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Abstract 69 

Riverine ecosystems can be conceptualized as ‘bioreactors’ (the riverine bioreactor) 70 

which retain and decompose a wide range of organic substrates. The metabolic 71 

performance of the riverine bioreactor is linked to their community structure, the 72 

efficiency of energy transfer along food chains, and complex interactions among biotic and 73 

abiotic environmental factors. However, our understanding of the mechanistic 74 

functioning and capacity of the riverine bioreactor remains limited. 75 

 76 

We review the state of knowledge and outline major gaps in the understanding of biotic 77 

drivers of organic matter decomposition processes that occur in riverine ecosystems, 78 

across habitats, temporal dimensions, and latitudes influenced by climate change.  79 

 80 

We propose a novel, integrative analytical perspective to assess and predict decomposition 81 

processes in riverine ecosystems. We then use this model to analyse data to demonstrate 82 

that the size-spectra of a community can be used to predict decomposition rates by analysing 83 

an illustrative dataset. This modelling methodology allows comparison of the riverine 84 

bioreactor’s performance across habitats and at a global scale. 85 

 86 

Our integrative analytical approach can be applied to advance understanding of the 87 

functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. 88 

Application of insights gained from such analyses could inform the development of 89 

strategies that promote the functioning of the riverine bioreactor across global 90 

ecosystems. 91 

 92 

Keywords: Body mass-abundance scaling, biodegradation, latitude, metabolic theory, 93 

riverine ecosystems, regulating ecosystem service. 94 

 95 
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 97 

 98 

 99 

 100 

 101 

 102 
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1. Introduction 103 

Riverine ecosystems have the capacity to store, transform, and transfer inorganic 104 

nutrients, organic matter (OM), sediments and metabolites to adjacent ecosystems, such 105 

as marine environments and riparian forests (Battin et al., 2008; Benstead and Leigh, 106 

2012). They can thus be conceptualized as bioreactors sustained and maintained by active 107 

communities (Krause et al., 2009; Peralta-Maraver et al., 2018). The habitats of riverine 108 

ecosystems include their surface water, streambeds, floodplains and alluvial aquifers, 109 

which are closely interconnected by energy and matter fluxes across bioactive interfaces 110 

(Krause et al., 2011a, 2011b, 2017). Rivers distribute decomposition over time and space, 111 

i.e. longitudinally, laterally and vertically, promoting the processing of a wide range of 112 

organic substrates, from highly recalcitrant particulate OM, such as some leaf litters and 113 

dissolved OM, to dissolved nutrients including pollutants of anthropogenic origin. It is 114 

estimated that riverine ecosystems produce an outgassing flux of 0.75–3.88 GtC yr-1 as a 115 

result of biological decomposition and chemical weathering (Raymond et al., 2013; Drake 116 

et al., 2018), and of 0.78 GtC yr-1 due to land-to-ocean transport, in which rivers play a 117 

major role (Friedlingstein et al., 2019). Riverine ecosystems also provide a range of 118 

services essential for human wellbeing, for example by contributing substantially to 119 

natural mitigation of inorganic and organic pollutants (Hill et al., 2014; Peralta-Maraver 120 

et al., 2018) and to the global carbon cycle (Battin et al., 2008; Hotchkiss et al., 2015). 121 

Research into the decomposition of OM by riverine communities has experienced 122 

a rise in scientific activity in recent years, spanning disciplines including ecohydrology, 123 

community ecology, environmental pollution and global change science (e.g. Datry et al., 124 

2018; Schaper et al., 2018, 2019; Tiegs et al., 2019). However, mechanistic understanding 125 

of biologically driven OM decomposition is limited for riverine ecosystems (hereafter, the 126 

riverine bioreactor) at low latitudes, where solar radiation, air and water temperatures, 127 

and rainfall intensity are markedly greater than at high latitudes (reviewed in Boulton et 128 

al., 2008). These major climatic drivers affect the rate at which OM enters aquatic 129 

ecosystems and is processed (Brandt et al., 2007; Wantzen et al., 2008; Tank et al., 2010). 130 

Key gaps in our understanding of how biotic and abiotic drivers of the riverine 131 

bioreactor vary across latitudinal gradients and the transferability of concepts among 132 

regions. A unified analytical framework quantifying how OM decomposition responds to 133 

environmental constraints and ecological community structure is needed to assess these 134 

gaps. In addition, riverine ecosystems are increasingly exposed to multiple stressors 135 

driven by anthropogenic activities in a context of ongoing climate change, and such a 136 
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framework might also indicate how the riverine bioreactor will respond to different 137 

stressor combinations.  138 

We review how OM decomposition by the riverine bioreactor varies in response to 139 

latitude in longitudinal (headwater streams to lowland rivers), vertical (surface waters to 140 

aquifers), lateral (channel to floodplains and wetlands) and temporal dimensions. In 141 

doing so, we outline major anthropogenic stressors affecting bioreactor functioning. We 142 

also compare the state of understanding of riverine bioreactor functioning in temperate 143 

and low-latitude (tropical and subtropical) regions. We then propose an integrative 144 

analytical perspective to assess biologically driven OM decomposition processes, based 145 

on established concepts from the metabolic theory of ecology (Brown et al., 2004). Our 146 

work follows a hierarchical stepwise progression and establish solid knowledge 147 

foundations at every step before addressing the complex functioning of the riverine 148 

bioreactor (Fig 1). Our ultimate goal is to provide a foundation on which to base further 149 

crosscutting research into the riverine bioreactor, by promoting interdisciplinary 150 

collaborations.  151 

 152 

2. Decomposition of particulate organic matter in running waters 153 

Rivers are generally heterotrophic ecosystems from source to mouth and across latitude 154 

(Vannote et al., 1980; Ewards and Meyers 1987; Howarth et al., 1996; Wetzel, 2001; 155 

Follstad Shah et al., 2017), their functioning depending largely upon inputs of OM from 156 

autotrophic ecosystems, in particular leaf litter from the surrounding forested catchment. 157 

Thus, energy fluxes to riverine ecosystems are compromised by anthropogenic 158 

deforestation of riparian zones (Sponseller & Benfield, 2001), which reduces leaf litter 159 

and woody debris inputs. Riparian deforestation also limits shading, increasing solar 160 

radiation and water temperatures (Kelly et al., 2003; Johnson and Jones, 2000; Sweeney 161 

et al., 2004), which can reduce the diversity and metabolic activity of stream communities, 162 

resulting in lower decomposition rates (e.g. Silva-Araújo et al., 2020). This is of particular 163 

concern in tropical systems considering the greater rates of deforestation compared with 164 

temperate counterparts. For example, the Amazon basin has the world’s highest rate of 165 

rainforest deforestation due to anthropogenic activities (Lepers et al., 2005; McClain and 166 

Elsenbeer 2001).  167 

The rate of leaf litter decomposition is naturally constrained by intrinsic litter 168 

characteristics, such as the concentrations of nutrients and secondary compounds, the 169 

decomposing capacities of aquatic communities across trophic levels, and climatic 170 
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conditions (Webster and Benfield, 1986; McArthur et al., 1988; Thompson and Bärlocher, 171 

1989; Gessner et al., 1999; Leite-Rossi et al., 2016; Follstad Shah et al., 2017; Peralta-172 

Maraver et al., 2019a). Leaf litter decomposition pathways in rivers have been described 173 

in detail (e.g. Webster and Benfield, 1986; Gessner et al., 1999).  In brief, after leaf litter 174 

falls into water, decomposition starts with the dissolution of labile compounds (leaching) 175 

and continues with microbial conditioning, consumption by invertebrates, fragmentation 176 

and physical abrasion (Webster and Benfield, 1986). These processes gradually 177 

decompose leaf litter into gaseous respiration products such as carbon dioxide (CO2), 178 

methane, nitrous oxide and molecular nitrogen (Gessner et al., 1999; Fig. 2a). POM 179 

decomposition typically depends on initial microbial conditioning by prokaryotes, fungi 180 

and protists, and later consumption by invertebrate shredders (e.g. Graça, 2001; Peralta-181 

Maraver et al., 2019a). Leaf litter can accumulate on the streambed and is thus mostly 182 

decomposed by benthic communities (Peralta-Maraver et al. 2019a). However, leaf litter 183 

is buried and stored within the streambed sediments (i.e. the hyporheic zone; Cornut et 184 

al., 2010). Subsurface communities can be less active during leaf litter processing than 185 

benthic organisms (Peralta-Maraver et al., 2019a) and POM may thus accumulate in 186 

deeper sediments.  187 

At the global scale, annual litterfall is notably higher in tropical rainforests than in 188 

both temperate deciduous broad-leaved and evergreen coniferous forests (Fig. 2a; Zhang 189 

et al., 2014). In contrast to the seasonal changes in temperature and leaf litter inputs that 190 

characterize temperate and boreal rivers, those in tropical and subtropical regions 191 

experience consistently warm temperatures and year-round OM inputs shed by highly 192 

productive riparian plants (Morellato et al., 2000). These riparian inputs are more 193 

abundant and diverse than those in temperate and boreal rivers (Bastian et al. 2007, 194 

Boyero et al. 2011a), in particular during periods of high rainfall. Higher temperatures at 195 

low latitudes also stimulate metabolic activity, microbial and invertebrate-mediated 196 

decomposition of OM compared to higher latitude systems (Taniwaki et al., 2017).  197 

Species in stream communities at mid and high latitudes are adapted to marked 198 

seasonal inputs of litterfall from deciduous vegetation (Fig. 2a). The activity of 199 

detritivores adapted to autumnal litterfall pulses may explain the positive relationship 200 

between decomposition rates and absolute latitude, which accounts for the effect of 201 

temperature (Follstad Shah et al., 2017). Also, the abundance of relatively large-bodied 202 

detritivores and their contribution to leaf litter breakdown generally increase with 203 

latitude (Boyero et al., 2011a, 2011b). Thus, quantitative and/or qualitative differences 204 
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in POM decomposition should occur along global latitudinal gradients, due to distinct 205 

climatic conditions and associated differences in riparian vegetation inputs (Boyero et al., 206 

2009) and thus detritivore community composition, activity and dietary preferences 207 

(Boyero et al., 2009; Follstad Shah et al., 2017; Majdi and Traunspurger, 2017). 208 

Species diversity of riparian litter inputs are negatively related to latitude (Benson 209 

and Pearson, 1993; Wright, 2002; Bastian et al., 2007), resulting in greater variability in 210 

the chemical characteristics and palatability of leaf litter in subtropical and tropical 211 

climates (Wantzen and Wagner, 2006). Because of the generalist feeding behavior of 212 

many invertebrate taxa, the importance of consumers that feed on leaf litter but are not 213 

classified as shredders might have been overlooked in tropical regions (Kelly et al., 2002; 214 

Leite-Rossi et al., 2016; Mendes et al., 2017). Additionally, the more diverse and abundant 215 

large-sized consumers inhabiting tropical streams, such as shrimps, crabs and 216 

‘herbivores’ fish, might act as leaf litter consumers and directly influence decomposition 217 

rates (Boulton et al., 2008; Costa et al., 2016), and thus require consideration in litter 218 

breakdown modelling. 219 

There is considerable intra-regional variability in the role of detritivores in leaf 220 

litter decomposition at low latitudes (Boyero et al., 2014). For example, streams in the 221 

vast, savanna-like Brazilian Cerrado ecoregion are characterized by unpalatable leaf litter 222 

and thus a scarcity of invertebrate shredders (Gonçalves et al., 2007). In addition, tropical 223 

soils typically export low concentrations of inorganic nutrients such as nitrogen and 224 

phosphorous to rivers, these nutrients being common factors limiting microbial activity 225 

in freshwaters (e.g. Pringle et al., 1986; Tank and Webster, 1998; Wold and Hershey, 226 

1999). These nutrients probably limit decomposition rates in Cerrado streams by 227 

constraining the length of food chains. In contrast, the abundant shredders in some South 228 

American streams of the Atlantic Forest, Amazonian and Andean mountains process more 229 

OM, even in streams in which microorganisms make little contribution to leaf litter 230 

decomposition (Graça et al., 2016).  231 

 232 

3. Decomposition of dissolved organic matter by the riverine bioreactor 233 

Riverine ecosystems receive considerable dissolved OM from their catchments (Regnier 234 

et al., 2013) including significant anthropogenic inputs (Fig. 2b; Vitousek et al., 1997), and 235 

play an important role in transporting these allochthonous dissolved substances through 236 

landscapes. They also contribute to the retention and decomposition of dissolved OM, 237 

modifying the chemical forms and concentrations of dissolved compounds during 238 
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transport (Rahm et al., 2016). For example, approximately two thirds of the dissolved 239 

carbon transported by rivers is estimated to be decomposed and mineralized before 240 

reaching the sea (Cole et al., 2007). Around 50% of the total dissolved nitrate maybe 241 

processed during early stages of transport in headwater streams (Peterson et al., 2001), 242 

and 10–30% of soluble reactive phosphorous can be retained in riverine sediments 243 

(reviewed in Withers and Jarvie, 2008). Abiotic factors such as geology and pH are 244 

important influences on the transformation and mineralization of dissolved OM (House 245 

et al., 2003; Refsgaard et al., 2014). 246 

Planktonic microorganisms such as heterotrophic bacteria are key players in the 247 

decomposition of dissolved OM in freshwater (Seitzinger et al., 2006; Berggren and del 248 

Giorgio, 2015), due to their high extracellular enzymatic activity (Cunha et al., 2010). They 249 

support the flux of biomass and energy to higher trophic levels in surface water (Weitere 250 

et al., 2005) and bacterial respiration in the water column is a major contributor to 251 

dissolved organic carbon processing in inland waters (Raymond et al., 2013). Although 252 

bacterial respiration varies widely across global-scale, latitudinal gradients and rates are 253 

higher towards the equator (Aufdenkampe et al., 2011). Increasing dissolved inorganic 254 

nutrient concentrations enhance bacterial densities and biomass, which in turn promotes 255 

dissolved OM decomposition (Reche et al., 1998). Incorporation of dissolved organic 256 

carbon into microbial biomass is regulated by its concentrations and quality, and the 257 

abiotic conditions such as temperature (Findlay et al., 2001; Lennon and Cottingham 258 

2008; Williams et al., 2010). Lastly, chemical and thermal pollution can simplify microbial 259 

communities and increase or decrease their metabolic rates (Cherry et al., 1974; 260 

Schneider and Topalova, 2009; Wang et al., 2011). For example, microbial decomposition 261 

can increase along pollution gradients in response to inorganic nutrient availability 262 

(Pascoal et al., 2005) despite a decline in community diversity (Liao et al., 2018).  263 

Significant quantities of dissolved compounds are also biologically processed by 264 

microbial biofilms attached to sediment particles (Battin et al., 2016). The high surface 265 

area provided by sediment particles within the streambed represents an active zone with 266 

a high capacity to decompose dissolved organic compounds (Fig. 2b; Krause et al., 2017; 267 

Peralta-Maraver et al., 2018). In particular for nitrogen organic compounds, streambed 268 

sediments can be hotspots of biological processing, such as biological assimilation 269 

(Alexander et al., 2000; Peterson et al., 2001). The intrinsic potential of the streambed to 270 

process nitrates, phosphates and organic carbon is well understood in temperate regions 271 

(e.g. Lewandowski et al., 2011), while it remains unexplored in tropical regions. In 272 
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addition, the streambed can decompose emerging organic contaminants (EOCs, 273 

Lewandowski et al., 2011; Schaper et al., 2018; Posselt et al., 2020). However, 274 

channelization (the modification of a channel’s banks and/or bed) suppresses the vertical 275 

connectivity between the surface and the streambed (Cleven, 2003) and decreases the 276 

frequency of floodplain inundations (Nilsson et al., 2005), resulting in potential detriment 277 

of the riverine bioreactor functioning. 278 

Current knowledge on the natural functioning of the riverine bioreactor comes 279 

from temperate-zone studies that focus on organic compound transformation in the 280 

surficial streambed sediments (e.g. Lewandowski et al., 2011; Schaper et al., 2018) and 281 

combine techniques at the interface of hydrology, biochemistry, microbiology and 282 

community ecology (e.g. Jaeger et al., 2019; Mechelke et al., 2019; Schaper et al., 2019a; 283 

Posselt et al., 2020). Degradation of dissolved OM may also occur in deeper groundwater 284 

systems (Jurado et al., 2012), creating a vertical chain of biochemical breakdown 285 

processes through river sediments to groundwater ecosystems.  286 

The metabolic activity of organisms inhabiting rivers in temperate regions 287 

contributes to active degradation of dissolved OM, elimination of pathogens, and nutrient 288 

cycling in surface water, streambed and groundwater systems (Deng et al., 2014; Griebler 289 

and Avramov, 2015; Meckenstock et al., 2015; Hose and Stumpp, 2019; Reiss et al., 2019). 290 

Prokaryotes form biofilms with high enzyme activity, which enables their decomposition 291 

of a wide range of natural substrates (Battin et al. 2016). But also, they possess the 292 

potential to decompose new chemicals by developing new metabolic pathways 293 

(Kolvenbach et al., 2014). Prokaryotes often congregate in multi-species biofilms, 294 

maximizing the range of dissolved compounds that can be decomposed and the rate at 295 

which this degradation occurs (e.g. Foght, 2008).  296 

Streambed and groundwater invertebrates (both meiofauna and 297 

macroinvertebrates) indirectly contribute to OM decomposition within the streambed 298 

(Peralta-Maraver et al., 2018). In temperate regions, macroinvertebrates directly 299 

influence the hydraulic properties of sediments through bioturbation and bioirrigation 300 

(Fig. 2c, d; Baranov et al., 2016a, 2016b; Hose and Stumpp, 2019;). In addition, the mucus 301 

and silk secretions of benthic flatworms and caddisfly juveniles, respectively, stabilize 302 

sediments, and contribute to OM decomposition by enhancing biofilm development and 303 

invertebrates colonization (Majdi et al., 2014; Albertson et al., 2019). Groundwater 304 

macroinvertebrates may promote the abundance of Protozoa inhabiting interstitial pore 305 

spaces (Weitowitz et al., 2019), where protozoans swimming and grazing on biofilms 306 
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promote water mixing, potentially increasing biofilm area and stimulating bacterial 307 

activity (Fig. 2e; Peralta-Maraver et al., 2018). These complex biotic interactions may 308 

enhance decomposition by the bioreactor, but the mechanisms behind this stimulatory 309 

response remains unknown. 310 

Further studies need to explore global patterns in the biologically mediated 311 

decomposition of dissolved organic matter and the metabolic capacity of communities 312 

inhabiting streambed sediments. In temperate regions, the distribution of surface water 313 

and groundwater macroinvertebrate taxa (Sket, 1999; Danielopol et al., 2000; Gibert et 314 

al., 2009; Robertson et al., 2009) is reasonably well understood (Maurice and Bloomfield, 315 

2012; Domisch et al., 2013), but our knowledge of microbial and protozoan population is 316 

rudimentary. The understanding of groundwater ecosystems functioning in tropical and 317 

subtropical regions lags even further behind that of temperate environments (Moosdorf 318 

et al., 2015; Adyasari et al. 2018). The mechanisms driving transformations of dissolved 319 

nutrients and contaminants in groundwater systems and the taxonomic groups related to 320 

decomposition processes require further study. For example, information on the 321 

distribution of surface water and groundwater macroinvertebrates in tropical regions is 322 

patchy, and much of our current limited knowledge of their role during decomposition 323 

processes derives from temperate regions. However, the relative contribution of different 324 

taxa may vary considerably across global latitudinal gradients due to differences in their 325 

metabolic rates and energy flow through trophic levels. Filling this knowledge gap is 326 

especially important given the occurrence of large-scale environmental accidents in 327 

tropical regions that pollute both surface and subsurface systems (e.g. Escobar, 2015; 328 

Cionek et al., 2019). 329 

 330 

4. Organic matter breakdown in aquatic–terrestrial ecotones 331 

Ecotones are transition or buffer zones between adjacent structurally different 332 

communities and habitat types, having a set of characteristics defined by space and time 333 

scales (di Castri et al. 1988). Riverine ecosystems encompass habitats that shift between 334 

wet and dry states in space and time, acting as ecotones that support both aquatic and 335 

terrestrial communities. These dynamic aquatic–terrestrial ecosystems are distributed 336 

across river networks on all continents and in all climates, including temperate 337 

(Stubbington et al., 2017) and tropical (Barbosa et al., 2012) regions.  Notably, an 338 

estimated half of the global river network comprises temporary streams, which 339 

experience partial or complete streambed drying (Tooth and Nanson, 2000; Datry et al., 340 
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2014). Furthermore, the number and length of temporary rivers is increasing globally due 341 

to increased water abstraction and higher intra-annual rainfall variability as a 342 

consequence of climate change (Jackson et al., 2001; Larned et al., 2010). Ecological 343 

functioning changes considerably between wet and dry states, but our understanding of 344 

organic matter processing during dry phases remain largely unexplored (Datry et al., 345 

2017a).  346 

Expansion and contraction of aquatic and terrestrial habitats also occur laterally 347 

in perennial systems, in particular floodplain environments, which are among the most 348 

productive and biochemically active systems in the world (Junk et al., 1989). In the middle 349 

and lower river sections, flooding of the main channel and tributaries typically creates a 350 

mosaic of aquatic and terrestrial habitats on floodplains. Even though river–floodplain 351 

systems may maintain water flow throughout the year, their aquatic–terrestrial transition 352 

zones remain dry for all or most of the low during the low water season (Junk et al., 1989). 353 

Floodplains support the functioning of riverine bioreactor, as they act as sediment traps, 354 

sinks for dissolved nutrients and chemicals, and as large carbon stores (Baigún et al., 355 

2008; Walalite et al., 2016), and supply channels with a diversity of organic substrates 356 

and associated microbial decomposers (O’Connell et al., 2000). 357 

Dynamic aquatic–terrestrial habitats including temporary rivers and floodplains 358 

have different characteristics to those of adjacent riparian, purely terrestrial and fully 359 

aquatic habitats, and support unique communities, including inundation-tolerant 360 

terrestrial colonists (Tockner and Stanford, 2002; Steward et al., 2011) and desiccation-361 

tolerant aquatic organisms (Stubbington and Datry, 2013; Datry et al., 2017b) during dry 362 

phases. During transitions from aquatic to terrestrial phases, drivers of organic matter 363 

decomposition such as leaching and aquatic decomposers, are gradually replaced by 364 

physical photodegradation and terrestrial colonists, such as soil fauna and fungi (Fig. 2f; 365 

Austin and Vivanco, 2006; Corti et al., 2011; Acre et al., 2019). These transitional aquatic-366 

terrestrial dynamics promote organic matter decomposition and mineralization process 367 

in inland waters (Datry et al., 2018). Organic matter decomposition might be also 368 

enhanced if biofilm activity increases in response to sediment reworking by terrestrial 369 

soil invertebrates (Fig. 2f; Prather et al., 2013). 370 

The timing, frequency, duration and magnitude of wet and dry phases defines the 371 

structure and metabolic capacity of communities inhabiting aquatic–terrestrial channels 372 

and floodplains (Adis and Junk, 2002; Stubbington et al., 2017; Colls et al., 2019) and 373 

interrupts both decomposition rates and OM quality (Padial and Thomaz, 2006). 374 
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Consequently, wet phases promote decomposition within floodplains, as in temporary 375 

streams and rivers (Datry et al., 2018; von Schiller et al., 2019). This is because, rewetting 376 

events in temporary systems create ‘hot moments’ of biological activity, initiating pulses 377 

of organic matter decomposition that contribute significantly to carbon cycling (Datry et 378 

al., 2018; Shumilova et al., 2019; von Schiller et al., 2019). Repeated inundation of aquatic–379 

terrestrial channels and floodplains may be analogous to conditions in floodable soil 380 

aquifer treatment (SAT) systems in wastewater plants. SAT systems release time-381 

controlled flood pulses of secondary effluents from conventional wastewater treatment 382 

through a recharge basin, with posterior wastewater processing dominated by 383 

biodegradation in the sediments (Amy and Drewes, 2007; Arye et al., 2011). During dry 384 

phases, terrestrial colonists such as, nematodes, annelids and arthropods (e.g. ants), can 385 

transform plant litter and fine POM into constituent nutrients by consumption and 386 

egestion, and thus support particulate nutrient cycling in the whole river ecosystem (Bush 387 

et al., 2019). 388 

Rewetting events vary considerably across latitudinal gradients. In boreal and high 389 

latitude temperate regions, the timing of wet and dry phases can be predictable, in 390 

response to seasonal changes in precipitation and snowmelt (Olsson and Söderström, 391 

1978; Gasith and Resh, 1999) inputs. However, the magnitude of flood pulses could vary 392 

considerably among wet and dry years at mid-latitudes, for example in many 393 

Mediterranean streams (Bonada and Resh, 2013). Flood pulses can be marked and 394 

predictable in some tropical rivers due to the extended wet season (Boulton et al., 2008). 395 

But, the higher annual precipitation in wet subtropical and tropical regions results in 396 

frequent and irregular flood pulses, which structure communities including biofilms 397 

(Taniwaki et al., 2019; Burrows et al., 2020) and benthic macroinvertebrates (Nessimian 398 

et al., 1998). Nonetheless, the higher frequency and magnitude of flood pulses has not 399 

been related to decomposition processes at low latitudes. Global predictions of bioreactor 400 

capacity in aquatic–terrestrial channels and floodplains should seek to integrate the 401 

effects of flood pulses on community structure and energy flow through food webs with 402 

quantified decomposition rates (Shumilova et al. 2019). 403 

 404 

5. Perspective: unifying a theoretical and analytical framework 405 

Throughout this paper, we acknowledge that a wide range of different sized organisms 406 

with different functional roles contribute directly or indirectly to decomposition 407 

processes. For example, consortia of prokaryotes and eukaryotic microorganisms form 408 
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biofilms and drive initial leaf litter decomposition through extracellular digestion, making 409 

substrates more palatable to macroinvertebrate consumers. In addition, the enzymatic 410 

activity of sediment biofilms and planktonic prokaryotes enables them to process a 411 

breadth of dissolved organic substrates (from macronutrients to pollutants). In addition, 412 

the activity of grazers and burrowers boost microbial activity.  413 

Collectively, complex interactions between biotic groups within riverine 414 

communities and their environments mediate the functioning of the riverine bioreactor. 415 

However, research documenting organic matter decomposition typically considers only 416 

certain community groups, which typically have different trophic roles (e.g. microbial 417 

conditioning vs. macroinvertebrate shredding leaf litter). In addition, compared to both 418 

microorganisms and macroinvertebrates, the contribution of meiofauna to organic 419 

matter decomposition in freshwater ecosystems remains poorly characterized (Majdi et 420 

al. 2020, but see Wang et al., 2020). These size biases limit incorporation of quantitative 421 

measurements of energy and biomass flow through communities when studying 422 

decomposition phenomena. In addition, research into decomposition processes has not 423 

characterized variation in community structure and energy transfer across latitudinal 424 

gradients. Integrative analyses that represent entire communities and global-scale 425 

variability are needed to better understand the biologically driven decomposition 426 

processes in riverine ecosystems. 427 

Changing temperatures are one of the most conspicuous differences among river 428 

ecosystems along a latitudinal gradient. Environmental temperature is a key influence on 429 

metabolic rates, body size, growth rates, feeding rates and consequently decomposition 430 

rates in aquatic ecosystems (Brown et al., 2004). Thus, incorporating environmental 431 

temperature and the scaling between the metabolic rates and body size of aquatic 432 

ectotherms represents a step towards extrapolation of empirical findings from temperate 433 

ecosystems to processes in lesser-studied tropical ecosystems. In this sense, metabolic 434 

scaling (sensu Brown et al., 2004; Sibly et al., 2012) provides the theoretical and analytical 435 

framework that links the energetic constraints of individuals to ecosystem-level 436 

processes. Thus, this framework can be used to assess biotic controls on organic matter 437 

decomposition – even between stream habitats and across biomes.  438 

Metabolic rates of ectotherms increase with organism body size and 439 

environmental temperature (Brown et al., 2004). For instance, metabolic rates of 440 

metazoans often scale with body mass as a power law with an exponent of ¾, which is 441 

predicted by optimal resource supply networks (Brown et al., 2004). Because an 442 
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individual’s performance reflects its mass-dependent metabolic requirements, an 443 

assemblage’s capacity to process metabolic substrates therefore depends on both its total 444 

biomass, and how biomass is apportioned among small or large individuals. 445 

Consequently, total biomass and the size structure of ecological communities are 446 

important predictors of ecosystem processes governed by consumers, such as the 447 

decomposition of particulate organic matter, dissolved OM, including organic pollutants.  448 

Body mass–abundance (M-N) scaling relationships provide a potential bridge 449 

between an assemblage’s metabolic capacity and the bioreactor capacity of a system. 450 

When individual organisms are grouped into body-mass classes, irrespective of 451 

taxonomic identity, the negative slope of the resultant frequency distributions on double-452 

log axes (i.e. size- spectra; White et al., 2007) provides a measure of community size 453 

structure, and the area under the slope (and intercept) provides a measure of total 454 

biomass (Fig. 2g). This relationship is defined by the equation Eq. (1): 455 

 456 

Abundance (N) ~ ß0 + body mass (M) + ε , 457 

 458 

where ß0 is the intercept and ε an error term. 459 

Freshwater communities are structured by body size, which is inversely 460 

proportional to population densities (Schmid et al., 2000). Also, the body size of different 461 

groups can provide an indication of trophic level in hyporheic food web (Kerr and Dickie, 462 

2001), despite some exceptions should be considered (e.g. parasites; Leaper and Huxham, 463 

2002). This allows the size-spectrum slope act as a proxy for a community’s metabolic 464 

efficiency (i.e. its capacity to transfer energy and biomass through trophic levels). 465 

Metabolic scaling coefficients (slope and intercept of size-spectra) could be used to 466 

predict bioreactor capacity, based primarily on universal body-mass constraints on 467 

individual metabolism and information on food web (Brown et al., 2004; Petchey and 468 

Belgrano, 2010). The size-spectrum slope (M-N slope) scales with the efficiency of energy 469 

transfer across trophic levels (Brown and Gillooly, 2003), and typically becomes steeper 470 

as metabolic efficiency decreases (e.g. abundance decreases dramatically from low to high 471 

trophic levels; Kerr and Dickie 2001; Perkins et al., 2018). Consequently, a strong positive 472 

relationship is predicted between a system’s size-spectrum slope and its decomposition 473 

capacity, allowing slopes to predict and quantify decomposition rates (Fig. 2h).  474 

Metabolic scaling theory, therefore, provides a potentially powerful approach to 475 

reconcile differences in organic matter decomposition among riverine habitats and across 476 
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latitudinal gradients, within the analytical rationale that established measurements of 477 

decomposition rates (Woodward et al., 2012) can be used to determine the exponential 478 

decay coefficient (k) using Eq. (2):  479 

 480 

Decomposition rate (k) = -(log(Xt) - log(X0))/t  481 

 482 

where X0 represents the initial quantity of an organic matter substrate, and Xt represents 483 

the quantity of substrate remaining at time t. The exponential coefficient t should be 484 

expressed in terms of thermal sums (degree days) to correct for potential temperature 485 

effects and/or differences in sampling duration. Based on our premises, Eq. (2) can be 486 

combined with Eq. (1) to build a predictive model of the decomposition rate as: 487 

 488 

Decomposition rate (k) ~ ß0 + habitat × M-N slope + latitude × M-N slope + ε 489 

 490 

Where predictor M-N slope have both an additive and interactive effect on the response 491 

decomposition rate due to its strong sensitivity to temperature (e.g. Dossena et al., 2012; 492 

O’Gorman et al., 2017) and its habitat-dependency in riverine systems (Peralta-Maraver 493 

et al., 2019b). Note that habitat and latitude do not drive abundance themselves, but 494 

integrate the variability in abiotic factors such as dissolved oxygen concentrations and 495 

temperature.  496 

 To test our analytical framework, we used data from Peralta-Maraver et al. (2019a) 497 

describing POM breakdown across 30 UK rivers (Fig. 3a). This study used measurements 498 

of organic matter decomposition rates (k) using a standardized bioassay. Peralta-Maraver 499 

et al. (2019a) measured decomposition rates and provide fine-resolution data describing 500 

the body size and abundance of prokaryotes, protists, meiofauna and macroinvertebrates. 501 

In addition, the authors distinguished communities inhabiting benthic (0–5 cm depth) 502 

and hyporheic (15 cm depth) habitats. We applied Eq. (1) to build 60 M-N scaling curves 503 

(30 rivers by two habitats), showing a considerably steeper M-N relationship in hyporheic 504 

compared to benthic habitats (Fig. 3b). Other measured abiotic variables (e.g. pH) were 505 

excluded to facilitate model performance.  The M-N slope is a powerful predictor of 506 

decomposition rates (R2 = 0.60, Fig. 3c). Details of the model selection approach, model 507 

fitting, and model coefficients are provided in the Appendix. 508 

Our analysis did not include latitude or temperature due to insufficient variability 509 

at the regional scale, and thus the validation of our framework is still limited to temperate 510 
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systems. In warmer subtropical and tropical regions, organism size tends to decline with 511 

increasing temperature due to greater energetic costs (James, 1970; Atkinson, 1994; 512 

Evans et al., 2020). Furthermore, greater energetic demands should reduce population 513 

carrying capacity with increasing temperature (Bernhardt et al., 2018, but see O’Gorman 514 

et al., 2017), assuming a fixed supply of resources (Brown et al., 2004). Thus, relative 515 

consumer abundance may be lower at low latitudes compared to temperate and boreal 516 

systems (Heino et al., 2018), but low-latitude consumers may be more productive, 517 

because higher temperatures limit body sizes and smaller species have higher biomass  518 

turnover rates. Such potential differences in productivity, as well as differences in the 519 

thermal conditions, mean that the capacity of assemblages to drive metabolic processes 520 

that underpin organic matter decomposition likely varies with latitude, with 521 

consequences for delivery of related ecosystem services 522 

Metabolic scaling theory is based on a few key variables (body size and 523 

temperature) and deviations from expected scaling patterns can indicate the influence of 524 

additional factors (Perkins et al., 2018). For example, in many contexts, both biotic 525 

interactions and abiotic constraints likely modify the expression of body size as well as 526 

temperature scaling patterns. It could enable prediction of bioreactor capacity in riverine 527 

ecosystems across latitudes at which the nature and strength of biotic interactions differ 528 

(Schemske et al., 2009; González-Bergonzoni et al., 2012). The use of M-N scaling 529 

coefficients as predictors of decomposition rates also integrate the effects of 530 

environmental constraints, such as dry and wet phases in aquatic–terrestrial ecotones. 531 

Although multiple interacting mechanisms affect the bioreactor capacity of riverine 532 

ecosystems along global latitudinal gradients, metabolic scaling offers a valuable 533 

framework to understand and predict differences in the decomposition of OM at large 534 

spatial scales. 535 

 536 

6. Conclusions 537 

Organic matter decomposition pathways are highly interconnected and extend through 538 

and beyond multiple river habitats. Thus, to better understand and, predict riverine 539 

bioreactor functioning, integrative analytical approaches are required, such as those 540 

provided by the metabolic scaling theory (Brown et al., 2004). This understanding could 541 

be advanced by quantitative meta-analysis of data documenting processes such as leaf 542 

litter and dissolved OM decomposition, supplemented by data describing community 543 

size-spectra coefficients, as in our models. New data are needed to document and predict 544 
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OM decomposition rates on: (1) interactions between climate and riparian inputs at 545 

global scales; (2) latitudinal variability in dry–wet transitions as a driver of 546 

decomposition processes in aquatic–terrestrial ecotones; (3) the contributions of 547 

terrestrial and aquatic organisms to decomposition in aquatic–terrestrial systems; (4) the 548 

indirect effects of different biotic groups  on decomposition processes (e.g. through 549 

bioturbation, decomposer grazing); (5) the contribution of meiofauna and microfauna; 550 

(6) the contribution of groundwater invertebrates across latitudes; (6) vertical changes 551 

in decomposition processes between surface water and aquifers; (7) the M-N scaling 552 

coefficients that enable prediction of decomposition in different regions; and (8) the 553 

response of decomposition processes to specific anthropogenic stressors.  554 

The higher temperatures and/or higher productivity of relatively small-bodied 555 

consumers at lower latitudes (Heino et al. 2018) warrant comparative global-scale 556 

studies of bioreactor capacity. Global efforts should quantify and evaluate the regulating 557 

ecosystem services provided by the riverine bioreactor. Then, suitable management 558 

strategies could be developed to maintain, or even enhance the delivery of ecosystem 559 

services by riverine ecosystems locally. Building partnerships between international 560 

teams will enable transfer of world-leading knowledge, expertise and cutting-edge 561 

methodologies on freshwater research and management. This is especially important 562 

considering the time pressures that ongoing global change impose on decision-making. 563 

 564 
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Appendix 579 

We analysed data from a large regional scale survey (Peralta-Maraver et al., 2019a). Data 580 

were collected at 30 study sites covering 10 catchments across England and Wales. 581 

Systems varied from small upland, acidic headwater streams, to large lowland, base-rich 582 

chalk streams. Raw data include measurements of multiple environmental variables 583 

representing each sampling site such as pH, water depth, canopy cover, and others (see 584 

Peralta-Maraver et al., 2019a). Streambed communities were sampled using colonization 585 

traps (mesh = 0.5 cm, volume = 38–45 mL) containing an organic bioassay (cotton-strips 586 

assay), as a standardized measure of leaf litter decomposition (Tiegs et al., 2019). Three 587 

traps per sampling site where deployed in the original study, and we averaged 588 

decomposition and community measurements by stream and habitat to maximize 589 

representation of the streambed community per sampling unit. 590 

 Decomposition rate was calculated applying equation 2 (Woodward et al., 2012). 591 

Sampled organisms were identified and counted (N) and their body dimensions (width 592 

and length) measured then transformed into dry body-mass (M) with established 593 

allometric relationships (Peralta-Maraver et al. 2019a).  594 

 We constructed the M-N scaling relationships for each site and habitat using the 595 

logarithmic size-binning method (Edwards et al., 2017) and applying equation 1. Size bins 596 

were determined from the (log10) body mass (M) range for each sampled community and 597 

the abundances of organisms were then summed within each size bin (White et al., 2007). 598 

Six bins were used to maximize the number of size bins while minimizing the number of 599 

empty size bins (Perkins et al., 2018).  600 

 Finally, a model selection approach based on the Akaike information criterion 601 

(AIC) was applied to determine whether habitat and M-N scaling coefficients predict the 602 

decomposition rate. Latitude was not included in the analysis due to the low variability 603 

across study sites. Model selection routines identified the model including an interaction 604 

between M-N slope and habitat (Eq. 3) on decomposition rate (k) as the best candidate 605 

(Table A1). Model assumptions of normality and homoscedasticity of the residuals and 606 

the presence of influential observations were validated visually following (Zuur et al., 607 

2019). Results from the model evidenced a strong positive effect of the M-N slope on the 608 

decomposition rate of leaflitter (Table A2). 609 

 610 

 611 

 612 
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Table A1. AIC rankings and weights of models describing the relationship between the 613 

M-N scaling coefficients (intercept and slope) and habitat (benthic and hyporheic zones) 614 

on decomposition rates of leaf litter (k). The model with best fit is shown in bold. We show 615 

the number of estimated parameters (N), the difference in AIC between models (ΔAIC), 616 

their relative log-likelihood and weights (wi).  617 

 618 

 619 

Table A2. Summary statistics of the best fitting model (R2 = 0.60, see Table A.1). 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

Model N AIC ΔAIC Log-lik wi 

k ~ habitat 3 -517.60 16.50 0.03 × 10-2 0.02 × 10-2 

k ~ habitat + M-N intercept 4 -520.70 13.40 0.12 × 10-2 0.07 × 10-2 

k ~ habitat + M-N slope 4 -521.60 12.50 0.19 × 10-2 0.12 × 10-2 

k ~ habitat + M-N intercept + M-N slope 5 -519.70 14.40 0.07× 10-2 0.05 × 10-2 

k ~ habitat + M-N intercept + habitat × M-N intercept 5 -525.80 8.30 1.54× 10-2 0. 93 × 10-2 

k ~ habitat + M-N slope + habitat × M-N slope 5 -534.10 0.00 1.00 0.60 

k ~ habitat + M-N intercept + M-N slope + habitat × M-N intercept 6 -526.80 7.30 2.53 × 10-2 0.01 

k ~ habitat + M-N intercept + M-N slope + habitat × M-N  slope 6 -532.50 1.60 0.45 0.27 

k ~ habitat + M-N intercept + M-N slope + habitat × M-N intercept  

+  habitat × M-N slope 7 -530.54 3.57 0.16 0.10 

 Coefficient SE t-value p-value 
Intercept 0.02 0.22 × 10-2 7.42  
Habitat -0.01 0.29 × 10-2 -4.73 < 0.01 × 10-2 
M-N slope 0.02 0.52 × 10-2 4.75 < 0.01 × 10-2 
Habitat × M-N slope -0.02 0. 60× 10-2 -3.91 < 0.01 × 10-2 
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FIGURE CAPTIONS 1243 

 1244 

Fig. 1 Flow chart illustrating the hierarchy of knowledge that this review will follow 1245 

through the different sections. 1246 

 1247 

Fig. 2. Conceptual diagram of riverine bioreactor functioning. Organic matter (OM) 1248 

decomposition processes are hierarchically interconnected through the different compartments 1249 

of the riverine bioreactor. (a) Litter fall production and temperature are higher and more 1250 

constant in tropical than in temperate streams and rivers. (b) Anthropogenic release represents 1251 

a major input source of dissolved organic matter (DOM) and dissolved pollutants in riverine 1252 

systems. Dissolved compounds penetrate in streambed and reach groundwater systems and 1253 

aquifers (main sources of drinking water for human consumption). Life activities of streambed 1254 

macroinvertebrates (c) and groundwater stygobites (subterranean invertebrates that live in 1255 

groundwater systems) (d) result in bioturbation and bioirrigation phenomena that promote 1256 

water exchange, water mixing, sediment aeration and boost microbial activity. (e) Protists 1257 

grazing on biofilms promote its absorption surface and growth. (f) Decomposition of particulate 1258 

and DOM expands on aquatic-terrestrial ecotones along floodplains, and intermittent streams 1259 

and rivers as a consequence of the flood-pulse. The metabolic theory of ecology predicts that 1260 

mean body size of the ectotherms declines as environmental temperature increases at low 1261 

latitudes to meet the higher energy demands (g). The size spectra can be used as an integrative 1262 

index to predict and compare decomposition rate at global scales (h).  1263 

 1264 

Fig. 3. Empirical support for the proposed analytical framework to predict 1265 

decomposition rates. Using the size spectra (M-N slope) from streambed communities 1266 

allows to predict the organic matter decomposition rate in riverine bioreactor within the 1267 

streambed habitats. (a) Locations of the 30 study rivers in the United Kingdom sampled by 1268 

Peralta-Maraver et al. (2019). (b) Fitted body-mass abundance relationship for each one of the 1269 

communities including those sampled in the benthic (solid grey line) and the hyporheic zones 1270 

(solid black line). (c) Predicted relationship between the M-N slope and the decomposition rate 1271 

measured in degree days (dd) for each habitat. 1272 




