Journal of Animal Ecology: Confidential Review copy

Copyright © 2024 The Author(s). Journal of Animal Ecology © 2024 British Ecological Society. This is the peer reviewed version of the following article: Saito, V. S., Kratina, P., Barbosa, G., Ferreira, F. C., Leal, J. B., Zemelka, G., Sarmento, H., & Perkins, D. M. (2024). Untangling the complex food webs of tropical rainforest streams. Journal of Animal Ecology, 93, 1022–1035, which has been published in final form at https://doi.org/10.1111/1365-2656.14121. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions (see: https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html).

Untangling the complex food webs of tropical rainforest streams

Journal:	Journal of Animal Ecology
Manuscript ID	Draft
Manuscript Type:	Research Article
Key-words:	Food Webs, Metabolic Theory, Macroinvertebrates, Stable Isotopes, Stability

The meta food web of a tropical stream watershed. The width of links in the food web depicts the amount of energy fluxing from resources to consumers in a steady-state system. This system is bioenergetically stable considering a Lotka-Volterra system of equations. Simulations of individual species removal do not destabilise the food web.

1110x578mm (38 x 38 DPI)

1 UNTANGLING THE COMPLEX FOOD WEBS OF TROPICAL RAINFOREST STREAMS

2 ABSTRACT

Food webs depict the tangled web of trophic interactions associated with the
 functioning of an ecosystem. Understanding the mechanisms providing stability
 to these food webs is therefore vital for conservation efforts and management
 of natural systems.

7 2. Here, we first characterised a tropical stream meta food web and five individual 8 food webs using a Bayesian Hierarchical approach unifying three sources of 9 information (gut content analysis, literature compilation, stable isotope data). 10 With data on population-level biomass and individually measured body mass, 11 we applied a bioenergetic model and assessed food web stability using a Lotka-Volterra system of equations. We then assessed the resilience of the system to 12 13 individual species extinctions using simulations and investigated the network 14 patterns associated with systems with higher stability.

15 3. The model resulted in a stable meta food web with 307 links among the 61 16 components. At the regional scale, 70% of total energy flow occurred through a 17 set of ten taxa with large variation in body masses. The remaining 30% of total 18 energy flow relied on 48 different taxa, supporting a significant dependency on 19 a diverse community. The meta food web was stable against individual species 20 extinctions, with a higher resilience in food webs harbouring omnivorous fish 21 species able to connect multiple food web compartments via weak, non-22 specialized interactions. Moreover, these fish species contributed largely to the 23 spatial variation among individual food webs, suggesting that these species

24		could operate as mobile predators connecting different streams and stabilising
25		variability at the regional scale.
26	4.	Our results outline two key mechanisms of food web stability operating in
27		tropical streams: (i) the diversity of species and body masses buffering against
28		random and size-dependent disturbances (ii) high regional diversity and weak
29		omnivorous interactions of predators buffering against local stochastic
30		variation in species composition. These mechanisms rely on high local and
31		regional biodiversity in tropical streams, which is known to be strongly affected
32		by human impacts. Therefore, an urgent challenge is to understand how the
33		ongoing systematic loss of diversity jeopardises the stability of stream food
34		webs in human-impacted landscapes.
35		
36	Key w	ords: Food Webs, Metabolic Theory, Stability, Macroinvertebrates, Stable
37	lsotop	es.
38 39	RESUN	ЛО
40	1.	As teias alimentares representam um emaranhado de interações tróficas
41		associadas ao funcionamento de um ecossistema. Compreender os
42		mecanismos que proporcionam estabilidade a estas teias alimentares é,
43		portanto, vital para os esforços de conservação e gestão dos sistemas naturais.
44	2.	Aqui, primeiro caracterizamos uma meta teia alimentar de riachos tropicais e
45		cinco teias alimentares individuais usando uma abordagem hierárquica
46		Bayesiana unificando três fontes de informação (análise de conteúdo

47	estomacal, compilação de literatura, dados de isótopos estáveis). Com dados
48	sobre biomassa em nível populacional e massa corporal medida
49	individualmente, aplicamos um modelo bioenergético e avaliamos a
50	estabilidade da cadeia alimentar usando um sistema de equações Lotka-
51	Volterra. Em seguida, avaliamos a resiliência do sistema às extinções de
52	espécies individuais usando simulações e investigamos os padrões de rede
53	associados a sistemas com maior estabilidade.

54 3. O modelo resultou em uma meta teia alimentar estável com 307 ligações entre 55 os 61 componentes. Na escala regional, 70% do fluxo total de energia ocorreu 56 através de um conjunto de dez taxa com grande variação nas massas corporais. 57 Os restantes 30% do fluxo total de energia dependiam de 47 taxa diferentes, 58 apoiando uma dependência significativa de uma comunidade diversificada. A 59 meta teia alimentar foi estável contra extinções de espécies individuais, com 60 uma maior resiliência em teias alimentares que abrigam espécies de peixes 61 onívoros capazes de conectar múltiplos compartimentos da teia alimentar 62 através de interações fracas e não especializadas. Além disso, estas espécies de 63 peixes contribuíram amplamente para a variação espacial entre as cadeias alimentares individuais, sugerindo que estas espécies poderiam operar como 64 65 predadores móveis conectando diferentes riachos e estabilizando a 66 variabilidade à escala regional.

A. Nossos resultados descrevem dois mecanismos principais de estabilidade da
cadeia alimentar operando em riachos tropicais: (i) a diversidade de espécies e
massas corporais que protegem contra distúrbios aleatórios e dependentes do

70	tamanho (ii) alta diversidade regional e fracas interações onívoras de
71	predadores que protegem contra a variação estocástica local na composição de
72	espécies. Estes mecanismos dependem de uma elevada biodiversidade local e
73	regional em riachos tropicais, que são conhecidos por serem fortemente
74	afetados pelos impactos humanos. Portanto, um desafio urgente é
75	compreender como a contínua perda sistemática de diversidade põe em risco a
76	estabilidade das teias alimentares em paisagens impactadas pelo homem.
77	Palavras-chave: Teias alimentares, Teoria Metabólica, Estabilidade,
78	Macroinvertebrados, Isótopos Estáveis.
79	
80	INTRODUCTION
81	Food webs depict the tangled web of trophic interactions associated with the
82	transfer of energy within an ecosystem. These ecological networks offer mechanistic
83	insights into energy flow, nutrient cycling, and population dynamics, highlighting
84	critical links that influence the stability and resilience of natural ecosystems.
85	Consequently, food webs provide a vital tool for conservation efforts and ecosystem
86	management, allowing better-informed decisions about how to protect and preserve
87	the functioning of natural systems (Giakoumi et al., 2015). Therefore, understanding
88	the mechanisms that govern food web stability with precision and detail is pivotal to
89	improve our understanding of ecosystem functioning in the face of the current
90	environmental crisis (Yodzis, 1981; Ives & Carpenter, 2007).
91	Despite decades of research on food web stability, the topic is still highly
92	debated, especially concerning whether higher biodiversity confers higher resilience to

93	disturbance (Hatton et al., 2024; McCann, 2000). While classic theories emphasise the
94	destabilising role of diversity given a higher connectance among multiple nodes
95	increasing chances of cascade extinctions (May, 1973), contemporary theory suggests
96	a stabilising role of diversity when this is associated with weak interactions among
97	predators and multiple prey, creating negative covariance between different resources
98	buffering the system against extinctions (McCann, 2000). Despite the large and
99	growing body of theoretical studies on these ideas, empirical evaluations are still
100	lagging behind, as appropriate and detailed data for rigorously testing these
101	theoretical advances are not widely available (Ives & Carpenter, 2007).
102	Describing food webs in streams and rivers is particularly challenging due to the
103	inherent complexity and dynamics of these ecosystems (Winemiller, 1990). The
104	continuous flow of water combined with the spatio-temporal heterogeneity of
105	resources create a constantly changing environment, making it difficult to capture the
106	food web in full detail. Tropical streams particularly pose a challenge as they are highly
107	diverse and knowledge of trophic interactions is rare for many taxonomic groups
108	(Motta & Uieda, 2005; Reboredo Segovia et al., 2020), resulting in few isolated food
109	web descriptions (Ceneviva-Bastos et al., 2012; Motta & Uieda, 2005) that we know
110	little about their stability in the face of disturbance. Among these understudied
111	ecosystems, streams of Brazilian Atlantic Rainforest are highly threatened by human
112	land-use intensification and the substitution of forests for pasture and monoculture
113	plantations (Siqueira et al., 2015). Since these ecosystems provide a myriad of services
114	to human society, from fresh water and recreation to nutrient cycling (Meyer, 1997;
115	Palmer et al., 2014), understanding the stability of their food webs in well-preserved

regions is the first step in predicting their response to human impacts (Collyer et al.,2023).

118 Importantly, tropical stream ecosystems are likely to differ in their structure 119 and functioning compared to their better-studied temperate counterparts (Saito, 120 Perkins, et al., 2021). In terms of food webs, warmer tropical streams should be 121 composed of species with fast life cycles, accelerated biomass turnover, and lower 122 local densities (Saito, Stoppa, et al., 2021), resulting in highly variable composition 123 (Sigueira et al., 2020) and species interactions (Saito, Perkins, et al., 2021). A recent 124 study hypothesised that such highly dynamic food webs, embedded in a high regional 125 diversity, should be stable due to the weak interaction effects among multiple 126 interacting species (Collyer et al., 2023), where the functioning of a diverse, generalist 127 community would be buffered against disturbances by interchanges of trophic 128 interactions (Kratina et al., 2012; Rooney & McCann, 2012). In that case, we should 129 expect pristine tropical stream food webs to depict two patterns. First, local food webs 130 should be composed of predator-prey interactions that deviate from optimal predator-131 prey mass ratios (Collyer et al., 2023; Kratina et al., 2012). Aquatic food webs are 132 commonly size-structured, meaning that predators are consistently and systematically 133 larger than their prey, and yet, under warmer tropical conditions, we should have a 134 higher prevalence of omnivory because high energetic demands can force organisms 135 to feed up and down the food web (González-Bergonzoni et al., 2012). Therefore, we 136 hypothesise that pristine food webs will be composed of weakly size-structured 137 interactions, with predators feeding on both large and small prey due to their high 138 metabolic requirement. Second, these tropical food webs should also be characterised 139 by high local diversity, buffering predators from extinctions due to the possibility of

140 prey switching and stabilising dynamics between resources. Since these tropical 141 communities are prone to random variations in composition (Sigueira et al., 2020), a 142 high diversity of possible interactions should enhance the stability of these systems, as 143 redundant predators and prey can buffer the system against the loss of energetic 144 channels. 145 In addition, local food webs are always exchanging energy and matter within a 146 regional meta food web (Winemiller, 1990). As such, the realisation of potential 147 trophic interactions is constrained by the dispersal processes of predators and prey 148 (Rooney & McCann, 2012; Winemiller, 1990). Similar to the role of predators 149 dampening variation at the bottom of food webs (Rooney & McCann, 2012), mobile 150 predators coupling sub-food webs can stabilise metacommunities by buffering 151 variability among communities (Rooney et al., 2008; Sigueira et al., 2024). This should 152 increase spatial asynchrony among communities entailing high food web dissimilarity 153 in space, mostly due to changes in predator frequency. Considering the expected high 154 local dynamism of Atlantic Forest stream communities due to faster metabolism, we 155 hypothesise a high dissimilarity of local food webs in space, being stabilised by 156 predator coupling at the regional scale (Rooney et al., 2008). 157 Despite the dozens of methods developed to characterise food webs in nature, 158 the use of individual methods to estimate trophic interactions commonly results in 159 incomplete or simplified characterizations (Layman et al., 2012). Fortunately, the 160 combination of recent theoretical and methodological advances gives us new tools to 161 describe patterns of energy fluxes at the population level with high precision. First, a 162 new method unifying multiple sources of information within a singular analytical 163 Bayesian framework provides an excellent opportunity to untangle undescribed food

164	webs, while overcoming problems of individual sources of information (Hernvann et
165	al., 2022). This method integrates information taken from the literature, from direct
166	observations and extracted from stable isotope analyses to infer the most likely diet
167	proportion of each consumer and the likelihood of these interactions. Second,
168	advances in metabolic scaling theory allow us to infer the energy requirements of
169	populations based on their individual body masses and their total population sizes
170	(Brown et al., 2004). Together with information about diet proportions, we can now
171	estimate the required energy potentially flowing from prey to predators, quantifying
172	the food web in a general ecological currency (Gauzens et al., 2019).
173	Leveraging a suite of advances in food web ecology, we evaluate how stable
174	the pristine ecosystems of the Brazilian Atlantic Rainforest should be in face of
175	disturbances. We first characterise a well-resolved meta food web of streams from
176	Atlantic Forest through the integration of node properties (body mass and abundance)
177	and various sources of feeding link information. Second, we applied recent methods
178	for calculating the stability of the food web to disturbances within an energetic
179	framework (Gauzens et al., 2019; Moore & de Ruiter, 2012). We hypothesised that 1)
180	due to the elevated metabolic demands in warm conditions, invertebrates and fish
181	assemblages would be weakly size-structured, characterised by predators feeding at
182	multiple trophic levels, with with a weak association between individual body mass
183	and trophic level within invertebrate and fish assemblages, as well as across the whole
184	food web. 2) Given the high species diversity in tropical streams, we anticipated that
185	energy flow within the food webs would involve a multitude of links. Predators would
186	engage in a range of non-specialized interactions with prey resulting in bioenergetically
187	stable food webs (Kratina et al., 2012). 3) The simulated removal of individual taxa

188	from a complex tropical food web would not significantly disrupt its stability, as it
189	would not heavily rely on key strong interactions. 4) Finally, we expected that the
190	spatial variation in the composition of local food webs would be associated with
191	compositional changes in large predators, indicating that mobile predators enhance
192	spatial asynchrony among communities entailing regionally stable meta food webs
193	(Siqueira et al., 2024).
194	
195	METHODS
196	We sampled food web components (basal resources, invertebrate and
197	vertebrate consumers) in relatively pristine streams in Southeast Brazil. We then
198	applied a Bayesian framework to describe a regional meta food web and five individual
199	food webs integrating data from gut contents analysis, published studies and stable
200	isotope analysis of consumers and resources (Hernvann et al., 2022). Finally, we
201	applied an energetic model using body masses, energy efficiencies estimates and the
202	network topology to describe the amount of energy fluxes and the food web stability
203	(Gauzens et al., 2019).
204	
205	Field and laboratory protocols
206	We sampled five (2nd to 3rd orders) stream stretches within the Cananeia
207	catchment (state of São Paulo, Brazil) to collect high-resolution community data for
208	food web reconstruction. We sampled three streams (S1, S6 & S8) which were less
209	than 3 km apart, and in one stream (S8) we sampled three different stretches along an
210	altitudinal gradient (with 24, 45 and 88 metres of altitude). The vegetation at the
211	studied sites is predominantly formed by Ombrophilous Dense Atlantic Forest, mostly

212	well-preserved stretches and few sections of secondary forest (Schaeffer-Novelli et al.,
213	1990). The climate is humid subtropical (Alvares et al., 2013), with mean annual rainfall
214	above 2,200 mm (Schaeffer-Novelli et al., 1990). There are two main seasons:
215	summers (November - April) have mean air temperature of approximately 27° C,
216	whereas mild winters (May - October) have a mean temperature of approximately 22°
217	C. The five stream sites were sampled in October 2019 and had a mean water
218	temperature of 22°C (SD=0.68), pH of 5.7 (SD=0.66) and oxidation-reduction potential
219	(mv) of 381 (SD=111) (see Table S1).
220	The field protocol encompassed standard sampling techniques for surveying
221	stream food webs. First, we performed 3-pass quantitative depletion electrofishing at
222	each site (up to 100 m) using a Smith-Root LR-24 backpack electrofisher with the
223	boundary of survey reaches enclosed by stop nets. We identified most captured fish to
224	species level and measured (fork length) in the field (SISBIO ethical approval number
225	72482-1). We sampled macroinvertebrates (>250 μ m) using 10 replicate Surber
226	samples (30 cm X 30 cm) randomly positioned in the stream benthos. We sorted these
227	samples live at the host laboratory using a transilluminated tray and identified them to
228	the lowest possible taxonomic level without preparing slices (e.g. Chironomidae were
229	identified to family level). We took measurements of individual linear dimensions (e.g.
230	head-capsule width or body length) with a calibrated ocular micrometre allowing
231	individual dry mass to be calculated from published regression equations (Collyer et

al., 2023). We sacrificed a subsample of all captured fish (n = 142) and fixed them in

233 99,3% Isopropyl alcohol for subsequent gut content analysis in the laboratory. We

extracted guts and examined under a stereomicroscope (Leica EZ4, 40x maximum

magnification). We identified all diet items found (n = 502) to the lowest possible
taxonomic level (28 categories).

237 During fieldwork we also collected material for subsequent stable isotope 238 analysis (SIA). We obtained fish tissue from fin clips for a subset of individuals of each 239 species caught during electrofishing surveys. We performed kick net sampling 240 qualitatively in all microhabitats (mostly gravel and boulder riffles and some leaf litter 241 pools) to collect macroinvertebrates which were processed whole for stable isotope 242 analysis. We sampled basal resources from each stream by collecting allochthonous 243 leaf packs, mosses attached to the substrate and scrapes of biofilm from stones and 244 boulders. We froze all samples in the host laboratory in liquid nitrogen (at -80 °C) in 245 individually labelled tubes until subsequent analysis. Back to the laboratory, we stored 246 all samples at 60° C in an oven until total dry mass was achieved. We grinded the 247 tissues to a fine powder. Subsequently, 1 mg +/- 0.2 mg of fish and macroinvertebrate 248 samples, and 2.5 mg ±0.2 mg of basal resources were weighed into tin capsules 249 (Elemental Microanalysis[®] 8×5mm) prior to isotopic analysis. For small invertebrate 250 taxa that potentially weighed less than 1 mg individually (e.g. Chironomidae, 251 Simuliidae), we pooled 6-20 individuals of similar size together to reach the minimum 252 weight expected for each sample (Perkins et al., 2018). We analysed samples of 253 macroinvertebrates (n=139), fishes (n=160) and basal resources (n=30) for carbon 254 $(\delta_{13}C)$ and nitrogen $(\delta_{15}N)$ stable isotope ratios at an analytical laboratory at Queen 255 Mary University of London, UK using a continuous flow isotope ratio mass 256 spectrometer (SerCon Integra 2, Stable Isotope Analyser, Crewe, UK). Protein IRMS 257 Standard (Elemental Microanalysis® OAS/Isotope 5g) encapsulated like the other 258 samples was used as a standard and inserted in each run after every ten samples. We

259	then applied an ANOVA comparing the δ^{15} N of basal resources (biofilm, moss and
260	leaves) among stretches and found that they were not distinct (ANOVA, F = 0.35, P =
261	0.84) indicating that δ^{15} N baselines among stream sites were comparable.
262	
263	Food web reconstruction
264	We applied the Ecodiet approach to derive a well-resolved meta food web
265	(Hernvann et al., 2022). This Bayesian hierarchical model jointly considers three
266	sources of information: direct observations (e.g. gut content analysis) including the
267	potential proportion of different diet items, literature information describing putative
268	feeding links based on interactions described in other sites, and data from stable
269	isotope analysis, derived from a Bayesian mixing model to estimate the likelihood of
270	the interactions and the diet proportions inferred from the two first sources of
271	information. Here, we integrated data from the five stream sites including 329 δ^{15} N
272	and δ^{13} C values of basal resources, macroinvertebrates and fish; 502 diet items
273	identified from fish gut content analysis and; 226 potential feeding interactions for
274	Neotropical stream communities derived from a literature search including

275 bibliometric analysis of 52 references (see Supplementary Material). This hierarchical

276 model generated the probabilities of trophic links and provided the proportions of diet

277 items for each taxon. The key strengths of this framework included the quantification

of i) the reliability of individual published datasets (i.e. different values range between
0 and 1 depending on the methods used in a published study for each interaction) and
ii) the relative importance of gut vs. literature data to define the food web topology to

- be investigated in the mixing model. For this last comparison, a parameter was set to
- 282 define how equivalent literature and gut content data are (e.g. setting the parameter

value to 50 indicates that literature data are equivalent to analyses of 50 new stomach
contents). In our case, all studies in the literature search were set to 1 (reliable) and
the literature data were given equal weight compared to gut content data. We
assessed the performance of the model using Gelman-Rubin test of MCMC
convergence. Variables (links) with Rhat > 1.1 failed to converge and we removed them
from the model. This method was implemented using the Ecodiet package in R
(Hernvann et al., 2022).

290 Using the estimated food web topology and the diet proportions, we applied 291 the fluxweb approach, which infers the amount of energy flowing through each 292 population considering a steady-state system (Gauzens et al., 2019). This method was 293 applied to both the meta food web and each of the five individual food webs. The 294 approach requires the average species body mass and population density information 295 to estimate the total biomass of each population and their energetic requirements. 296 The fluxweb method considers a top-down perspective where the energetic 297 requirement of each consumer species is calculated from the mean body mass of that 298 species, and its population density, balanced against the population biomasses of their 299 prey. In this balanced system, gains G_i are balanced with losses L_i which are calculated

300

as

301
$$L_i = X_i + \sum_i F_{ij}$$
, (eq. 1)

where X_i defines species losses (e.g. metabolic costs or death rates) and F_{ij} is the flux of
energy from species *i* to predator *j*. In this case, gain G_i is defined as

$$G_i = \sum_i F_{ji} e_{ij}, \qquad (eq. 2)$$

305	where F _{ji} defines the influx coming from other species depending on a diet proportion
306	(estimated with Ecodiet in our study) and $_{\mathrm{e}_{ij}}$ denotes the efficiency in energy uptake
307	given the prey identity (see below). In our study, the metabolic cost χ_{i} was defined
308	from the allometric equations (Brown et al. 2004)
309	$X_i = X_0 M_i^b$, (eq. 3)
310	where χ_0 and <i>b</i> are constants related to organismal physiologies and M_i is a given body
311	mass. We defined χ_0 equal to 18.18 for fishes, 17.17 for invertebrates, and b equal -
312	0.29 for all organisms following Brown et al. (2004). Efficiencies were defined at prey
313	level and set to 0.906, 0.545 and 0.158 for animals, plants and detritus, respectively
314	(i.e. consumers feeding on animals have higher efficiencies per unit of mass consumed)
315	(Gauzens et al., 2019). We additionally applied different values for <i>b</i> and efficiencies to
316	understand the sensitivity of our analyses to specific input parameters. For the
317	metabolic exponent b, we considered the values from a review of metabolic rates
318	across organisms and ontogenetic development (Glazier, 2005). In this study he
319	identified that metabolic rate exponents are commonly 3/3, 3/4 and 1 (isometric scaling).
320	Therefore, to consider such variation we also used the values of <i>b</i> considering these
321	three different exponents. For the efficiency values, we considered the minimum and
322	maximum values of the 95% confidence interval modelled in a systematic assessment
323	of efficiencies and respiration in natural communities (Lang et al., 2017). In this
324	assessment, they found that carnivores had the highest assimilation efficiency
325	(ε0,carnivores = 0.906, Cl 0.95 = 0.88-0.927), herbivores had an intermediate
326	assimilation efficiency (ϵ 0,herbivores = 0.545, Cl 0.95 = 0.466-0.621), and detritivores
327	had the lowest assimilation efficiency (ε0,detritivores = 0.158, CI 0.95 = 0.108-0.227).
328	

329 Data analysis

330 Hypothesis 1: Due to the elevated metabolic demands in warm conditions, tropical food

331 webs should be weakly size-structured, with variable size differences between

332 predators and prey.

333 To test our first hypothesis and to determine the relationship between body 334 mass and trophic position, we related δ^{15} N tissue values (a proxy for trophic position) 335 and body mass by applying linear mixed effects models for the isotopic values of 336 consumers. Log-transformed mean consumer body mass (mg of dry mass) was treated 337 as a fixed effect while taxonomic identity was treated as random intercept and random 338 slope, separately. We also ran models that included the group (fish or invertebrate) as 339 a fixed effect with interaction with body mass to account for a potential relationship 340 that is dependent on the organism group. We could not apply a single model with both 341 random intercept and slope due to the large number of samples and taxa in our 342 dataset (lack of sufficient degrees of freedom). Models with and without organism 343 group as a fixed effect were compared based on their marginal R², AIC, and a Chi-344 Squared test.

345 We then determined size-density relationships regressing species' mean body 346 mass and population density on double-log axes. These relationships depict how 347 energy is shared among species with different body masses, providing information 348 about species that have higher or lower densities than expected based on allometric 349 scaling principles (White et al., 2007). We applied this method for the meta food web 350 and each of the five individual food webs. These empirical relationships were 351 contrasted against the theoretical allometric expectation considering a slope of -1, or 352 Sheldon's rule that considers that despite the scaling of -¾ of metabolic rates with

353 increasing body sizes, there are consistent energetic losses among trophic levels

354 (Brown et al., 2004). Therefore, a theoretical relationship with slope-1 for the best-fit

355 model (we found the intercept considering minimum least-square criteria) was fitted

356 together with the empirical linear model.

357

358 Hypothesis 2: Given the high species diversity in tropical streams, energy flow within
359 food webs would be characterised by weak interactions between predators and prey
360 resulting in bioenergetically stable food webs.

361 To test this hypothesis, first, we characterised the meta food web and each 362 individual food web by calculating the number of nodes (number of taxa in each food 363 web), number of links (number of trophic interactions), link density (mean number of 364 links per node), connectance (the ratio between the number of links and all possible 365 links), compartmentalization (measures the degree of connectedness of subsystems 366 within a network, with higher values of connectance indicating more discrete 367 subsystems), mean trophic position (mean trophic position of nodes within a food web 368 with basal resources set to 1) and omnivory (the mean degree of variation in the 369 trophic position of consumed resources) (Kones et al., 2009; Kratina et al., 2012; 370 Latham, 2006; Pimm & Lawton, 1980). Indices were calculated using the package 371 NetIndices in R (Kones et al., 2009). 372 Then, we tested the hypothesis by using the estimated energy fluxes from the 373 fluxweb analysis and calculating the stability of food webs (stability of their Jacobian 374 matrices) considering a Lotka-Volterra model of consumers and resources (Moore & de 375 Ruiter, 2012). The stability of a food web can be measured using a Jacobian interaction

376 matrix concerning the partial derivatives of the equations for each species with respect

to all species in the food web near equilibrium (May, 1973; Neutel et al., 2002). A food
web is therefore considered stable when the Jacobian matrix has negative real parts
eigenvalues for every interaction - i.e., all consumers can be sustained based on the
biomasses of their resources (see Supplementary Material from Gauzens et al. 2019).

382 Hypothesis 3: Local extinctions of individual taxa from a complex tropical food web
383 would not significantly disrupt its stability, as it would not heavily rely on key strong
384 interactions.

385 To test the third hypothesis, we simulated multiple species extinction scenarios 386 to determine the consequences of individual species loss for the stability of the meta 387 food web. Here, in each scenario we individually removed one species at a time, 388 recalculating energy fluxes and stability using fluxweb in R (Gauzens et al., 2019). We 389 performed this species removal procedure for all species in our meta food web. 390 Secondary extinctions could happen in our model after species removal, if a given 391 species has a positive eigenvalue in the new Jacobian matrix after calculating stability. 392 In this case, the food web would be termed unstable. To understand which network 393 aspect is associated with higher food web stability, we calculated the network indices 394 described above (number of taxa in each food web, number of links, link density, 395 connectance, compartmentalization, mean trophic position, and omnivory) for each 396 simulated food web after each species extinction. With these values, we applied a 397 Pearson correlation matrix between them with the inclusion of the maximum 398 eigenvalue of the Jacobian matrices (the stability measure).

399

400	Hypothesis 4: Spatial dissimilarity of local food webs would be associated with changes
401	in large predators, indicating that mobile predators enhance spatial asynchrony among
402	communities entailing regionally stable meta food webs.
403	To test the last hypothesis we calculated compositional and network
404	dissimilarity using the Bray-Curtis index (Legendre, 2014). Whereas the compositional
405	dissimilarity is based on differences in the relative species abundances, the network
406	dissimilarity also accounts for the presence or absence of species interactions
407	following species addition - e.g. one species can add multiple interactions to a food
408	web, while another species can add only one interaction. We decomposed the network
409	beta diversity into the components of 'changes caused by the absence of predator',
410	'changes caused by the absence of prey', or 'changes caused by mutual absences'
411	(Novotny, 2009). We did not calculate the components of network dissimilarity
412	associated with rewiring and turnover, as our interactions are defined at the meta food
413	web level, preventing our assessment of rewiring - i.e. species always interact with the
414	same species once they are present. Beta diversity indices were calculated using the
415	bipartite package (Dormann et al. 2008).
416	
417	RESULTS
418	Food web components
419	We identified 1352 invertebrates from 54 different taxonomic groups. From

420 this, 313 individuals were *Macrobrachium* (Paleomonidae, Decapoda) collected

421 through both Surber sampling and electrofishing, while the others mostly included

422 insects, with a small proportion (<1%) of Oligochaeta, Platyhelminthes and Gastropoda

423 collected by Surber sampling (0.9 m² in total). The insects with the highest abundances

424	were <i>Macrostemum</i> (Hydropsychidae, Trichoptera, n = 170), <i>Gripopteryx</i>
425	(Gripopterygidae, Plecoptera, 118), Simulium (Simuliidae, Diptera, 95), Chironomidae
426	(Diptera, 92), Chimarra (Philopotamidae, Trichoptera, 79), Smicridea (Hydropsychidae,
427	Trichoptera, 60), Helicopsyche (Helichopsychidae, Trichoptera, 46), Farrodes
428	(Leptophlebiidae, Ephemeroptera, 30), Baetidae (Ephemeroptera, 26) and
429	Belostomatidae (Hemiptera, 20). We also captured 332 fish from 12 species (413,5 m ²
430	sampled). Two fish species were found across all sites: catfish Acentronichthys leptos
431	Eigenmann & Eigenmann, 1889 (66), and knifefish Gymninotus pantherinus
432	Steindachner, 1908 (32). Other abundant (but less widespread) fish species included
433	the lambari Deuterodon iguape Eigenmann, 1907 (71) and the characids Hollandichthys
434	multifasciatus Eigenmann & Norris, 1900 (61), Characidium Ianei Travassos, 1967 (34)
435	and Mimagoniates microlepis Steindachner, 1877 (34).
436	
437	Relationship between trophic position and body mass

438 We analyzed 329 samples for stable isotopes that were categorized into 42 439 groups, including basal resources, macroinvertebrates and fish. Fish generally has the highest δ^{15} N values (i.e. occupied the highest trophic positions), but there was a 440 441 considerable overlap with many macroinvertebrates and shrimps. The relationship 442 between δ^{15} N and individual body masses suggested that fishes are more strongly size 443 structured than macroinvertebrates, only partly supporting our first hypothesis (Figure 444 1B). Macroinvertebrates had high isotopic variability with large overlap in bi-445 dimensional space between species with different body masses (Figure 1C), although 446 some taxa were clearly distinct (e.g. *Macrobrachium* and damselflies with high $\delta^{15}N$ 447 values and grazers *Psephenus* and *Gripopteryx* with the lowest $\delta^{15}N$ values). Our mixed

Journal of Animal Ecology: Confidential Review copy

448	effects models supported this visual inspection with models with both random slopes
449	and intercepts (species) returning associations with body sizes (estimate = 0.45 , SE =
450	0.08, t = 5.38 and estimate = 0.39 SE = 0.08, t = 4.57, respectively) that depended on
451	the group (fish or invertebrate) (interaction effect, estimate from model with random
452	slope = -0.31, SE = 0.11, t = -2.86 and estimate from model with random intercept = -
453	0.27, SE = 0.11, t = - 2.47). Overall, this means that there is a general association
454	between trophic level and body sizes, where fishes are strongly size structured, but
455	invertebrates are not. Considering groups as a fixed effect interacting with body size is
456	important for the relationship as a comparison with a model without groups renders
457	only half of the marginal R^2 (marginal R^2 = 0.64 vs. marginal R^2 = 0.31) and a
458	significantly higher AIC (AIC = 788 vs. AIC = 802, Chi square = 17.33, P < 0.001).
459	Moreover, separate models for only fish and only invertebrates return significant
460	slopes only for fish (body mass fixed effect estimates = 0.60, SE = 0.09, t-value = 6.44,
461	species as random slopes). The patterns in community-level isotopic composition for
462	individual sites were largely similar to those observed for the regional meta food web
463	(Figure S1).

465 Figure 1. Isotopic composition of fish and macroinvertebrates from Atlantic Forest 466 streams (Cananeia, Brazil). a) General association between mean body mass (mg) and 467 δ^{15} N values (relative trophic position) of organisms (some isotopic samples encompass 468 multiple individuals, e.g. Chironomidae). Individual associations for fish (b) and 469 invertebrates (c). Ellipses correspond to 95% confidence level for a multivariate t-470 distribution. The line in the (a) panel indicates the fitted linear mixed effects model 471 with body mass as fixed effect and species as random slope (estimate = 0.45, SE = 0.08, 472 t = 5.38). The model in the fish panel indicates the fitted linear mixed effects model 473 with body mass as fixed effect and species as random slope (body mass fixed effect 474 estimates = 0.60, SE = 0.09, t-value = 6.44).

475

476 Food web construction

477 The EcoDiet model identified a high link probability for most of the analysed 478 interactions with link probabilities within two groups: 14% had probabilities between 479 0.2 and 0.18, but all the other 86% had probabilities higher than 0.82. The diagnostics 480 of the whole model resulted in Gelman-Rubin statistics higher than 1.1 for 54 links 481 (~16% of the links), indicating a lack of convergence in the MCMC algorithm (Hernvann 482 et al. 2022). The final meta food web after removing these links contained 307 links, 483 including the likelihood of diet proportion for each consumer. The number of nodes in 484 each site ranged between 28 and 41 while the number of interactions ranged between 485 73 and 171, with a positive trend between the two characteristics - more diverse sites 486 had more links and also occurred in wider and shallower stretches of streams (e.g. S1 487 and S8C). Consequently, connectance was similar between stretches with a mean of 488 10% of all possible links actually realised (see Table S2 for other network metrics). 489 490 **Energy fluxes** 491 For the meta food web, the 10 populations with highest energetic demands

492 were composed of six Trichoptera genera Macrostemum, Leptonema, Synoestropsis,

- 493 Helicopsyche, Cernotina and Phylloicus, one Ephemeroptera (Campsurus), one Diptera
- 494 (Chironomidae), one Plecoptera (Gripopteryx) and one Palaemonidae
- 495 (Macrobrachium). In sum, these species account for 70% of total energy flux in these
- 496 ecosystems. Yet, a considerable 30% of the energy flow is shared between the
- 497 remaining 48 consumers, which is partially in agreement with the second hypothesis
- 498 (Figure 2). The biofilm was the main basal resource that mostly contributed to food
- 499 web energy flows, followed by moss and leaves (Figure S3).
- 500

507	7
-----	---

508	Some invertebrates (e.g. Macrostemum, Macrobrachium) were
509	disproportionately abundant (Figure 3). The relationship between body mass and
510	population density showed that these taxa tended to be regionally more abundant
511	than expected from their mean body masses (i.e. they were above the regression
512	model, Figure 3), especially compared to the empirical model, but also to the
513	theoretical expectation with slope = -1. This pattern was also evident at the local scale,
514	but the species above the regression model varied from site to site (Figure S2).
515	Moreover, the empirical relationship was shallower than the theoretical expectation
516	with exponent -1

518

Figure 3. Species size-density relationship for Cananeia streams (density relationship
 for the regional meta-web). Log-transformed density of individuals in the regional

for the regional meta-web). Log-transformed density of individuals in the regiona
 species pool is regressed against log-transformed mean body masses of each

522 taxonomic group (slope = -0.45, R² = 0.48, P < 0.001). Species above or below the

523 524 525 526	regression line indicate species with relatively more or less individuals than expected based upon their body size. The dashed line indicates the least-square best fit model for a slope=-1, an empirical benchmark predicted by allometric scaling theory.
527	For individual stream sites, some species were important contributors across
528	all sites while some of them were only important for some specific ones (Figure 4). For
529	instance, Macrostemum, Chironomidae, Gripopteryx and Macrobrachium were
530	widespread and abundant in the regional species pool and contributed strongly to the
531	energy flux in all five stream food webs. In contrast, Campsurus, Farrodes, Deuterodon
532	iguape, Helicopsyche, Macrelmis and Synoestropsis were only important in one or two

533 sites (Figure 4).

Figure 4. Energy fluxes (J/year/m²) from individual nodes and the five food webs from
Atlantic Forest streams from Cananeia (São Paulo, Brazil). Position along the y axis in
the individual food webs represent the trophic position of each taxon. Darker link
colours represent interactions of higher energy fluxes.

539

540 Besides these differences among individual food webs, supporting our second 541 hypothesis, all food webs and the meta food web were stable, i.e. had negative values 542 for the maximum eigenvalue of the Lotka Volterra Jacobian matrices. This analysis 543 considered that stream food webs are in a stable state if the real parts of eigenvalues 544 from the Jacobian are all negative (between -4.9 and -13.5). This means that the 545 population energy demands are consistent with the amount of energy available at lower trophic levels, meaning that there is no population too large that cannot be sustained by the amount of energy from prey. The sensitivity analyses, changing the values of *b* and efficiencies, also returned stable meta food webs in except for when *b* = 1, which is the isometric scaling where metabolic rate is constant. The results of the sensitivity analyses can be found in Supplementary Material and the results using the original values of *b* (-0.29) and mean efficiencies from Lang *et al.* (2017) are reported in following.

553 In agreement with our third hypothesis, the simulation extinction resulted in 554 food webs that remained stable after the removal of individual species each at a time 555 (maximum Jacobian eigenvalues ranging between -14.60 and -7.41). That is, after 556 species removal, no secondary extinctions were observed (all species had negative 557 eigenvalues after calculating stability in the resulting food webs). We found that, 558 despite the consistent stability of the food web to species removal, and lack of secondary extinctions, there are network patterns associated with the variation in the 559 560 stability values (Figure 5). Higher stability (the inverse of the maximum eigenvalue) was 561 related to greater omnivory in the food web (r=0.27, p<0.05), lower levels of network 562 compartmentalization (r=-0.32, p<0.05), and lower average link weights (r= -0.40, 563 p<0.05) (Figure 5 and Figure S4). Thus, removing omnivorous species that connect 564 different sub-webs with multiple weak interactions is detrimental to ecosystem 565 stability. When looking into the species that have the highest impact on food web 566 stability, we can also observe that many fish species were of high importance, 567 especially considering how little they contribute to the total energy fluxes (e.g. the 568 knifefish Gymnotus pantherinus that eats 22 different food items and the tetrafish 569 Deuterodon iquape with 19 food items, Figure 5).

570

571 Figure 5. Associations between the stability of simulated meta food webs and network 572 metrics. Each point in each scatterplot represents a simulated meta food web after the 573 extinction of a given species (labelled). The stability was estimated as the maximum 574 eigenvalue of the Jacobian matrix using a Lotka-Volterra system of equations. More 575 negative values indicate higher system stability to disturbances. Lower stability was 576 associated with simulations that reduced omnivory and increased 577 compartmentalization and average link weight. The models in each plot represent linear regressions with the following results: Omnivory ($R^2 = 0.07$, P = 0.04), 578 Compartmentalization ($R^2 = 0.10$, P = 0.01), Average link weight ($R^2 = 0.15$, P = 0.001). 579 580

581 Food web dissimilarity

582 As predicted by the fourth hypothesis, the dissimilarity of the network was

- 583 higher than the compositional dissimilarity (Figure 6). Approximately 40% of
- 584 interactions changed from one food web to another, while pure compositional
- 585 dissimilarities among stream communities were approximately 25%. These
- 586 compositional changes were strongly associated with the absence of predators when
- 587 prey taxa were present, with a much smaller contribution of the component of prey
- absence and mutual absence (less than 10%, Figure 6).

Figure 6. Compositional and network dissimilarity among local streams from the
Cananeia watershed (São Paulo, Brazil) based on Bray-Curtis index. Composition =
compositional beta diversity, Network = network beta diversity, Network predator =
network dissimilarity caused by the absence of predator, Network prey = network
dissimilarity caused by the absence of prey, Network both = network dissimilarity
caused by the absence of both predators and prey.

597 DISCUSSION

598	Untangling a network of trophic interactions through integration of energetic
599	principles has been proposed as a key new approach to understand ecosystem
600	functioning under a comparable currency (Barnes et al., 2014). Here, we combined
601	recently advanced methods and theories (Gauzens et al., 2019; Hernvann et al., 2022)
602	to derive a well-resolved energetic food web from tropical rainforest and investigate
603	the mechanisms behind its stability. By doing so, we found locally and regionally stable
604	networks, where energy was channelized through a taxonomically diverse set of
605	organisms, such as chironomids and stoneflies, and from small to large taxa (e.g. from
606	chironomids to palaemonid shrimps). These food webs were stable in the face of

simulated individual species extinctions with an evidenced importance of omnivorous
fishes interconnecting different food web compartments at local scales and different
communities at regional scales. These characteristics potentially govern food web
stability at local and regional scales highlighting the roles of omnivory and alpha and
beta diversity. Below, we explain these new insights for understanding the dynamics of
tropical stream ecosystems and how important these mechanisms could be for
anticipating the impacts of the current environmental crisis.

614 The relationship between organism body mass and their trophic position 615 provides a measure of food web size structure (i.e. the extent to which larger 616 consumers feed on small prey and whether this is at a constant ratio) (Perkins et al. 617 2021). Partially in contrast to our first hypothesis, there was a strong association 618 between δ^{15} N values and body mass for fish, both within and across species, indicating 619 that larger fish are commonly higher up the food chain. This suggests that fish 620 predators interact within a well-defined prey size spectrum to fulfil their energetic 621 demands, a pattern expected in simple food web compartments comprising only a 622 limited number of functional groups (Keppeler et al., 2020). However, this pattern did 623 not hold for invertebrates where there was no relationship, more in agreement with 624 our second hypothesis. This lack of association indicates that invertebrate consumers 625 feed plastically up and down the food web to meet their metabolic requirements (i.e. 626 feeding on larger or smaller prey than expected based on their optimum predator-prey 627 mass ratio, (Potapov et al., 2021). It has been suggested that tropical streams have a 628 greater prevalence of omnivorous and generalist feeding than in their temperate 629 counterparts that have proportionally more taxa from delimited trophic groups like 630 shredders and obligatory predators (Boyero et al., 2011). This generalist feeding

strategy decreases energy transfer efficiency along the food chain due to a decrease in
net gains when feeding upon proportionally small or large prey (Brose et al., 2005;
Stephens & Krebs, 2019). Our findings add mounting evidence that generalist
macroinvertebrates at intermediate trophic positions are likely inefficient, but
represent diverse conduits of energy that potentially enhance the stability of these
complex systems (Collyer et al., 2023).

637 At the meta food web scale, 70% of the total energy flux depended on a subset 638 of ten taxa spread over orders of magnitude in body masses (from chironomids with an 639 average 0.2 mg per individual to large shrimps with an average of 1060 mg per individual). This may have consequences for the stability of the food web as different 640 641 body masses are associated with differences in life cycles and environmental 642 responses such as size-selective predation, size-related risks of dislodgement by 643 hydraulic forces, and use of size-related refugia in streambeds to counter these risks 644 (Woodward et al., 2005). Indirectly, body mass is closely related to other traits, with 645 smaller species often exhibiting population resilience with short life cycles, rapid 646 growth, high reproductive rates and high number of dispersal events in time (Brown et 647 al., 2004; Saito et al., 2015). We hypothesise that having a set of invertebrates with a 648 wide range of body masses contributing strongly to energy flow could enhance 649 resilience to local perturbations in tropical streams. Environmental changes negatively 650 affecting specific size classes could be compensated by organisms with different body 651 masses, which could sustain energy flows through the food webs. 652 Despite the subset of macroinvertebrates that were important for energy flows 653 in all five streams, some taxa were only important in one or two sites. This diverse set

of taxa constituted approximately 30% of the total energy flow, regionally. Moreover,

655 three key results highlight the importance of the local and regional diversity for the 656 functioning of tropical stream food webs, where energy flows do not rely strongly on 657 specific trophic interactions. First, we found that simulating individual extinctions did 658 not destabilise the meta food web, nor caused any immediate secondary extinctions. 659 However, there were associations between more stable food webs and higher 660 prevalence of omnivory, weaker trophic interactions and lower compartmentalization. 661 Altogether this is a direct support that omnivorous species that connect multiple 662 compartments with weak interactions are key in sustaining stable food webs (Kratina 663 et al., 2012). As such, we indeed found that some fish species are relatively more 664 important for the maintenance of food web stability, which is interesting as this 665 describes different roles a species can have in the food web. On one hand, a species 666 can contribute highly to the total energy flux and productivity linking terrestrial and 667 aquatic compartments through the emergence of adults, while not being strongly 668 pivotal for the network stability (e.g. Chironomidae). On the other hand, proportionally 669 low amounts of energy can flow through other species, but these may connect 670 different food web compartments, allowing for higher ecosystem resilience o (e.g. 671 omnivorous fish that connect basal resources, macroinvertebrates and other fish). 672 Second, local food webs were approximately 40% dissimilar among each other. 673 A high regional diversity coupled with high spatial variation can assure that multiple 674 species can contribute a little to the energy flow, but also that a diverse pool of 675 potential colonisers would be able to compensate for the eventual loss of species. 676 Indeed, we found that several size classes were regionally composed by multiple taxa 677 that could potentially compensate for species losses. For instance, Macrostemum (a 678 net-spinning caddisfly) is the main contributor to energy fluxes, that regionally have at

679 least three other genera from the same family with fairly similar sizes co-occurring in 680 the watershed on different densities (Leptonema, Macronema, Smicridea). Intriguingly, 681 Leptonema and Smicridea were found to be the most abundant taxa in the presence of 682 Macrostemum in other well preserved Atlantic Forest streams (Saito, Stoppa, et al., 683 2021; Siqueira et al., 2020). Tropical stream communities have been suggested to be 684 more stochastic in terms of colonizations and demography in comparison to temperate 685 systems due to an accelerated pace of life that leads to more dispersal events and 686 smaller population sizes (Saito, Perkins, et al., 2021; Siqueira et al., 2020). The greater 687 contribution of stochastic processes should render spatial and temporal variation in 688 the relative abundance of these taxa but with potentially weak impacts for patterns of 689 energy flow.

690 Third, the dissimilarity of the food webs were associated to changes in 691 predators, rather than prey, suggesting that spatial asynchrony of mobile predators 692 dampens variability of prey communities and stabilises food webs regionally. We found 693 that most of the fish species sampled were only present in one or two sites out of five, 694 while most of the smaller invertebrates were common in four to five sites. Together 695 with the importance of omnivorous fish evidenced by our extinction simulations, we 696 can outline a regional effect of fish beta diversity in the stability of food webs. This 697 should happen because omnivorous fish should feed upon productive patches when 698 resources are high and move to other patches when resources get lower, allowing 699 recovery of resources (i.e. invertebrates) from low densities. As an example, the catfish 700 Rhamdia quelen, was one of the most important taxa for food web stability and was 701 found to move more than 300 m in two hours of observation, indicating that one 702 individual can effectively forage across multiple stream stretches within days (Schulz &

Leuchtenberger, 2006). This spatial asynchrony in the community of larger predators
within a metacommunity of small spatial extent and little environmental heterogeneity
suggests that these species could operate as mobile predators connecting the different
streams stabilising the meta-food web.

707 Despite the evidence outlining the mechanisms supporting the stability of 708 tropical stream food webs, we describe two key limitations of our work. 1) Our study 709 was conducted in one tropical region using five individual food webs composing one 710 meta food web and therefore, we do not have a strong empirical gradient to test the 711 influence of variations in species diversity, omnivory and beta diversity on stability 712 patterns. We emphasise the need for future studies to try to disentangle such effects 713 in studies comparing food webs across gradients using empirical data (e.g. across 714 latitude) or experiments (mesocosm experimentations). 2) Our modelling exercise took 715 into account the extinction of singular species and its potential effects on secondary 716 extinctions caused by the loss of energy sources and how this could echo to 717 destabilising the network. While accounting for realistic interactions in terms of energy 718 flow, our simulation could not account for known mechanisms associated with 719 secondary extinctions such as higher order interactions (Fowler, 2010) and behavioural 720 changes with predator release (Hammerschlag et al., 2022). We emphasise how our 721 study gives only the first steps in understanding tropical stream stability, as all these 722 complex responses could modify real food web responses. 723 In summary, we found that all five tropical stream sites have energetic food 724 webs that are stable to small perturbations. We observed two important associations:

1) diversity increases the total energy flowing up to the apex predators, 2) The

presence and beta diversity of omnivorous fish stabilises local and regional food webs.

727	These lead us to two important mechanisms for the functioning of tropical stream food
728	webs: (i) the diversity of body masses should buffer against size-dependent
729	disturbances allowing high rates of productivity with higher diversity and (ii) high
730	regional diversity and weak, non-specialized interactions buffering against local
731	stochastic variation in species composition. These two mechanisms critically depend
732	on the maintenance of local and regional biodiversity in tropical streams, which is
733	known to be strongly affected by human land use intensifications from forests to
734	monoculture plantations in different ways (Neves et al., 2023; Siqueira et al., 2015).
735	Therefore, an urgent challenge is to understand how the systematic loss of diversity
736	jeopardises the stability of stream food webs under human impacts and what could be
737	the consequences for a sustainable use of resources.
738	
739	References
740	Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. de M., Sparovek, G., &
741	Others. (2013). Köppen's climate classification map for Brazil. Meteorologische
742	Zeitschrift, 22(6), 711–728.
743	Barnes, A. D., Jochum, M., Mumme, S., Haneda, N. F., Farajallah, A., Widarto, T. H., &
744	Brose, U. (2014). Consequences of tropical land use for multitrophic biodiversity
745	and ecosystem functioning. Nature Communications, 5, 5351.
740	

- 746 Boyero, L., Pearson, R. G., Dudgeon, D., Graça, M. A. S., Gessner, M. O., Albariño, R. J.,
- 747 Ferreira, V., Yule, C. M., Boulton, A. J., Arunachalam, M., Callisto, M., Chauvet, E.,
- 748 Ramírez, A., Chará, J., Moretti, M. S., Gonçalves, J. F., Jr, Helson, J. E., Chará-Serna,
- 749 A. M., Encalada, A. C., ... Pringle, C. M. (2011). Global distribution of a key trophic
- 750 guild contrasts with common latitudinal diversity patterns. *Ecology*, *92*(9), 1839–
- 751 1848.
- 752 Brose, U., Cushing, L., Berlow, E. L., Jonsson, T., Banasek-Richter, C., Bersier, L.-F.,
- 753 Blanchard, J. L., Brey, T., Carpenter, S. R., Blandenier, M.-F. C., Cohen, J. E.,
- 754 Dawah, H. A., Dell, T., Edwards, F., Harper-Smith, S., Jacob, U., Knapp, R. A.,
- 755 Ledger, M. E., Memmott, J., ... Martinez, N. D. (2005). Body sizes of consumers
- 756 and their resources. *Ecology*, *86*(9), 2545–2545.
- Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a
 metabolic theory of ecology. *Ecology*, *85*(7), 1771–1789.
- 759 Ceneviva-Bastos, M., Casatti, L., & Uieda, V. (2012). Can seasonal differences influence
- food web structure on preserved habitats? Responses from two Brazilian streams. *Community Ecology*, *13*(2), 243–252.
- 762 Collyer, G., Perkins, D. M., Petsch, D. K., Siqueira, T., & Saito, V. (2023). Land-use
- 763 intensification systematically alters the size structure of aquatic communities in
- the Neotropics. *Global Change Biology, 29*(14), 4094-4106.
- Fowler, M. S. (2010). Extinction cascades and the distribution of species interactions.
- 766 *Oikos* , *119*(5), 864–873.
- 767 Gauzens, B., Barnes, A., Giling, D. P., Hines, J., Jochum, M., Lefcheck, J. S., Rosenbaum,
- 768 B., Wang, S., & Brose, U. (2019). fluxweb : An R package to easily estimate energy
- fluxes in food webs. *Methods in Ecology and Evolution*, 10(2), 270–279.
- Giakoumi, S., Halpern, B. S., Michel, L. N., Gobert, S., Sini, M., Boudouresque, C.-F.,
- 771 Gambi, M.-C., Katsanevakis, S., Lejeune, P., Montefalcone, M., Pergent, G.,
- 772 Pergent-Martini, C., Sanchez-Jerez, P., Velimirov, B., Vizzini, S., Abadie, A., Coll,
- 773 M., Guidetti, P., Micheli, F., & Possingham, H. P. (2015). Towards a framework for

774	assessment and management of cumulative human impacts on marine food
775	webs. Conservation Biology, 29(4), 1228–1234.
776	Glazier, D. S. (2005). Beyond the "3/4-power law": variation in the intra- and
777	interspecific scaling of metabolic rate in animals. Biological Reviews, 80(4), 611–
778	662.
779	González-Bergonzoni, I., Meerhoff, M., Davidson, T. A., Teixeira-de Mello, F., Baattrup-
780	Pedersen, A., & Jeppesen, E. (2012). Meta-analysis Shows a Consistent and Strong
781	Latitudinal Pattern in Fish Omnivory Across Ecosystems. Ecosystems, 15(3), 492–
782	503.
783	Hammerschlag, N., Fallows, C., Meÿer, M., Seakamela, S. M., Orndorff, S., Kirkman, S.,
784	Kotze, D., & Creel, S. (2022). Loss of an apex predator in the wild induces
785	physiological and behavioural changes in prey. <i>Biology Letters, 18</i> (1), 20210476.
786	Hatton, I. A., Mazzarisi, O., Altieri, A., & Smerlak, M. (2024). Diversity begets stability:
787	Sublinear growth and competitive coexistence across ecosystems. Science,
788	<i>383</i> (6688), eadg8488.
789	Hernvann, PY., Gascuel, D., Kopp, D., Robert, M., & Rivot, E. (2022). EcoDiet: A
790	hierarchical Bayesian model to combine stomach, biotracer, and literature data
791	into diet matrix estimation. Ecological Applications, 32(2), e2521.
792	Ives, A. R., & Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science,
793	<i>317</i> (5834), 58–62.
794	Keppeler, F. W., Montaña, C. G., & Winemiller, K. O. (2020). The relationship between
795	trophic level and body size in fishes depends on functional traits. Ecological
796	Monographs, 90(4)
797	Kones, J. K., Soetaert, K., van Oevelen, D., & Owino, J. O. (2009). Are network indices

36

798	robust indicators of food web functioning? A Monte Carlo approach. Ecological
799	Modelling, 220(3), 370–382.
800	Kratina, P., LeCraw, R. M., Ingram, T., & Anholt, B. R. (2012). Stability and persistence
801	of food webs with omnivory: is there a general pattern? <i>Ecosphere</i> , 3(6), 1–18.
802	Lang, B., Ehnes, R. B., Brose, U., & Rall, B. C. (2017). Temperature and consumer type
803	dependencies of energy flows in natural communities. Oikos , 126(12), 1717–
804	1725.
805	Latham, L. G. (2006). Network flow analysis algorithms. <i>Ecological Modelling</i> , 192(3),
806	586–600.
807	Layman, C. A., Araujo, M. S., Boucek, R., Hammerschlag-Peyer, C. M., Harrison, E., Jud,
808	Z. R., Matich, P., Rosenblatt, A. E., Vaudo, J. J., Yeager, L. A., Post, D. M., &
809	Bearhop, S. (2012). Applying stable isotopes to examine food-web structure: an
810	overview of analytical tools. <i>Biological Reviews</i> , 87(3), 545–562.
811	Legendre, P. (2014). Interpreting the replacement and richness difference components
812	of beta diversity. Global Ecology and Biogeography, 23(11), 1324–1334.
813	May, R. M. (1973). Qualitative stability in model ecosystems. <i>Ecology</i> , 54(3), 638–641.
814	McCann, K. S. (2000). The diversity-stability debate. <i>Nature, 405</i> (6783), 228–233.
815	Meyer, J. L. (1997). Stream health: Incorporating the human dimension to advance
816	stream ecology. Journal of the North American Benthological Society, 16(2), 439–
817	447.
818	Moore, J. C., & de Ruiter, P. C. (2012). Energetic Food Webs: An Analysis of Real and
819	Model Ecosystems. Oxford University Press.
820	Motta, R. L., & Uieda, V. S. (2005). Food web structure in a tropical stream ecosystem.
821	Austral Ecology, 30(1), 58–73.

37

822	Neutel, AM., Heesterbeek, J. A. P., & De Ruiter, P. C. (2002). Stability in real food

- 823 webs: weak links in long loops. *Science*, *296*(5570), 1120–1123.
- 824 Neves, M. P., Delariva, R. L., Perkins, D. M., Fialho, C. B., & Kratina, P. (2023). Trophic
- 825 plasticity of omnivorous fishes in natural and human-dominated landscapes.
- 826 Limnology and Oceanography
- 827 Novotny, V. (2009). Beta diversity of plant-insect food webs in tropical forests: a

828 conceptual framework. *Insect Conservation and Diversity*, *2*(1), 5–9.

- Palmer, M. A., Filoso, S., & Fanelli, R. M. (2014). From ecosystems to ecosystem
- 830 services: Stream restoration as ecological engineering. *Ecological Engineering*, *65*,
 831 62–70.
- 832 Perkins, D. M., Durance, I., Edwards, F. K., Grey, J., Hildrew, A. G., Jackson, M., Jones, J.
- 833 I., Lauridsen, R. B., Layer-Dobra, K., Thompson, M. S. A., & Woodward, G. (2018).
- 834 Bending the rules: exploitation of allochthonous resources by a top-predator
- 835 modifies size-abundance scaling in stream food webs. *Ecology Letters*, 21(12),
- 836 1771–1780.
- Pimm, S. L., & Lawton, J. H. (1980). Are food webs divided into compartments? *The Journal of Animal Ecology*, *49*(3), 879.
- 839 Potapov, A. M., Rozanova, O. L., Semenina, E. E., Leonov, V. D., Belyakova, O. I.,
- Bogatyreva, V. Y., Degtyarev, M. I., Esaulov, A. S., Korotkevich, A. Y., Kudrin, A. A.,
- 841 Malysheva, E. A., Mazei, Y. A., Tsurikov, S. M., Zuev, A. G., & Tiunov, A. V. (2021).
- 842 Size compartmentalization of energy channeling in terrestrial belowground food
 843 webs. *Ecology*, *102*(8), e03421.
- 844 Reboredo Segovia, A. L., Romano, D., & Armsworth, P. R. (2020). Who studies where?
- 845 Boosting tropical conservation research where it is most needed. *Frontiers in*

38

846 *Ecology and the Environment, 18*(3), 159–166.

- Rooney, N., & McCann, K. S. (2012). Integrating food web diversity, structure and
 stability. *Trends in Ecology & Evolution*, *27*(1), 40–46.
- 849 Rooney, N., McCann, K. S., & Moore, J. C. (2008). A landscape theory for food web
- architecture. *Ecology Letters*, *11*(8), 867–881.
- 851 Saito, V. S., Perkins, D. M., & Kratina, P. (2021). A Metabolic Perspective of Stochastic
- 852 Community Assembly. *Trends in Ecology & Evolution, 36*(4), 280–283.
- 853 Saito, V. S., Soininen, J., Fonseca-Gessner, A. A., & Siqueira, T. (2015). Dispersal traits
- 854 drive the phylogenetic distance decay of similarity in Neotropical stream

855 metacommunities. *Journal of Biogeography*, *42*(11), 2101–2111.

- 856 Saito, V. S., Stoppa, N. E., Shimabukuro, E. M., Cañedo-Argüelles, M., Bonada, N., &
- 857 Siqueira, T. (2021). Stochastic colonisation dynamics can be a major driver of
- 858 temporal β diversity in Atlantic Forest coastal stream communities. *Freshwater*
- *Biology*, *66*(8), 1560–1570.
- 860 Schaeffer-Novelli, Y., de Souza Lima Mesquita, H., Cintrón-Molero, G., & Cintron-
- 861 Molero, G. (1990). The Cananéia Lagoon Estuarine System, São Paulo, Brazil.
- 862 *Estuaries*, *13*(2), 193.
- Schulz, U. H., & Leuchtenberger, C. (2006). Activity patterns of South American silver
 catfish (*Rhamdia quelen*). *Brazilian Journal of Biology*, *66*(2A), 565–574.
- 865 Siqueira, T., Hawkins, C. P., Olden, J. D., Tonkin, J., Comte, L., Saito, V. S., Anderson, T.
- 866 L., Barbosa, G. P., Bonada, N., Bonecker, C. C., Cañedo-Argüelles, M., Datry, T.,
- 867 Flinn, M. B., Fortuño, P., Gerrish, G. A., Haase, P., Hill, M. J., Hood, J. M., Huttunen,
- 868 K.-L., ... Ruhi, A. (2024). Understanding temporal variability across trophic levels
- and spatial scales in freshwater ecosystems. *Ecology*, *105*(2), e4219.

870	Siqueira, T., Lacerda, C. GL. T., & Saito, V. S. (2015). How does landscape modification
871	induce biological homogenization in tropical stream metacommunities?
872	<i>Biotropica, 47</i> (4), 509–516.
873	Siqueira, T., Saito, V. S., Bini, L. M., Melo, A. S., Petsch, D. K., Landeiro, V. L., Tolonen, K.
874	T., Jyrkänkallio-Mikkola, J., Soininen, J., & Heino, J. (2020). Community size can
875	affect the signals of ecological drift and niche selection on biodiversity. Ecology,
876	<i>101</i> (6), e03014.
877	Stephens, D. W., & Krebs, J. R. (2019). Foraging Theory. Princeton University Press.
878	White, E. P., Ernest, S. K. M., Kerkhoff, A. J., & Enquist, B. J. (2007). Relationships
879	between body size and abundance in ecology. Trends in Ecology & Evolution,
880	<i>22</i> (6), 323–330.
881	Winemiller, K. O. (1990). Spatial and Temporal Variation in Tropical Fish Trophic
882	Networks. Ecological Monographs, 60(3), 331–367.
883	Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A.,
884	& Warren, P. H. (2005). Body size in ecological networks. Trends in Ecology &
885	<i>Evolution, 20</i> (7), 402–409.
886	Yodzis, P. (1981). The stability of real ecosystems. <i>Nature, 289</i> (5799), 674–676.
887	
888	
889	
220	

Untangling the complex food webs of tropical rainforest streams

Supporting Information

site	replicate	Temperature C°	рН	ORP mv	mS/cm	mg/L OD	% OD	TPS
S8A	1	23.06	4.79	454		14.61	174	0.023
S8A	2	22.63	5.79	430		12.3	136	0.033
S8A	3	21.34	5.09	454	0.037	14.15	165.4	0.024
S1	1	23.35	6.64	372	0.035	13.97	167.6	0.023
S1	2	23.12	6.58	392	0.034	13.06	156.1	0.022
S1	3	23.08	6.54	401	0.035	12.36	147.6	0.023
S6	1	21.65	6.3	396	0.034	14.68	171	0.022
S6	2	22.63	6.36	416	0.034	13.54	157.7	0.022
S6	3	22.59	6.27	426	0.034	15.2	176.9	0.022
S8C	1	21.72	5.71	352	0.035	14.19	165.5	0.023
S8C	2	21.65	5.62	359	0.034	13.91	162	0.022
S8C	3	21.66	5.55	355	0.035	13.27	154.6	0.022
S8B	1	21.92	5.11	459	0.024	10.59	123.9	0.016
S8B	2	21.73	5	456	0.036	13.07	152.7	0.024
S8B	3	21.68	4.91	4.58	0.036	10.89	126.9	0.024

Table S1. Physical and chemical water variables in 5 stream stretches in Cananeia (SãoPaulo, Brazil).

Figure S1. The isotopic signature of consumers for δ 13C and δ 15N for five stretches from the Cananeia watershed.

Figure S2. Local size density plot for stretches at the Cananeia watershed. Average body-masses are regressed against their summed abundances. Equations and R² are associated with linear regressions.

Figure S3. The proportion of energy flowing through each node in the stream meta food web from Cananeia (Brazil). Left: Energy flowing as consumers. Right: Energy flowing as resources.

	Meta food web	S1	S6	S8	S8B	S8C
N nodes	65	41	38	28	28	35
N links	307	171	129	73	78	132
Link density	5,032787	4,170732	3,394737	2,607143	2,785714	3,771429
Connectance	0,08388	0,104268	0,09175	0,096561	0,103175	0,110924
Average link weight	0,836826	0,798652	0,888517	0,825698	0,798346	0,820007
Compartmen talization	0,180084	0,20211	0,186202	0,226761	0,235359	0,200116
Mean trophic level	2,35	2,21	2,24	2,17	2,11	2,24
Mean omnivory	0,12	0,11	0,11	0,10	0,09	0,15

Table S2. Network indices for the meta food web and individual food webs from theCananeia watershed. See methods for the description of each index.

Sensitivity analyses

We applied the fluxweb approach, which infers the amount of energy flowing through each population considering a steady-state system (Gauzens et al., 2019). The fluxweb method considers a top-down perspective where the energetic requirement of each consumer species is calculated from the mean body mass of that species, and its population density, balanced against the population biomasses of their prey. In this balanced system, gains G_i are balanced with losses L_i which are calculated as

$$L_i = X_i + \sum_{i} F_{ij}, \qquad (eq. 1)$$

where χ_i defines species losses (e.g. metabolic costs or death rates) and F_{ij} is the flux of energy from species *i* to predator *j*. In this case, gain G_i is defined as

$$G_i = \sum_j F_{ji} e_{ij}$$
, (eq. 2)

where F_{ji} defines the influx coming from other species depending on a diet proportion (estimated with Ecodiet in our study) and e_{ij} denotes the efficiency in energy uptake given the prey identity (see below). In our study, the metabolic cost χ_i was defined from the allometric equations (Brown et al. 2004)

$$X_i = X_0 M_i^b, \qquad (eq. 3)$$

where χ_0 and *b* are constants related to organismal physiologies and M_i is a given body mass. In the main text, we defined χ_0 equal to 18.18 for fishes, 17.17 for invertebrates, and *b* equal -0.29 for all organisms following Brown et al. (2004). Efficiencies were defined at prey level and set to 0.906, 0.545 and 0.158

for animals, plants and detritus, respectively (i.e. consumers feeding on animals have higher efficiencies per unit of mass consumed) (Gauzens et al., 2019). Here, we present the results from sensitivity analyses applying different values for *b* and efficiencies. For the metabolic exponent *b*, we considered the values from a review of metabolic rates across organisms and ontogenetic development (Glazier, 2005). In this study, he identified that metabolic rate exponents are commonly $\frac{2}{3}$, $\frac{2}{3}$, and 1 (isometric scaling). Therefore, to consider such variation we also used the values of *b* considered the minimum and maximum values of the 95% confidence interval modeled in a systematic assessment of efficiencies and respiration in natural communities (Lang et al., 2017).

We observed stable meta food webs using the confidence interval of maximum and minimum efficiency during fluxweb calculations with the maximum eigenvalue of -23.8 for the minimum efficiencies and -16.19 for the maximum efficiencies. Therefore, we had no qualitative changes in our main conclusion of observing a stable meta food web in our studied system.

We found that the meta food web was insensitive to the variation in the *b* values, with negative maximum eigenvalues of the Jacobian matrices for exponents ³/₃ and ³/₄. When the scaling was isometric, meaning that metabolic rate is constant, the meta food web was unstable. This is because populations of larger individuals have higher energetic costs with isometric scaling and

therefore demand more energy flowing through the food web in comparison to situations with allometric scaling of metabolic rates with exponents <1. This was indeed the case in our meta food web as two of the largest fish species (*Rhamdia quelen* and *Synbranchus marmoratus*) had positive eigenvalues in the stability analyses and therefore cannot be sustained in the meta food web. As the isometric metabolic rate has been extensively demonstrated for pelagic, but not benthic organisms (Glazier 2005), we have little evidence that this is the most realistic scenario to represent our system.

link.id	resource	preference	eresource.li	iconsumer	consumer	link.eviden source	e.id
271	Acarina	medium	NA	Characidium lanei	NA	gut	38
282	Acarina	low	NA	Characidium lanei	NA	gut	39
384	Acarina	medium	NA	Mimagoniates lateralis	NA	gut	40
397	Acarina	medium	NA	Mimagoniates lateralis	NA	gut	46
417	Acarina	medium	NA	Mimagoniates microlepis	NA	gut	40
430	Acarina	medium	NA	Mimagoniates microlepis	NA	gut	46
481	Acarina	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
326	algae	low	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	40
382	algae	low	NA	Mimagoniates lateralis	NA	gut	40
415	algae	low	NA	Mimagoniates microlepis	NA	gut	40
440	algae	high	NA	Phalloceros harpagos	NA	gut	46
449	algae	low	NA	Phalloceros harpagos	NA	gut	42
459	algae	high	NA	Phalloceros harpagos	NA	gut	40
469	algae	low	NA	Phalloceros harpagos	NA	gut	34
520	algae	high	NA	Schizolecis guntheri	NA	gut	46
138	allochtonous_vegetation	low	NA	Macrobrachium_(<2cmBL)	NA	isotope_ar	18
142	allochtonous_vegetation	high	NA	Macrobrachium_(>4.5cmBL)	NA	isotope_ar	18
146	allochtonous_vegetation	low	NA	Macrobrachium_(2<4.5cmBL)	NA	isotope_ar	18
490	Amphipoda	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
1	animal_tissues	high	NA	Anacroneuria	larvae	gut	1
64	animal_tissues	medium	NA	Dythemis	larvae	isotope	14
70	animal_tissues	medium	NA	Gomphidae	larvae	gut	16
78	animal_tissues	high	NA	Heteragrion	larvae	isotope	14
95	animal_tissues	high	NA	Kempnyia	larvae	gut	1
130	animal_tissues	medium	NA	Libellulidae_spA	larvae	isotope	14
139	animal tissues	high	NA	Macrobrachium (<2cmBL)	NA	isotope ar	18
143	animal tissues	high	NA	Macrobrachium (>4.5cmBL)	NA	isotope ar	18
147	animal tissues	high	NA	Macrobrachium (2<4.5cmBL)	NA	isotope ar	18
150	animal tissues	high	NA	Macrogynoplax	larvae	gut	1
240	Annelida	low	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	35
283	Annelida	low	NA	Deuterodon iguape	NA	gut	35
_000						0	

367 Anura	low	NA	Hoplias malabaricus	NA	gut	45
241 Arachnida	low	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	35
268 Arachnida	low	NA	Characidium lanei	NA	gut	37
284 Arachnida	low	NA	Deuterodon iguape	NA	gut	35
315 Arachnida	low	NA	Deuterodon iguape	NA	gut	38
375 Arachnida	low	NA	Mimagoniates lateralis	NA	gut	35
408 Arachnida	low	NA	Mimagoniates microlepis	NA	gut	35
369 Astyanax janeiroensis	high	NA	Hoplias malabaricus	NA	gut	45
391 Baccilariophyceae	medium	NA	Mimagoniates lateralis	NA	gut	46
424 Baccilariophyceae	medium	NA	Mimagoniates microlepis	NA	gut	46
453 Baccilariophyceae	high	NA	Phalloceros harpagos	NA	gut	46
515 Baccilariophyceae	high	NA	Schizolecis guntheri	NA	gut	46
508 Bacillariophyta	high	NA	Schizolecis guntheri	NA	gut	49
187 Bacteria	high	NA	Oligochaeta_spA	NA	gut	23
339 Belostomatidae	low	NA	Hollandichthys multifasciatus	NA	gut	43
210 Bryozoa	low	NA	Synoestropsis	larvae	gut	27
288 Bryozoa	low	NA	Deuterodon iguape	NA	gut	35
13 Calamoceratidae	high	larvae	Anacroneuria	larvae	gut	3
107 Calamoceratidae	high	larvae	Kempnyia	larvae	gut	3
162 Calamoceratidae	high	larvae	Macrogynoplax	larvae	gut	3
252 Chelicerata	low	NA	Characidium lanei	NA	gut	36
6 Chironomidae	high	larvae	Anacroneuria	larvae	gut	2
14 Chironomidae	high	larvae	Anacroneuria	larvae	gut	3
26 Chironomidae	high	larvae	Anacroneuria	larvae	gut	16
30 Chironomidae	high	larvae	Argia	larvae	gut	16
52 Chironomidae	high	larvae	Corixidae	adult	trial	11
65 Chironomidae	high	larvae	Dythemis	larvae	gut	16
71 Chironomidae	high	larvae	Gomphidae	larvae	gut	16
79 Chironomidae	high	larvae	Heteragrion	larvae	gut	16
100 Chironomidae	high	larvae	Kempnyia	larvae	gut	2
108 Chironomidae	high	larvae	Kempnyia	larvae	gut	3

155ChironomidaehighIarvaeMacrogynoplaxIarvaegut163ChironomidaehighIarvaeMacrogynoplaxIarvaegut175ChironomidaeIowIarvaeSynoestropsisIarvaegut231ChironomidaehighIarvaeSynoestropsisNAgut232ChironomidaehighIarvaeCharacidium laneiNAgut320ChironomidaehighIarvaeDeuterodon iguapeNAgut321ChironomidaehighIarvaeGyminotus pantherinus (Gymnotus?)NAgut322ChironomidaehighIarvaeMimagoniates iaterolisiNAgut337ChironomidaemediumIarvaeMimagoniates iaterolisiNAgut420ChironomidaemediumIarvaeMimagoniates iaterolesisNAgut435ChironomidaenediumIarvaeSchizolecis guntheriNAgut435ChironomidaehighIarvaeSymbranchus marmoratus (Synbranchus)NAgut435ChironomidaehighIarvaeSymbranchus marmoratus (Synbranchus)NAgut435ChironomidaehighIarvaeSymbranchus marmoratus (Synbranchus)NAgut435ChironomidaehighIarvaeSymbranchus marmoratus (Synbranchus)NAgut435ChironomidaehighIarvaeSymbranchus marmoratus (Synbranchus)NAgut	131 Chironomidae	high	larvae	Libellulidae_spA	larvae	gut	16
163Chironomidaehigh highlarvaeMacrogynoplaxlarvaegut175ChironomidaehighlarvaeSynoestropsislarvaegut211ChironomidaehighlarvaeSynoestropsislarvaegut278ChironomidaehighlarvaeAcentroniechils leptos (correct name is Acentronichth)NAgut230ChironomidaemediularvaeCharacidium laneiNAgut232ChironomidaemediularvaeGyminotus pantherinus (Gymnotus?)NAgut233ChironomidaemediularvaeMimagoniates lateralisNAgut240ChironomidaemediularvaeMimagoniates lateralisNAgut251ChironomidaemediularvaeRhadmia quelamdia (Rhamdia quelen)NAgut252ChironomidaehighlarvaeSchizolecis guntheriNAgut252ChironomidaehighlarvaeSchizolecis guntheriNAgut252ChironophyceaemediumNAMimagoniates lateralisNAgut252ChironophyceaehighNASchizolecis guntheriNAgut252ChironophyceaehighNASchizolecis guntheriNAgut253ChirophyceaehighNASchizolecis guntheriNAgut254ChorophyceaehighNASchizolecis guntheriNAgut255Chirophyc	155 Chironomidae	high	larvae	Macrogynoplax	larvae	gut	2
175 ChironomidaehighlarvaeMacrogynoplaxlarvaegut211 ChironomidaelowlarvaeSynoestropsislarvaegut231 ChironomidaehighlarvaeCharacidium laneiNAgut320 ChironomidaemediumlarvaeCharacidium laneiNAgut321 ChironomidaehighlarvaeCharacidium laneiNAgut322 ChironomidaehighlarvaeGyminotus pantherinus (Gymnotus?)NAgut323 ChironomidaehighlarvaeMimagoniates lateralisNAgut324 ChironomidaemediumlarvaeMimagoniates lateralisNAgut445 ChironomidaemediumlarvaeMimagoniates lateralisNAgut445 ChironomidaelowlarvaeSchizolecis guntheriNAgut445 ChironomidaelowlarvaeSchizolecis guntheriNAgut445 ChironomidaemediumNAMimagoniates lateralisNAgut525 ChironomidaemediumNAMimagoniates lateralisNAgut525 ChironomidaemediumNAMimagoniates lateralisNAgut525 ChironophyceaemediumNAMimagoniates lateralisNAgut525 ChironophyceaemediumNASchizolecis guntheriNAgut516 ChorophyceaehighNASchizolecis guntheriNAgut516 ChorophyceaehighNASchizolecis guntheriIarvae <td>163 Chironomidae</td> <td>high</td> <td>larvae</td> <td>Macrogynoplax</td> <td>larvae</td> <td>gut</td> <td>3</td>	163 Chironomidae	high	larvae	Macrogynoplax	larvae	gut	3
211 ChironomidaeIowIarvaeSynoestropsisIarvaegut231 ChironomidaehighIarvaeAcentronichlis leptos (correct name is Acentronichthys)NAgut278 ChironomidaehighIarvaeCharacidium laneiNAgut320 ChironomidaemediumIarvaeDeuterodon iguapeNAgut337 ChironomidaehighIarvaeGymninotus pantherinus (Gymnotus?)NAgut337 ChironomidaemediumIarvaeMimagoniates lateralisNAgut420 ChironomidaemediumIarvaeMimagoniates microlepisNAgut421 ChironomidaenediumIarvaePhalloceros harpagosNAgut425 ChironomidaelowIarvaeSchizolecis guntheriNAgut425 ChironomidaelowIarvaeSymbranchus marmoratus (Synbranchus)NAgut525 ChironomidaehighIarvaeSymbranchus marmoratus (Synbranchus)NAgut525 ChironophyceaemediumNAMimagoniates microlepisNAgut525 ChorophyceaehighNASchizolecis guntheriNAgut526 ChorophyceaehighNASchizolecis guntheriNAgut526 ChorophyceaehighNASchizolecis guntheriNAgut526 ChorophyceaehighNASchizolecis guntheriIarvaegut526 ChorophyceaehighIarvaeMacrogynoplaxIarvaegut526 Coleoptera <td< td=""><td>175 Chironomidae</td><td>high</td><td>larvae</td><td>Macrogynoplax</td><td>larvae</td><td>gut</td><td>16</td></td<>	175 Chironomidae	high	larvae	Macrogynoplax	larvae	gut	16
231 ChironomidaehighlarvaeAcentroniechlis leptos (correct name is Acentronichthys)NAgut278 ChironomidaehighlarvaeCharacidium laneiNAgut320 ChironomidaemediumlarvaeDeuterodon iguapeNAgut337 ChironomidaehighlarvaeGymninotus pantherinus (Gymnotus?)NAgut337 ChironomidaemediumlarvaeMinagoniates lateralisNAgut420 ChironomidaemediumlarvaeMimagoniates lateralisNAgut420 ChironomidaemediumlarvaeMimagoniates microlepisNAgut421 ChironomidaelowlarvaeRhadmia quelandia (Rhamdia quelen)NAgut425 ChironomidaelowlarvaeSchizolecis guntheriNAgut525 ChironomidaehighlarvaeSymbranchus marmoratus (Synbranchus)NAgut525 ChironomidaehighNASchizolecis guntheriNAgut526 ChironophyceaemediumNAMimagoniates microlepisNAgut526 ChironophyceaehighNASchizolecis guntheriNAgut526 ChironophyceaehighNASchizolecis guntheriNAgut526 ChironophyceaehighNASchizolecis guntheriNAgut526 ChironophyceaehighNASchizolecis guntheriNAgut526 ColopterahighNASchizolecis guntheriNAgut526 Coloptera <td< td=""><td>211 Chironomidae</td><td>low</td><td>larvae</td><td>Synoestropsis</td><td>larvae</td><td>gut</td><td>27</td></td<>	211 Chironomidae	low	larvae	Synoestropsis	larvae	gut	27
278ChironomidaehighlarvaeCharacidium laneiNAgut320ChironomidaemediumlarvaeOeuterodon iguapeNAgut328ChironomidaehighlarvaeGymninotus pantherinus (Gymnotus?)NAgut337ChironomidaemediumlarvaeHollandichthys multifasciatusNAgut387ChironomidaemediumlarvaeMimagoniates lateralisNAgut445ChironomidaemediumlarvaePhalloceros harpagosNAgut473ChironomidaelowlarvaeSchizolecis guntheriNAgut511ChironomidaelowlarvaeSymbranchus marmoratus (Synbranchus)NAgut525ChironomidaemediumNAMimagoniates lateralisNAgut392ChlorophyceaemediumNAMimagoniates lateralisNAgut454ChlorophyceaemediumNAPhalloceros harpagosNAgut509ChlorophyceaemediumNASchizolecis guntheriNAgut516ChlorophyceaehighNASchizolecis guntheriNAgut516ChlorophyceaehighNASchizolecis guntheriNAgut516ColopterahighNaSchizolecis guntheriNAgut516ColopterahighlarvaeKempnyialarvaegut516ColopterahighlarvaeRhar	231 Chironomidae	high	larvae	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	32
320 ChironomidaemediumlarvaeDeuterodon iguapeNAgut328 ChironomidaehighlarvaeGymninotus pantherinus (Gymnotus?)NAgut337 ChironomidaemediumlarvaeHollandichthys multifasciatusNAgut387 ChironomidaemediumlarvaeMimagoniates lateralisNAgut420 ChironomidaemediumlarvaeMimagoniates microlepisNAgut445 ChironomidaelowlarvaePhalloceros harpagosNAgut473 ChironomidaehighlarvaeSchizolecis guntheriNAgut511 ChironomidaelowlarvaeSchizolecis guntheriNAgut525 ChironomidaehighlarvaeSymbranchus marronatus (Synbranchus)NAgut525 ChironomidaehighNAMimagoniates nicrolepisNAgut525 ChironophyceaemediumNAMimagoniates microlepisNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighlarvaeKempnyialarvaegut516 ColeopterahighlarvaeMacrogynoplaxlarvaegut516 ColeopterahighlarvaeMacrogynoplaxlarvaegut516 ColeopteralowlarvaePhalloceros harpagosNAgut516 ColeopteralowlarvaePhalcoeros harpagos	278 Chironomidae	high	larvae	Characidium lanei	NA	gut	39
328ChironomidaehighlarvaeGymninotus pantherinus (Gymnotus?)NAgut337ChironomidaehighlarvaeHollandichthys multifasciatusNAgut387ChironomidaemediumlarvaeMimagoniates lateralisNAgut420ChironomidaemediumlarvaeMimagoniates microlepisNAgut420ChironomidaelowlarvaePhalloceros harpagosNAgut473ChironomidaelowlarvaeRhadmia quelandia (Rhamdia quelen)NAgut525ChironomidaehighlarvaeSymbranchus marmoratus (Synbranchus)NAgut525ChironophyceaemediumNAMimagoniates lateralisNAgut425ChlorophyceaemediumNAPhalloceros harpagosNAgut525ChlorophyceaemediumNAMimagoniates lateralisNAgut545ChlorophyceaehighNASchizolecis guntheriNAgut516ChlorophyceaehighNASchizolecis guntheriNAgut516ColopterahighlarvaeKempniaMagut516ColopterahighlarvaeMacrogynoplaxlarvaegut516ColopterahighlarvaeMacrogynoplaxlarvaegut516ColopteralowlarvaeMacrogynoplaxlarvaegut516Colopteralowlarvae	320 Chironomidae	medium	larvae	Deuterodon iguape	NA	gut	38
337ChironomidaehighlarvaeHollandichthys multifasciatusNAgut387ChironomidaemediumlarvaeMimagoniates lateralisNAgut420ChironomidaemediumlarvaeMimagoniates lateralisNAgut445ChironomidaelowlarvaePhalloceros harpagosNAgut473ChironomidaelowlarvaeSchizolecis guntheriNAgut511ChironomidaehighlarvaeSchizolecis guntheriNAgut525ChironomidaemediumNAMimagoniates lateralisNAgut392ChlorophyceaemediumNAMimagoniates lateralisNAgut455ChlorophyceaemediumNAPhalloceros harpagosNAgut509ChlorophyceaehighNASchizolecis guntheriNAgut516ChlorophyceaehighNASchizolecis guntheriNAgut516ChlorophyceaehighNASchizolecis guntheriNAgut516ColopterahighlarvaeKempnyialarvaegut516ColopterahighlarvaeKempnyialarvaegut516ColopterahighlarvaeRacroneurialarvaegut516ColopterahighlarvaeRacroneurialarvaegut516ColopterahighlarvaeRacrogynoplaxlarvaegut <t< td=""><td>328 Chironomidae</td><td>high</td><td>larvae</td><td>Gymninotus pantherinus (Gymnotus?)</td><td>NA</td><td>gut</td><td>40</td></t<>	328 Chironomidae	high	larvae	Gymninotus pantherinus (Gymnotus?)	NA	gut	40
387 ChironomidaemediumlarvaeMimagoniates lateralisNAgut420 ChironomidaemediumlarvaeMimagoniates microlepisNAgut445 ChironomidaelowlarvaePhalloceros harpagosNAgut473 ChironomidaehighlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut511 ChironomidaelowlarvaeSchizolecis guntheriNAgut525 ChironomidaehighlarvaeSymbranchus marmoratus (Synbranchus)NAgut392 ChlorophyceaemediumNAMimagoniates lateralisNAgut425 ChlorophyceaemediumNAPhalloceros harpagosNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut516 ColeopterahighNASchizolecis guntheriNAgut516 ColeopterahighlarvaeMacroneurialarvaegut516 ColeopterahighlarvaeMacrogynoplaxlarvaegut445 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut445 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut54 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut55 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut445 Coleopteralowla	337 Chironomidae	high	larvae	Hollandichthys multifasciatus	NA	gut	43
420 ChironomidaemediumlarvaeMimagoniates microlepisNAgut445 ChironomidaelowlarvaePhalloceros harpagosNAgut473 ChironomidaehighlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut511 ChironomidaelowlarvaeSchizolecis guntheriNAgut525 ChironomidaehighlarvaeSymbranchus marmoratus (Synbranchus)NAgut525 ChironomidaemediumNAMimagoniates lateralisNAgut525 ChironophyceaemediumNAMimagoniates microlepisNAgut545 ChlorophyceaehighNASchizolecis guntheriNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighIarvaeAnacroneurialarvaegut516 ColeopterahighlarvaeKempnyialarvaegut516 ColeopterahighlarvaeMacrogynoplaxlarvaegut445 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut455 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut455 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut455 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut455 ColeopteralowNA </td <td>387 Chironomidae</td> <td>medium</td> <td>larvae</td> <td>Mimagoniates lateralis</td> <td>NA</td> <td>gut</td> <td>40</td>	387 Chironomidae	medium	larvae	Mimagoniates lateralis	NA	gut	40
445 ChironomidaeIowIarvaePhalloceros harpagosNAgut473 ChironomidaehighIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut511 ChironomidaeIowIarvaeSchizolecis guntheriNAgut525 ChironomidaehighIarvaeSymbranchus marmoratus (Synbranchus)NAgut392 ChlorophyceaemediumNAMimagoniates lateralisNAgut425 ChlorophyceaemediumNAMimagoniates microlepisNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighIarvaeAchacroneuriaIarvaegut516 ChlorophyceaehighIarvaeAnacroneuriaIarvaegut516 ChlorophyceaehighIarvaeMacrogynoplaxIarvaegut516 ColeopterahighIarvaeMacrogynoplaxIarvaegut516 ColeopterahighIarvaeMacrogynoplaxIarvaegut516 ColeopterahighIarvaeMacrogynoplaxIarvaegut517 ColeopterahighIarvaeMacrogynoplaxIarvaegut518 ColeopteralowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut519 ColeopteralowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut520 ColeopteralowNACharacidium lanei	420 Chironomidae	medium	larvae	Mimagoniates microlepis	NA	gut	40
473 ChironomidaehighlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut511 ChironomidaelowlarvaeSchizolecis guntheriNAgut525 ChironomidaehighlarvaeSymbranchus marmoratus (Synbranchus)NAgut392 ChlorophyceaemediumNAMimagoniates lateralisNAgut425 ChlorophyceaemediumNAPhalloceros harpagosNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriIarvaegut516 ChlorophyceaehighIarvaeAnacroneuriaIarvaegut516 ChlorophyceaehighIarvaeAnacroneuriaIarvaegut516 ColeopterahighIarvaeMacroneuriaIarvaegut516 ColeopterahighIarvaeMacrogynoplaxIarvaegut515 ColeopterahighIarvaePhalloceros harpagosNAgut516 ColeopteralowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut517 ColeopteralowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut527 ColeopteralowNACharacidium IaneiNAgut527 ColeopteralowNACharacidium IaneiNA	445 Chironomidae	low	larvae	Phalloceros harpagos	NA	gut	46
511 ChironomidaeIowIarvaeSchizolecis guntheriNAgut525 ChironomidaehighIarvaeSymbranchus marmoratus (Synbranchus)NAgut392 ChlorophyceaemediumNAMimagoniates lateralisNAgut425 ChlorophyceaemediumNAPhalloceros harpagosNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighIarvaeAnacroneuriaIarvaegut7 ColeopterahighIarvaeKempnyiaIarvaegut101 ColeopterahighIarvaeMacrogynoplaxIarvaegut455 ColeopteralowIarvaePhalloceros harpagosNAgut483 ColeopteralowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut494 ColeopteralowNACharacidium IaneiNAgut257 ColeopteralowNACharacidium IaneiNAgut266 ColeopteralowNACharacidium IaneiNAgut274 ColeopterahighNACharacidium IaneiNAgut274 ColeopterahighNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	473 Chironomidae	high	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	47
525 ChironomidaehighlarvaeSymbranchus marmoratus (Symbranchus)NAgut392 ChlorophyceaemediumNAMimagoniates lateralisNAgut425 ChlorophyceaemediumNAPhalloceros harpagosNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighIarvaeAnacroneuriaIarvaegut7 ColeopterahighIarvaeKempnyiaIarvaegut101 ColeopterahighIarvaeMacrogynoplaxIarvaegut455 ColeopteralowIarvaePhalloceros harpagosNAgut483 ColeopteralowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut494 ColeopteralowNACharacidium laneiNAgut257 ColeopteralowNACharacidium laneiNAgut266 ColeopteralowNACharacidium laneiNAgut274 ColeopterahighNACharacidium laneiNAgut243 CollembolalowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	511 Chironomidae	low	larvae	Schizolecis guntheri	NA	gut	49
392ChlorophyceaemediumNAMimagoniates lateralisNAgut425ChlorophyceaemediumNAMimagoniates microlepisNAgut454ChlorophyceaehighNAPhalloceros harpagosNAgut509ChlorophyceaehighNASchizolecis guntheriNAgut516ChlorophyceaehighNASchizolecis guntheriNAgut7ColeopterahighIarvaeAnacroneuriaIarvaegut101ColeopterahighIarvaeKempnyiaIarvaegut465ColeopteralowIarvaePhalloceros harpagosNAgut483ColeopteralowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut494ColeopteralowNACharacidium laneiNAgut257ColeopteralowNACharacidium laneiNAgut266ColeopteralowNACharacidium laneiNAgut274ColeopterahighNACharacidium laneiNAgut274ColeopterahighNACharacidium laneiNAgut274ColeopterahighNAAcentroniechils leptos (correct name is Acentronichthys)NAgut	525 Chironomidae	high	larvae	Symbranchus marmoratus (Synbranchus)	NA	gut	51
425 ChlorophyceaemediumNAMimagoniates microlepisNAgut454 ChlorophyceaehighNAPhalloceros harpagosNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut7 ColeopterahighlarvaeAnacroneurialarvaegut101 ColeopterahighlarvaeKempnyialarvaegut156 ColeopterahighlarvaeMacrogynoplaxlarvaegut465 ColeopteralowlarvaePhalloceros harpagosNAgut483 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut494 ColeopteralowNACharacidium laneiNAgut257 ColeopteralowNACharacidium laneiNAgut266 ColeopterahighNACharacidium laneiNAgut274 ColeopterahighNACharacidium laneiNAgut243 CollembolalowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	392 Chlorophyceae	medium	NA	Mimagoniates lateralis	NA	gut	46
454 ChlorophyceaehighNAPhalloceros harpagosNAgut509 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut7 ColeopterahighlarvaeAnacroneurialarvaegut101 ColeopterahighlarvaeKempnyiaKempnyialarvaegut156 ColeopterahighlarvaeMacrogynoplaxlarvaegut465 ColeopteralowlarvaePhalloceros harpagosNAgut483 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut257 ColeopteralowNACharacidium laneiNAgut266 ColeopteralowNACharacidium laneiNAgut274 ColeopterahighNACharacidium laneiNAgut243 CollembolalowNACharacidium laneiNAgut	425 Chlorophyceae	medium	NA	Mimagoniates microlepis	NA	gut	46
509 ChlorophyceaehighNASchizolecis guntheriNAgut516 ChlorophyceaehighNASchizolecis guntheriNAgut7 ColeopterahighlarvaeAnacroneurialarvaegut101 ColeopterahighlarvaeKempnyialarvaegut156 ColeopterahighlarvaeMacrogynoplaxlarvaegut465 ColeopteralowlarvaePhalloceros harpagosNAgut483 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut257 ColeopteralowNACharacidium laneiNAgut266 ColeopteralowNACharacidium laneiNAgut274 ColeopterahighNACharacidium laneiNAgut243 CollembolalowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	454 Chlorophyceae	high	NA	Phalloceros harpagos	NA	gut	46
516 ChlorophyceaehighNASchizolecis guntheriNAgut7 ColeopterahighlarvaeAnacroneurialarvaegut101 ColeopterahighlarvaeKempnyialarvaegut156 ColeopterahighlarvaeMacrogynoplaxlarvaegut465 ColeopteralowlarvaePhalloceros harpagosNAgut483 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut494 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut257 ColeopteralowNACharacidium laneiNAgut266 ColeopterahighNACharacidium laneiNAgut274 ColeopterahighNACharacidium laneiNAgut243 CollembolalowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	509 Chlorophyceae	high	NA	Schizolecis guntheri	NA	gut	49
7 ColeopterahighlarvaeAnacroneurialarvaegut101 ColeopterahighlarvaeKempnyialarvaegut156 ColeopterahighlarvaeMacrogynoplaxlarvaegut465 ColeopteralowlarvaePhalloceros harpagosNAgut483 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut494 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut257 ColeopteralowNACharacidium laneiNAgut266 ColeopteralowNACharacidium laneiNAgut274 ColeopterahighNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	516 Chlorophyceae	high	NA	Schizolecis guntheri	NA	gut	46
101 ColeopterahighlarvaeKempnyialarvaegut156 ColeopterahighlarvaeMacrogynoplaxlarvaegut465 ColeopteralowlarvaePhalloceros harpagosNAgut483 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut494 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut257 ColeopteralowNACharacidium laneiNAgut266 ColeopteralowNACharacidium laneiNAgut274 ColeopterahighNACharacidium laneiNAgut243 CollembolalowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	7 Coleoptera	high	larvae	Anacroneuria	larvae	gut	2
156 ColeopterahighlarvaeMacrogynoplaxlarvaegut465 ColeopteralowlarvaePhalloceros harpagosNAgut483 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut494 ColeopteralowlarvaeRhadmia quelamdia (Rhamdia quelen)NAgut257 ColeopteralowNACharacidium laneiNAgut266 ColeopteralowNACharacidium laneiNAgut274 ColeopterahighNACharacidium laneiNAgut243 CollembolalowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	101 Coleoptera	high	larvae	Kempnyia	larvae	gut	2
465 ColeopteraIowIarvaePhalloceros harpagosNAgut483 ColeopteraIowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut494 ColeopteraIowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut257 ColeopteraIowNACharacidium laneiNAgut266 ColeopteraIowNACharacidium laneiNAgut274 ColeopterahighNACharacidium laneiNAgut243 CollembolaIowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	156 Coleoptera	high	larvae	Macrogynoplax	larvae	gut	2
483 ColeopteraIowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut494 ColeopteraIowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut257 ColeopteraIowNACharacidium IaneiNAgut266 ColeopteraIowNACharacidium IaneiNAgut274 ColeopterahighNACharacidium IaneiNAgut243 CollembolaIowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	465 Coleoptera	low	larvae	Phalloceros harpagos	NA	gut	32
494 ColeopteraIowIarvaeRhadmia quelamdia (Rhamdia quelen)NAgut257 ColeopteraIowNACharacidium laneiNAgut266 ColeopteraIowNACharacidium laneiNAgut274 ColeopterahighNACharacidium laneiNAgut243 CollembolaIowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	483 Coleoptera	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
257 ColeopteraIowNACharacidium IaneiNAgut266 ColeopteraIowNACharacidium IaneiNAgut274 ColeopterahighNACharacidium IaneiNAgut243 CollembolaIowNAAcentroniechlis Ieptos (correct name is Acentronichthys)NAgut	494 Coleoptera	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
266 ColeopteraIowNACharacidium laneiNAgut274 ColeopterahighNACharacidium laneiNAgut243 CollembolaIowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	257 Coleoptera	low	NA	Characidium lanei	NA	gut	36
274 ColeopterahighNACharacidium laneiNAgut243 CollembolalowNAAcentroniechlis leptos (correct name is Acentronichthys)NAgut	266 Coleoptera	low	NA	Characidium lanei	NA	gut	37
243 Collembola low NA Acentroniechlis leptos (correct name is Acentronichthys) NA gut	274 Coleoptera	high	NA	Characidium lanei	NA	gut	38
	243 Collembola	low	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	35

281 Collembola	low	NA	Characidium lanei	NA	gut	39
307 Copepoda	low	NA	Deuterodon iguape	NA	gut	32
230 Crustacea	low	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	32
242 Crustacea	low	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	35
285 Crustacea	low	NA	Deuterodon iguape	NA	gut	35
323 Crustacea	high	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	33
340 Crustacea	low	NA	Hollandichthys multifasciatus	NA	gut	43
348 Crustacea	medium	NA	Hollandichthys multifasciatus	NA	gut	33
357 Crustacea	low	NA	Hollandichthys multifasciatus	NA	gut	35
359 Crustacea	high	NA	Hoplias malabaricus	NA	gut	33
361 Crustacea	high	NA	Hoplias malabaricus	NA	gut	40
363 Crustacea	high	NA	Hoplias malabaricus	NA	gut	44
376 Crustacea	medium	NA	Mimagoniates lateralis	NA	gut	35
396 Crustacea	medium	NA	Mimagoniates lateralis	NA	gut	46
409 Crustacea	medium	NA	Mimagoniates microlepis	NA	gut	35
429 Crustacea	medium	NA	Mimagoniates microlepis	NA	gut	46
477 Crustacea	high	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
513 Crustacea	low	NA	Schizolecis guntheri	NA	gut	49
510 Cyanophyta	low	NA	Schizolecis guntheri	NA	gut	49
517 Cyanophyta	high	NA	Schizolecis guntheri	NA	gut	46
486 Decapoda	high	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
495 Decapoda	high	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
117 detritus	low	larvae	Kempnyia	larvae	gut	4
172 detritus	low	larvae	Macrogynoplax	larvae	gut	4
2 detritus	low	NA	Anacroneuria	larvae	gut	1
23 detritus	low	NA	Anacroneuria	larvae	gut	4
34 detritus	high	NA	Baetidae	larvae	review	6
40 detritus	high	NA	Campsurus	larvae	gut	9
41 detritus	low	NA	Ceratopogoniae	larvae	gut	4
45 detritus	high	NA	Chimarra	larvae	gut	4
47 detritus	high	NA	Chironomidae	larvae	gut	9

56 detritus	high	NA	Cyrnellus	larvae	gut	12
69 detritus	high	NA	Farrodes	larvae	gut	15
74 detritus	high	NA	Gripopteryx	larvae	gut	17
76 detritus	high	NA	Helicopsyche	larvae	gut	4
82 detritus	high	NA	Heterelmis_a	larvae	gut	4
84 detritus	high	NA	Heterelmis_l	larvae	gut	4
86 detritus	high	NA	Hexacylloepus_l	larvae	gut	4
88 detritus	low	NA	Hydrobiosidae	larvae	gut	4
91 detritus	high	NA	Hydropsychidae_spA	larvae	gut	4
96 detritus	low	NA	Kempnyia	larvae	gut	1
120 detritus	high	NA	Leptoceridae	larvae	gut	4
123 detritus	high	NA	Leptohyphes	larvae	gut	4
125 detritus	high	NA	Leptonema	larvae	gut	4
128 detritus	high	NA	Leptophlebiidae_spA	larvae	gut	15
134 detritus	high	NA	Macrelmis_a	adult	gut	4
136 detritus	high	NA	Macrelmis_I	larvae	gut	4
140 detritus	high	NA	Macrobrachium_(<2cmBL)	NA	isotope_ar	18
144 detritus	high	NA	Macrobrachium_(>4.5cmBL)	NA	isotope_ar	18
148 detritus	high	NA	Macrobrachium_(2<4.5cmBL)	NA	isotope_ar	18
151 detritus	low	NA	Macrogynoplax	larvae	gut	1
178 detritus	low	NA	Macronema	larvae	gut	20
180 detritus	high	NA	Miroculis	larvae	gut	21
182 detritus	high	NA	Neoelmis_a	adult	gut	4
184 detritus	high	NA	Neoelmis_l	larvae	gut	4
188 detritus	low	NA	Oligochaeta_spA	NA	gut	23
189 detritus	high	NA	Phylloicus	larvae	gut	24
193 detritus	high	NA	Psephenus	larvae	gut	4
198 detritus	high	NA	Smicridea	larvae	gut	4
202 detritus	high	NA	Smicridea	larvae	gut	26
220 detritus	high	NA	Tanypodinae	larvae	gut	28
287 Detritus	high	NA	Deuterodon iguape	NA	gut	35

296 Detritus	low	NA	Deuterodon iguape	NA	gut	34
299 Detritus	low	NA	Deuterodon iguape	NA	gut	33
305 Detritus	low	NA	Deuterodon iguape	NA	gut	32
321 Detritus	high	NA	Deuterodon iguape	NA	gut	38
324 Detritus	high	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	33
344 Detritus	high	NA	Hollandichthys multifasciatus	NA	gut	32
351 Detritus	low	NA	Hollandichthys multifasciatus	NA	gut	33
438 Detritus	high	NA	Phalloceros harpagos	NA	gut	46
452 Detritus	high	NA	Phalloceros harpagos	NA	gut	42
467 Detritus	high	NA	Phalloceros harpagos	NA	gut	32
470 Detritus	high	NA	Phalloceros harpagos	NA	gut	34
471 Detritus	high	NA	Phalloceros harpagos	NA	gut	35
476 Detritus	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	47
491 Detritus	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
195 diatoms	high	NA	Simulium	larvae	gut	25
203 diatoms	high	NA	Smicridea	larvae	gut	26
212 diatoms	medium	NA	Synoestropsis	larvae	gut	27
221 diatoms	medium	NA	Tanypodinae	larvae	gut	28
301 Diatoms	high	NA	Deuterodon iguape	NA	gut	32
311 Diatoms	high	NA	Deuterodon iguape	NA	gut	38
461 Diatoms	high	NA	Phalloceros harpagos	NA	gut	32
286 Diplopoda	low	NA	Deuterodon iguape	NA	gut	35
260 Diptera	high	larvae	Characidium lanei	NA	gut	36
267 Diptera	high	larvae	Characidium lanei	NA	gut	37
276 Diptera	high	larvae	Characidium lanei	NA	gut	38
497 Diptera	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
444 Dytiscidae	low	larvae	Phalloceros harpagos	NA	gut	46
400 eggs	low	NA	Mimagoniates lateralis	NA	gut	46
433 eggs	low	NA	Mimagoniates microlepis	NA	gut	46
503 eggs	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
8 Ephemeroptera	high	larvae	Anacroneuria	larvae	gut	2

27 Ephemeroptera	high	larvae	Anacroneuria	larvae	gut	16
31 Ephemeroptera	high	larvae	Argia	larvae	gut	16
66 Ephemeroptera	high	larvae	Dythemis	larvae	gut	16
72 Ephemeroptera	high	larvae	Gomphidae	larvae	gut	16
80 Ephemeroptera	high	larvae	Heteragrion	larvae	gut	16
102 Ephemeroptera	high	larvae	Kempnyia	larvae	gut	2
132 Ephemeroptera	high	larvae	Libellulidae_spA	larvae	gut	16
157 Ephemeroptera	high	larvae	Macrogynoplax	larvae	gut	2
176 Ephemeroptera	high	larvae	Macrogynoplax	larvae	gut	16
213 Ephemeroptera	low	larvae	Synoestropsis	larvae	gut	27
253 Ephemeroptera	high	larvae	Characidium lanei	NA	gut	36
272 Ephemeroptera	high	larvae	Characidium lanei	NA	gut	38
279 Ephemeroptera	high	larvae	Characidium lanei	NA	gut	39
316 Ephemeroptera	medium	larvae	Deuterodon iguape	NA	gut	38
327 Ephemeroptera	high	larvae	Gymninotus pantherinus (Gymnotus?)	NA	gut	40
385 Ephemeroptera	medium	larvae	Mimagoniates lateralis	NA	gut	40
401 Ephemeroptera	high	larvae	Mimagoniates lateralis	NA	gut	45
418 Ephemeroptera	medium	larvae	Mimagoniates microlepis	NA	gut	40
434 Ephemeroptera	high	larvae	Mimagoniates microlepis	NA	gut	45
441 Ephemeroptera	low	larvae	Phalloceros harpagos	NA	gut	46
488 Ephemeroptera	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
496 Ephemeroptera	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
121 filamentous_algae	low	NA	Leptoceridae	larvae	gut	4
204 filamentous_algae	high	NA	Smicridea	larvae	gut	26
302 filamentous_algae	high	NA	Deuterodon iguape	NA	gut	32
312 filamentous_algae	high	NA	Deuterodon iguape	NA	gut	38
393 filamentous_algae	low	NA	Mimagoniates lateralis	NA	gut	46
426 filamentous_algae	low	NA	Mimagoniates microlepis	NA	gut	46
456 filamentous_algae	high	NA	Phalloceros harpagos	NA	gut	46
462 filamentous_algae	high	NA	Phalloceros harpagos	NA	gut	32
492 filamentous_algae	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48

519 filamentous_algae	high	NA	Schizolecis guntheri	NA	gut	46
35 fish	low	NA	Belostomatidae	adult	trial	7
234 fish	low	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	32
308 fish	low	NA	Deuterodon iguape	NA	gut	32
333 fish	low	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	41
360 fish	low	NA	Hoplias malabaricus	NA	gut	33
362 fish	medium	NA	Hoplias malabaricus	NA	gut	40
364 fish	high	NA	Hoplias malabaricus	NA	gut	44
448 fish	low	NA	Phalloceros harpagos	NA	gut	46
472 fish	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	47
478 fish	high	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
489 fish	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
504 fish	high	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
526 fish	high	NA	Symbranchus marmoratus (Synbranchus)	NA	gut	52
529 fish	low	NA	Symbranchus marmoratus (Synbranchus)	NA	gut	34
350 fruits_seeds	high	NA	Hollandichthys multifasciatus	NA	gut	33
205 fungi	low	NA	Smicridea	larvae	gut	26
36 Gastropoda	high	NA	Belostomatidae	adult	trial	7
60 Gastropoda	low	NA	Dugesia	NA	trial	13
484 Gastropoda	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
370 Geophagus brasiliensis	high	NA	Hoplias malabaricus	NA	gut	45
15 Glossomatidae	high	larvae	Anacroneuria	larvae	gut	3
109 Glossomatidae	high	larvae	Kempnyia	larvae	gut	3
164 Glossomatidae	high	larvae	Macrogynoplax	larvae	gut	3
256 Hemiptera	low	NA	Characidium lanei	NA	gut	36
265 Hemiptera	low	NA	Characidium lanei	NA	gut	37
318 Hemiptera	medium	NA	Deuterodon iguape	NA	gut	38
485 Hemiptera	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
498 Hemiptera	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
16 Hydrobiosidae	high	larvae	Anacroneuria	larvae	gut	3
110 Hydrobiosidae	high	larvae	Kempnyia	larvae	gut	3

165 Hydrobiosidae	high	larvae	Macrogynoplax	larvae	gut	3
17 Hydroptilidae	high	larvae	Anacroneuria	larvae	gut	3
111 Hydroptilidae	high	larvae	Kempnyia	larvae	gut	3
166 Hydroptilidae	high	larvae	Macrogynoplax	larvae	gut	3
227 Insects	high	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	31
236 insects	high	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	33
238 insects	high	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	34
245 insects	high	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	35
246 insects	high	NA	Characidium lanei	NA	gut	34
249 insects	high	NA	Characidium lanei	NA	gut	33
290 insects	high	NA	Deuterodon iguape	NA	gut	35
293 insects	high	NA	Deuterodon iguape	NA	gut	34
300 insects	medium	NA	Deuterodon iguape	NA	gut	33
306 insects	high	NA	Deuterodon iguape	NA	gut	32
322 insects	high	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	33
329 insects	high	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	40
334 insects	low	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	41
335 insects	high	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	42
345 insects	high	NA	Hollandichthys multifasciatus	NA	gut	32
347 insects	high	NA	Hollandichthys multifasciatus	NA	gut	33
356 insects	high	NA	Hollandichthys multifasciatus	NA	gut	35
377 insects	high	NA	Mimagoniates lateralis	NA	gut	35
379 insects	high	NA	Mimagoniates lateralis	NA	gut	34
381 insects	low	NA	Mimagoniates lateralis	NA	gut	33
388 insects	high	NA	Mimagoniates lateralis	NA	gut	40
399 insects	high	NA	Mimagoniates lateralis	NA	gut	46
410 insects	high	NA	Mimagoniates microlepis	NA	gut	35
412 insects	high	NA	Mimagoniates microlepis	NA	gut	34
414 insects	low	NA	Mimagoniates microlepis	NA	gut	33
421 insects	high	NA	Mimagoniates microlepis	NA	gut	40
432 insects	high	NA	Mimagoniates microlepis	NA	gut	46

450 insects	low	NA	Phalloceros harpagos	NA	gut	42
458 insects	high	NA	Phalloceros harpagos	NA	gut	46
460 insects	high	NA	Phalloceros harpagos	NA	gut	32
466 insects	low	NA	Phalloceros harpagos	NA	gut	32
468 insects	low	NA	Phalloceros harpagos	NA	gut	34
524 Insects	high	NA	Symbranchus marmoratus (Synbranchus)	NA	gut	50
527 insects	low	NA	Symbranchus marmoratus (Synbranchus)	NA	gut	52
528 insects	high	NA	Symbranchus marmoratus (Synbranchus)	NA	gut	34
215 Lepidoptera	low	larvae	Synoestropsis	larvae	gut	27
233 Lepidoptera	high	larvae	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	32
259 Lepidoptera	low	larvae	Characidium lanei	NA	gut	36
402 Lepidoptera	high	larvae	Mimagoniates lateralis	NA	gut	45
435 Lepidoptera	high	larvae	Mimagoniates microlepis	NA	gut	45
487 Lepidoptera	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
506 Lepidoptera	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
18 Leptoceridae	high	larvae	Anacroneuria	larvae	gut	3
112 Leptoceridae	high	larvae	Kempnyia	larvae	gut	3
167 Leptoceridae	high	larvae	Macrogynoplax	larvae	gut	3
19 Leptohyphidae	low	larvae	Anacroneuria	larvae	gut	3
113 Leptohyphidae	low	larvae	Kempnyia	larvae	gut	3
168 Leptohyphidae	low	larvae	Macrogynoplax	larvae	gut	3
9 Leptophlebiidae	low	larvae	Anacroneuria	larvae	gut	2
20 Leptophlebiidae	low	larvae	Anacroneuria	larvae	gut	3
103 Leptophlebiidae	low	larvae	Kempnyia	larvae	gut	2
114 Leptophlebiidae	low	larvae	Kempnyia	larvae	gut	3
158 Leptophlebiidae	low	larvae	Macrogynoplax	larvae	gut	2
169 Leptophlebiidae	low	larvae	Macrogynoplax	larvae	gut	3
216 Leptophlebiidae	medium	larvae	Synoestropsis	larvae	gut	27
3 macroalgae	low	NA	Anacroneuria	larvae	gut	1
97 macroalgae	low	NA	Kempnyia	larvae	gut	1
152 macroalgae	low	NA	Macrogynoplax	larvae	gut	1

22	23 macroalgae	medium	NA	Tanypodinae	larvae	gut	28
2	24 macroinvertebrates	high	larvae	Anacroneuria	larvae	gut	4
2	29 macroinvertebrates	medium	larvae	Argia	larvae	trial	5
11	18 macroinvertebrates	high	larvae	Kempnyia	larvae	gut	4
17	73 macroinvertebrates	high	larvae	Macrogynoplax	larvae	gut	4
Э	37 macroinvertebrates	high	NA	Belostomatidae	adult	trial	7
Z	12 macroinvertebrates	high	NA	Ceratopogoniae	larvae	gut	4
Z	14 macroinvertebrates	high	NA	Cernotina	larvae	review	10
5	55 macroinvertebrates	high	NA	Corydalus	adult	gut	4
e	53 macroinvertebrates	medium	NA	Dythemis	larvae	trial	5
ξ	39 macroinvertebrates	high	NA	Hydrobiosidae	larvae	gut	4
ç	92 macroinvertebrates	medium	NA	Hydropsychidae_spA	larvae	gut	4
12	26 macroinvertebrates	high	NA	Leptonema	larvae	gut	4
12	29 macroinvertebrates	medium	NA	Libellulidae_spA	larvae	trial	5
18	36 macroinvertebrates	high	NA	Oecetis	larvae	gut	22
19	99 macroinvertebrates	low	NA	Smicridea	larvae	gut	4
20	06 macroinvertebrates	high	NA	Smicridea	larvae	gut	26
21	14 macroinvertebrates	high	NA	Synoestropsis	larvae	gut	27
22	22 macroinvertebrates	high	NA	Tanypodinae	larvae	gut	28
22	25 macroinvertebrates	low	NA	Veliidae_spA	adult	observatio	30
	4 macrophytes	low	NA	Anacroneuria	larvae	gut	1
2	18 macrophytes	low	NA	Chironomidae	larvae	gut	9
ç	98 macrophytes	low	NA	Kempnyia	larvae	gut	1
15	53 macrophytes	low	NA	Macrogynoplax	larvae	gut	1
22	29 macrophytes	high	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	32
30	04 macrophytes	low	NA	Deuterodon iguape	NA	gut	32
51	14 macrophytes	high	NA	Schizolecis guntheri	NA	gut	49
50	00 Megaloptera	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
e	51 microcrustaceans	low	NA	Dugesia	NA	trial	13
Э	38 microinvertebrates	high	NA	Blepharopus	larvae	gut	8
Z	19 microinvertebrates	low	NA	Chironomidae	larvae	gut	9

54 microinvertebrates	high	NA	Corixidae	adult	trial	11
57 microinvertebrates	high	NA	Cyrnellus	larvae	gut	12
196 microinvertebrates	high	NA	Simulium	larvae	gut	25
197 microinvertebrates	low	NA	Simulium	larvae	gut	25
119 microphytes	low	larvae	Kempnyia	larvae	gut	4
174 microphytes	low	larvae	Macrogynoplax	larvae	gut	4
5 microphytes	low	NA	Anacroneuria	larvae	gut	1
25 microphytes	low	NA	Anacroneuria	larvae	gut	4
33 microphytes	high	NA	Baetidae	larvae	gut	4
39 microphytes	high	NA	Blepharopus	larvae	gut	8
43 microphytes	low	NA	Ceratopogoniae	larvae	gut	4
46 microphytes	low	NA	Chimarra	larvae	gut	4
50 microphytes	low	NA	Chironomidae	larvae	gut	9
58 microphytes	high	NA	Cyrnellus	larvae	gut	12
75 microphytes	high	NA	Gripopteryx	larvae	isotope	18
77 microphytes	high	NA	Helicopsyche	larvae	gut	4
83 microphytes	high	NA	Heterelmis_a	larvae	gut	4
85 microphytes	high	NA	Heterelmis_l	larvae	gut	4
87 microphytes	high	NA	Hexacylloepus_l	larvae	gut	4
90 microphytes	low	NA	Hydrobiosidae	larvae	gut	4
93 microphytes	medium	NA	Hydropsychidae_spA	larvae	gut	4
94 microphytes	high	NA	Hydroptilidae	larvae	trial	19
99 microphytes	low	NA	Kempnyia	larvae	gut	1
122 microphytes	low	NA	Leptoceridae	larvae	gut	4
124 microphytes	high	NA	Leptohyphes	larvae	gut	4
127 microphytes	high	NA	Leptonema	larvae	gut	4
135 microphytes	high	NA	Macrelmis_a	adult	gut	4
137 microphytes	high	NA	Macrelmis_l	larvae	gut	4
141 microphytes	high	NA	Macrobrachium_(<2cmBL)	NA	isotope_ar	18
145 microphytes	high	NA	Macrobrachium_(>4.5cmBL)	NA	isotope_ar	18
149 microphytes	high	NA	Macrobrachium_(2<4.5cmBL)	NA	isotope_ar	18

154	microphytes	low	NA	Macrogynoplax	larvae	gut		1
179	microphytes	high	NA	Macronema	larvae	gut		20
181	microphytes	high	NA	Miroculis	larvae	gut		21
183	microphytes	low	NA	Neoelmis_a	adult	gut		4
185	microphytes	low	NA	Neoelmis_l	larvae	gut		4
190	microphytes	medium	NA	Phylloicus	larvae	gut		24
194	microphytes	high	NA	Psephenus	larvae	gut		4
200	microphytes	low	NA	Smicridea	larvae	gut		4
209	microphytes	high	NA	Snail_spA	NA	obervatio	on NA	
368	Mimagoniates microlepis	high	NA	Hoplias malabaricus	NA	gut		45
251	Mollusca	low	NA	Characidium lanei	NA	gut		36
289	Mollusca	low	NA	Deuterodon iguape	NA	gut		35
374	Mollusca	low	NA	Mimagoniates lateralis	NA	gut		35
407	Mollusca	low	NA	Mimagoniates microlepis	NA	gut		35
51	NA	NA	NA	Coleoptera_larvae	larvae	NA	NA	
59	NA	NA	NA	Diptera_larvae_A	larvae	NA	NA	
68	NA	NA	NA	Elmidae_larvaeA	larvae	NA	NA	
192	NA	NA	NA	Pitlodactylidae_spA	larvae	NA	NA	
261	Nematoda	low	NA	Characidium lanei	NA	gut		36
270	Nematoda	low	NA	Characidium lanei	NA	gut		37
309	Nematoda	low	NA	Deuterodon iguape	NA	gut		32
314	Nematoda	low	NA	Deuterodon iguape	NA	gut		38
355	Nematoda	low	NA	Hollandichthys multifasciatus	NA	gut		35
373	Nematoda	low	NA	Mimagoniates lateralis	NA	gut		35
383	Nematoda	high	NA	Mimagoniates lateralis	NA	gut		40
395	Nematoda	medium	NA	Mimagoniates lateralis	NA	gut		46
406	Nematoda	low	NA	Mimagoniates microlepis	NA	gut		35
416	Nematoda	high	NA	Mimagoniates microlepis	NA	gut		40
428	Nematoda	medium	NA	Mimagoniates microlepis	NA	gut		46
254	Odonata	low	larvae	Characidium lanei	NA	gut		36
263	Odonata	low	larvae	Characidium lanei	NA	gut		37

280) Odonata	low	larvae	Characidium lanei	NA	gut	39
338	0donata	low	larvae	Hollandichthys multifasciatus	NA	gut	43
365	o Odonata	low	larvae	Hoplias malabaricus	NA	gut	45
403	Odonata	low	larvae	Mimagoniates lateralis	NA	gut	45
436	o Odonata	low	larvae	Mimagoniates microlepis	NA	gut	45
443	Odonata	low	larvae	Phalloceros harpagos	NA	gut	46
474	Odonata	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	47
501	Odonata	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
53	Oligochaeta	high	NA	Corixidae	adult	trial	11
62	Oligochaeta	high	NA	Dugesia	NA	trial	13
341	Oligochaeta	high	NA	Hollandichthys multifasciatus	NA	gut	43
464	Oligochaeta	high	NA	Phalloceros harpagos	NA	gut	32
482	Oligochaeta	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
502	Oligochaeta	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
269	Ostracoda	low	NA	Characidium lanei	NA	gut	37
228	periphyton	low	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	31
292	periphyton	low	NA	Deuterodon iguape	NA	gut	35
479	plant_seeds	high	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
522	plant_seeds	high	NA	Schizolecis guntheri	NA	gut	46
237	' plant_tissue	low	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	33
239	plant_tissue	low	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	34
248	plant_tissue	low	NA	Characidium lanei	NA	gut	34
262	plant_tissue	low	NA	Characidium lanei	NA	gut	36
291	plant_tissue	high	NA	Deuterodon iguape	NA	gut	35
295	plant_tissue	low	NA	Deuterodon iguape	NA	gut	34
298	plant_tissue	high	NA	Deuterodon iguape	NA	gut	33
303	plant_tissue	high	NA	Deuterodon iguape	NA	gut	32
313	plant_tissue	high	NA	Deuterodon iguape	NA	gut	38
325	plant_tissue	low	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	33
332	plant_tissue	high	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	41
336	i plant_tissue	high	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	42

343 plant_tissue	medium	NA	Hollandichthys multifasciatus	NA	gut	43
349 plant_tissue	low	NA	Hollandichthys multifasciatus	NA	gut	33
353 plant_tissue	low	NA	Hollandichthys multifasciatus	NA	gut	34
358 plant_tissue	low	NA	Hollandichthys multifasciatus	NA	gut	35
389 plant_tissue	medium	NA	Mimagoniates lateralis	NA	gut	40
394 plant_tissue	medium	NA	Mimagoniates lateralis	NA	gut	46
422 plant_tissue	medium	NA	Mimagoniates microlepis	NA	gut	40
427 plant_tissue	medium	NA	Mimagoniates microlepis	NA	gut	46
439 plant_tissue	high	NA	Phalloceros harpagos	NA	gut	46
451 plant_tissue	medium	NA	Phalloceros harpagos	NA	gut	42
457 plant_tissue	high	NA	Phalloceros harpagos	NA	gut	46
463 plant_tissue	high	NA	Phalloceros harpagos	NA	gut	32
499 plant_tissue	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
521 plant_tissue	high	NA	Schizolecis guntheri	NA	gut	46
191 plant_tissues	low	NA	Phylloicus	larvae	gut	24
207 plant_tissues	high	NA	Smicridea	larvae	gut	26
217 plant_tissues	low	NA	Synoestropsis	larvae	gut	27
224 plant_tissues	high	NA	Tipulidae_spA	larvae	gut	29
255 Plecoptera	low	larvae	Characidium lanei	NA	gut	36
264 Plecoptera	low	larvae	Characidium lanei	NA	gut	37
273 Plecoptera	medium	larvae	Characidium lanei	NA	gut	38
317 Plecoptera	medium	larvae	Deuterodon iguape	NA	gut	38
446 Plecoptera	low	larvae	Phalloceros harpagos	NA	gut	46
505 Plecoptera	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
371 Poecilia vivipara	high	NA	Hoplias malabaricus	NA	gut	45
208 pollen	low	NA	Smicridea	larvae	gut	26
218 Porifera	medium	NA	Synoestropsis	larvae	gut	27
523 Protist	high	NA	Schizolecis guntheri	NA	gut	46
10 Simuliidae	high	larvae	Anacroneuria	larvae	gut	2
21 Simuliidae	high	larvae	Anacroneuria	larvae	gut	3
28 Simuliidae	high	larvae	Anacroneuria	larvae	gut	16

32	Simuliidae	high	larvae	Argia	larvae	gut	16
67	Simuliidae	high	larvae	Dythemis	larvae	gut	16
73	Simuliidae	high	larvae	Gomphidae	larvae	gut	16
81	Simuliidae	high	larvae	Heteragrion	larvae	gut	16
104	Simuliidae	high	larvae	Кетрпуіа	larvae	gut	2
115	Simuliidae	high	larvae	Kempnyia	larvae	gut	3
133	Simuliidae	high	larvae	Libellulidae_spA	larvae	gut	16
159	Simuliidae	high	larvae	Macrogynoplax	larvae	gut	2
170	Simuliidae	high	larvae	Macrogynoplax	larvae	gut	3
177	Simuliidae	high	larvae	Macrogynoplax	larvae	gut	16
232	Simuliidae	high	larvae	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	32
512	Simuliidae	low	larvae	Schizolecis guntheri	NA	gut	49
11	Smicridea	high	larvae	Anacroneuria	larvae	gut	2
105	Smicridea	high	larvae	Kempnyia	larvae	gut	2
160	Smicridea	high	larvae	Macrogynoplax	larvae	gut	2
22	Tabanidae	low	larvae	Anacroneuria	larvae	gut	3
116	Tabanidae	low	larvae	Kempnyia	larvae	gut	3
171	Tabanidae	low	larvae	Macrogynoplax	larvae	gut	3
201	terrestrial_invertebrates_	low	NA	Smicridea	larvae	gut	4
226	terrestrial_invertebrates_	high	NA	Veliidae_spA	adult	observatio	30
235	terrestrial_invertebrates_	high	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	32
244	terrestrial_invertebrates_	low	NA	Acentroniechlis leptos (correct name is Acentronichthys)	NA	gut	35
247	terrestrial_invertebrates_	low	NA	Characidium lanei	NA	gut	34
250	terrestrial_invertebrates_	low	NA	Characidium lanei	NA	gut	33
277	terrestrial_invertebrates_	medium	NA	Characidium lanei	NA	gut	38
294	terrestrial_invertebrates_	low	NA	Deuterodon iguape	NA	gut	34
297	terrestrial_invertebrates_	high	NA	Deuterodon iguape	NA	gut	33
310	terrestrial_invertebrates_	high	NA	Deuterodon iguape	NA	gut	32
319	terrestrial_invertebrates_	high	NA	Deuterodon iguape	NA	gut	38
330	terrestrial_invertebrates_	low	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	40
331	terrestrial_invertebrates_	low	NA	Gymninotus pantherinus (Gymnotus?)	NA	gut	41

342 terrestrial_invertebrates_	high	NA	Hollandichthys multifasciatus	NA	gut	43
346 terrestrial_invertebrates_	high	NA	Hollandichthys multifasciatus	NA	gut	32
352 terrestrial_invertebrates_	high	NA	Hollandichthys multifasciatus	NA	gut	34
354 terrestrial_invertebrates_	high	NA	Hollandichthys multifasciatus	NA	gut	35
366 terrestrial_invertebrates_	low	NA	Hoplias malabaricus	NA	gut	45
372 terrestrial_invertebrates_	high	NA	Mimagoniates lateralis	NA	gut	35
378 terrestrial_invertebrates_	high	NA	Mimagoniates lateralis	NA	gut	34
380 terrestrial_invertebrates_	high	NA	Mimagoniates lateralis	NA	gut	33
390 terrestrial_invertebrates_	high	NA	Mimagoniates lateralis	NA	gut	40
398 terrestrial_invertebrates_	high	NA	Mimagoniates lateralis	NA	gut	46
404 terrestrial_invertebrates_	high	NA	Mimagoniates lateralis	NA	gut	45
405 terrestrial_invertebrates_	high	NA	Mimagoniates microlepis	NA	gut	35
411 terrestrial_invertebrates_	high	NA	Mimagoniates microlepis	NA	gut	34
413 terrestrial_invertebrates_	high	NA	Mimagoniates microlepis	NA	gut	33
423 terrestrial_invertebrates_	high	NA	Mimagoniates microlepis	NA	gut	40
431 terrestrial_invertebrates_	high	NA	Mimagoniates microlepis	NA	gut	46
437 terrestrial_invertebrates_	high	NA	Mimagoniates microlepis	NA	gut	45
442 terrestrial_invertebrates_	low	NA	Phalloceros harpagos	NA	gut	46
475 terrestrial_invertebrates_	high	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	47
480 terrestrial_invertebrates_	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	44
493 terrestrial_invertebrates_	low	NA	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
12 Trichoptera	high	larvae	Anacroneuria	larvae	gut	2
106 Trichoptera	high	larvae	Kempnyia	larvae	gut	2
161 Trichoptera	high	larvae	Macrogynoplax	larvae	gut	2
219 Trichoptera	low	larvae	Synoestropsis	larvae	gut	27
258 Trichoptera	high	larvae	Characidium lanei	NA	gut	36
275 Trichoptera	medium	larvae	Characidium lanei	NA	gut	38
386 Trichoptera	high	larvae	Mimagoniates lateralis	NA	gut	40
419 Trichoptera	high	larvae	Mimagoniates microlepis	NA	gut	40
507 Trichoptera	low	larvae	Rhadmia quelamdia (Rhamdia quelen)	NA	gut	48
455 Zignemaphyceae	high	NA	Phalloceros harpagos	NA	gut	46

518 Zignemaphyceae	high	NA	Schizolecis guntheri	NA	gut	46
447 zooplankton	low	NA	Phalloceros harpagos	NA	gut	46

full.source res.genus res.subfamres.family res.order res.class.plres.catego.con.genus con.subfan.con.family con.order con.class con.categoinformation_resolutio

0			,		0	0		,			0	
Barreto an NA	NA	NA	Acarina	Chelicerat	tainvertebr	alCharacidi	u NA	Crenuchida	Characifor	Actinopter	fish	species
Aranha et ; NA	NA	NA	Acarina	Chelicerat	tainvertebr	alCharacidi	u NA	Crenuchida	Characifor	Actinopter	⁻ fish	species
Costa 1987 NA	NA	NA	Acarina	Chelicerat	tainvertebr	aiMimagon	ia NA	Characidae	Characifor	Actinopter	[.] fish	genus
Aranha et ; NA	NA	NA	Acarina	Chelicerat	tainvertebr	aiMimagon	ia NA	Characidae	Characifor	Actinopter	[·] fish	genus
Costa 1987 NA	NA	NA	Acarina	Chelicerat	tainvertebr	aiMimagon	ia NA	Characidae	Characifor	Actinopter	[·] fish	species
Aranha et i NA	NA	NA	Acarina	Chelicerat	tainvertebr	aiMimagon	ia NA	Characidae	Characifor	Actinopter	[.] fish	species
Deus and F NA	NA	NA	Acarina	Chelicerat	tainvertebr	a Rhamdia	NA	Pimelodida	Siluriforme	Actinopter	[·] fish	species
Costa 1987 NA	NA	NA	NA	NA	algae	Gymnotu	s NA	Gymnotida	Gymnotifo	Actinopter	[·] fish	species
Costa 1987 NA	NA	NA	NA	NA	algae	Mimagon	ia NA	Characidae	Characifor	Actinopter	[·] fish	genus
Costa 1987 NA	NA	NA	NA	NA	algae	Mimagon	ia NA	Characidae	Characifor	Actinopter	[·] fish	species
Aranha et ; NA	NA	NA	NA	NA	algae	Phallocer	o: NA	Poeciliidae	Cyprinodo	Actinopter	[·] fish	species
Esteves et NA	NA	NA	NA	NA	algae	Phallocer	o: NA	Poeciliidae	Cyprinodo	Actinopter	[·] fish	genus
Costa 1987 NA	NA	NA	NA	NA	algae	Phallocer	o: NA	Poeciliidae	Cyprinodo	Actinopter	[·] fish	genus
Wolff 2012 NA	NA	NA	NA	NA	algae	Phallocer	o: NA	Poeciliidae	Cyprinodo	Actinopter	[.] fish	species
Aranha et ; NA	NA	NA	NA	NA	algae	Schizolec	is NA	Loricariida	Siluriforme	Actinopter	[·] fish	species
Brito_et_a NA	NA	NA	NA	NA	allochtor	io Macrobra	ic NA	Paleomoni	Decapoda	Crustacea	invertebra	genus
Brito_et_a NA	NA	NA	NA	NA	allochtor	io Macrobra	ic NA	Paleomoni	Decapoda	Crustacea	invertebra	genus
Brito_et_a NA	NA	NA	NA	NA	allochtor	io Macrobra	ic NA	Paleomoni	Decapoda	Crustacea	invertebra	genus
Deus and FNA	NA	NA	Amphipo	d: Crustacea	a crustacea	an Rhamdia	NA	Pimelodida	Siluriforme	Actinopter	[.] fish	species
Sierra-Laba NA	NA	NA	NA	NA	invertebr	aiAnacrone	u NA	Perlidae	Plecoptera	Insecta	invertebra	genus
Molina_et_NA	NA	NA	NA	NA	invertebr	a Dythemis	NA	Libellulida	Odonata	Insecta	invertebra	genus
Alencar_et NA	NA	NA	NA	NA	invertebr	alNA	NA	Gomphida	Odonata	Insecta	invertebra	family
Molina_et_NA	NA	NA	NA	NA	invertebr	aHeteragri	o NA	Megapoda	Odonata	Insecta	invertebra	Order
Sierra-Laba NA	NA	NA	NA	NA	invertebr	a Kempnyia	a NA	Perlidae	Plecoptera	Insecta	invertebra	family
Molina_et_NA	NA	NA	NA	NA	invertebr	aINA	NA	Libellulidae	Odonata	Insecta	invertebra	family
Brito_et_a NA	NA	NA	NA	NA	invertebr	aiMacrobra	ic NA	Paleomoni	Decapoda	Crustacea	invertebra	genus
Brito et a NA	NA	NA	NA	NA	invertebr	aiMacrobra	ic NA	Paleomoni	Decapoda	Crustacea	invertebra	genus
Brito et a NA	NA	NA	NA	NA	invertebr	aiMacrobra	ic NA	Paleomoni	Decapoda	Crustacea	invertebra	genus
 Sierra-Laba NA	NA	NA	NA	NA	invertebr	alMacrogvr	nc NA	Perlidae	Plecoptera	Insecta	invertebra	†familv
Goncalves NA	NA	NA	NA	Annelida	worm	Acentroni	ic NA	Heptanteri	Siluriforme	Actinopter	fish	species
Goncalves NA	NA	NA	NA	Annelida	worm	Deuterod	o NA	Characidae	Characifor	Actinonter	fish	species
						2000000	• · • ·	2.1.4.40.444	e			5700.00

species

species

species

species

species

species

species

species class?

species

species

Mazzoni ar NA	NA	NA	NA	Anura	anuran	Hoplias	NA	Erythrinida	Characiforı	Actinopter	fish	species
Gonçalves NA	NA	NA	Arachnida	Chelicerata	invertebra	Acentronic	NA	Heptapteri	Siluriforme	Actinopter	fish	species
Carmo et a NA	NA	NA	Arachnida	Chelicerata	invertebra	Characidiu	NA	Crenuchida	Characiforı	Actinopter	fish	genus
Gonçalves NA	NA	NA	Arachnida	Chelicerata	invertebra	Deuterodo	NA	Characidae	Characiforı	Actinopter	fish	species
Barreto an NA	NA	NA	Arachnida	Chelicerata	invertebra	Deuterodo	NA	Characidae	Characiforı	Actinopter	fish	genus
Gonçalves NA	NA	NA	Arachnida	Chelicerata	invertebra	Mimagonia	NA	Characidae	Characiforı	Actinopter	fish	genus
Gonçalves NA	NA	NA	Arachnida	Chelicerata	invertebra	Mimagonia	NA	Characidae	Characiforı	Actinopter	fish	species
Mazzoni ar Astyanax	NA	Characidae	Characiforı	Actinopter	fish	Hoplias	NA	Erythrinida	Characiforı	Actinopter	fish	species
Aranha et ; NA	NA	NA	NA	Baccilariop	algae	Mimagonia	NA	Characidae	Characiforı	Actinopter	fish	genus
Aranha et ; NA	NA	NA	NA	Baccilariop	algae	Mimagonia	NA	Characidae	Characiforı	Actinopter	fish	species
Aranha et ; NA	NA	NA	NA	Baccilariop	algae	Phallocero	NA	Poeciliidae	Cyprinodo	Actinopter	fish	genus
Aranha et ; NA	NA	NA	NA	Baccilariop	algae	Schizolecis	5 NA	Loricariida	Siluriforme	Actinopter	fish	species
Buck and S NA	NA	NA	NA	Baccilariop	algae	Schizolecis	5 NA	Loricariida	Siluriforme	Actinopter	fish	species
Harper_et_NA	NA	NA	NA	NA	bacteria	NA	NA	NA	NA	Oligochaet	worms	class?
Abilhoa et NA	NA	Belostoma	Hemiptera	Insecta	invertebra	Hollandich	NA	Characidae	Characiforı	Actinopter	fish	species
Bentes_et_NA	NA	NA	NA	Bryozoa	Bryozoa	Synoestrop	NA	Hydropsyc	Trichopter	Insecta	invertebrat	genus
Gonçalves NA	NA	NA	NA	Bryozoa	invertebrat	Deuterodo	NA	Characidae	Characiforı	Actinopter	fish	species
Gamboa_e NA	NA	Calamocer	Trichopter	Insecta	invertebra	Anacroneu	INA	Perlidae	Plecoptera	Insecta	invertebrat	genus
Gamboa_e NA	NA	Calamocer	Trichopter	Insecta	invertebrat	Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebrat	family
Gamboa_e NA	NA	Calamocer	Trichopter	Insecta	invertebrat	Macrogyno	NA	Perlidae	Plecoptera	Insecta	invertebrat	family
Carmo 201 NA	NA	NA	NA	Chelicerata	invertebra	Characidiu	NA	Crenuchida	Characiforı	Actinopter	fish	genus
Hurtado-B(NA	NA	Chironomi	Diptera	Insecta	invertebrat	Anacroneu	INA	Perlidae	Plecoptera	Insecta	invertebrat	genus
Gamboa_e NA	NA	Chironomi	Diptera	Insecta	invertebra	Anacroneu	INA	Perlidae	Plecoptera	Insecta	invertebrat	genus
Alencar_et NA	NA	Chironomi	Diptera	Insecta	invertebra	Anacroneu	INA	Perlidae	Plecoptera	Insecta	invertebrat	family
Alencar_et NA	NA	Chironomi	Diptera	Insecta	invertebra	Argia	NA	Coenagrior	Odonata	Insecta	invertebrat	family
Reynolds_; NA	NA	Chironomi	Diptera	Insecta	invertebra	NA	NA	Corixidae	Hemiptera	Insecta	invertebrat	family
Alencar_et NA	NA	Chironomi	Diptera	Insecta	invertebra	Dythemis	NA	Libellulidae	Odonata	Insecta	invertebrat	family
Alencar_et NA	NA	Chironomi	Diptera	Insecta	invertebra	NA	NA	Gomphida	Odonata	Insecta	invertebrat	family
Alencar_et NA	NA	Chironomi	Diptera	Insecta	invertebra	Heteragrio	NA	Megapoda	Odonata	Insecta	invertebrat	family
Hurtado-B(NA	NA	Chironomi	Diptera	Insecta	invertebra	Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebrat	family
Gamboa_e NA	NA	Chironomi	Diptera	Insecta	invertebra	Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebrat	family

Alencar_et NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiNA	NA	Libellulida	e Odonata	Insecta	invertebra	family
Hurtado-B(NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiMacrogy	ync NA	Perlidae	Plecoptera	Insecta	invertebra	family
Gamboa_e NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiMacrogy	ync NA	Perlidae	Plecoptera	Insecta	invertebra	family
Alencar_et NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiMacrogy	ync NA	Perlidae	Plecoptera	Insecta	invertebra	family
Bentes_et_NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiSynoest	roț NA	Hydropsyd	Trichopter	Insecta	invertebra	igenus
Esteves an NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiAcentro	nic NA	Heptapter	riSiluriforme	Actinopte	r fish	species
Aranha et ; NA	NA	Chironon	nicDiptera	Insecta	inverteb	ra [†] Characio	diu NA	Crenuchid	laCharacifor	ıActinopteı	r fish	species
Barreto an NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiDeutero	odo NA	Characida	eCharacifor	ıActinopteı	r fish	genus
Costa 1987 NA	NA	Chironon	nicDiptera	Insecta	inverteb	ra [†] Gymnot	tus NA	Gymnotid	aGymnotifo	Actinopte	r fish	species
Abilhoa et NA	NA	Chironon	nicDiptera	Insecta	inverteb	ra'Hollandi	ich NA	Characida	eCharacifor	ıActinopteı	r fish	species
Costa 1987 NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiMimago	niaNA	Characida	eCharacifor	ıActinopteı	r fish	genus
Costa 1987 NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiMimago	niaNA	Characida	eCharacifor	ıActinopteı	r fish	species
Aranha et ; NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiPhalloce	ero: NA	Poeciliida	eCyprinodo	ıActinopteı	r fish	species
Villares Jur NA	NA	Chironon	nicDiptera	Insecta	inverteb	rai Rhamdi	a NA	Pimelodid	aSiluriforme	Actinopte	r fish	species
Buck and S NA	NA	Chironon	nicDiptera	Insecta	inverteb	ra [†] Schizole	ecis NA	Loricariida	Siluriforme	Actinopte	r fish	species
Ferreira 20 NA	NA	Chironon	nicDiptera	Insecta	inverteb	raiSynbran	ich NA	Synbranch	niSynbranch	Actinopte	r fish	species
Aranha et ; NA	NA	NA	NA	Chloroph	yıalgae	Mimago	oniaNA	Characida	eCharacifor	ıActinopteı	r fish	genus
Aranha et ; NA	NA	NA	NA	Chloroph	yıalgae	Mimago	oniaNA	Characida	eCharacifor	ıActinopteı	r fish	species
Aranha et ; NA	NA	NA	NA	Chloroph	ycalgae	Phalloce	ero: NA	Poeciliida	eCyprinodo	ıActinopteı	r fish	genus
Buck and S NA	NA	NA	NA	Chloroph	ycalgae	Schizole	ecis NA	Loricariida	Siluriforme	Actinopte	r fish	species
Aranha et ; NA	NA	NA	NA	Chloroph	yıalgae	Schizole	ecis NA	Loricariida	Siluriforme	Actinopte	r fish	species
Hurtado-B(NA	NA	NA	Coleopte	ra Insecta	inverteb	raiAnacron	neu NA	Perlidae	Plecoptera	Insecta	invertebra	Igenus
Hurtado-B(NA	NA	NA	Coleopte	ra Insecta	inverteb	ra [†] Kempny	/ia NA	Perlidae	Plecoptera	Insecta	invertebra	family
Hurtado-B(NA	NA	NA	Coleopte	ra Insecta	inverteb	raiMacrogy	ync NA	Perlidae	Plecoptera	Insecta	invertebra	family
Esteves an NA	NA	NA	Coleopte	ra Insecta	inverteb	raiPhalloce	ero: NA	Poeciliida	eCyprinodo	ıActinopteı	r fish	genus
Deus and FNA	NA	NA	Coleopte	ra Insecta	inverteb	rai Rhamdi	a NA	Pimelodid	aSiluriforme	Actinopte	r fish	species
Brazil-Souz NA	NA	NA	Coleopte	ra Insecta	inverteb	ra' Rhamdi	a NA	Pimelodid	aSiluriforme	Actinopte	r fish	species
Carmo 201 NA	NA	NA	Coleopte	ra Insecta	inverteb	ratCharacio	diu NA	Crenuchid	la Characifor	ıActinopteı	r fish	genus
Carmo et a NA	NA	NA	Coleopte	ra Insecta	inverteb	ra [†] Characio	diu NA	Crenuchid	laCharacifor	ıActinopteı	r fish	genus
Barreto an NA	NA	NA	Coleopte	ra Insecta	inverteb	ratCharacio	diu NA	Crenuchid	la Characifor	ıActinopteı	r fish	species
Gonçalves NA	NA	NA	NA	Collembo	lainvertebi	raiAcentro	nic NA	Heptapter	riSiluriforme	Actinopte	r fish	species
Aranha et ; NA	NA	NA	NA	Collembol	ainvertebra	Characidiu	I NA	Crenuchid	Characifor	Actinopter	⁻ fish	species
--------------------------	----	----	----------	-----------	-------------	------------	------	-------------	-------------	-------------	-------------------	---------
Esteves an NA	NA	NA	Copepoda	Crustacea	crustacean	Deuterod	o NA	Characida	Characifor	Actinopter	⁻ fish	species
Esteves an NA	NA	NA	NA	Crustacea	crustacean	Acentroni	c NA	Heptapter	iSiluriform	eActinopter	fish	species
Gonçalves NA	NA	NA	NA	Crustacea	crustacean	Acentroni	c NA	Heptapter	iSiluriform	eActinopter	⁻ fish	species
Gonçalves NA	NA	NA	NA	Crustacea	crustacean	Deuterod	o NA	Characida	Characifor	Actinopter	⁻ fish	species
Silva 2009 NA	NA	NA	NA	Crustacea	crustacean	Gymnotu	5 NA	Gymnotida	Gymnotifo	Actinopter	fish	species
Abilhoa et NA	NA	NA	NA	Crustacea	crustacean	Hollandic	n NA	Characida	Characifor	Actinopter	⁻ fish	species
Silva 2009 NA	NA	NA	NA	Crustacea	crustacean	Hollandic	n NA	Characida	Characifor	Actinopter	⁻ fish	species
Gonçalves NA	NA	NA	NA	Crustacea	crustacean	Hollandic	n NA	Characida	Characifor	Actinopter	⁻ fish	species
Silva 2009 NA	NA	NA	NA	Crustacea	crustacean	Hoplias	NA	Erythrinida	Characifor	Actinopter	⁻ fish	species
Costa 1987 NA	NA	NA	NA	Crustacea	crustacean	Hoplias	NA	Erythrinida	Characifor	Actinopter	⁻ fish	species
Deus and FNA	NA	NA	NA	Crustacea	crustacean	Hoplias	NA	Erythrinida	Characifor	Actinopter	⁻ fish	species
Gonçalves NA	NA	NA	NA	Crustacea	crustacean	Mimagon	εNA	Characida	Characifor	Actinopter	⁻ fish	genus
Aranha et ; NA	NA	NA	NA	Crustacea	crustacean	Mimagon	εNA	Characida	Characifor	Actinopter	⁻ fish	genus
Gonçalves NA	NA	NA	NA	Crustacea	crustacean	Mimagon	εNA	Characida	Characifor	Actinopter	⁻ fish	species
Aranha et ; NA	NA	NA	NA	Crustacea	crustacean	Mimagon	εNA	Characida	Characifor	Actinopter	⁻ fish	species
Deus and F NA	NA	NA	NA	Crustacea	crustacean	Rhamdia	NA	Pimelodid	Siluriform	eActinopter	⁻ fish	species
Buck and S NA	NA	NA	NA	Crustacea	crustacean	Schizoleci	s NA	Loricariida	Siluriform	eActinopter	⁻ fish	species
Buck and S NA	NA	NA	NA	Cyanophyt	t algae	Schizoleci	s NA	Loricariida	Siluriform	eActinopter	⁻ fish	species
Aranha et ; NA	NA	NA	NA	Cyanophyt	t algae	Schizoleci	s NA	Loricariida	Siluriform	eActinopter	⁻ fish	species
Deus and F NA	NA	NA	Decapoda	Crustacea	crustacean	Rhamdia	NA	Pimelodid	Siluriform	eActinopter	⁻ fish	species
Brazil-Souz NA	NA	NA	Decapoda	Crustacea	crustacean	Rhamdia	NA	Pimelodid	Siluriform	eActinopter	⁻ fish	species
Tomanova _. NA	NA	NA	NA	NA	detritus	Kempnyia	NA	Perlidae	Plecoptera	a Insecta	invertebra	family
Tomanova _. NA	NA	NA	NA	NA	detritus	Macrogyn	c NA	Perlidae	Plecoptera	a Insecta	invertebra	family
Sierra-Laba NA	NA	NA	NA	NA	detritus	Anacrone	u NA	Perlidae	Plecoptera	a Insecta	invertebra	genus
Tomanova _. NA	NA	NA	NA	NA	detritus	Anacrone	u NA	Perlidae	Plecoptera	a Insecta	invertebra	genus
Gattolliat_ NA	NA	NA	NA	NA	detritus	NA	NA	Baetidae	Ephemero	Insecta	invertebra	family
Shimabuku NA	NA	NA	NA	NA	detritus	Campsuru	sNa	Polymitar	Ephemero	Insecta	invertebra	genus
Tomanova _. NA	NA	NA	NA	NA	detritus	NA	NA	Ceratopog	Diptera	Insecta	invertebra	family
Tomanova _. NA	NA	NA	NA	NA	detritus	Chimarra	NA	Philopotar	Trichopter	Insecta	invertebra	genus
Shimabuku NA	NA	NA	NA	NA	detritus	NA	NA	Chironomi	Diptera	Insecta	invertebra	family

Garelis_an NA	NA	NA	NA	NA	detritus	Cyrnellus NA	Polycentro Trichopter: Insecta	invertebrat family
Carvalho_a NA	NA	NA	NA	NA	detritus	Farrodes NA	LeptophletEphemeroj Insecta	invertebrat family
Loureiro_e NA	NA	NA	NA	NA	detritus	Gripoptery NA	GripopteryPlecoptera Insecta	invertebrat family
Tomanova _. NA	NA	NA	NA	NA	detritus	Helicopsyc NA	Helicopsyc Trichopter: Insecta	invertebratgenus
Tomanova _. NA	NA	NA	NA	NA	detritus	Heterelmis NA	Elmidae Coleoptera Insecta	invertebratgenus
Tomanova _. NA	NA	NA	NA	NA	detritus	Heterelmis NA	Elmidae Coleoptera Insecta	invertebratgenus
Tomanova _. NA	NA	NA	NA	NA	detritus	Hexacylloe NA	Elmidae Coleoptera Insecta	invertebrat family
Tomanova _. NA	NA	NA	NA	NA	detritus	NA NA	Hydrobiosi Trichopter: Insecta	invertebrat family
Tomanova _. NA	NA	NA	NA	NA	detritus	NA NA	Hydropsyc Trichopter;Insecta	invertebrat family
Sierra-Laba NA	NA	NA	NA	NA	detritus	Kempnyia NA	Perlidae Plecoptera Insecta	invertebrat family
Tomanova _. NA	NA	NA	NA	NA	detritus	NA NA	Leptocerid Trichopter; Insecta	invertebrat family
Tomanova _. NA	NA	NA	NA	NA	detritus	NA NA	Leptohyph Ephemero _l Insecta	invertebra ¹ genus
Tomanova _. NA	NA	NA	NA	NA	detritus	LeptonemaNA	Hydropsyc Trichopter;Insecta	invertebratgenus
Carvalho_a NA	NA	NA	NA	NA	detritus	NA NA	LeptophletEphemeroj Insecta	invertebrat family
Tomanova _. NA	NA	NA	NA	NA	detritus	Macrelmis NA	Elmidae Coleoptera Insecta	invertebratgenus
Tomanova _. NA	NA	NA	NA	NA	detritus	Macrelmis NA	Elmidae Coleoptera Insecta	invertebratgenus
Brito_et_a NA	NA	NA	NA	NA	detritus	Macrobrac NA	Paleomoni Decapoda Crustacea	invertebratgenus
Brito_et_a NA	NA	NA	NA	NA	detritus	Macrobrac NA	Paleomoni Decapoda Crustacea	invertebratgenus
Brito_et_a NA	NA	NA	NA	NA	detritus	Macrobrac NA	Paleomoni Decapoda Crustacea	invertebratgenus
Sierra-Laba NA	NA	NA	NA	NA	detritus	MacrogyncNA	Perlidae Plecoptera Insecta	invertebrat family
Silveira-MaNA	NA	NA	NA	NA	detritus	Macronem NA	Hydropsyc Trichopter;Insecta	invertebra ¹ genus
Ceneviva-E NA	NA	NA	NA	NA	detritus	Miroculis NA	LeptophletEphemero _l Insecta	invertebra ¹ genus
Tomanova _. NA	NA	NA	NA	NA	detritus	Neoelmis NA	Elmidae Coleoptera Insecta	invertebratgenus
Tomanova _. NA	NA	NA	NA	NA	detritus	Neoelmis NA	Elmidae Coleoptera Insecta	invertebratgenus
Harper_et_NA	NA	NA	NA	NA	detritus	NA NA	NA NA Oligochae	t worms class?
Ferreira_e1NA	NA	NA	NA	NA	detritus	Phylloicus NA	Calamocer Trichopter: Insecta	invertebra ¹ genus
Tomanova _. NA	NA	NA	NA	NA	detritus	Psephenus NA	Psephenid;Coleoptera Insecta	invertebra ¹ genus
Tomanova _. NA	NA	NA	NA	NA	detritus	Smicridea NA	Hydropsyc Trichopter; Insecta	invertebra ¹ genus
Gil_et_al NA	NA	NA	NA	NA	detritus	Smicridea NA	Hydropsyc Trichopter;Insecta	invertebra ¹ genus
Saito_and_ NA	NA	NA	NA	NA	detritus	NA Tanypodi	n;Chironomi;Diptera Insecta	invertebratsubfamily
Gonçalves NA	NA	NA	NA	NA	detritus	Deuterodo NA	CharacidaeCharaciforiActinopter	r fish species

Wolff 2012 NA	NA	NA	NA	NA	detritus	Deuterodo	o NA	Characida	€Characifo	rıActinopte	r fish	species
Silva 2009 NA	NA	NA	NA	NA	detritus	Deuterodo	o NA	Characida	€Characifo	rıActinopte	r fish	species
Esteves an NA	NA	NA	NA	NA	detritus	Deuterodo	o NA	Characida	€Characifo	rıActinopte	r fish	species
Barreto an NA	NA	NA	NA	NA	detritus	Deuterodo	o NA	Characida	€Characifo	rıActinopte	r fish	genus
Silva 2009 NA	NA	NA	NA	NA	detritus	Gymnotus	s NA	Gymnotid	aGymnotif	o Actinopte	r fish	species
Esteves an NA	NA	NA	NA	NA	detritus	Hollandich	n NA	Characida	€Characifo	rıActinopte	r fish	species
Silva 2009 NA	NA	NA	NA	NA	detritus	Hollandich	n' NA	Characida	€Characifo	rıActinopte	r fish	species
Aranha et ; NA	NA	NA	NA	NA	detritus	Phallocero	D: NA	Poeciliida	eCyprinodo	Actinopte	r fish	species
Esteves et NA	NA	NA	NA	NA	detritus	Phallocero	D: NA	Poeciliida	eCyprinodo	Actinopte	r fish	genus
Esteves an NA	NA	NA	NA	NA	detritus	Phallocero	D: NA	Poeciliida	eCyprinodo	Actinopte	r fish	genus
Wolff 2012 NA	NA	NA	NA	NA	detritus	Phallocero	D: NA	Poeciliida	eCyprinodo	Actinopte	r fish	species
Gonçalves NA	NA	NA	NA	NA	detritus	Phallocero	:NA	Poeciliida	eCyprinodo	oActinopte	r fish	species
Villares Jur NA	NA	NA	NA	NA	detritus	Rhamdia	NA	Pimelodid	laSiluriform	eActinopte	r fish	species
Deus and F NA	NA	NA	NA	NA	detritus	Rhamdia	NA	Pimelodid	aSiluriform	eActinopte	r fish	species
Alencar_et NA	NA	NA	NA	NA	microphy	t: Simulium	NA	Simuliidae	e Diptera	Insecta	invertebra	Igenus
Gil_et_al NA	NA	NA	NA	NA	microphy	t: Smicridea	NA	Hydropsy	c Trichopte	r: Insecta	invertebra	Igenus
Bentes_et_NA	NA	NA	NA	NA	microphy	t(Synoestro	¢ NA	Hydropsy	c Trichopte	r: Insecta	invertebra	Igenus
Saito_and_NA	NA	NA	NA	NA	microphy	t∈NA	Tanypodi	n:Chironom	i Diptera	Insecta	invertebra	subfamily
Esteves an NA	NA	NA	NA	NA	algae	Deuterodo	o NA	Characida	€Characifo	rıActinopte	r fish	species
Barreto an NA	NA	NA	NA	NA	algae	Deuterodo	o NA	Characida	€Characifo	rıActinopte	r fish	genus
Esteves an NA	NA	NA	NA	NA	algae	Phallocero	:NA	Poeciliida	eCyprinodo	Actinopte	r fish	genus
Gonçalves NA	NA	NA	Diplopod	a Chelicera	tainvertebra	aiDeuterodo	o NA	Characida	€Characifo	rıActinopte	r fish	species
Carmo 201 NA	NA	NA	Diptera	Insecta	invertebra	a'Characidiu	I NA	Crenuchic	la Characifo	rıActinopte	r fish	genus
Carmo et a NA	NA	NA	Diptera	Insecta	invertebra	a'Characidiu	I NA	Crenuchic	la Characifo	rıActinopte	r fish	genus
Barreto an NA	NA	NA	Diptera	Insecta	invertebra	a'Characidiu	I NA	Crenuchic	la Characifo	rıActinopte	r fish	species
Brazil-Souz NA	NA	NA	Diptera	Insecta	invertebra	a' Rhamdia	NA	Pimelodid	laSiluriform	eActinopte	r fish	species
Aranha et i NA	NA	Dytiscid	lae Coleopter	ra Insecta	invertebra	aiPhallocero	D: NA	Poeciliida	eCyprinodo	Actinopte	r fish	species
Aranha et ¡NA	NA	NA	NA	NA	eggs	Mimagoni	٤NA	Characida	€Characifo	rıActinopte	r fish	genus
Aranha et ¡NA	NA	NA	NA	NA	eggs	Mimagoni	εNA	Characida	€Characifo	rıActinopte	r fish	species
Brazil-Souz NA	NA	NA	NA	NA	eggs	Rhamdia	NA	Pimelodid	aSiluriform	eActinopte	r fish	species
Hurtado-B(NA	NA	NA	Ephemero	oj Insecta	invertebra	aiAnacrone	u NA	Perlidae	Plecopter	a Insecta	invertebra	Igenus

Alencar_et NANANAEphemeroj Insectainvertebra / ArgiaNACoenagrior OdonataInsectainvertebra / IAlencar_et NANANAEphemeroj Insectainvertebra / ILibellulidar OdonataInsectainvertebra / IAlencar_et NANANANAEphemeroj Insectainvertebra / IMegapoda OdonataInsectainvertebra / IAlencar_et NANANAEphemeroj Insectainvertebra / INAHydropsyc Trichopter.invertebra / IAlencar_et NANANAEphemeroj Insectainvertebra / Characidiu NACrenuchid:CharaciforActinopter fishgCarmo 201 NANANAEphemeroj Insectainvertebra / Characidiu NACrenuchid:CharaciforActinopter fishgCosta 1987 NANANAEphemeroj Insectainvertebra / Mimagoni: NACharacidacCharaciforActinopter fishgCosta 1987 NANANAEphemeroj Insectainvertebra / Mimagoni: NACharacidacCharaciforActinopter fishgC	Alencar_et NA	NA	NA	Epheme	roj Insecta	invertebratAnacrone	eu NA	Perlidae	Plecoptera	a Insecta	invertebra	family
Alencar_et NANANAEphemeroj Insectainvertebral DythemisNALibellulidac OdonataInsectainvertebralAlencar_et NANANAEphemeroj Insectainvertebral NANAGomphida OdonataInsectainvertebralAlencar_et NANANAEphemeroj Insectainvertebral KempnyiaNAPerlidaePlecopterainvertebralAlencar_et NANANAEphemeroj Insectainvertebral KempnyiaNAPerlidaePlecopterainvertebralAlencar_et NANANAEphemeroj Insectainvertebral Macrogyn NAPerlidaePlecopterainvertebralAlencar_et NANANAEphemeroj Insectainvertebral Macrogyn NAPerlidaePlecopterainvertebralCarmo 201 NANANAEphemeroj Insectainvertebral Characidiu NACrenuchid:CharaciforiActinopterfishgBarreto an NANANAEphemeroj Insectainvertebral Characidiu NACrenuchid:CharaciforiActinopterfishgCosta 1987 NANANAEphemeroj Insectainvertebral Mimagoni: NACharacidaeCharaciforiActinopterfishgMazzoni ar NANANAEphemeroj Insectainvertebral Mimagoni: NACharacidaeCharaciforiActinopterfishgCosta 1987 NANANAEphemeroj Insectainvertebral Mimagoni: NACharacidaeCharaciforiActinopterfishgMazzoni ar NANANAEphemeroj Insectainvertebral Mimagoni: NACharacida	Alencar_et NA	NA	NA	Epheme	roj Insecta	invertebra Argia	NA	Coenagrio	r Odonata	Insecta	invertebra	family
Alencar_et NANANAEphemerol Insectainvertebrai NANAGomphida OdonataInsectainvertebraiAlencar_et NANANAEphemerol Insectainvertebrai Kempnyia NAPerlidaePlecoptera InsectainvertebraiHurtado-Bi NANANAEphemerol Insectainvertebrai Kempnyia NAPerlidaePlecoptera InsectainvertebraiHurtado-Bi NANANAEphemerol Insectainvertebrai Macrogyn NAPerlidaePlecoptera InsectainvertebraiHurtado-Bi NANANAEphemerol Insectainvertebrai Macrogyn NAPerlidaePlecoptera InsectainvertebraiBentes_et, NANANAEphemerol Insectainvertebrai Characidiu NACrenuchid: CharaciforiActinopter fishgBarreto an NANANAEphemerol Insectainvertebrai Characidiu NACrenuchid: CharaciforiActinopter fishgBarreto an NANANAEphemerol Insectainvertebrai Characidiu NACrenuchid: CharaciforiActinopter fishgBarreto an NANANAEphemerol Insectainvertebrai Mimagoni: NACharacidaeCharaciforiActinopter fishgCosta 1987 NANANAEphemerol Insectainvertebrai Mimagoni: NACharacidaeCharaciforiActinopter fishgCosta 1987 NANANAEphemerol Insectainvertebrai Mimagoni: NACharacidaeCharaciforiActinopter fishgCosta 1987 NANANAEphemerol Insectainvertebrai Mimagoni: NACharacidaeCharaciforiActinopter fish	Alencar_et NA	NA	NA	Epheme	roj Insecta	invertebra Dythemis	5 NA	Libellulida	e Odonata	Insecta	invertebra	family
Alencar_et NANANAEphemeroj Insectainvertebra' Heteragrio NAMegapoda OdonataInsectainvertebra'iHurtado-Bi NANANAEphemeroj Insectainvertebra' Kempnyia NAPerlidaePlecoptera Insectainvertebra'iAlencar_et NANANAEphemeroj Insectainvertebra' Macrogync NAPerlidaePlecoptera Insectainvertebra'iAlencar_et NANANAEphemeroj Insectainvertebra' Macrogync NAPerlidaePlecoptera Insectainvertebra'iAlencar_et NANANAEphemeroj Insectainvertebra' Macrogync NAPerlidaePlecoptera Insectainvertebra'iBentes_et, NANANAEphemeroj Insectainvertebra' Characidiu NACrenuchid:CharaciforiActinopter fishgCarmo 201 NANANAEphemeroj Insectainvertebra' Characidiu NACrenuchid:CharaciforiActinopter fishgBarreto an NANANAEphemeroj Insectainvertebra' Deuterodo NACharacidaeCharaciforiActinopter fishgCosta 1987 NANANAEphemeroj Insectainvertebra' Mimagoni: NACharacidaeCharaciforiActinopter fish<	Alencar_et NA	NA	NA	Epheme	roj Insecta	invertebra NA	NA	Gomphida	Odonata	Insecta	invertebra	family
Hurtado-Br NANANAEphemeroj Insectainvertebra' Kempnyia NAPerlidaePlecoptera Insectainvertebra'Alencar_et NANANAEphemeroj Insectainvertebra' NANALibellulida/ OdonataInsectainvertebra'Alencar_et NANANAEphemeroj Insectainvertebra' Macrogync NAPerlidaePlecoptera Insectainvertebra'Alencar_et NANANAEphemeroj Insectainvertebra' Macrogync NAPerlidaePlecoptera Insectainvertebra'Carmo 201 NANANAEphemeroj Insectainvertebra' Characidiu NACrenuchid/Characifori/Actinopter fishgBarreto an NANANAEphemeroj Insectainvertebra' Characidiu NACrenuchid/Characifori/Actinopter fishgBarreto an NANANAEphemeroj Insectainvertebra' Gymnotus NAGymnotufa/Characifori/Actinopter fishgBarreto an NANANAEphemeroj Insectainvertebra' Gymnotus NAGymnotid/Characifori/Actinopter fishgCosta 1987 NANANAEphemeroj Insectainvertebra' Mimagoni: NACharacidaeCharacifori/Actinopter fishgMazzoni ar NANANAEphemeroj Insectainvertebra' Mimagoni: NACharacidaeCharacifori/Actinopter fishgMazzoni ar NANANAEphemeroj Insectainvertebra' PhalloceroNACharacidaeCharacifori/Actinopter fishgMazzoni ar NANANAEphemeroj Insectainvertebra' RhamdiaNAPimeloidaeCharacifori/Actinopter	Alencar_et NA	NA	NA	Epheme	roj Insecta	invertebra Heteragri	o NA	Megapoda	Odonata	Insecta	invertebra	family
Alencar_et NANANAEphemeroj Insectainvertebra NANALibellulidac OdonataInsectainvertebra NAHurtado-BrNANANAEphemeroj Insectainvertebra Macrogync NAPerlidaePlecoptera Insectainvertebra Nacrogync NAAlencar_et NANANAEphemeroj Insectainvertebra Synoestrop NAHydropsycl Trichopter. Insectainvertebra Synoestrop NACarmo 201 NANANAEphemeroj Insectainvertebra Characidiu NACrenuchid Characifori Actinopter fishgBarreto an NANANAEphemeroj Insectainvertebra Characidiu NACrenuchid Characifori Actinopter fishgBarreto an NANANAEphemeroj Insectainvertebra Characidiu NACrenuchid Characifori Actinopter fishgCosta 1987 NANANAEphemeroj Insectainvertebra Mimagonia NAGymnotida Gymnotifo Actinopter fishgCosta 1987 NANANAEphemeroj Insectainvertebra Mimagonia NACharacidae Characifori Actinopter fishgMazzoni ar NANANAEphemeroj Insectainvertebra Mimagonia NACharacidae Characifori Actinopter fish<	Hurtado-B(NA	NA	NA	Epheme	roj Insecta	invertebra Kempnyi	a NA	Perlidae	Plecoptera	a Insecta	invertebra	family
Hurtado-Bi NANANAEphemeroj Insectainvertebrai Macrogync NAPerlidaePlecoptera Insectainvertebrai InvertebraiAlencar_et NANANAEphemeroj Insectainvertebrai Macrogync NAPerlidaePlecoptera InsectainvertebraiBentes_et_NANANAEphemeroj Insectainvertebrai Characidiu NACrenuchid:CharaciforiActinopter fishgCarmo 201 NANANAEphemeroj Insectainvertebrai Characidiu NACrenuchid:CharaciforiActinopter fishgBarreto an NANANAEphemeroj Insectainvertebrai Characidiu NACrenuchid:CharaciforiActinopter fishgBarreto an NANANAEphemeroj Insectainvertebrai Deuterodo NACharacidaeCharaciforiActinopter fishgCosta 1987 NANANAEphemeroj Insectainvertebrai Mimagoniz NACharacidaeCharaciforiActinopter fishgMazzoni ar NANANAEphemeroj Insectainvertebrai Mimagoniz NACharacidaeCharaciforiActinopter fishgGosta 1987 NANANAEphemeroj Insectainvertebrai Mimagoniz NACharacidaeCharaciforiActinopter fishg <tr< td=""><td>Alencar_et NA</td><td>NA</td><td>NA</td><td>Epheme</td><td>roj Insecta</td><td>invertebra NA</td><td>NA</td><td>Libellulida</td><td>e Odonata</td><td>Insecta</td><td>invertebra</td><td>family</td></tr<>	Alencar_et NA	NA	NA	Epheme	roj Insecta	invertebra NA	NA	Libellulida	e Odonata	Insecta	invertebra	family
Alencar_et NANANAEphemero Insectainvertebral Macrogync NAPerlidaePlecoptera InsectainvertebralBentes_et, NANANAEphemero Insectainvertebral Vanoestro; NAHydropsyclTrichopter. InsectainvertebralCarmo 201 NANANAEphemero Insectainvertebral Vanoestro; NACrenuchid: Characifori Actinopter fishgBarreto an NANANAEphemero Insectainvertebral Characidiu NACrenuchid: Characifori Actinopter fishgBarreto an NANANAEphemero Insectainvertebral Characidiu NACrenuchid: Characifori Actinopter fishgCosta 1987 NANANAEphemero Insectainvertebral Gymnotus NAGymnotida Gymnotifo Actinopter fishgMazzoni ar NANANAEphemero Insectainvertebral Mimagoni: NACharacidae Characifori Actinopter fishgCosta 1987 NANANAEphemero Insectainvertebral Mimagoni: NACharacidae Characifori Actinopter fishgCosta 1	Hurtado-B(NA	NA	NA	Epheme	roj Insecta	invertebra Macrogy	nc NA	Perlidae	Plecoptera	a Insecta	invertebra	family
Bentes_et_NANANAEphemero Insectainvertebrai/Synoestro;NAHydropsycTrichopter:Insectainvertebrai/Carmo 201 NANANAEphemero Insectainvertebrai/Characidiu NACrenuchid:CharaciforiActinopter fishImportebrai/Barreto an NANANAEphemero Insectainvertebrai/Characidiu NACrenuchid:CharaciforiActinopter fishImportebrai/Barreto an NANANAEphemero Insectainvertebrai/Characidiu NACrenuchid:CharaciforiActinopter fishImportebrai/Barreto an NANANAEphemero Insectainvertebrai/Deuterodo NACharacidaeCharaciforiActinopter fishImportebrai/Costa 1987 NANANAEphemero Insectainvertebrai/Mimagoni:NACharacidaeCharaciforiActinopter fishImportebrai/Mazzoni ar NANANAEphemero Insectainvertebrai/Mimagoni:NACharacidaeCharaciforiActinopter fishImportebrai/Mazzoni ar NANANAEphemero Insectainvertebrai/Mimagoni:NACharacidaeCharaciforiActinopter fishImportebrai/Mazzoni ar NANANAEphemero Insectainvertebrai/Mimagoni:NACharacidaeCharaciforiActinopter fishImportebrai/Mazzoni ar NANANAEphemero Insectainvertebrai/RhamdiaNACharacidaeCharaciforiActinopter fishImportebrai/Mazzoni ar NANANANAEphemero Insectainvertebrai/RhamdiaNAPhaelodid:SiluriformeActinopter fishImportebrai/Mazzoni ar NANANANAEphemero Insecta<	Alencar_et NA	NA	NA	Epheme	roj Insecta	invertebra ¹ Macrogy	nc NA	Perlidae	Plecoptera	a Insecta	invertebra	family
Carmo 201 NANANAEphemeroj Insectainvertebra'Characidiu NACrenuchid: CharaciforiActinopter fishIBarreto an NANANAEphemeroj Insectainvertebra'Characidiu NACrenuchid: CharaciforiActinopter fishIBarreto an NANANAEphemeroj Insectainvertebra'Characidiu NACrenuchid: CharaciforiActinopter fishIBarreto an NANANAEphemeroj Insectainvertebra'Gymotus NAGymnotida@CharaciforiActinopter fishICosta 1987 NANANAEphemeroj Insectainvertebra'Gymotus NAGymnotida@Gymnotifo Actinopter fishICosta 1987 NANANAEphemeroj Insectainvertebra'Imagoni: NACharacida@CharaciforiActinopter fishICosta 1987 NANANAEphemeroj Insectainvertebra'Imagoni: NACharacida@CharaciforiActinopter fishIMazzoni ar NANANAEphemeroj Insectainvertebra'Imagoni: NACharacida@CharaciforiActinopter fishIMazoni ar NANANANA <td>Bentes_et_NA</td> <td>NA</td> <td>NA</td> <td>Epheme</td> <td>roj Insecta</td> <td>invertebratSynoestro</td> <td>or NA</td> <td>Hydropsyd</td> <td>Trichopter</td> <td>Insecta</td> <td>invertebra</td> <td>genus</td>	Bentes_et_NA	NA	NA	Epheme	roj Insecta	invertebratSynoestro	or NA	Hydropsyd	Trichopter	Insecta	invertebra	genus
Barreto an NANANAEphemerol Insectainvertebral Characidiu NACrenuchid: CharaciforiActinopter fishandAranha et : NANANAEphemerol Insectainvertebral Characidiu NACrenuchid: CharaciforiActinopter fishandBarreto an NANANAEphemerol Insectainvertebral Ocureo NACharacidaeCharaciforiActinopter fishandCosta 1987 NANANAEphemerol Insectainvertebral Gymnotus NAGymotida Gymnotifo Actinopter fishandCosta 1987 NANANAEphemerol Insectainvertebral Mimagonic NACharacidaeCharaciforiActinopter fishandMazzoni ar NANANAEphemerol Insectainvertebral Mimagonic NACharacidaeCharaciforiActinopter fishandAranha et :NANANAEphemerol Insectainvertebral RhamdiaNAPoeciliidae Cyprinodoi Actinopter fishandBarzell-Souz NANANAEphemerol Insectainvertebral RhamdiaNAPimeloidiz SiluriformeActinopter fishandGil_et_al_NANANANANANARaPimeloidiz SiluriformeActinopter fishandG	Carmo 201 NA	NA	NA	Epheme	roj Insecta	invertebra ¹ Characidi	u NA	Crenuchid	Characifor	Actinopte	⁻ fish	genus
Aranha et : NANAEphemeroj Insectainvertebra/Characidiu NACrenuchid:CharaciforiActinopter fishaBarreto an NANANAEphemeroj Insectainvertebra/Deuterodo NACharacidaeCharaciforiActinopter fishaCosta 1987 NANANAEphemeroj Insectainvertebra/Gymnotus NAGymnotidaGymnotifo Actinopter fishaCosta 1987 NANANAEphemeroj Insectainvertebra/Mimagonic NACharacidaeCharaciforiActinopter fishaMazzoni ar NANANAEphemeroj Insectainvertebra/Mimagonic NACharacidaeCharaciforiActinopter fishaCosta 1987 NANANAEphemeroj Insectainvertebra/Mimagonic NACharacidaeCharaciforiActinopter fishaMazzoni ar NANANAEphemeroj Insectainvertebra/Mimagonic NACharacidaeCharaciforiActinopter fishaMazzoni ar NANANAEphemeroj Insectainvertebra/Mimagonic NACharacidaeCharaciforiActinopter fishaMazzoni ar NANANAEphemeroj Insectainvertebra/Phallocero NAPoeciliidaeCyprinodoiActinopter fishaMazzoni ar NANANANAEphemeroj Insectainvertebra/RhamdiaNAPimelodid:SiluriformeActinopter fishaMazzoni ar NANANANAEphemeroj Insectainvertebra/RhamdiaNAPimelodid:SiluriformeActinopter fishaMazzoni ar NANANANANAFilamentou NANALeptocerid Trichopter: Insectainvertebra/Mimagoniz NACo	Barreto an NA	NA	NA	Epheme	roj Insecta	invertebra [†] Characidi	u NA	Crenuchid	Characifor	Actinopte	⁻ fish	species
Barreto an NANANAEphemerol Insectainvertebra Deuterodo NACharacidae Characifori Actinopter fishImage: Costa 1987 NANANAEphemerol Insectainvertebra Gymnotus NAGymnotida Gymnotifo Actinopter fishImage: Costa 1987 NANANAEphemerol Insectainvertebra Gymnotus NAGymnotida Gymnotifo Actinopter fishImage: Costa 1987 NANANAEphemerol Insectainvertebra Mimagonia NACharacidae Characifori Actinopter fishImage: Costa 1987 NANANAEphemerol Insectainvertebra Mimagonia NACharacidae Characifori Actinopter fishImage: Costa 1987 NANANAEphemerol Insectainvertebra Mimagonia NACharacidae Characifori Actinopter fishImage: Costa 1987 NANANAEphemerol Insectainvertebra Mimagonia NACharacidae Characifori Actinopter fishImage: Costa 1987 NANANAEphemerol Insectainvertebra Mimagonia NACharacidae Characifori Actinopter fishImage: Costa 1987 NANANANAEphemerol Insectainvertebra Mimagonia NACharacidae Characifori Actinopter fishImage: Costa 1987 NANANANAEphemerol Insectainvertebra Mimagonia NACharacidae Characifori Actinopter fishImage: Costa 1987 NANANANAEphemerol Insectainvertebra Mimagonia NAPimelodida SiluriformeActinopter fishImage: Costa 1987 NANANANANAEphemerol Insectainvertebra MamdiaNAPimelodida SiluriformeActinopter fishImage: Costa 1987 NANANANANANANARaRa <t< td=""><td>Aranha et i NA</td><td>NA</td><td>NA</td><td>Epheme</td><td>roj Insecta</td><td>invertebra¹Characidi</td><td>u NA</td><td>Crenuchid</td><td>Characifor</td><td>Actinopte</td><td>⁻ fish</td><td>species</td></t<>	Aranha et i NA	NA	NA	Epheme	roj Insecta	invertebra ¹ Characidi	u NA	Crenuchid	Characifor	Actinopte	⁻ fish	species
Costa 1987 NANANAEphemeroj Insectainvertebra/Gymnotus NAGymnotidaGymnotifo Actinopter fishaCosta 1987 NANANAEphemeroj Insectainvertebra/Mimagonia NACharacidaeCharaciforiActinopter fishaMazzoni ar NANANAEphemeroj Insectainvertebra/Mimagonia NACharacidaeCharaciforiActinopter fishaCosta 1987 NANANAEphemeroj Insectainvertebra/Mimagonia NACharacidaeCharaciforiActinopter fishaCosta 1987 NANANAEphemeroj Insectainvertebra/Mimagonia NACharacidaeCharaciforiActinopter fishaMazzoni ar NANANAEphemeroj Insectainvertebra/Mimagonia NACharacidaeCharaciforiActinopter fishaMazzoni ar NANANAEphemeroj Insectainvertebra/Phallocero NAPoeciliidae CyprinodoiActinopter fishaAranha et : NANANAEphemeroj Insectainvertebra/RhamdiaNAPimelodidaSiluriformeActinopter fishaBrazil-Souz NANANANANANAPimelodidaSiluriformeActinopter fishaGil_et_al_NANANANANANAInvertebra/RhamdiaNALeptocerid Trichopter. Insectainvertebra/RGil_et_al_NANANANANANARiamentou Deuterodo NACharacidaeCharaciforiActinopter fishaGil_et_al_NANANANANANARiamentou Deuterodo NACharacidaeCharaciforiActinopter fishaGil_et_al_NANA<	Barreto an NA	NA	NA	Epheme	roj Insecta	invertebraiDeuteroc	lo NA	Characida	Characifor	Actinopte	⁻ fish	genus
Costa 1987 NANANAEphemero Insectainvertebrai Mimagonia NACharacidae Characifori Actinopter fishImagonia NAMazzoni ar NANANAEphemero Insectainvertebrai Mimagonia NACharacidae Characifori Actinopter fishImagonia NACosta 1987 NANANAEphemero Insectainvertebrai Mimagonia NACharacidae Characifori Actinopter fishImagonia NACosta 1987 NANANAEphemero Insectainvertebrai Mimagonia NACharacidae Characifori Actinopter fishImagonia NAMazzoni ar NANANAEphemero Insectainvertebrai Mimagonia NACharacidae Characifori Actinopter fishImagonia NAAranha et : NANANAEphemero Insectainvertebrai Phallocero NAPoeciliidae Cyprinodoi Actinopter fishImagonia NADeus and F NANANAEphemero Insectainvertebrai RhamdiaNAPimelodid: SiluriformeActinopter fishImagonia NABrazil-Souz NANANANAEphemero Insectainvertebrai RhamdiaNAPimelodid: SiluriformeActinopter fishImagonia NAGil_et_al_NANANANANANALeptocerid Trichopter: Insectainvertebrai RhamdiaNAGil_et_al_NANANANANAHydropsyc/Trichopter: Insectainvertebrai RhamdiaNAGil_et_al_NANANANANACharacidae Characifori Actinopter fishImagonia NAGil_et_al_NANANANANACharacidae Characifori Actinopter fishImagonia NA <td>Costa 1987 NA</td> <td>NA</td> <td>NA</td> <td>Epheme</td> <td>roj Insecta</td> <td>invertebra Gymnotu</td> <td>is NA</td> <td>Gymnotida</td> <td>Gymnotifo</td> <td>Actinopte</td> <td>⁻ fish</td> <td>species</td>	Costa 1987 NA	NA	NA	Epheme	roj Insecta	invertebra Gymnotu	is NA	Gymnotida	Gymnotifo	Actinopte	⁻ fish	species
Mazzoni ar NANANAEphemeroj Insectainvertebrai Mimagonia NACharacidae Characifori Actinopter fishImagonia NACosta 1987 NANANAEphemeroj Insectainvertebrai Mimagonia NACharacidae Characifori Actinopter fishImagonia NAMazzoni ar NANANAEphemeroj Insectainvertebrai Mimagonia NACharacidae Characifori Actinopter fishImagonia NAAranha et i NANANAEphemeroj Insectainvertebrai Phallocero: NAPoeciliidae Cyprinodoi Actinopter fishImagonia NABrazil-Souz NANANAEphemeroj Insectainvertebrai RhamdiaNAPimelodide Siluriforme Actinopter fishImagonia NAGil_et_al_NANANANANANAPimelodide Siluriforme Actinopter fishImagonia NAGil_et_al_NANANANANANAImagonia NAImagonia NAImagonia NAGil_et_al_NANANANANANAImagonia NAImagonia NAImagonia NAGil_et_al_NANANANANANAImagonia NAImagonia NAImagonia NAGil_et_al_NANANANANAImagonia NAImagonia NAImagonia NAImagonia NAGil_et_al_NANANANANAImagonia NAImagonia NAImagonia NAImagonia NAGil_et_al_NANANANANAImagonia NAImagonia NAImagonia NAImagonia NAGil_et_al_NANANANANAImagonia NA	Costa 1987 NA	NA	NA	Epheme	roj Insecta	invertebra ¹ Mimagor	niaNA	Characida	Characifor	Actinopte	⁻ fish	genus
Costa 1987 NANANAEphemero Insectainvertebra Mimagonia NACharacidaeCharaciforiActinopter fishHeMazzoni ar NANANAEphemero Insectainvertebra Mimagonia NACharacidaeCharaciforiActinopter fishHeAranha et i NANANAEphemero Insectainvertebra Phallocero: NAPoeciliidae CyprinodoiActinopter fishHeDeus and F NANANAEphemero Insectainvertebra Phallocero: NAPoeciliidae CyprinodoiActinopter fishHeBrazil-Souz NANANAEphemero Insectainvertebra RhamdiaNAPimelodida Siluriforme Actinopter fishHeGil_et_alNANANANANANANALeptocerid Trichopter: Insectainvertebra RhamdiaNAGil_et_alNANANANANANAHydropsycl Trichopter: Insectainvertebra RhamdiaGil_et_alNANANANANANAHydropsycl Trichopter: Insectainvertebra RhamdiaGil_et_alNANANANANAHilamentou Deuterodo NACharacidaeCharaciforiActinopter fishHeBarreto an NANANANANANACharacidaeCharaciforiActinopter fishHeAranha et i NANANANANACharacidaeCharaciforiActinopter fishHeAranha et i NANANANANACharacidaeCharaciforiActinopter fishHeAranha et i NANANANANAFilamentou Mimagonia NACharacidaeCh	Mazzoni ar NA	NA	NA	Epheme	roj Insecta	invertebra ¹ Mimagor	nia NA	Characida	Characifor	Actinopte	⁻ fish	genus
Mazzoni ar NANANAEphemeroj Insectainvertebra Mimagonia NACharacidae Characifori Actinopter fishendAranha et i NANANAEphemeroj Insectainvertebra Phallocero NAPoeciliidae Cyprinodoi Actinopter fishendDeus and F NANANAEphemeroj Insectainvertebra RhamdiaNAPimelodida Siluriforme Actinopter fishendBrazil-Souz NANANANAEphemeroj Insectainvertebra RhamdiaNAPimelodida Siluriforme Actinopter fishendTomanova NANANANANANANAPimelodida Siluriforme Actinopter fishendGil_et_alNANANANANANANAInvertebra RhamdiaNALeptocerid Trichopter: Insectainvertebra RhamdiaGil_et_alNANANANANANANAInvertebra RhamdiaNAHydropsyclTrichopter: Insectainvertebra RhamdiaGil_et_alNANANANANARAHydropsyclTrichopter: Insectainvertebra RhamdiaNAHydropsyclTrichopter: Insectainvertebra RhamdiaGil_et_alNANANANANANARaRaRaRaRaRaRaGil_et_alNANANANANARaRaRaRaRaRaRaRaGil_et_alNANANANANARaRaRaRaRaRaRaRaRaRaRaRaRaRa	Costa 1987 NA	NA	NA	Epheme	roj Insecta	invertebra ¹ Mimagor	niaNA	Characida	Characifor	Actinopte	⁻ fish	species
Aranha et : NANANAEphemeroj Insectainvertebra Phallocero NAPoeciliidae CyprinodoiActinopter fishetDeus and F NANANAEphemeroj Insectainvertebra RhamdiaNAPimelodida Siluriforme Actinopter fishetBrazil-Souz NANANANAEphemeroj Insectainvertebra RhamdiaNAPimelodida Siluriforme Actinopter fishetTomanova NANANANANANANAPimelodida Siluriforme Actinopter fishetGil_et_alNANANANANANALeptocerid Trichopter: Insectainvertebra RhamdiaNAGil_et_alNANANANANANALeptocerid Trichopter: Insectainvertebra RhamdiaNAGil_et_alNANANANANAHydropsycl Trichopter: Insectainvertebra RhamdiaNAGil_et_alNANANANANAHydropsycl Trichopter: Insectainvertebra RhamdiaNAGil_et_alNANANANANAHydropsycl Trichopter: Insectainvertebra RhamdiaNAGil_et_alNANANANARilamentou Deuterodo NACharacidae Characifori Actinopter fishetBarreto an NANANANANACharacidae Characifori Actinopter fishetAranha et :NANANANANACharacidae Characifori Actinopter fishetAranha et :NANANANANAPinelodidae Cyprinodoi Actinopter fishetEsteves an	Mazzoni ar NA	NA	NA	Epheme	roj Insecta	invertebra ¹ Mimagor	niaNA	Characida	Characifor	Actinopte	⁻ fish	species
Deus and F NANANAEphemero Insectainvertebra RhamdiaNAPimelodidaSiluriformeActinopter fishSectaBrazil-Souz NANANANAEphemero Insectainvertebra RhamdiaNAPimelodidaSiluriformeActinopter fishSectaTomanova NANANANANANANAInvertebra RhamdiaNAPimelodidaSiluriformeActinopter fishSectaGil_et_alNANANANANANANAInvertebra RhamdiaNALeptocerid Trichopter: Insectainvertebra RhamdiaGil_et_alNANANANANANANAHydropsyclTrichopter: Insectainvertebra RhamdiaBarreto an NANANANANANAFilamentouDeuterodoNACharacidaeCharaciforiActinopter fishSectaAranha et i NANANANANANAFilamentouMimagoniaNACharacidaeCharaciforiActinopter fishSectaAranha et i NANANANANANAFilamentouPhalloceroNACharacidaeCharaciforiActinopter fishSectaAranha et i NANANANANAFilamentouPhalloceroNAPoeciliidaeCyprinodoiActinopter fishSectaBrazil-Souz NANANANANANAPimelodidaSiluriformeActinopter fishSectaBrazil-Souz NANANANANAPilamentouPhalloceroNAPoeciliidaeCyprinodoiActinopter fishSectaBrazil-Souz NANANANANA	Aranha et i NA	NA	NA	Epheme	roj Insecta	invertebra ¹ Phallocer	o:NA	Poeciliidae	Cyprinodo	Actinopte	⁻ fish	species
Brazil-Souz NANANAEphemeroj Insectainvertebra RhamdiaNAPimelodidaSiluriformeActinopter fishSectorTomanova NANANANANANANANALeptocerid Trichopter; Insectainvertebra RhamdiaGil_et_alNANANANANANANAHydropsyclTrichopter; Insectainvertebra RhamdiaGil_et_alNANANANANANAHydropsyclTrichopter; Insectainvertebra RhamdiaBarreto an NANANANANANACharacidaeCharacifor; Actinopter fishSectorBarreto an NANANANANARamentouDeuterodo NACharacidaeCharacifor; Actinopter fishSectorAranha et ; NANANANANARamentouMimagonia; NACharacidaeCharacifor; Actinopter fishSectorAranha et ; NANANANANARamentouPhallocero; NAPoeciliidaeCyprinodo; Actinopter fishSectorAranha et ; NANANANANANAPilamentouPhallocero; NAPoeciliidaeCyprinodo; Actinopter fishSectorBrazil-Souz NANANANANANAPilamentouRhamdiaNAPimelodidaSiluriformeActinopter fishSectorBrazil-Souz NANANANANANAPimelodidaSiluriformeActinopter fishSector	Deus and F NA	NA	NA	Epheme	roj Insecta	invertebra Rhamdia	NA	Pimelodid	Siluriform	eActinopter	⁻ fish	species
Tomanova NANANANANAfilamentou NANALeptocerid Trichopter: InsectainvertebrationGil_et_alNANANANANANAfilamentou SmicrideaNAHydropsyclTrichopter: InsectainvertebrationEsteves an NANANANANANAfilamentou DeuterodoNACharacidaeCharaciforiActinopter fishsetBarreto an NANANANANANAfilamentouDeuterodoNACharacidaeCharaciforiActinopter fishsetAranha et :NANANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishsetAranha et :NANANANANAfilamentouPhalloceroNACharacidaeCharaciforiActinopter fishsetAranha et :NANANANANANAfilamentouPhalloceroNAPoeciliidaeCyprinodoiActinopter fishsetBrazil-Souz NANANANANANAPimelodidaSiluriformeActinopter fishset	Brazil-Souz NA	NA	NA	Epheme	roj Insecta	invertebra [,] Rhamdia	NA	Pimelodid	Siluriform	eActinopter	⁻ fish	species
Gil_et_alNANANANANAfilamentou Smicridea NAHydropsyclTrichopter: Insecta invertebrateEsteves an NANANANANANAfilamentouDeuterodo NACharacidaeCharaciforiActinopter fishseBarreto an NANANANANAfilamentouDeuterodo NACharacidaeCharaciforiActinopter fishseAranha et : NANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishseAranha et : NANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishseAranha et : NANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishseAranha et : NANANANANAfilamentouPhallocero: NAPoeciliidaeCyprinodoiActinopter fishseBrazil-Souz NANANANANANAPilamentouPhallocero: NAPoeciliidaeCyprinodoiActinopter fishseBrazil-Souz NANANANANANAPilamentouPhallocero: NAPimelodidasSiluriformeActinopter fishse	Tomanova _. NA	NA	NA	NA	NA	filamentou NA	NA	Leptoceric	l Trichopter	Insecta	invertebra	family
Esteves an NANANANANAfilamentouDeuterodo NACharacidaeCharaciforiActinopter fishsetBarreto an NANANANANAfilamentouDeuterodo NACharacidaeCharaciforiActinopter fishsetAranha et : NANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishsetAranha et : NANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishsetAranha et : NANANANANAfilamentouPhallocero NAPoeciliidaeCyprinodoiActinopter fishsetAranha et : NANANANANAfilamentouPhallocero NAPoeciliidaeCyprinodoiActinopter fishsetBrazil-Souz NANANANANAfilamentouPhallocero NAPoeciliidaeCyprinodoiActinopter fishset	Gil_et_al NA	NA	NA	NA	NA	filamentou Smicride	a NA	Hydropsyd	Trichopter	Insecta	invertebra	genus
Barreto an NANANANANAfilamentouDeuterodo NACharacidaeCharaciforiActinopter fishAranha et i NANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishAranha et i NANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishAranha et i NANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishAranha et i NANANANAfilamentouPhallocero NAPoeciliidaeCyprinodoiActinopter fishEsteves an NANANANAfilamentouPhallocero NAPoeciliidaeCyprinodoiActinopter fishBrazil-Souz NANANANANAfilamentouRhamdiaNA	Esteves an NA	NA	NA	NA	NA	filamentouDeuteroo	lo NA	Characida	Characifor	Actinopte	⁻ fish	species
Aranha et : NANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishAranha et : NANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishAranha et : NANANANAfilamentouPhallocero: NAPoeciliidaeCyprinodoiActinopter fishEsteves an NANANANANAfilamentouPhallocero: NAPoeciliidaeCyprinodoiActinopter fishBrazil-Souz NANANANANAfilamentouRhamdiaPimelodidaSiluriformeActinopter fish	Barreto an NA	NA	NA	NA	NA	filamentouDeuteroo	lo NA	Characida	Characifor	Actinopte	⁻ fish	genus
Aranha et i NANANANANAfilamentouMimagonia NACharacidaeCharaciforiActinopter fishseAranha et i NANANANANAfilamentouPhallocero: NAPoeciliidaeCyprinodoiActinopter fishseEsteves an NANANANANAfilamentouPhallocero: NAPoeciliidaeCyprinodoiActinopter fishseBrazil-Souz NANANANANAfilamentouPhallocero: NAPoeciliidaeCyprinodoiActinopter fishse	Aranha et i NA	NA	NA	NA	NA	filamentouMimagor	nia NA	Characida	Characifor	Actinopte	⁻ fish	genus
Aranha et : NANANANANAfilamentouPhallocero: NAPoeciliidaeCyprinodoiActinopter fishfilamentouPhallocero: NAEsteves an NANANANANAfilamentouPhallocero: NAPoeciliidaeCyprinodoiActinopter fishfilamentouPhallocero: NABrazil-Souz NANANANANAfilamentouRhamdiaNAPimelodidaSiluriformeActinopter fishfilamentouRhamdia	Aranha et i NA	NA	NA	NA	NA	filamentouMimagor	niaNA	Characida	Characifor	Actinopte	⁻ fish	species
Esteves an NA NA NA NA NA filamentouPhallocero NA PoeciliidaeCyprinodoiActinopter fish filamentouRhamdia NA PimelodidaSiluriformeActinopter fish s	Aranha et ; NA	NA	NA	NA	NA	filamentouPhallocer	o: NA	Poeciliidae	Cyprinodo	Actinopte	⁻ fish	genus
Brazil-Souz NA NA NA NA filamentou Rhamdia NA Pimelodida Siluriforme Actinopter fish	Esteves an NA	NA	NA	NA	NA	filamentouPhallocer	o:NA	Poeciliidae	Cyprinodo	Actinopte	⁻ fish	genus
	Brazil-Souz NA	NA	NA	NA	NA	filamentou Rhamdia	NA	Pimelodid	Siluriform	eActinopte	⁻ fish	species

Aranha et ; NA	NA	NA	NA	NA	filamentou	Schizoleci	5 NA	Loricariida	Siluriform	Actinopter	[·] fish	species
Velasco_ar NA	NA	NA	NA	NA	fish	NA	NA	Belostoma	a Hemiptera	Insecta	invertebra	family
Esteves an NA	NA	NA	NA	Actinopter	fish	Acentronio	NA	Heptapter	riSiluriforme	Actinopter	⁻ fish	species
Esteves an NA	NA	NA	NA	Actinopter	fish	Deuterodo	NA	Characida	eCharacifor	ıActinopter	⁻ fish	species
Braga and NA	NA	NA	NA	Actinopter	fish	Gymnotus	NA	Gymnotid	aGymnotifo	Actinopter	fish	species
Silva 2009 NA	NA	NA	NA	Actinopter	fish	Hoplias	NA	Erythrinid	aCharacifor	ıActinopter	⁻ fish	species
Costa 1987 NA	NA	NA	NA	Actinopter	fish	Hoplias	NA	Erythrinid	aCharacifor	ıActinopter	⁻ fish	species
Deus and FNA	NA	NA	NA	Actinopter	fish	Hoplias	NA	Erythrinid	aCharacifor	ıActinopter	fish	species
Aranha et ; NA	NA	NA	NA	Actinopter	fish	Phallocero	NA	Poeciliida	eCyprinodo	Actinopter	⁻ fish	species
Villares Jur NA	NA	NA	NA	Actinopter	fish	Rhamdia	NA	Pimelodid	aSiluriforme	Actinopter	⁻ fish	species
Deus and FNA	NA	NA	NA	Actinopter	fish	Rhamdia	NA	Pimelodid	aSiluriform	Actinopter	[·] fish	species
Deus and FNA	NA	NA	NA	Actinopter	fish	Rhamdia	NA	Pimelodid	aSiluriform	Actinopter	⁻ fish	species
Brazil-Souz NA	NA	NA	NA	Actinopter	fish	Rhamdia	NA	Pimelodid	aSiluriform	Actinopter	[·] fish	species
Wolff et al. NA	NA	NA	NA	Actinopter	fish	Synbranch	NA	Synbranch	niSynbranch	Actinopter	⁻ fish	species
Wolff 2012 NA	NA	NA	NA	Actinopter	fish	Synbranch	NA	Synbranch	niSynbranch	Actinopter	[·] fish	species
Silva 2009 NA	NA	NA	NA	NA	fruits_seed	Hollandich	NA	Characida	eCharacifor	ıActinopter	⁻ fish	species
Gil_et_al NA	NA	NA	NA	NA	fungi	Smicridea	NA	Hydropsyd	Trichopter	Insecta	invertebra	genus
Velasco_ar NA	NA	NA	NA	Gastropod	gastropod	NA	NA	Belostoma	a Hemiptera	Insecta	invertebra	family
Boddingto: NA	NA	NA	NA	Gastropod	gastropod	Dugesia	NA	NA	NA	Platyhelmi	worms	genus
Deus and FNA	NA	NA	NA	Gastropod	snail	Rhamdia	NA	Pimelodid	aSiluriforme	Actinopter	⁻ fish	species
Mazzoni arGeophagu	s NA	Cichlidae	Perciforme	Actinopter	fish	Hoplias	NA	Erythrinid	aCharacifor	ıActinopter	[·] fish	species
Gamboa_e NA	NA	Glossomat	Trichopter	Insecta	invertebra	Anacroneu	INA	Perlidae	Plecoptera	Insecta	invertebra	genus
Gamboa_e NA	NA	Glossomat	Trichopter	Insecta	invertebra	Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Gamboa_e NA	NA	Glossomat	Trichopter	Insecta	invertebra	Macrogyn	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Carmo 201 NA	NA	NA	Hemiptera	Insecta	invertebra	Characidiu	NA	Crenuchid	Characifor	ıActinopter	fish	genus
Carmo et a NA	NA	NA	Hemiptera	Insecta	invertebra	Characidiu	NA	Crenuchid	Characifor	ıActinopter	⁻ fish	genus
Barreto an NA	NA	NA	Hemiptera	Insecta	invertebra	Deuterodo	NA	Characida	eCharacifor	ıActinopter	fish	genus
Deus and FNA	NA	NA	Hemiptera	Insecta	invertebra	Rhamdia	NA	Pimelodid	aSiluriform	Actinopter	fish	species
Brazil-Souz NA	NA	NA	Hemiptera	Insecta	invertebra	Rhamdia	NA	Pimelodid	aSiluriform	Actinopter	fish	species
Gamboa_e NA	NA	Hydrobios	Trichopter	Insecta	invertebra	Anacroneu	INA	Perlidae	Plecoptera	Insecta	invertebra	genus
Gamboa_e NA	NA	Hydrobios	Trichopter	Insecta	invertebra	Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebra	family

Gamboa_e NA	NA	Hydrob	iosiTrichop	teralnsecta	invertebra Macrogync NA	Perlidae	Plecoptera Insecta	invertebr	atfamily
Gamboa_e NA	NA	Hydrop	tilicTrichop	teriInsecta	invertebra ¹ Anacroneu NA	Perlidae	Plecoptera Insecta	invertebr	algenus
Gamboa_e NA	NA	Hydrop	tilicTrichop	teriInsecta	invertebratKempnyia NA	Perlidae	Plecoptera Insecta	invertebr	atfamily
Gamboa_e NA	NA	Hydrop	tilicTrichop	teriInsecta	invertebra ¹ Macrogync NA	Perlidae	Plecoptera Insecta	invertebr	atfamily
Reis et al. 2NA	NA	NA	NA	Insecta	invertebra ¹ Acentronic NA	Heptapte	riSiluriformeActinopte	r fish	species
Silva 2009 NA	NA	NA	NA	Insecta	invertebra [:] Acentronic NA	Heptapte	riSiluriformeActinopte	r fish	species
Wolff 2012 NA	NA	NA	NA	Insecta	invertebra ¹ Acentronic NA	Heptapte	riSiluriformeActinopte	r fish	species
Gonçalves NA	NA	NA	NA	Insecta	invertebra ¹ Acentronic NA	Heptapte	riSiluriformeActinopte	r fish	species
Wolff 2012 NA	NA	NA	NA	Insecta	invertebra [:] Characidiu NA	Crenuchio	da Characifori Actinopte	r fish	species
Silva 2009 NA	NA	NA	NA	Insecta	invertebra [:] Characidiu NA	Crenuchio	da Characifori Actinopte	r fish	genus
Gonçalves NA	NA	NA	NA	Insecta	invertebra ¹ Deuterodo NA	Characida	eCharaciforiActinopte	r fish	species
Wolff 2012 NA	NA	NA	NA	Insecta	invertebra ¹ Deuterodo NA	Characida	eCharaciforiActinopte	r fish	species
Silva 2009 NA	NA	NA	NA	Insecta	invertebra ¹ Deuterodo NA	Characida	eCharaciforiActinopte	r fish	species
Esteves an NA	NA	NA	NA	Insecta	invertebra ¹ Deuterodo NA	Characida	eCharaciforiActinopte	r fish	species
Silva 2009 NA	NA	NA	NA	Insecta	invertebrat Gymnotus NA	Gymnotic	laGymnotifo Actinopte	r fish	species
Costa 1987 NA	NA	NA	NA	Insecta	invertebrat Gymnotus NA	Gymnotic	laGymnotifo Actinopte	r fish	species
Braga and NA	NA	NA	NA	Insecta	invertebrat Gymnotus NA	Gymnotic	laGymnotifo Actinopte	r fish	species
Esteves et NA	NA	NA	NA	Insecta	invertebra: Gymnotus NA	Gymnotic	laGymnotifo Actinopte	r fish	species
Esteves an NA	NA	NA	NA	Insecta	invertebra Hollandich NA	Characida	eCharaciforiActinopte	r fish	species
Silva 2009 NA	NA	NA	NA	Insecta	invertebra Hollandich NA	Characida	eCharaciforiActinopte	r fish	species
Gonçalves NA	NA	NA	NA	Insecta	invertebra Hollandich NA	Characida	eCharaciforiActinopte	r fish	species
Gonçalves NA	NA	NA	NA	Insecta	invertebra ¹ Mimagonia NA	Characida	eCharaciforiActinopte	r fish	genus
Wolff 2012 NA	NA	NA	NA	Insecta	invertebra ¹ Mimagonia NA	Characida	eCharaciforiActinopte	r fish	genus
Silva 2009 NA	NA	NA	NA	Insecta	invertebra ¹ Mimagonia NA	Characida	eCharaciforiActinopte	r fish	genus
Costa 1987 NA	NA	NA	NA	Insecta	invertebra ¹ Mimagonia NA	Characida	eCharaciforiActinopte	r fish	genus
Aranha et i NA	NA	NA	NA	Insecta	invertebra ¹ Mimagonia NA	Characida	eCharaciforiActinopte	r fish	genus
Gonçalves NA	NA	NA	NA	Insecta	invertebra ¹ Mimagonia NA	Characida	eCharaciforiActinopte	r fish	species
Wolff 2012 NA	NA	NA	NA	Insecta	invertebra ¹ Mimagonia NA	Characida	eCharaciforiActinopte	r fish	species
Silva 2009 NA	NA	NA	NA	Insecta	invertebra Mimagonia NA	Characida	eCharaciforiActinopte	r fish	species
Costa 1987 NA	NA	NA	NA	Insecta	invertebra Mimagonia NA	Characida	eCharaciforiActinopte	r fish	species
Aranha et ; NA	NA	NA	NA	Insecta	invertebra Mimagonia NA	Characida	eCharaciforiActinopte	r fish	species

Esteves et NA	NA	NA	NA	Insecta	invertebra [®] Phallocero [®] NA	Poeciliida	eCyprinodoiActinopte	r fish genus	
Aranha et ; NA	NA	NA	NA	Insecta	invertebra Phallocero NA	Poeciliida	eCyprinodoıActinopte	r fish genus	
Esteves an NA	NA	NA	NA	Insecta	invertebra [®] Phallocero [®] NA	Poeciliida	eCyprinodoıActinopte	r fish genus	
Esteves an NA	NA	NA	NA	Insecta	invertebra [®] Phallocero [®] NA	Poeciliida	eCyprinodoıActinopte	r fish genus	
Wolff 2012 NA	NA	NA	NA	Insecta	invertebra [®] Phallocero [®] NA	Poeciliida	eCyprinodoıActinopte	r fish species	S
Meschiatti NA	NA	NA	NA	Insecta	invertebra [:] Synbranch:NA	Synbranch	niSynbranchiActinopte	r fish species	S
Wolff et al. NA	NA	NA	NA	Insecta	invertebra [:] Synbranch:NA	Synbranch	niSynbranchiActinopte	r fish species	S
Wolff 2012 NA	NA	NA	NA	Insecta	invertebra:Synbranch NA	Synbranch	niSynbranchiActinopte	r fish species	S
Bentes_et_NA	NA	NA	Lepidop	oter Insecta	invertebra [:] Synoestror NA	Hydropsy	Trichopter: Insecta	invertebratgenus	
Esteves an NA	NA	NA	Lepidop	oter Insecta	invertebra ¹ Acentronic NA	Heptapter	ri Siluriforme Actinopte	r fish species	S
Carmo 201 NA	NA	NA	Lepidop	oter Insecta	invertebra Characidiu NA	Crenuchid	CharaciforiActinopte	r fish genus	
Mazzoni ar NA	NA	NA	Lepidop	oter Insecta	invertebra Mimagonia NA	Characida	eCharaciforıActinopte	r fish genus	
Mazzoni ar NA	NA	NA	Lepidop	oter Insecta	invertebra Mimagonia NA	Characida	eCharaciforıActinopte	r fish species	S
Deus and F NA	NA	NA	Lepidop	oter Insecta	invertebrat Rhamdia NA	Pimelodid	aSiluriformeActinopte	r fish species	S
Brazil-Souz NA	NA	NA	Lepidop	oter Insecta	invertebrat Rhamdia NA	Pimelodid	aSiluriformeActinopte	r fish species	S
Gamboa_e NA	NA	Leptoce	rid Trichop	ter: Insecta	invertebra ¹ Anacroneu NA	Perlidae	Plecoptera Insecta	invertebratgenus	
Gamboa_e NA	NA	Leptoce	rid Trichop	ter: Insecta	invertebra Kempnyia NA	Perlidae	Plecoptera Insecta	invertebrat family	
Gamboa_e NA	NA	Leptoce	rid Trichop	ter: Insecta	invertebra Macrogync NA	Perlidae	Plecoptera Insecta	invertebrat family	
Gamboa_e NA	NA	Leptohy	ph Epheme	eroj Insecta	invertebra ¹ Anacroneu NA	Perlidae	Plecoptera Insecta	invertebratgenus	
Gamboa_e NA	NA	Leptohy	ph Epheme	eroj Insecta	invertebra Kempnyia NA	Perlidae	Plecoptera Insecta	invertebrat family	
Gamboa_e NA	NA	Leptohy	ph Epheme	eroj Insecta	invertebra Macrogync NA	Perlidae	Plecoptera Insecta	invertebrat family	
Hurtado-B(NA	NA	Leptopł	nletEpheme	eroj Insecta	invertebra ¹ Anacroneu NA	Perlidae	Plecoptera Insecta	invertebratgenus	
Gamboa_e NA	NA	Leptopł	nletEpheme	eroj Insecta	invertebra ¹ Anacroneu NA	Perlidae	Plecoptera Insecta	invertebratgenus	
Hurtado-B(NA	NA	Leptopł	nletEpheme	eroj Insecta	invertebra Kempnyia NA	Perlidae	Plecoptera Insecta	invertebrat family	
Gamboa_e NA	NA	Leptopł	nletEpheme	eroj Insecta	invertebra Kempnyia NA	Perlidae	Plecoptera Insecta	invertebrat family	
Hurtado-B(NA	NA	Leptopł	nletEpheme	eroj Insecta	invertebra Macrogync NA	Perlidae	Plecoptera Insecta	invertebrat family	
Gamboa_e NA	NA	Leptopł	nletEpheme	eroj Insecta	invertebra Macrogync NA	Perlidae	Plecoptera Insecta	invertebrat family	
Bentes_et_NA	NA	Leptopł	nletEpheme	eroj Insecta	invertebra [:] Synoestror NA	Hydropsyd	Trichopter Insecta	invertebratgenus	
Sierra-Laba NA	NA	NA	NA	NA	macroalga Anacroneu NA	Perlidae	Plecoptera Insecta	invertebratgenus	
Sierra-Laba NA	NA	NA	NA	NA	macroalga Kempnyia NA	Perlidae	Plecoptera Insecta	invertebrat family	
Sierra-Laba NA	NA	NA	NA	NA	macroalga Macrogync NA	Perlidae	Plecoptera Insecta	invertebrat family	

Saito_and_ NA	NA	NA	NA	NA	microphyte NA	Tanypodin	Chironomi	Diptera	Insecta	invertebra	subfamily
Tomanova _. NA	NA	NA	NA	NA	invertebra Anacroneu	INA	Perlidae	Plecoptera	Insecta	invertebra	genus
McPeek_ai NA	NA	NA	NA	NA	invertebra Argia	NA	Coenagrio	Odonata	Insecta	invertebra	family
Tomanova _. NA	NA	NA	NA	NA	invertebra [,] Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Tomanova _. NA	NA	NA	NA	NA	invertebra Macrogyno	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Velasco_ar NA	NA	NA	NA	NA	invertebra NA	NA	Belostoma	Hemiptera	Insecta	invertebra	family
Tomanova _. NA	NA	NA	NA	NA	invertebrat NA	NA	Ceratopog	Diptera	Insecta	invertebra	family
Morse_et_ NA	NA	NA	NA	NA	invertebrat Cernotina	NA	Polycentro	Trichopter	Insecta	invertebra	genus
Tomanova _. NA	NA	NA	NA	NA	invertebrat Corydalus	NA	Corydalida	Megalopte	Insecta	invertebra	genus
McPeek_ai NA	NA	NA	NA	NA	invertebra Dythemis	NA	Libellulida	Odonata	Insecta	invertebra	family
Tomanova _. NA	NA	NA	NA	NA	invertebrat NA	NA	Hydrobiosi	iTrichoptera	Insecta	invertebra	family
Tomanova _. NA	NA	NA	NA	NA	invertebrat NA	NA	Hydropsyc	Trichopter	Insecta	invertebra	family
Tomanova _. NA	NA	NA	NA	NA	invertebratLeptonema	NA	Hydropsyc	Trichopter	Insecta	invertebra	genus
McPeek_ai NA	NA	NA	NA	NA	invertebra NA	NA	Libellulida	Odonata	Insecta	invertebra	family
Chesire_et NA	NA	NA	NA	NA	invertebra Oecetis	NA	Leptocerid	Trichoptera	Insecta	invertebra	genus
Tomanova _. NA	NA	NA	NA	NA	invertebra Smicridea	NA	Hydropsyc	Trichopter	Insecta	invertebra	genus
Gil_et_al NA	NA	NA	NA	NA	invertebra Smicridea	NA	Hydropsyc	Trichopter	Insecta	invertebra	genus
Bentes_et_NA	NA	NA	NA	NA	invertebra Synoestrop	NA	Hydropsyc	Trichopter	Insecta	invertebra	genus
Saito_and_ NA	NA	NA	NA	NA	invertebra NA	Tanypodin	Chironomi	Diptera	Insecta	invertebra	subfamily
Moreira_e NA	NA	NA	NA	NA	invertebra NA	NA	Veliidae	Hemiptera	Insecta	invertebra	family
Sierra-Laba NA	NA	NA	NA	NA	macrophytAnacroneu	INA	Perlidae	Plecoptera	Insecta	invertebra	genus
Shimabuku NA	NA	NA	NA	NA	macrophyt NA	NA	Chironomi	Diptera	Insecta	invertebra	family
Sierra-Laba NA	NA	NA	NA	NA	macrophyt Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Sierra-Laba NA	NA	NA	NA	NA	macrophytMacrogyno	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Esteves an NA	NA	NA	NA	NA	macrophytAcentronic	NA	Heptapter	iSiluriforme	Actinopter	fish	species
Esteves an NA	NA	NA	NA	NA	macrophytDeuterodo	NA	Characidae	Characifor	Actinopter	fish	species
Buck and S NA	NA	NA	NA	NA	macrophyt Schizolecis	5 NA	Loricariida	Siluriforme	Actinopter	fish	species
Brazil-Souz NA	NA	NA	Megalopte	Insecta	invertebra [†] Rhamdia	NA	Pimelodida	Siluriforme	Actinopter	fish	species
Boddingto: NA	NA	NA	NA	NA	invertebra Dugesia	NA	NA	NA	Platyhelmi	worms	genus
Boon_198!NA	NA	NA	NA	NA	invertebra Blepharop	INA	Hydropsyc	Trichopter	Insecta	invertebra	genus
Shimabuku NA	NA	NA	NA	NA	invertebra NA	NA	Chironomi	Diptera	Insecta	invertebra	family

Reynolds_; NA	NA	NA	NA	NA	invertebra ¹ NA NA	Corixidae Hemiptera Insecta	invertebrat family
Garelis_an NA	NA	NA	NA	NA	invertebrat Cyrnellus NA	Polycentro Trichopter: Insecta	invertebratfamily
Alencar_et NA	NA	NA	NA	NA	invertebra Simulium NA	Simuliidae Diptera Insecta	invertebratgenus
Alencar_et NA	NA	NA	NA	NA	invertebra Simulium NA	Simuliidae Diptera Insecta	invertebratgenus
Tomanova _. NA	NA	NA	NA	NA	microphyt (Kempnyia NA	Perlidae Plecoptera Insecta	invertebratfamily
Tomanova _. NA	NA	NA	NA	NA	microphyt(Macrogync NA	Perlidae Plecoptera Insecta	invertebratfamily
Sierra-Laba NA	NA	NA	NA	NA	microphyt(Anacroneu NA	Perlidae Plecoptera Insecta	invertebratgenus
Tomanova NA	NA	NA	NA	NA	microphyt(Anacroneu NA	Perlidae Plecoptera Insecta	invertebratgenus
Tomanova _. NA	NA	NA	NA	NA	microphyteNA NA	Baetidae Ephemero Insecta	invertebrat family
Boon_198! NA	NA	NA	NA	NA	microphyt (Blepharop (NA	Hydropsyc Trichopter;Insecta	invertebratgenus
Tomanova _. NA	NA	NA	NA	NA	microphyteNA NA	Ceratopog Diptera Insecta	invertebratfamily
Tomanova _. NA	NA	NA	NA	NA	microphyte Chimarra NA	PhilopotanTrichopter: Insecta	invertebratgenus
Shimabuku NA	NA	NA	NA	NA	microphyteNA NA	Chironomi Diptera Insecta	invertebratfamily
Garelis_an NA	NA	NA	NA	NA	microphyt(Cyrnellus NA	Polycentro Trichopter: Insecta	invertebratfamily
Brito_et_a NA	NA	NA	NA	NA	microphyt(Gripoptery NA	GripopteryPlecoptera Insecta	invertebratfamily
Tomanova NA	NA	NA	NA	NA	microphyt(Helicopsyc NA	Helicopsyc Trichopter: Insecta	invertebratgenus
Tomanova NA	NA	NA	NA	NA	microphyt(Heterelmis NA	Elmidae Coleoptera Insecta	invertebratgenus
Tomanova NA	NA	NA	NA	NA	microphyt(Heterelmis NA	Elmidae Coleoptera Insecta	invertebratgenus
Tomanova NA	NA	NA	NA	NA	microphyt(Hexacylloe NA	Elmidae Coleoptera Insecta	invertebratfamily
Tomanova _. NA	NA	NA	NA	NA	microphyteNA NA	Hydrobiosi Trichopter: Insecta	invertebratfamily
Tomanova NA	NA	NA	NA	NA	microphyteNA NA	Hydropsyc Trichopter;Insecta	invertebratfamily
Keiper_anc NA	NA	NA	NA	NA	microphyteNA NA	HydroptilicTrichopter Insecta	invertebratfamily
Sierra-Laba NA	NA	NA	NA	NA	microphyt Kempnyia NA	Perlidae Plecoptera Insecta	invertebratfamily
Tomanova NA	NA	NA	NA	NA	microphyteNA NA	Leptocerid Trichopter: Insecta	invertebratfamily
Tomanova _. NA	NA	NA	NA	NA	microphyteNA NA	Leptohyph Ephemeroj Insecta	invertebratgenus
Tomanova _. NA	NA	NA	NA	NA	microphyt(Leptonem; NA	Hydropsyc Trichopter;Insecta	invertebratgenus
Tomanova NA	NA	NA	NA	NA	microphyte Macrelmis NA	Elmidae Coleoptera Insecta	invertebratgenus
Tomanova _. NA	NA	NA	NA	NA	microphyt: Macrelmis NA	Elmidae Coleoptera Insecta	invertebratgenus
Brito_et_a NA	NA	NA	NA	NA	microphyt(Macrobrac NA	Paleomoni Decapoda Crustacea	a invertebratgenus
Brito_et_a NA	NA	NA	NA	NA	microphyt(Macrobrac NA	Paleomoni Decapoda Crustacea	a invertebratgenus
Brito_et_a NA	NA	NA	NA	NA	microphyt(Macrobrac NA	Paleomoni Decapoda Crustacea	a invertebratgenus

Sierra-Laba	NA	NA	NA	NA	NA	microphyte	Macrogyno	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Silveira-Ma	NA	NA	NA	NA	NA	microphyte	Macronem	NA	Hydropsyc	Trichopter	Insecta	invertebra	genus
Ceneviva-E	NA	NA	NA	NA	NA	microphyte	Miroculis	NA	Leptophle	Ephemero	Insecta	invertebra	genus
Tomanova _.	NA	NA	NA	NA	NA	microphyte	Neoelmis	NA	Elmidae	Coleoptera	Insecta	invertebra	genus
Tomanova _.	NA	NA	NA	NA	NA	microphyte	Neoelmis	NA	Elmidae	Coleoptera	Insecta	invertebra	genus
Ferreira_et	NA	NA	NA	NA	NA	microphyte	Phylloicus	NA	Calamocer	Trichopter	Insecta	invertebra	genus
Tomanova _.	NA	NA	NA	NA	NA	microphyte	Psephenus	NA	Psephenid	Coleoptera	Insecta	invertebra	genus
Tomanova _.	NA	NA	NA	NA	NA	microphyte	Smicridea	NA	Hydropsyc	Trichopter	Insecta	invertebra	genus
Saito_(po)	NA	NA	NA	NA	NA	microphyte	NA	NA	NA	NA	NA	gastropod	NA
Mazzoni ar	Mimagonia	NA	Characidae	Characifor	Actinopter	fish	Hoplias	NA	Erythrinida	Characifor	Actinopter	fish	species
Carmo 201	NA	NA	NA	NA	Mollusca	Mollusca	Characidiu	NA	Crenuchid	Characifor	Actinopter	fish	genus
Gonçalves	NA	NA	NA	NA	Mollusca	Mollusca	Deuterodo	NA	Characidae	Characifor	Actinopter	fish	species
Gonçalves	NA	NA	NA	NA	Mollusca	Mollusca	Mimagonia	NA	Characidae	Characifor	Actinopter	fish	genus
Gonçalves	NA	NA	NA	NA	Mollusca	Mollusca	Mimagonia	NA	Characidae	Characifor	Actinopter	fish	species
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Coleoptera	Insecta	invertebra	1NA
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Diptera	Insecta	invertebra	1NA
NA	NA	NA	NA	NA	NA	NA	NA	NA	Elmidae	Coleoptera	Insecta	invertebra	1NA
NA	NA	NA	NA	NA	NA	NA	NA	NA	Ptilodactyl	Coleoptera	Insecta	invertebra	1NA
Carmo 201	NA	NA	NA	NA	Nematoda	worm	Characidiu	NA	Crenuchid	Characifor	Actinopter	fish	genus
Carmo et a	NA	NA	NA	NA	Nematoda	worm	Characidiu	NA	Crenuchid	Characifor	Actinopter	fish	genus
Esteves an	NA	NA	NA	NA	Nematoda	worm	Deuterodo	NA	Characidae	Characifor	Actinopter	fish	species
Barreto an	NA	NA	NA	NA	Nematoda	worm	Deuterodo	NA	Characidae	Characifor	Actinopter	fish	genus
Gonçalves	NA	NA	NA	NA	Nematoda	worm	Hollandich	NA	Characidae	Characifor	Actinopter	fish	species
Gonçalves	NA	NA	NA	NA	Nematoda	worm	Mimagonia	NA	Characidae	Characifor	Actinopter	fish	genus
Costa 1987	NA	NA	NA	NA	Nematoda	worm	Mimagonia	NA	Characidae	Characifor	Actinopter	fish	genus
Aranha et a	NA	NA	NA	NA	Nematoda	worm	Mimagonia	NA	Characidae	Characifor	Actinopter	fish	genus
Gonçalves	NA	NA	NA	NA	Nematoda	worm	Mimagonia	NA	Characidae	Characifor	Actinopter	fish	species
Costa 1987	NA	NA	NA	NA	Nematoda	worm	Mimagonia	NA	Characidae	Characifor	Actinopter	fish	species
Aranha et a	NA	NA	NA	NA	Nematoda	worm	Mimagonia	NA	Characidae	Characifor	Actinopter	fish	species
Carmo 201	NA	NA	NA	Odonata	Insecta	invertebra	Characidiu	NA	Crenuchid	Characifor	Actinopter	fish	genus
Carmo et a	NA	NA	NA	Odonata	Insecta	invertebra	Characidiu	NA	Crenuchid	Characifor	Actinopter	fish	genus

Aranha et ; NA	NA	NA	Odonata	Insecta	invertebra	alCharacidi	u NA	Crenuchid	¿Characifo	rıActinopte	r fish	species
Abilhoa et NA	NA	NA	Odonata	Insecta	invertebra	a Hollandic	h NA	Characida	eCharacifo	rıActinopte	r fish	species
Mazzoni ar NA	NA	NA	Odonata	Insecta	invertebra	a' Hoplias	NA	Erythrinid	aCharacifo	rıActinopte	r fish	species
Mazzoni ar NA	NA	NA	Odonata	Insecta	invertebra	a [†] Mimagon	ia NA	Characida	eCharacifo	rıActinopte	r fish	genus
Mazzoni ar NA	NA	NA	Odonata	Insecta	invertebra	a'Mimagon	ia NA	Characida	eCharacifo	rıActinopte	r fish	species
Aranha et ; NA	NA	NA	Odonata	Insecta	invertebra	aiPhallocer	o: NA	Poeciliidae	Cyprinodo	Actinopte	r fish	species
Villares Jur NA	NA	NA	Odonata	Insecta	invertebra	a' Rhamdia	NA	Pimelodid	aSiluriform	eActinopte	r fish	species
Brazil-Souz NA	NA	NA	Odonata	Insecta	invertebra	a' Rhamdia	NA	Pimelodid	aSiluriform	eActinopte	r fish	species
Reynolds_; NA	NA	NA	NA	Oligochae	et worm	NA	NA	Corixidae	Hemipter	a Insecta	invertebra	Ifamily
Boddingto: NA	NA	NA	NA	Oligochae	et worm	Dugesia	NA	NA	NA	Platyhelm	i worms	genus
Abilhoa et NA	NA	NA	Oligochae	et Clitellata	worm	Hollandic	h NA	Characida	eCharacifo	rıActinopte	r fish	species
Esteves an NA	NA	NA	Oligochae	et Clitellata	worm	Phallocer	o: NA	Poeciliidae	Cyprinodo	Actinopte	r fish	genus
Deus and F NA	NA	NA	Oligochae	et Clitellata	worm	Rhamdia	NA	Pimelodid	aSiluriform	eActinopte	r fish	species
Brazil-Souz NA	NA	NA	Oligochae	et Clitellata	worm	Rhamdia	NA	Pimelodid	aSiluriform	eActinopte	r fish	species
Carmo et a NA	NA	NA	Ostracod	a Crustacea	a crustacea	nCharacidi	u NA	Crenuchid	¿Characifo	rıActinopte	r fish	genus
Reis et al. 2NA	NA	NA	NA	NA	periphyto	nAcentroni	ic NA	Heptapter	iSiluriform	eActinopte	r fish	species
Gonçalves NA	NA	NA	NA	NA	periphyto	nDeuterod	o NA	Characida	eCharacifo	rıActinopte	r fish	species
Deus and F NA	NA	NA	NA	NA	plant_see	c Rhamdia	NA	Pimelodid	aSiluriform	eActinopte	r fish	species
Aranha et ; NA	NA	NA	NA	NA	plant_see	d Schizoleci	is NA	Loricariida	Siluriform	eActinopte	r fish	species
Silva 2009 NA	NA	NA	NA	NA	plant_tiss	uAcentroni	ic NA	Heptapter	iSiluriform	eActinopte	r fish	species
Wolff 2012 NA	NA	NA	NA	NA	plant_tiss	uAcentroni	ic NA	Heptapter	iSiluriform	eActinopte	r fish	species
Wolff 2012 NA	NA	NA	NA	NA	plant_tiss	uCharacidi	u NA	Crenuchid	¿Characifo	rıActinopte	r fish	species
Carmo 201 NA	NA	NA	NA	NA	plant_tiss	uCharacidi	u NA	Crenuchid	¿Characifo	rıActinopte	r fish	genus
Gonçalves NA	NA	NA	NA	NA	plant_tiss	uDeuterod	o NA	Characida	eCharacifo	rıActinopte	r fish	species
Wolff 2012 NA	NA	NA	NA	NA	plant_tiss	uDeuterod	o NA	Characida	eCharacifo	rıActinopte	r fish	species
Silva 2009 NA	NA	NA	NA	NA	plant_tiss	uDeuterod	o NA	Characida	eCharacifo	rıActinopte	r fish	species
Esteves an NA	NA	NA	NA	NA	plant_tiss	uDeuterod	o NA	Characida	eCharacifo	rıActinopte	r fish	species
Barreto an NA	NA	NA	NA	NA	plant_tiss	uDeuterod	o NA	Characida	eCharacifo	rıActinopte	r fish	genus
Silva 2009 NA	NA	NA	NA	NA	plant_tiss	u Gymnotu	s NA	Gymnotid	Gymnotif	o Actinopte	r fish	species
Braga and NA	NA	NA	NA	NA	plant_tiss	u Gymnotu	s NA	Gymnotid	Gymnotif	o Actinopte	r fish	species
Esteves et NA	NA	NA	NA	NA	plant_tiss	u Gymnotu	s NA	Gymnotid	Gymnotif	o Actinopte	r fish	species

Abilhoa et NA	NA	NA	NA	NA	plant_tissu	Hollandich	NA	Characida	eCharacifor	riActinopter	⁻ fish	species
Silva 2009 NA	NA	NA	NA	NA	plant_tissu	Hollandich	NA	Characida	eCharacifor	Actinopter	fish	species
Wolff 2012 NA	NA	NA	NA	NA	plant_tissu	Hollandich	NA	Characida	eCharacifor	Actinopter	fish	species
Gonçalves NA	NA	NA	NA	NA	plant_tissu	Hollandich	NA	Characida	eCharacifor	Actinopter	fish	species
Costa 1987 NA	NA	NA	NA	NA	plant_tissu	Mimagonia	NA	Characida	eCharacifor	Actinopter	fish	genus
Aranha et ; NA	NA	NA	NA	NA	plant_tissu	Mimagonia	NA	Characida	eCharacifor	Actinopter	fish	genus
Costa 1987 NA	NA	NA	NA	NA	plant_tissu	Mimagonia	NA	Characida	eCharacifor	Actinopter	fish	species
Aranha et ; NA	NA	NA	NA	NA	plant_tissu	Mimagonia	NA	Characida	eCharacifor	Actinopter	fish	species
Aranha et ; NA	NA	NA	NA	NA	plant_tissu	Phallocero	NA	Poeciliidae	eCyprinodo	Actinopter	fish	species
Esteves et NA	NA	NA	NA	NA	plant_tissu	Phallocero	NA	Poeciliidae	Cyprinodo	Actinopter	fish	genus
Aranha et ; NA	NA	NA	NA	NA	plant_tissu	Phallocero	NA	Poeciliidae	eCyprinodo	Actinopter	fish	genus
Esteves an NA	NA	NA	NA	NA	plant_tissu	Phallocero	NA	Poeciliidae	eCyprinodo	Actinopter	fish	genus
Brazil-Souz NA	NA	NA	NA	NA	plant_tissu	Rhamdia	NA	Pimelodid	aSiluriform	eActinopter	fish	species
Aranha et ; NA	NA	NA	NA	NA	plant_tissu	Schizolecis	NA	Loricariida	Siluriform	eActinopter	fish	species
Ferreira_etNA	NA	NA	NA	NA	plant_tissu	Phylloicus	NA	Calamoce	r Trichoptei	riInsecta	invertebra	genus
Gil_et_al NA	NA	NA	NA	NA	plant_tissu	Smicridea	NA	Hydropsyd	Trichopte	alnsecta	invertebra	genus
Bentes_et_NA	NA	NA	NA	NA	plant_tissu	Synoestrop	NA	Hydropsyd	Trichopte	ralnsecta	invertebra	genus
Vlug_and_ NA	NA	NA	NA	NA	plant_tissu	NA	NA	Tipulidae	Diptera	Insecta	invertebra	family
Carmo 201 NA	NA	NA	Plecoptera	Insecta	invertebrat	Characidiu	NA	Crenuchid	a Characifor	Actinopter	fish	genus
Carmo et a NA	NA	NA	Plecoptera	Insecta	invertebrat	Characidiu	NA	Crenuchid	a Characifor	Actinopter	fish	genus
Barreto an NA	NA	NA	Plecoptera	Insecta	invertebrat	Characidiu	NA	Crenuchid	a Characifor	Actinopter	fish	species
Barreto an NA	NA	NA	Plecoptera	Insecta	invertebra	Deuterodo	NA	Characida	eCharacifor	Actinopter	fish	genus
Aranha et ; NA	NA	NA	Plecoptera	Insecta	invertebrat	Phallocero	NA	Poeciliidae	Cyprinodo	Actinopter	fish	species
Brazil-Souz NA	NA	NA	Plecoptera	Insecta	invertebrat	Rhamdia	NA	Pimelodid	aSiluriform	eActinopter	fish	species
Mazzoni ar Poecilia	NA	Poeciliidae	Cyprinodo	Actinopter	⁻ fish	Hoplias	NA	Erythrinid	aCharacifor	Actinopter	fish	species
Gil_et_al NA	NA	NA	NA	NA	pollen	Smicridea	NA	Hydropsyd	Trichopte	alnsecta	invertebra	genus
Bentes_et_NA	NA	NA	NA	Porifera	Porifera	Synoestrop	NA	Hydropsyd	Trichopte	alnsecta	invertebra	genus
Aranha et ; NA	NA	NA	NA	Protista	protist	Schizolecis	NA	Loricariida	Siluriform	eActinopter	fish	species
Hurtado-B(NA	NA	Simuliidae	Diptera	Insecta	invertebrat	Anacroneu	NA	Perlidae	Plecoptera	a Insecta	invertebra	genus
Gamboa_e NA	NA	Simuliidae	Diptera	Insecta	invertebra	Anacroneu	NA	Perlidae	Plecoptera	a Insecta	invertebra	genus
Alencar_et NA	NA	Simuliidae	Diptera	Insecta	invertebrat	Anacroneu	NA	Perlidae	Plecoptera	a Insecta	invertebra	family

Alencar_et NA	NA	Simuliidae	Diptera	Insecta	invertebra Argia	NA	Coenagrio	Odonata	Insecta	invertebra	family
Alencar_et NA	NA	Simuliidae	Diptera	Insecta	invertebrat Dythemis	NA	Libellulidae	Odonata	Insecta	invertebra	family
Alencar_et NA	NA	Simuliidae	Diptera	Insecta	invertebrat NA	NA	Gomphida	Odonata	Insecta	invertebra	family
Alencar_et NA	NA	Simuliidae	Diptera	Insecta	invertebra [†] Heteragrio	NA	Megapoda	Odonata	Insecta	invertebra	family
Hurtado-B(NA	NA	Simuliidae	Diptera	Insecta	invertebrat Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Gamboa_e NA	NA	Simuliidae	Diptera	Insecta	invertebrat Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Alencar_et NA	NA	Simuliidae	Diptera	Insecta	invertebrat NA	NA	Libellulidae	Odonata	Insecta	invertebra	family
Hurtado-B(NA	NA	Simuliidae	Diptera	Insecta	invertebra Macrogyno	(NA	Perlidae	Plecoptera	Insecta	invertebra	family
Gamboa_e NA	NA	Simuliidae	Diptera	Insecta	invertebra Macrogyno	(NA	Perlidae	Plecoptera	Insecta	invertebra	family
Alencar_et NA	NA	Simuliidae	Diptera	Insecta	invertebra Macrogyno	(NA	Perlidae	Plecoptera	Insecta	invertebra	family
Esteves an NA	NA	Simuliidae	Diptera	Insecta	invertebra Acentronic	NA	Heptapteri	Siluriforme	Actinopter	fish	species
Buck and S NA	NA	Simuliidae	Diptera	Insecta	invertebra Schizolecis	5 NA	Loricariida	Siluriforme	Actinopter	fish	species
Hurtado-B Smicridea	NA	Hydropsyc	Trichopter	Insecta	invertebra Anacroneu	INA	Perlidae	Plecoptera	Insecta	invertebra	genus
Hurtado-B Smicridea	NA	Hydropsyc	Trichopter	Insecta	invertebrat Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Hurtado-B Smicridea	NA	Hydropsyc	Trichopter	Insecta	invertebra Macrogyno	(NA	Perlidae	Plecoptera	Insecta	invertebra	family
Gamboa_e NA	NA	Tabanidae	Diptera	Insecta	invertebra Anacroneu	INA	Perlidae	Plecoptera	Insecta	invertebra	genus
Gamboa_e NA	NA	Tabanidae	Diptera	Insecta	invertebrat Kempnyia	NA	Perlidae	Plecoptera	Insecta	invertebra	family
Gamboa_e NA	NA	Tabanidae	Diptera	Insecta	invertebra Macrogyno	(NA	Perlidae	Plecoptera	Insecta	invertebra	family
Tomanova _. NA	NA	NA	NA	NA	Allochtono Smicridea	NA	Hydropsyc	Trichopter	Insecta	invertebra	genus
Moreira_e NA	NA	NA	NA	NA	Allochtono NA	NA	Veliidae	Hemiptera	Insecta	invertebra	family
Esteves an NA	NA	NA	NA	NA	AllochtonoAcentronic	NA	Heptapteri	Siluriforme	Actinopter	fish	species
Gonçalves NA	NA	NA	NA	NA	AllochtonoAcentronic	NA	Heptapteri	Siluriforme	Actinopter	fish	species
Wolff 2012 NA	NA	NA	NA	NA	AllochtonoCharacidiu	NA	Crenuchida	Characifor	Actinopter	fish	species
Silva 2009 NA	NA	NA	NA	NA	AllochtonoCharacidiu	NA	Crenuchida	Characifor	Actinopter	fish	genus
Barreto an NA	NA	NA	NA	NA	AllochtonoCharacidiu	NA	Crenuchida	Characifor	Actinopter	fish	species
Wolff 2012 NA	NA	NA	NA	NA	AllochtonoDeuterodo	NA	Characidae	Characifor	Actinopter	fish	species
Silva 2009 NA	NA	NA	NA	NA	AllochtonoDeuterodo	NA	Characidae	Characifor	Actinopter	fish	species
Esteves an NA	NA	NA	NA	NA	AllochtonoDeuterodo	NA	Characidae	Characifor	Actinopter	fish	species
Barreto an NA	NA	NA	NA	NA	AllochtonoDeuterodo	NA	Characidae	Characifor	Actinopter	fish	genus
Costa 1987 NA	NA	NA	NA	NA	Allochtono Gymnotus	NA	Gymnotida	Gymnotifo	Actinopter	fish	species
Braga and NA	NA	NA	NA	NA	Allochtono Gymnotus	NA	Gymnotida	Gymnotifo	Actinopter	fish	species

Abilhoa et NA	NA	NA	NA	NA	Allochtono	JHollandic	h NA	Characida	eCharaciforiAd	ctinopter	fish	species
Esteves an NA	NA	NA	NA	NA	Allochton	Hollandic	h NA	Characida	eCharaciforıAd	ctinopter	fish	species
Wolff 2012 NA	NA	NA	NA	NA	Allochton	Hollandic	h NA	Characida	eCharaciforıAd	ctinopter	fish	species
Gonçalves NA	NA	NA	NA	NA	Allochton	Hollandic	h NA	Characida	eCharaciforıAd	ctinopter	fish	species
Mazzoni ar NA	NA	NA	NA	NA	Allochton) Hoplias	NA	Erythrinid	aCharaciforıAd	ctinopter	fish	species
Gonçalves NA	NA	NA	NA	NA	Allochton	Mimagon	ia NA	Characida	eCharaciforıAd	ctinopter	fish	genus
Wolff 2012 NA	NA	NA	NA	NA	Allochton	Mimagon	ia NA	Characida	eCharaciforıAd	ctinopter	fish	genus
Silva 2009 NA	NA	NA	NA	NA	Allochton	Mimagon	ia NA	Characida	eCharaciforıAd	ctinopter	fish	genus
Costa 1987 NA	NA	NA	NA	NA	Allochton	Mimagon	iaNA	Characida	eCharaciforıAd	ctinopter	fish	genus
Aranha et ; NA	NA	NA	NA	NA	Allochton	Mimagon	ia NA	Characida	eCharaciforıAd	ctinopter	fish	genus
Mazzoni ar NA	NA	NA	NA	NA	Allochton	Mimagon	iaNA	Characida	eCharaciforıAd	ctinopter	fish	genus
Gonçalves NA	NA	NA	NA	NA	Allochton	Mimagon	iaNA	Characida	eCharaciforıAd	ctinopter	fish	species
Wolff 2012 NA	NA	NA	NA	NA	Allochton	Mimagon	iaNA	Characida	eCharaciforıAd	ctinopter	fish	species
Silva 2009 NA	NA	NA	NA	NA	Allochton	Mimagon	iaNA	Characida	eCharaciforıAd	ctinopter	fish	species
Costa 1987 NA	NA	NA	NA	NA	Allochton	Mimagon	ia NA	Characida	eCharaciforıAd	ctinopter	fish	species
Aranha et ; NA	NA	NA	NA	NA	Allochton	Mimagon	iaNA	Characida	eCharaciforıAd	ctinopter	fish	species
Mazzoni ar NA	NA	NA	NA	NA	Allochton	Mimagon	iaNA	Characida	eCharaciforıAd	ctinopter	fish	species
Aranha et (NA	NA	NA	NA	NA	Allochton	Phallocer	o: NA	Poeciliida	eCyprinodoiAo	ctinopter	fish	species
Villares Jur NA	NA	NA	NA	NA	Allochton	o Rhamdia	NA	Pimelodid	aSiluriformeAd	ctinopter	fish	species
Deus and F NA	NA	NA	NA	NA	Allochton	o Rhamdia	NA	Pimelodid	aSiluriformeAd	ctinopter	fish	species
Brazil-Souz NA	NA	NA	NA	NA	Allochton	o Rhamdia	NA	Pimelodid	aSiluriformeAd	ctinopter	fish	species
Hurtado-B(NA	NA	NA	Trichopter	riInsecta	invertebra	Anacrone	u NA	Perlidae	Plecoptera In	secta	invertebra	Igenus
Hurtado-B(NA	NA	NA	Trichopter	riInsecta	invertebra	l Kempnyia	a NA	Perlidae	Plecoptera In	secta	invertebra	family
Hurtado-B(NA	NA	NA	Trichopter	ralnsecta	invertebra	Macrogyr	nc NA	Perlidae	Plecoptera In	secta	invertebra	family
Bentes_et_NA	NA	NA	Trichopter	riInsecta	invertebra	Synoestro	or NA	Hydropsy	Trichopter: In	secta	invertebra	Igenus
Carmo 201 NA	NA	NA	Trichopter	ralnsecta	invertebra	Characidi	u NA	Crenuchid	aCharaciforiAd	ctinopter	fish	genus
Barreto an NA	NA	NA	Trichopter	ralnsecta	invertebra	Characidi	u NA	Crenuchid	aCharaciforiAd	ctinopter	fish	species
Costa 1987 NA	NA	NA	Trichopter	ralnsecta	invertebra	Mimagon	iaNA	Characida	eCharaciforıAd	ctinopter	fish	genus
Costa 1987 NA	NA	NA	Trichopter	ralnsecta	invertebra	Mimagon	ia NA	Characida	eCharaciforıAd	ctinopter	fish	species
Brazil-Souz NA	NA	NA	Trichopter	riInsecta	invertebra	d Rhamdia	NA	Pimelodid	aSiluriformeAd	ctinopter	fish	species
Aranha et ; NA	NA	NA	NA	Zignemapl	algae	Phallocer	D: NA	Poeciliida	eCyprinodoiAo	ctinopter	fish	genus

Aranha et ; NA	NA	NA	NA	Zignemap	h algae	Schizolecis NA	Loricariida Siluriforme Actinopter fish	species
Aranha et ; NA	NA	NA	NA	NA	zooplankt	cPhallocero: NA	PoeciliidaeCyprinodo:Actinopter fish	species

วท

resource	frequency r	es.genus	res.subfam	res.family	res.order	res.class.pl	res.category
Acarina	7 N	١A	NA	NA	Acarina	Chelicerata	invertebrates
algae	44 N	١A	NA	NA	NA	NA	algae
allochtonous_vegetation	3 N	١A	NA	NA	NA	NA	allochtonous_vegetation
Amphipoda	1 N	١A	NA	NA	Amphipod	Crustacea	crustacean
animal_tissues	10 N	١A	NA	NA	NA	NA	invertebrates
Annelida	2 N	١A	NA	NA	NA	Annelida	worm
Anura	1 N	١A	NA	NA	NA	Anura	anuran
Arachnida	7 N	١A	NA	NA	Arachnida	Chelicerata	invertebrates
Astyanax_janeiroensis	1 A	Astyanax	NA	Characidae	Characifor	Actinopter	fish
Baccilariophyceae	5 N	١A	NA	NA	NA	Baccilariop	algae
Bacteria	1 N	١A	NA	NA	NA	NA	bacteria
Belostomatidae	1 N	١A	NA	Belostoma	Hemiptera	Insecta	invertebrates
Bryozoa	2 1	١A	NA	NA	NA	Bryozoa	Bryozoa
Calamoceratidae	3 N	١A	NA	Calamocer	Trichopter	Insecta	invertebrates
Chironomidae	26 N	A	NA	Chironomi	Diptera	Insecta	invertebrates
Chlorophyceae	5 N	١A	NA	NA	NA	Chlorophy	algae
Coleoptera	9 N	A	NA	NA	Coleoptera	Insecta	invertebrates
Collembola	2 N	A	NA	NA	NA	Collembola	invertebrates
Copepoda	1 N	١A	NA	NA	Copepoda	Crustacea	crustacean
Crustacea	16 N	A	NA	NA	NA	Crustacea	crustacean
Cyanophyta	2 N	١A	NA	NA	NA	Cyanophyt	algae
Decapoda	2 N	١A	NA	NA	Decapoda	Crustacea	crustacean
detritus	54 N	A	NA	NA	NA	NA	detritus
diatoms	7 N	A	NA	NA	NA	NA	microphytes
Diplopoda	1 N	A	NA	NA	Diplopoda	Chelicerata	invertebrates
Diptera	4 N	A	NA	NA	Diptera	Insecta	invertebrates
Dytiscidae	1 N	A	NA	Dytiscidae	Coleoptera	Insecta	invertebrates
eggs	3 N	A	NA	NA	NA	NA	eggs
Ephemeroptera	23 N	١A	NA	NA	Ephemero	Insecta	invertebrates
filamentous_algae	12 N	A	NA	NA	NA	NA	filamentous_algae
fish	14 N	١A	NA	NA	NA	Actinopter	fish

fruits_seeds	1	NA	NA	NA	NA	NA	fruits_seeds
fungi	1	NA	NA	NA	NA	NA	fungi
Gastropoda	3	NA	NA	NA	NA	Gastropod	gastropod
Geophagus_brasiliensis	1	Geophagı	IS NA	Cichlidae	Perciforme	Actinopter	fish
Glossomatidae	3	NA	NA	Glossoma	t Trichopter	Insecta	invertebrates
Hemiptera	5	NA	NA	NA	Hemiptera	Insecta	invertebrates
Hydrobiosidae	3	NA	NA	Hydrobios	iTrichopter	Insecta	invertebrates
Hydroptilidae	3	NA	NA	Hydroptili	cTrichopter	Insecta	invertebrates
insects	35	NA	NA	NA	NA	Insecta	invertebrates
Lepidoptera	7	NA	NA	NA	Lepidopte	Insecta	invertebrates
Leptoceridae	3	NA	NA	Leptocerio	Trichopter	Insecta	invertebrates
Leptohyphidae	3	NA	NA	Leptohyph	n Ephemero	Insecta	invertebrates
Leptophlebiidae	7	NA	NA	Leptophle	tEphemero	Insecta	invertebrates
macroalgae	4	NA	NA	NA	NA	NA	filamentous_algae
macroinvertebrates	19	NA	NA	NA	NA	NA	invertebrates
macrophytes	7	NA	NA	NA	NA	NA	macrophytes
Megaloptera	1	NA	NA	NA	Megalopte	Insecta	invertebrates
microcrustaceans	2	NA	NA	NA	NA	NA	crustacean
microinvertebrates	6	NA	NA	NA	NA	NA	invertebrates
Mimagoniates_microlepis	1	Mimagoni	ia NA	Characida	eCharacifor	Actinopter	fish
Mollusca	4	NA	NA	NA	NA	Mollusca	Mollusca
Nematoda	11	NA	NA	NA	NA	Nematoda	aworm
Odonata	10	NA	NA	NA	Odonata	Insecta	invertebrates
Oligochaeta	6	NA	NA	NA	Oligochaet	Clitellata	worm
Ostracoda	1	NA	NA	NA	Ostracoda	Crustacea	crustacean
plant_seeds	2	NA	NA	NA	NA	NA	plant_seed
plant_tissue	26	NA	NA	NA	NA	NA	plant_tissue
plant_tissues	4	NA	NA	NA	NA	NA	plant_tissue
Plecoptera	6	NA	NA	NA	Plecoptera	Insecta	invertebrates
Poecilia_vivipara	1	Poecilia	NA	Poeciliidae	eCyprinodo	Actinopter	fish
pollen	1	NA	NA	NA	NA	NA	pollen

Porifera	1	NA	NA	NA	NA	Porifera	Porifera
Protist	1	NA	NA	NA	NA	Protista	protist
Simuliidae	15	NA	NA	Simuliidae	Diptera	Insecta	invertebrates
Smicridea	3	Smicridea	NA	Hydropsyc	Trichopter	Insecta	invertebrates
Tabanidae	3	NA	NA	Tabanidae	Diptera	Insecta	invertebrates
terrestrial_invertebrates_	34	NA	NA	NA	NA	NA	Allochtonous_animals
Trichoptera	9	NA	NA	NA	Trichopter	Insecta	invertebrates
Zignemaphyceae	2	NA	NA	NA	NA	Zignemapł	algae