [15] developed an intelligent neural-fuzzy in-
process surface roughness monitoring system for an end milling 
operation using cutting parameters (spindle speed, feed rate and 
depth of cut) and cutting force signals (the average resultant 
peak force and the absolute average force).

This paper presents a new system for intelligent 
manufacturing that learns from in-process metrology data and 
predicts the final condition of a product. Compared to most 
previous research focusing on monitoring the machining 
processes to identify the finish-machined part condition, this 
system, based on neural networks, is novel given it uses data 
from multiple different processes to predict the end product 
quality. A case study is presented where metrology data comes 

available as each product goes through the steps of heat 
treatment and machining. The measured variables used as 
model inputs include the tempering temperature, material 
conditions, force and vibration. Comparative coordinate 
measurements are used as output variables to train the models.
The performance of the proposed method is demonstrated by 
predicting the true position and circularity of a circular feature.  

The remainder of the paper is organized as follows. Section 
2 describes ANNs. Section 3 presents the experimental work 
performed to produce the parts and obtain the multistage 
manufacturing data required to validate the proposed method. 
Section 4 develops the intelligent metrology informatics 
system based on ANNs to predict the accuracy of the 
manufactured parts from the measured variables obtained 
during production. Finally, concluding remarks are given in 
Section 5.

2. Artificial neural networks

ANNs are human brain-inspired computing systems 
intended to replicate the human learning process. The most 
popular neural networks are considered to be the Multi-Layer 
Perceptron (MLP) networks. An MLP network is a feedforward 
neural network model consisting of one input layer, one or 
more hidden layers, and one output layer. Each layer includes 
one or more nodes. Apart from the input nodes, each node is an
artificial neuron. The first model of an artificial neuron was 
proposed by McCulloch and Pitts [16]. Fig. 1 shows an 
architectural graph of an MLP network consisting of a number 
of inputs, one hidden layer with a number of hidden neuros, and 
one output. Each node in one layer connects (with a certain 
weight) to every node in the following layer. Each node in the 
hidden and output layer (artificial neurons) includes: i) a 
summation unit, which computes a weighted sum over its 
inputs and adds a bias or threshold term to the sum, and, ii) a 
nonlinear activation function that is differentiable [17]. 
However, linear output layer activations are also common [18].
The output of a neuron can be described by:  

𝑦𝑦 = 𝑓𝑓 (∑𝑤𝑤𝑖𝑖𝓍𝓍𝑖𝑖 + 𝑏𝑏
𝑛𝑛

𝑖𝑖=1
) (1)

where 𝑓𝑓(·) is a nonlinear activation function, 𝑤𝑤𝑖𝑖 denotes the 
synaptic weight coefficient associated with the 𝑖𝑖 -th neuron 
input, 𝓍𝓍𝑖𝑖, and 𝑏𝑏 is the bias input.

The MLP network is a supervised network because a desired
output is required for learning. A critical step in developing a 
neural network model involves the selection of the number of 
neurons in the hidden layer since in most cases a single hidden 
layer is sufficient. The number of hidden neurons can be 
determined easily by trial and error. The number of inputs and 
outputs of the network is determined by the dimensions of the 
input and output data. The supervised learning technique 
utilized by an MLP network for training is a particular Back-
Propagation (BP) learning algorithm. The BP is an optimization 
procedure based on gradient descent that adjusts the network’s 
weights in order to minimise the system error computed by the 
difference between the network output and the desired output.
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Fig. 1. Architectural graph of an MLP network with one hidden layer and 
one output.

In this work, two different MATLAB network training 
functions are used to train the predictive models: i) the Variable 
Learning Rate Back-Propagation (VLRBP) that updates weight 
and bias values according to gradient descent momentum and 
an adaptive learning rate, and, ii) the Conjugate Gradient with 
Powell/Beale restarts (CGB) that updates weight and bias 
values according to the conjugate gradient BP with Powell-
Beale restarts.

The data required to train the MLP network are the 𝑃𝑃 pattern 

pairs {(𝒙𝒙(𝑝𝑝), 𝒅𝒅(𝑝𝑝))}𝑝𝑝=1
𝑃𝑃

, where 𝒙𝒙(𝑝𝑝) = [𝑥𝑥1
(𝑝𝑝), … , 𝑥𝑥𝑛𝑛

(𝑝𝑝)]
T

is the 

input vector for the 𝑝𝑝-th pattern  and 𝒅𝒅(𝑝𝑝) = [𝑑𝑑1
(𝑝𝑝), … , 𝑑𝑑𝑚𝑚

(𝑝𝑝)]
T

is 
the desired or target vector for the 𝑝𝑝-th pattern. The Mean 
Squared Error (MSE) is given by:

𝐽𝐽 = 1
𝑃𝑃 ∑‖𝒅𝒅(𝑝𝑝) − 𝔂𝔂(𝑝𝑝)‖2

𝑃𝑃

𝑝𝑝=1

= 1
𝑃𝑃 ∑ ∑[𝑑𝑑𝑖𝑖

(𝑝𝑝) − 𝓎𝓎𝑖𝑖
(𝑝𝑝)]

2
𝑚𝑚

𝑖𝑖=1

𝑃𝑃

𝑝𝑝=1 (2)

where 𝔂𝔂(𝑝𝑝) = [𝓎𝓎1
(𝑝𝑝), … , 𝓎𝓎𝑚𝑚

(𝑝𝑝)]
T

is the output vector for the 𝑝𝑝-th 
pattern. Although the method employed in this work uses MLP 
networks, Elman networks are also developed for comparison 
with other types of neural networks. Elman networks use 
positive feedback from the hidden layer to construct some form 
of memory in the network.

3. Experimental work

This section describes the experimental work performed to 
produce the parts and obtain metrology data from heat 
treatment, machining and dimensional inspection. Fig. 2 shows 
the Computer-Aided-Design (CAD) model of the part.
Experimental work was performed using a VECSTAR furnace, 
a DMG MORI NVX 5080 3-axis machine and a Renishaw 
Equator 300 Extended Height System, supplied with the SP25 
3-axis analogue scanning probe. The material (steel EN24) was

heat treated before machining (see Fig. 3). In particular, the 
material blocks were heated up to 845°C and then quenched in 
oil for hardening. After hardening, the material blocks were 
tempered at different temperatures, including 450°C, 550°C
and 650°C, to obtain workpieces with different mechanical 
properties such as material surface hardness. High temperature 
thermocouples were placed in the furnace to measure 
temperature gradient and temperature variation during 
hardening and tempering. Surface hardness measurements 
were performed on the heat treated blocks using a Rockwell
device.

For machining, a full factorial design with four factors at 
two levels and one center point each was conducted. The 
factors considered were: material surface hardness, feed rate, 
spindle speed, and datum error (when the part is flipped around 
the Y axis for the machining of the second orientation). All the 
cutting tools used for the machining operations were inspected 
for wear using a Leica microscope after machining each 
workpiece. The tool wear was measured on each flute. Each 
cutting tool was used until it reached a given flank wear width
to reduce the influence of tool wear on product variation and 
measured variables. Coolant was used for all the machining 
operations. During machining, cutting force data were obtained 
at 10 kHz using a Kistler dynamometer (9255B), located 
between the vice holding the workpiece and the machine table, 
and DynoWare software (see Fig. 4). The dynamometer 
contains four sensors. The system was configured to output: the 
sum combination of force signal in the X direction from the 
first and second sensor; the sum combination of force signal in 
the X direction from the third and fourth sensor; the sum 
combination of force signal in the Y direction from the first and 
fourth sensor; the sum combination of force signal in the Y 
direction from the second and third sensor; a single force signal 
in the Z direction from each sensor; and the sum combination 
of force signals for each direction from all the sensors. In
addition, vibration data were obtained at 10 kHz using an 
accelerometer placed on the spindle and NI LabVIEW 
SignalExpress software.

The product quality characteristics of interest in this work 
are the true position and circularity of the large circular feature
(see Fig. 2), which were evaluated using the Equator gauge in 
scanning mode under workshop conditions. The Equator is a 
Coordinate Measuring System (CMS) operating in comparator 
mode. Comparative coordinate measurement benefits from the 
fact that constant systematic effects associated with the 
measurement system cancel out through the principle of 
mastering [19-23]. This system provides two main comparison
methods: the “Golden Compare” method and the “Coordinate 
Measuring Machine (CMM) Compare” method. The Golden 
Compare method requires a reference master part to calibrate 
the comparator system and assumes that the master part is 
produced to drawing nominals. Therefore, any deviation of the 
master part from drawing nominals will be included in the 
measurements. The most accurate method of using an Equator 
gauge is the CMM Compare. This method does not require a 
reference master part to calibrate the comparator system. 
However, it requires to calibrate a production part, produced 
close to drawing nominals, on an accurate CMS such as a CMM
in order to generate a calibration file for the comparator system. 
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The calibration file is read by the comparator system during 
mastering to enable the individual points of a master dataset to 
be compared with that of test datasets.

The CMM Compare method was employed to calibrate the 
comparator system. The stylus used was a typical 30 mm long 
stylus with tungsten carbide stem and a 2 mm diameter ruby 
ball. The calibration file, required for this Compare method, 
was generated using a Mitutoyo CMM with a Renishaw REVO 
RSP3 3D scanning probe (see Fig. 5). The CMM Compare 
procedure consists of the following steps:

a) Obtain a master part from the production parts.
b) Generate the required part program on the Equator.
c) Edit the part program on the CMM. The part program at this 

stage should include the commands COMPARE/ON, CAL 
and COMPARE/OFF. 

d) Measure the master part on the CMM to produce a 
calibration file for the Equator.

e) Transfer the calibration file to the Equator and edit the part 
program on the Equator to add the commands 
COMPARE/ON, CAL and COMPARE/OFF.

f) Place the master part on the Equator and run the part 
program in master mode to produce a master file with 
reference to the calibration file. 

g) Run the part program using the master part in measure mode 
(verification step).

h) Remove the master part and replace with the production 
parts to be measured.

CMM accuracy is dependent upon the ambient thermal 
environment in which it operates because thermal effects 
degrade CMM accuracy. Therefore, the production of the 
calibration file required for CMM Compare was performed 
using a CMM located in a temperature controlled room.
According to manufacturer’s instructions, it is required to 
generate more point data from the CMM for CMM Compare 
using scanning measurements. The required minimum ratio of 
points measured on the CMM is ten for every single point 
measured on the Equator. Also, good measurement practice to 
maintain accuracy on the CMM is to reduce the part program 
speeds, accelerations and scan velocity according to the 
CMM’s specification. It is worth mentioning that this 
inspection approach requires repeatable part fixturing because 
the comparison process involves a point-to-point comparison 
between the master part data and the test part data. The same 
fixturing arrangement was used for both the CMM and the 
Equator gauge. Fig. 6 shows the experimental setup on Equator 
gauge.

Fig. 2. CAD model of the part.

Fig. 3. Heat treatment.

Fig. 4. Machining.

Fig. 5. CMM measurement.

Note that eighteen parts were produced in total; seventeen 
parts were produced to complete the experimental design 
(sixteen parts for the base design and one part for the center 
point) and train and test the predictive models and one part was 
produced in order to be used as a master part in comparator 
measurement.
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Fig. 6. Comparative coordinate measurement.

4. Metrology informatics system development

To predict the end product quality, an MLP network with 
eight inputs, one hidden layer consisting of ten neurons, and one 
output was developed. Tan-sigmoid transfer functions were 
used for both the hidden and the output layers to provide the 
nonlinear characteristic to the network. The first three inputs to
the MLP network are the Root Mean Square (RMS) values of 
the sum combination of force signal in the X, Y and Z direction, 
respectively, from all the four sensors of the dynamometer. The 
next three inputs to the network are the RMS values of vibration
signal in the X, Y and Z direction, respectively. The seventh 
input is a coded vector corresponding to the surface hardness of 
the material. The eighth input is the maximum tempering 
temperature obtained from the five thermocouples during the 
heat treatment process of the material blocks. The output is the 
vector of measurand of interest (true position and circularity). 
To study the linear dependence of the measured data, the 
correlation coefficients of the network inputs and the desired 
outputs for the training dataset are shown in Table 1. The 
correlation between two random variables 𝑥𝑥 and 𝑑𝑑 can be 
defined in terms of the covariance of the two variables and the 
product of the standard deviations of the two variables:

𝜌𝜌 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑑𝑑)
𝜎𝜎𝑥𝑥𝜎𝜎𝑑𝑑

, − 1 ≤ 𝜌𝜌 ≤ 1 (3)

Table 1. Correlation coefficients for true position and circularity for the 
training dataset.

Network inputs 𝜌𝜌 for true position 𝜌𝜌 for circularity

1 RMS-FX 0.5119 0.3786

2 RMS-FY 0.6134 0.3717

3 RMS-FZ 0.5080 0.5834

4 RMS-VX 0.0843 0.4092

5 RMS-VY -0.0334 0.4441

6 RMS-VZ -0.1106 0.4084

7 Surface hardness 0.7472 0.3452

8 Tempering temperature -0.4139 -0.0066

The results in Table 1 indicate the degree of linear 
dependence between the network inputs and the desired 
outputs. If the variables are independent, then 𝜌𝜌 = 0, and the 
closer the coefficient 𝜌𝜌 is to either 1 or -1, the stronger the 
correlation between the variables. 

Data from the manufacture of nine parts were used for 
training and data from the manufacture of eight parts were used 
for testing. By varying the simulations in MATLAB with 
different training algorithms, two models were trained for each 
measurand. The first model was trained using VLRBP while 
the second model was trained using CGB. For comparison with 
other types of neural networks such as recurrent, Elman 
networks, with one hidden layer consisting of ten neurons, were 
also developed for each measurand. As with the MLP 
networks, the VLRBP and the CGB algorithms were used to 
train the Elman networks. All the models were trained for a 
different number of epochs to let the errors converge to zero. 
The MSE performance function was used to measure each 
network’s performance.

Tables 2 and 3 show the results obtained from all the 
developed models on non-training data for true position and 
circularity, respectively. Training multiple times generates
different prediction results due to different initial conditions 
and sampling. Based on Tables 2 and 3, it can be concluded 
that both the feedforward and recurrent predictive models can 
provide accurate predictions for both measurands and the 
differences in the MSE values are very small especially for true 
position. Also, the models trained using CGB needed much less 
training epochs to achieve a low MSE value than the models 
trained using VLRBP. 

Table 2. Performance of neural network models for true position.

ANN Models Epochs Training algorithm MSE (mm)

1 MLP-1 1000 VLRBP 7.37 × 10-7

2 MLP-2 162 CGB 8.81 × 10-7

3 Elman-1 1000 VLRBP 8.51 × 10-7

4 Elman-2 70 CGB 6.95 × 10-7

Table 3. Performance of neural network models for circularity.

ANN Models Epochs Training algorithm MSE (mm)

1 MLP-1 1000 VLRBP 4.46 × 10-6

2 MLP-2 106 CGB 7.60 × 10-7

3 Elman-1 1000 VLRBP 4.13 × 10-6

4 Elman-2 118 CGB 4.56 × 10-6

Tables 4 and 5 show the residual values, calculated by the 
difference between the Equator measured values and the model 
predictions, for true position and circularity, respectively. As 
can be seen from Tables 4 and 5, the residual values for true 
position are less than 1.5 μm for all the models while the 
residual values for circularity range in total from 0.2 to 5.6 μm
for the first, third and fourth model and from 0.4 to 1.1 μm for 
the second model. It can be concluded that the proposed system 
provides a high degree of accuracy in predicting the end 
product quality and thus determining whether or not a product 
is within the allowable tolerances. However, in order to 
determine conformance or nonconformance to a tolerance, it is 
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necessary to evaluate the uncertainty of predictions so that the 
risks involved in the product acceptance/rejection or re-
engineering decision can be accurately assessed.

Table 4. Residuals for true position.

Parts Model 1

(μm)

Model 2

(μm)

Model 3

(μm)

Model 4

(μm)

1 1.4 1.4 1.4 1.4
2 0.1 0.1 0.1 0.1
3 0.9 1.3 1.2 0.9
4 1.0 1.2 1.1 0.2
5 1.2 1.1 1.2 1.4
6 0.6 0.6 0.6 0.6
7 0.1 0.6 0.7 0.4
8 0.4 0.1 0.0 0.3

Table 5. Residuals for circularity.

Parts Model 1

(μm)

Model 2

(μm)

Model 3

(μm)

Model 4

(μm)

1 0.9 0.9 0.9 1.2
2 0.9 1.1 0.6 0.2
3 0.9 1.1 0.9 1.1
4 0.7 0.4 0.7 0.4
5 1.0 1.0 1.0 0.8
6 0.3 0.8 0.9 0.9
7 1.1 0.7 1.0 0.9
8 5.5 0.7 5.3 5.6

5. Conclusions and future work

This paper has presented an intelligent metrology 
informatics system based on neural networks to transform the 
Multistage Manufacturing Process (MMP) data into knowledge 
of the process and part state and thus, supporting time-effective 
decision-making while minimising non-added value processes 
during part production. The MMP considered in this work 
included heat treatment, subtractive machining and post-
process inspection. MLP and Elman networks were developed
to predict the true position and circularity of the large bore of 
machined parts. The predicted results compared well with the 
experimental comparator measurements obtained from the 
Equator gauge. However, a limitation of this approach is the 
ability to only finding a single estimate for a feature 
characteristic without quantifying the associated uncertainty on 
the prediction. Therefore, future work will focus on developing
learning algorithms that take into account the uncertainty in the 
metrology data.
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