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Abstract
In this paper, we consider a polynomial problem with equilibrium constraints in which the
constraint functions and the equilibrium constraints involve data uncertainties. Employing a
robust optimization approach, we examine the uncertain equilibrium constrained polynomial
optimization problem by establishing lower bound approximations and asymptotic conver-
gences of bounded degree diagonally dominant sum-of-squares (DSOS), scaled diagonally
dominant sum-of-squares (SDSOS) and sum-of-squares (SOS) polynomial relaxations for the
robust equilibrium constrained polynomial optimization problem.We also provide numerical
examples to illustrate how the optimal value of a robust equilibrium constrained problem can
be calculated by solving associated relaxation problems. Furthermore, an application to elec-
tric vehicle charging scheduling problems under uncertain discharging supplies shows that
for the lower relaxation degrees, the DSOS, SDSOS and SOS relaxations obtain reasonable
charging costs and for the higher relaxation degrees, the SDSOS relaxation scheme has the
best performance, making it desirable for practical applications.
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1 Introduction

Equilibrium constrained optimization problems (or mathematical programs with equilib-
rium constraints, MPECs for short) are constrained optimization models that are defined via
a number of constraints together with equilibrium conditions such as variational inequalities
or complementarity conditions; see e.g., [6, 9, 18, 29, 30, 37, 38, 41, 44, 51] and the refer-
ences therein. MPECs are difficult constrained optimization problems since they are often
nonconvex and admit combinatorial features that violate almost all commonly used con-
straint qualification conditions. However, MPECs have received much attention because they
belong to a broad class of structured decision making optimization problems that encompass
all important and popular mathematical models including a subclass of bilevel optimization
problems where their constraints are determined by the solution set of another parametric
mathematical program (see e.g., [11, 12, 15, 17, 27, 43, 48]). Originally, MPECs are related
to the Stackelberg game in economic sciences [38, 44] and nowadays, the applications of
equilibrium constrained optimization programs appear naturally in almost real-life imple-
mentations in engineering, industries and governments such as traffic networks [47], energy
networks [20], contact mechanics, or taxation and subsidies; see [3, 19, 21] and other refer-
ences therein. The interested reader is referred to [15, 18, 38, 44] for various aspects of the
research in equilibrium constrained optimization.

The classical equilibrium constrained optimization problems often require accurate val-
ues or detailed information of the inputs or problem parameters (see e.g., [18, 38, 44]), while
the data of real-world problems would mostly be uncertain due to unknown environments,
imprecise estimations, disturbances, measurement errors, or noisy information. Therefore,
it is more important than ever for decision making to propose new classes of MPECs and
associated methods that are capable of handling optimization problems involving data uncer-
tainties. Such equilibrium constrained optimization programs are expected to provide global
optimal values/solutions that can be immunized against uncertainty data. Robust optimization
techniques (see e.g., [4, 5]) have emerged as promising and efficient paradigms and settings
for studying mathematical programming problems under data uncertainties. Consider, for
example, an electric vehicle (EV) charging schedulingmodel (see e.g., [50] for a model with
certain data), which is described as follows: When an EV user arrives at a charging station,
the EV charging demand should be satisfied with the minimal charging cost during a parking
time. On one hand, with the help of vehicle to grid (V2G) technology, when the EV parking
time is more than the EV charging time, the EV user has the ability to reduce its utility cost
by deciding on how much for charging amount and how much for discharging the electricity
to the power grid at each time slot. In each time slot, the EV user should decide on taking
charging an amount or discharging an amount in every time slot to achieve a minimized
utility cost. On the other hand, the charging station operator should arrange the charging and
discharging amounts for the EV user tomaximize its trading profits by supplying the charging
service consistently and by selling the discharging amount (and in this scenario, the charging
station operator would reduce the charging price for the EV user) from the EV user to other
EV users timely. Consequently, in the electric vehicle charging scheduling model, each EV
user and the charging station operator share an equilibrium condition on the charging amount
and the discharging amount as the EV user can only in charging or discharging state in each
time slot with the uncertain/fluctuated electricity price.

Motivated by the above considerations, we study uncertain and robust equilibrium con-
strained polynomial problems as follows.
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Uncertain equilibrium constrained polynomial programs. Let f , f j , fi, j : Rn × R
m →

R, j = 1, . . . , s1, i = 1, . . . , l, g j , gi, j : Rn × R
m → R, i = 1, . . . , r , j = 1, . . . , s2 be

polynomials and � : Rn × R
m → R

m be a polynomial mapping. We consider an uncertain
equilibrium constrained polynomial program of the form:

min
(x,y)∈Rn×Rm

{
f (x, y) | f j (x, y) +

l∑
i=1

ui fi, j (x, y) ≤ 0, j = 1, . . . , s1,

y ∈ Z(x, v) := {z ∈ R
m | g j (x, z) +

r∑
i=1

vi gi, j (x, z) ≤ 0, j = 1, . . . , s2},

〈�(x, y), z − y〉 ≥ 0, ∀z ∈ Z(x, v)

}
, (UEP)

where u := (u1, . . . , ul) ∈ U , v := (v1, . . . , vr ) ∈ V are uncertain vectors, U ⊂ R
l , V ⊂

R
r are uncertainty sets, and the notation 〈·, ·〉 denotes the inner product in Rm . It is assumed

here that the feasibility set of (UEP) is nonempty and note that (UEP) can be viewed as a
parametric program because its optimal value/global solutions are well-defined on a certain
pair of (u, v) in U × V .

Robust equilibrium constrained polynomial programs. To handle the uncertain equilib-
rium constrained polynomial program (UEP), we examine a robust problem as follows:

min
(x,y)∈Rn×Rm

{
f (x, y) | f j (x, y) +

l∑
i=1

ui fi, j (x, y) ≤ 0, j = 1, . . . , s1, ∀u ∈ U ,

y ∈ Z(x) := {z ∈ R
m | g j (x, z) +

r∑
i=1

vi gi, j (x, z) ≤ 0, j = 1, . . . , s2, ∀v ∈ V },

〈�(x, y), z − y〉 ≥ 0, ∀z ∈ Z(x)

}
, (REP)

where uncertain parameters u and v are enforced for every possible values in the uncertainty
sets U and V , respectively.

In general, robust equilibrium constrained polynomial problems of the form (REP) are
considered as a class of hard problems in global optimization because of the complexi-
ties posed in the structures of variables and equilibrium/variational inequalities as well
as the involvement of uncertainty data. Therefore, we stipulate a blanket assumption that
the feasible set of problem (REP) is nonempty and the associated set of the variational
inequality Z(x) is a convex set for each x ∈ R

n . We also assume that the uncertainty sets
are given by U := conv {ū1, . . . , ūl1} with ū j := (ū j

1, . . . , ū
j
l ) ∈ R

l , j = 1, . . . , l1 and

V := conv {v̄1, . . . , v̄r1} with v̄ j := (v̄
j
1 , . . . , v̄

j
r ) ∈ R

r , j = 1, . . . , r1, which are known as
the polytope uncertainty sets in [4]. In the setting of no uncertain parameters in the problem
description, the paper [28] presented a hierarchy of semidefinite programming relaxations
in the sense of Lasserre [33] to calculate the global optimal value as well as global optimal
solutions for a more general mathematical programwith equilibrium constraints in which the
equilibrium constraint is defined by way of a polynomial function. Meanwhile, the authors
in [52] provided a method based on a Lasserre’s type of semidefinite relaxation [33] to solve
a polynomial optimization problem with second-order cone complementarity constraints.

In this paper, we utilize the robust optimization approach (cf. [4, 5]) to investigate
the uncertain equilibrium constrained polynomial problem (UEP) by establishing lower
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bound approximations and asymptotic convergences of bounded degree diagonally dom-
inant sum-of-squares (DSOS), scaled diagonally dominant sum-of-squares (SDSOS) and
sum-of-squares (SOS) polynomial relaxations for the robust equilibrium constrained poly-
nomial optimization problem (REP). In each relaxation problem, there are two parameters of
degrees: the first is the degree of DSOS, SDSOS or SOS constraints that is fixed and the other
is the degree of approximated polynomials in the hierarchy that is varied. More precisely, we
prove that optimal values of these relaxation problems are lower bounds and they tend to the
optimal value of the robust equilibrium constrained problem (REP) when the first parameter
degrees are fixed and the second parameter degrees go to infinity. To this end, we first trans-
late the robust equilibrium constrained problem (REP) into a nonconvex polynomial problem
by employing a dual characterization for the equilibrium constraints under a qualification
condition and then employ the convergences of linear programming hierarchy [35] and/or
bounded degree hierarchies [13, 36] in polynomial optimization to present DSOS, SDSOS
and SOS relaxation convergences.

Numerical examples are provided to show how the global optimal value of a robust equi-
librium constrained polynomial problem can be found by solving corresponding relaxations
using commonly available programming packages such as the polynomial optimization tool-
boxSPOT[40]. Furthermore,weperformanapplication touncertain electric vehicle charging
scheduling models, where each electric vehicle user wants to lower her/him utility cost in
a competitive market condition that the underlying charging station operator seeks to raise
its trading profits under the setting of vehicle to grid technology and uncertain discharging
supplies from other electric vehicles. It is worth noting that the proposed uncertain model
is more dynamic than a certain/standard electric vehicle charging scheduling problem (cf.
[50]), where the problem parameters are fixed. In this application, we also compare the pro-
posed bounded degree hierarchieswith a linear programming hierarchy and themoment-SOS
relaxation hierarchy [33] implemented byGloptipoly 3 [23]. The experiment results illustrate
that for the lower relaxation degrees, the DSOS, SDSOS and SOS relaxations obtain rea-
sonable charging costs and for the higher relaxation degrees, the SDSOS relaxation scheme
has the best performance, which is recommended for similar practical scenarios, while the
compared/existing methods run out of memory for our current simulation computer system.

The organization of the paper is as follows. Section 2 is devoted to providing preliminaries
and a dual characterization of feasibility for the robust equilibrium constrained polynomial
program (REP). In Sect. 3, we establish bounded degree DSOS, SDSOS and SOS hierarchy
relaxation schemes for the robust equilibrium constrained polynomial problem (REP).

Section 4 presents an application in electric vehicle charging scheduling. The last section
summarizes results and provides research perspectives.

2 Preliminaries and dual characterizations

We begin with some preliminary definitions and present a dual characterization of feasibility
for the robust equilibrium constrained polynomial program (REP) that plays an important
role in establishing our hierarchy relaxation schemes later. The notation R

n indicates the
Euclidean space whose norm is denoted by ‖ · ‖ for each n ∈ IN := {1, 2, . . .}. The inner
product in R

n is defined by 〈x, y〉 := xT y for x, y ∈ R
n . The notation α ∈ (IN0)

m means
α := (α1, . . . , αm) with αi ∈ IN0, i = 1, . . . ,m and |α| := ∑m

i=1 αi , where N0 := N ∪ {0}.
Let R[x] (or R[x1, . . . , xn]) be the ring of polynomials in x := (x1, . . . , xn) with real

coefficients. Then, f ∈ R[x] is called a sum-of-squares (SOS) polynomial (see e.g., [33]) if
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there exist polynomials fi ∈ R[x], i = 1, . . . , k such that f = ∑k
i=1 f 2i . The set of all SOS

polynomials in x with degree at most d ∈ IN0 is denoted by SOSd [x]. As usual, the symbols
∇ f (ȳ) and ∇zh(ȳ, z̄) stand for the derivates/gradients of f : R

m → R at ȳ ∈ R
m and

h : Rn × R
m → R with respect to the second variable z at (ȳ, z̄) ∈ R

n × R
m , respectively,

while the symbol (∇ f (ȳ)) j signifies the j th component of ∇ f (ȳ) for j = 1, . . . ,m. A
polynomial f : Rn → R is coercive on Rn if lim inf||x ||→∞ f (x) = +∞.

Definition 2.1 (DSOS and SDSOS polynomials [1, 2]) Let f : Rn → R be a polynomial.

(i) f is called a diagonally dominant sum-of-squares (DSOS) polynomial if one can find
r ∈ N and nonnegative scalars αi , βi j and γi j such that

f (x) =
r∑

i=1

αim
2
i (x) +

r∑
i, j=1

βi j (mi (x) + m j (x))
2 +

r∑
i, j=1

γi j (mi (x) − m j (x))
2,

where mi and m j are monomials in the variable x . We denote by DSOSd [x] the set of
all DSOS polynomials on Rn with degree at most d ∈ IN0.

(ii) f is called a scaled diagonally dominant sum-of-squares (SDSOS) polynomial if one
can find r ∈ N and scalars αi , β

+
i j , β

−
i j and γ +

i j , γ
−
i j with αi ≥ 0 such that

f (x) =
r∑

i=1

αim
2
i (x) +

r∑
i, j=1

(β+
i j mi (x) + β−

i j m j (x))
2 +

r∑
i, j=1

(γ +
i j mi (x) − γ −

i j m j (x))
2,

where mi and m j are monomials in the variable x . We denote by SDSOSd [x] the set of
all SDSOS polynomials on Rn with degree at most d ∈ IN0.

Note by definition that DSOSd [x] ⊂ SDSOSd [x] ⊂ SOSd [x] and their inverse inclusions
are not true in general as shown in [2].

The forthcoming proposition presents a dual characterization of feasibility for the robust
equilibrium constrained polynomial problem (REP). To this end, we define a following
regularity condition for the associated sets of the variational inequality constraint of the
problem (REP).

Definition 2.2 We say that the associated sets of the variational inequality of problem (REP)
satisfy the Mangasarian-Fromovitz constraint qualification (MFCQ) if for x̃ ∈ R

n and
ỹ ∈ Z(x̃), one can find ω̃ ∈ R

m such that
〈
∇yg j (x̃, ỹ) +

r∑
i=1

v̄ki ∇ygi, j (x̃, ỹ), ω̃

〉
< 0 for all ( j, k) ∈ A(x̃, ỹ), (2.1)

where A(x̃, ỹ) :=
{
( j, k) ∈ {1, . . . , s2} × {1, . . . , r1} | g j (x̃, ỹ) +

r∑
i=1

v̄ki gi, j (x̃, ỹ) = 0
}
.

Observe here that if the associated set Z(x̃) does not involve uncertainties and does not
depend on x̃ , i.e., Z(x̃) ≡ Z , where

Z := {
z ∈ R

m | g j (z) ≤ 0, j = 1, . . . , s2
}

(2.2)

for some polynomials g j : Rm → R, j = 1, . . . , s2, then the condition in (2.1) collapses to

〈∇g j (z), ω̃〉 < 0 for all j ∈ A(z), (2.3)
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where A(z) := { j ∈ {1, . . . , s2} | g j (z) = 0} and z ∈ Z , which means that theMangasarian-
Fromovitz constraint qualification holds at z ∈ Z in the classical sense (cf. [39]).

It is worth emphasizing that under our framework the set Z in (2.2) is convex, and so
the condition (2.3) amounts to an assertion that (cf. [10, Corollary 2.1]) ∇g j (z) �= 0 for all
z ∈ Z and j ∈ A(z) (the nondegeneracy condition [34]) and there is z̃ ∈ R

m satisfying
g j (z̃) < 0, j = 1, . . . , s2 (the Slater qualification). In particular, if the polynomials g j , j =
1, . . . , s2 are convex, the nondegeneracy condition is automatically satisfied at any z ∈ Z
under the validation of the Slater qualification. In what follows, we denote by K the feasible
set of problem (REP); i.e.,

K : = {(x, y) ∈ R
n × R

m | f j (x, y) +
l∑

i=1

ui fi, j (x, y) ≤ 0,

j = 1, . . . , s1,∀u := (u1, . . . , ul) ∈ U , y ∈ Y (x)}, (2.4)

where Y (x) := {
y ∈ Z(x) | 〈�(x, y), z − y〉 ≥ 0, ∀z ∈ Z(x)

}
with Z(x) := {z ∈ R

m |
g j (x, z) + ∑r

i=1 vi gi, j (x, z) ≤ 0, j = 1, . . . , s2, ∀v := (v1, . . . , vr ) ∈ V }.
Note also that, in forthcoming main results, we require (MFCQ) to hold for the associated

sets (i.e., for Z(x) with x ∈ R
n) of the variational inequality constraint of problem (REP).

This type of assumption is widely used in convex and smooth optimization as the related
functions of an associated set Z(x) are polynomials and Z(x) is a convex set. (We do not
impose (MFCQ) on the feasible set K of problem (REP) in (2.4) as the involved functions
and sets in K often violate almost all known constraint qualification conditions.)

Proposition 2.3 Let (x, y) ∈ R
n ×R

m, and assume that the associated sets of the variational
inequality of problem (REP) satisfy (MFCQ). Then, (x, y) ∈ K if and only if there exists
λ := (λ0, λ

1
1, . . . , λ

1
s2 , . . . , λ

r1
1 , . . . , λ

r1
s2) ∈ R

r1s2+1 such that

Gγ (x, y, λ) ≤ 0, γ ∈ JG , Hγ (x, y, λ) = 0, γ ∈ JH , (2.5)

where

Gγ (x, y, λ) : =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f j (x, y) +
l∑

i=1
ūki fi, j (x, y), γ = ( j , k), j = 1, . . . , s1, k = 1, . . . , l1,

g j (x, y) +
r∑

i=1
v̄ki gi, j (x, y), γ = (s1 + j , l1 + k), j = 1, . . . , s2, k = 1, . . . , r1,

−λkj , γ = (s1 + s2 + j , l1 + r1 + k), j = 1, . . . , s2, k = 1, . . . , r1,

−λ0, γ = (s1 + 2s2 + 1, l1 + 2r1 + 1),

(2.6)

Hγ (x, y, λ) : =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λkj

[
g j (x, y) +

r∑
i=1

v̄ki gi, j (x, y)

]
, γ = ( j, k), j = 1, . . . , s2, k = 1, . . . , r1,(

λ0�(x, y) +
s2∑
j=1

r1∑
k=1

λkj

[
∇y g j (x, y) +

r∑
i=1

v̄ki ∇y gi, j (x, y)

])
�

, γ = (s2 + �, r1 + �), � = 1, . . . ,m,

‖λ‖2 − 1, γ = (s2 + m + 1, r1 + m + 1),

(2.7)

JG : = {( j, k) | j = 1, . . . , s1, k = 1, . . . , l1}
∪ {(s1 + j, l1 + k), (s1 + s2 + j, l1 + r1 + k) | j = 1, . . . , s2, k = 1, . . . , r1}
∪ {(s1 + 2s2 + 1, l1 + 2r1 + 1)}

and

JH := {( j, k) | j = 1, . . . , s2, k = 1, . . . , r1} ∪ {(s2 + �, r1 + �) | � = 1, . . . ,m + 1}.
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Proof [�⇒] Let (x, y) ∈ K . We have

f j (x, y) +
l∑

i=1

ui fi, j (x, y) ≤ 0, j = 1, . . . , s1, ∀u := (u1, . . . , ul) ∈ U , (2.8)

y ∈ Z(x), 〈�(x, y), z − y〉 ≥ 0, ∀z ∈ Z(x), (2.9)

where Z(x) := {z ∈ R
m | g j (x, z) + ∑r

i=1 vi gi, j (x, z) ≤ 0, j = 1, . . . , s2, ∀v ∈ V }.
Since U = conv {ū1, . . . , ūl1} with ū j := (ū j

1, . . . , ū
j
l ) ∈ R

l , j = 1, . . . , l1, (2.8) is
equivalent to the following inequalities

f j (x, y) +
l∑

i=1

ūki fi, j (x, y) ≤ 0, k = 1, . . . , l1, j = 1, . . . , s1. (2.10)

Similarly, by V := conv {v̄1, . . . , v̄r1} and v̄ j := (v̄
j
1 , . . . , v̄

j
r ) ∈ R

r , j = 1, . . . , r1, we see
that

Z(x) =
{
z ∈ R

m | g j (x, z) +
r∑

i=1

v̄ki gi, j (x, z) ≤ 0, k = 1, . . . , r1, j = 1, . . . , s2

}
.

Then, by (2.9), it yields y ∈ Z(x) and

L(y) ≤ L(z), ∀z ∈ Z(x), (2.11)

where L(z) := 〈�(x, y), z − y〉 for z ∈ R
m , and so y is a solution of the following program:

min
z∈Rm

{
L(z) | g j (x, z) +

r∑
i=1

v̄ki gi, j (x, z) ≤ 0, k = 1, . . . , r1, j = 1, . . . , s2

}
. (2.12)

Observe that L is a convex function and the feasible set of problem (2.12) is a convex set.
Under the validation of (MFCQ) at y, we invoke the above remark to assert that (cf. [34,
Theorem 2.3]) y is a Karush-Kuhn-Tucker/KKT point of (2.12). This means that there exist
λ̃kj ≥ 0, j = 1, . . . , s2, k = 1, . . . , r1, such that

�(x, y) +
s2∑
j=1

r1∑
k=1

λ̃kj

[
∇yg j (x, y) +

r∑
i=1

v̄ki ∇ygi, j (x, y)

]
= 0,

λ̃kj

[
g j (x, y) +

r∑
i=1

v̄ki gi, j (x, y)

]
= 0, k = 1, . . . , r1, j = 1, . . . , s2.

Hence, by letting λ0 := 1√
1+

s2∑
j=1

r1∑
k=1

(λ̃kj )
2

and λkj := λ̃kj√
1+

s2∑
j=1

r1∑
k=1

(λ̃kj )
2

, j = 1, . . . , s2, k =

1, . . . , r1, we arrive at

λ0�(x, y) +
s2∑
j=1

r1∑
k=1

λkj

[
∇yg j (x, y) +

r∑
i=1

v̄ki ∇ygi, j (x, y)

]
= 0, (2.13)

λkj

[
g j (x, y) +

r∑
i=1

v̄ki gi, j (x, y)

]
= 0, k = 1, . . . , r1, j = 1, . . . , s2, (2.14)

‖λ‖ = 1, (2.15)
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where λ := (
λ0, λ

1
1, . . . , λ

1
s2 , . . . , λ

r1
1 , . . . , λ

r1
s2

)
. Now, observing by (2.10), (2.11), (2.13),

(2.14) and (2.15) that there exists λ ∈ R
r1s2+1 such that (2.5) holds.

[⇐�] Conversely, let λ := (λ0, λ
1
1, . . . , λ

1
s2 , . . . , λ

r1
1 , . . . , λ

r1
s2) ∈ R

r1s2+1 satisfy (2.5).
Proceeding similarly, we get by Gγ (x, y, λ) ≤ 0, γ = ( j, k), j = 1, . . . , s1, k = 1, . . . , l1
that

f j (x, y) +
l∑

i=1

ui fi, j (x, y) ≤ 0, j = 1, . . . , s1, ∀u := (u1, . . . , ul) ∈ U , (2.16)

and by Gγ (x, y, λ) ≤ 0, γ = (s1 + j, l1 + k), j = 1, . . . , s2, k = 1, . . . , r1 that y ∈ Z(x).
The inequalitiesGγ (x, y, λ) ≤ 0, γ = (s1+s2+ j, l1+r1+k), j = 1, . . . , s2, k = 1, . . . , r1
and γ = (s1 + 2s2 + 1, l1 + 2r1 + 1), together with the equations Hγ (x, y, λ) = 0, γ ∈ JH ,

show that λ0 ≥ 0, λkj ≥ 0, j = 1, . . . , s2, k = 1, . . . , r1, and that

λ0�(x, y) +
s2∑
j=1

r1∑
k=1

λkj

[
∇yg j (x, y) +

r∑
i=1

v̄ki ∇ygi, j (x, y)

]
= 0, (2.17)

λkj

[
g j (x, y) +

r∑
i=1

v̄ki gi, j (x, y)

]
= 0, j = 1, . . . , s2, k = 1, . . . , r1, (2.18)

‖λ‖ = 1. (2.19)

We claim that λ0 �= 0. To see this, assume on the contrary that λ0 = 0. Then, from
(2.19) and (2.18) there exists ( j, k) ∈ {1, . . . , s2} × {1, . . . , r1} such that λkj > 0 and

that g j (x, y) + ∑r
i=1 v̄ki gi, j (x, y) = 0, which also shows that ( j, k) ∈ A(x, y), where

A(x, y) := {( j, k) ∈ {1, . . . , s2} × {1, . . . , r1} | g j (x, y) + ∑r
i=1 v̄ki gi, j (x, y) = 0}. Under

the validation of (MFCQ), we find w̃ ∈ R
m such that

〈
∇yg j (x, y) +

r∑
i=1

v̄ki ∇ygi, j (x, y), w̃

〉
< 0

for all ( j, k) ∈ A(x, y) and thus, we arrive at
〈 s2∑
j=1

r1∑
k=1

λkj

[
∇yg j (x, y) +

r∑
i=1

v̄ki ∇ygi, j (x, y)

]
, w̃

〉
< 0,

which contradicts (2.17). So, our claim is valid, whichmeans that λ0 > 0.Dividing both sides

of the relations in (2.17) and (2.18) by λ0 and denoting λ̃kj := λkj
λ0

≥ 0, j = 1, . . . , s2, k =
1, . . . , r1, we arrive at

�(x, y) +
s2∑
j=1

r1∑
k=1

λ̃kj

[
∇yg j (x, y) +

r∑
i=1

v̄ki ∇ygi, j (x, y)

]
= 0,

λ̃kj

[
g j (x, y) +

r∑
i=1

v̄ki gi, j (x, y)

]
= 0, k = 1, . . . , r1, j = 1, . . . , s2,

which shows that y is a KKT point for the following problem:

min
z∈Rm

{
L(z) | g j (x, z) +

r∑
i=1

v̄ki gi, j (x, z) ≤ 0, j = 1, . . . , s2, k = 1, . . . , r1

}
, (2.20)
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where L(z) := 〈�(x, y), z− y〉 for z ∈ R
m . As L is an affine function and the feasible set of

problem (2.20) is a convex set, it follows that y is a global optimal solution of problem (2.20)
under the fulfilment of (MFCQ) (cf. [34, Theorem 2.3]). Then L(y) ≤ L(z) for all z ∈ Z(x),
which means that 〈�(x, y), z− y〉 ≥ 0 for all z ∈ Z(x). Combining this and (2.16) concludes
that (x, y) ∈ K , and so the proof is complete. ��

3 Bounded degree hierarchy relaxations

This section is devoted to presenting bounded degree diagonally dominant sum-of-squares
(DSOS), scaled diagonally dominant sum-of-squares (SDSOS) and sum-of-squares (SOS)
relaxations for the robust equilibrium constrained polynomial problem (REP). This shows
how one can compute the global optimal value of problem (REP) by solving a sequence of
associated bounded degree DSOS, SDSOS or SOS relaxation problems.

3.1 Relaxations with the boundedness of feasibility

We first consider the robust equilibrium constrained problem (REP) with the boundedness
of its feasible set. More precisely, we impose the following boundedness assumption:

Assumption A. There exists MK > 0 satisfying ||(x̃, ỹ)|| ≤ √
MK for all (x̃, ỹ) ∈ K ,

where K is the feasible set of problem (REP) given as in (2.4).
We also use a commonly used hypothesis in polynomial optimization (see e.g., [33, 36])

as follows:

Assumption B. The polynomials

{
1, f j +

l∑
i=1

ūki fi, j , j = 1, . . . , s1, k = 1, . . . , l1, g j +
r∑

i=1
v̄ki gi, j , j = 1, . . . , s2, k = 1, . . . , r1

}
generates the ring R[x, y].

It is worth mentioning here that verifying Assumption A would cost additionally com-
putational effort in general. However, in a particular framework, where the constraints
of the equilibrium constrained problem (REP) involve the quadratic function (x, y) �→
‖(x, y)‖2 − τ for a given τ > 0, we can simply take MK as τ. Moreover, in some prac-
tical applications, we often know the bounds of budget constraints and so it is convenient
to choose MK based on the budget bounds and other known factors. For instance, let see
an example in Sect. 4 below on how to verify Assumption A for a practical application.
Note also that if Assumption A holds, then Assumption B can be easily made valid by
adding redundant constraints of f̃ j (x, y) ≤ 0, g̃ j (x, y) ≤ 0 into the problem (REP) with
f̃ j (x, y) := x j − √

MK , j = 1, . . . , n and g̃ j (x, y) := y j − √
MK , j = 1, . . . ,m.

Consider a positive number R defined by

R ≥ max
(x,y,λ)∈


{−Gγ (x, y, λ), γ ∈ JG}, (3.1)

where 
 := {(x, y, λ) ∈ R
n × R

m × R
r1s2+1 | ‖(x, y, λ)‖2 ≤ 1 + MK } and Gγ , γ ∈ JG

are given as in (2.6). In what follows, we use the following functions

Ĝ p :=

⎧⎪⎨
⎪⎩

− 1
R Gγ , p = γ, γ ∈ JG ,

−Hγ , p = (s1 + 2s2 + 1 + γ1, l1 + 2r1 + 1 + γ2), γ := (γ1, γ2) ∈ JH ,

Hγ , p = (s1 + 3s2 + m + 2 + γ1, l1 + 3r1 + m + 2 + γ2), γ := (γ1, γ2) ∈ JH ,

(3.2)
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where Hγ , γ ∈ JH are given in (2.7). Denoting by

J : = JG ∪ {(s1 + 2s2 + 1 + γ1, l1 + 2r1 + 1 + γ2),

(s1 + 3s2 + m + 2 + γ1, l1 + 3r1 + m + 2 + γ2) | (γ1, γ2) ∈ JH },

we see that the cardinality of J is 4r1s2+l1s1+2m+3 (i.e., |J | = 4r1s2+l1s1+2m+3). Note
that the definition of Ĝ p in (3.2) is merely a convenient way to construct the forthcoming
bounded degree relaxation problems. In fact, one can define other analogous functions to
formulate corresponding relaxations as long as such similar functions would be defined
based on the characterization functions Gγ in (2.6) and Hγ in (2.7) for the feasibility set of
problem (REP).

We are now ready to propose three types of relaxation problems for the equilibrium
constrained problem (REP) as follows.

Bounded degree SOS relaxation problems. Fix a positive even number d ∈ IN0 and define
a hierarchy of SOS relaxations for the equilibrium constrained problem (REP) as

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)|J |,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp (SDP1dk )

− t ∈ SOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
,

where k ∈ N.

Bounded degree SDSOS relaxation problems. Fix a positive even number d ∈ IN0 and
define a hierarchy of SDSOS relaxations for the equilibrium constrained problem (REP) as

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)|J |,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp (SOCP1dk )

− t ∈ SDSOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
,

where k ∈ N.

Bounded degree DSOS relaxation problems. Fix a positive even number d ∈ IN0 and
define a hierarchy of DSOS relaxations for the equilibrium constrained problem (REP) as

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)|J |,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp (LP1dk )

− t ∈ DSOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
,

where k ∈ N.
For the sake of completeness and comparison, we also consider a hierarchy of linear

programming (LP) relaxation problems for the robust equilibrium constrained polynomial
problem (REP).
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Linear programming relaxation problems. Define a hierarchy of LP relaxations for the
equilibrium constrained problem (REP) as

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)|J |,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp − t = 0, t ∈ R, cα,β ≥ 0

}
,

(LP1k)

where k ∈ N.

Remark 3.1 (i) It is worth noting that the problem (SDP1dk ) for d ∈ IN0 and k ∈ IN is
regarded as a sum-of-squares (SOS) relaxation problem for the robust equilibrium con-
strained polynomial problem (REP). Since checking whether a given polynomial is SOS
can be equivalently reformulated as a feasibility problem of semidefinite programming
(SDP) problem (see e.g., [33]), the problem (SDP1dk ) can be rewritten and solved as an
SDP problem. Similarly, checking whether a polynomial is SDSOS (respectively, DSOS)
can be equivalently reformulated as a second-order cone programming (SOCP) feasi-
bility problem (respectively, linear programming (LP) feasibility problem) [2]. So, each
problem (SOCP1dk ) (respectively, (LP1

d
k )) is equivalently solved as an SOCP problem

(respectively, an LP problem). Note also that for k ∈ IN , the relaxation problem (LP1k)
can be solved as a linear programming problem (cf. [35]).

(ii) Since the polynomial 0 is DSOS, any DSOS polynomial is SDSOS and any SDSOS
polynomial is SOS, it holds by definition that

val(LP1k) ≤ val(LP1dk ) ≤ val(SOCP1dk ) ≤ val(SDP1dk ) for all d ∈ IN0 and k ∈ IN ,

(3.3)

where val(LP1k), val(LP1dk ), val(SOCP1
d
k ) and val(SDP1dk ) denote the global optimal

value of problems (LP1k), (LP1dk ), (SOCP1
d
k ) and (SDP1dk ), respectively.

(iii) By the definition of the proposed DSOS, SDSOS or SOS hierarchy, the degree d of the
DSOS, SDSOS or SOS constraint in the relaxations is independent of the level k of the
approximation problems in the corresponding hierarchy. However, the interplay between
d and k should be taken into consideration when solving relaxations as if d is essentially
smaller than k, the corresponding DSOS, SDSOS or SOS relaxation problem might be
infeasible. The interested reader is referred to [13] for bounded degree hierarchies with
SDSOS and DSOS polynomial relaxations and to [36] for a bounded degree hierarchy
with SOS polynomial relaxations for the class of standard polynomial programs.

(iv) To construct the relaxation hierarchies of (LP1k), (LP1dk ), (SOCP1
d
k ) and (SDP1dk ), we

need to know a scaled parameter R > 0 that satisfies (3.1). A general way of choosing
a scaled parameter R is to solve the problem in the right-hand side of (3.1) as finding
the maximum value of the polynomials −Gγ , γ ∈ JG over the ball 
, and solving
this problem would be NP-hard in general even in a particular setting, where Gγ , γ ∈
JG are nonconvex quadratic polynomials (see e.g., [45]). One practical possibility of
selecting a scaled parameter R is to take an upper bound of upper estimations from the
polynomials −Gγ , γ ∈ JG on the ball 
. This can be easily seen because for each
(x, y, λ) ∈ 
, |xi | ≤ √

1 + MK , i = 1, . . . , n, |y j | ≤ √
1 + MK , j = 1, . . . ,m, |λ�| ≤√

1 + MK , � = 1, . . . , r1s2 + 1, we can evaluate the polynomials −Gγ , γ ∈ JG up to
the upper bounds of the variables xi , y j and λ� with absolute values of the coefficients.

Under suitable conditions, we now present the solution existence of the equilibrium con-
strained problem (REP). We also show that the optimal values of the relaxations (LP1k),
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(SDP1dk ), (SOCP1
d
k ) and (LP1

d
k ) are convergent to the optimal value of problem (REP) when-

ever k tends to infinity. Similarly, val(REP) denotes the optimal value of problem (REP).

Theorem 3.2 (Convergence ofRelaxations)LetAssumptionsAandBhold for the equilibrium
constrained problem (REP). Assume that the associated sets of the variational inequality of
problem (REP) satisfy (MFCQ). Then, the equilibrium constrained problem (REP) possesses
a solution, say (x̄, ȳ), satisfying

val(SDP1dk ) ≤ val(SDP1dk+1) ≤ val(REP) = f (x̄, ȳ) for k ∈ IN , (3.4)

val(SOCP1dk ) ≤ val(SOCP1dk+1) ≤ val(REP) for k ∈ IN , (3.5)

val(LP1dk ) ≤ val(LP1dk+1) ≤ val(REP) for k ∈ IN , (3.6)

val(LP1k) ≤ val(LP1k+1) ≤ val(REP) for k ∈ IN , (3.7)

and

lim
k→∞ val(LP1k) = lim

k→∞ val(LP1dk ) = lim
k→∞ val(SOCP1dk ) = lim

k→∞ val(SDP1dk ) = val(REP),

(3.8)

where d ∈ IN0 is given.

Proof We first claim that the feasibility set K in (2.4) is a closed set. Indeed, let
{(xq , yq)}q∈IN ⊂ K be a sequence such that (xq , yq) → (x0, y0) as q → ∞. Then, for
each q ∈ IN , it holds that

f j (xq , yq) +
l∑

i=1

ui fi, j (xq , yq) ≤ 0, j = 1, . . . , s1, ∀u := (u1, . . . , ul) ∈ U , (3.9)

yq ∈ Y (xq), (3.10)

where Y (x) := {
y ∈ Z(x) | 〈�(x, y), z − y〉 ≥ 0, ∀z ∈ Z(x)

}
with Z(x) := {z ∈

R
m | g j (x, z) + ∑r

i=1 vi gi, j (x, z) ≤ 0, j = 1, . . . , s2, ∀v := (v1, . . . , vr ) ∈ V }. As
f j , fi, j : Rn × R

m → R, j = 1, . . . , s1, i = 1, . . . , l, are continuous functions, we pass to
the limit in (3.9) as q → ∞ and obtain that

f j (x0, y0) +
l∑

i=1

ui fi, j (x0, y0) ≤ 0, j = 1, . . . , s1, ∀u := (u1, . . . , ul) ∈ U . (3.11)

Observe by (3.10) that yq ∈ Z(xq) for all q ∈ IN and similarly, we get

g j (x0, y0) +
r∑

i=1

vi gi, j (x0, y0) ≤ 0, j = 1, . . . , s2, ∀v := (v1, . . . , vr ) ∈ V ,

which shows that y0 ∈ Z(x0).
Arguing as in the proof of Proposition 2.3, we see that (3.10) amounts to saying that yq is

a global solution of the program:

min
z∈Rm

{
Lq(z) | g j (xq , z) +

r∑
i=1

v̄ki gi, j (xq , z) ≤ 0, k = 1, . . . , r1, j = 1, . . . , s2

}
, (3.12)

where Lq(z) := 〈�(xq , yq), z − yq〉 for z ∈ R
m . Observe that Lq is a convex function and

the feasible set of problem (3.12) is a convex set. This, under the validation of (MFCQ) at yq ,
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guarantees that yq is a KKT point of problem (3.12), and then there exist λ0,q ≥ 0, λkj,q ≥
0, j = 1, . . . , s2, k = 1, . . . , r1, such that

λ0,q�(xq , yq) +
s2∑
j=1

r1∑
k=1

λkj,q

[
∇yg j (xq , yq) +

r∑
i=1

v̄ki ∇ygi, j (xq , yq)

]
= 0, (3.13)

λkj,q

[
g j (xq , yq) +

r∑
i=1

v̄ki gi, j (xq , yq)

]
= 0, j = 1, . . . , s2, k = 1, . . . , r1, (3.14)

‖λq‖ = 1, (3.15)

where λq := (
λ0,q , λ

1
1,q , . . . , λ

1
s2,q , . . . , λ

r1
1,q , . . . , λ

r1
s2,q

)
.By (3.15), we may assume without

loss of generality that λ0,q → λ0 and λkj,q → λkj , j = 1, . . . , s2, k = 1, . . . , r1, as q → ∞.

Therefore, by letting q → ∞ in (3.13), (3.14) and (3.15), we arrive at

λ0�(x0, y0) +
s2∑
j=1

r1∑
k=1

λkj

[
∇yg j (x0, y0) +

r∑
i=1

v̄ki ∇ygi, j (x0, y0)

]
= 0, (3.16)

λkj

[
g j (x0, y0) +

r∑
i=1

v̄ki gi, j (x0, y0)

]
= 0, j = 1, . . . , s2, k = 1, . . . , r1, (3.17)

‖λ‖ = 1, (3.18)

whereλ := (λ0, λ
1
1, . . . , λ

1
s2 , . . . , λ

r1
1 , . . . , λ

r1
s2).Let L0(z) := 〈�(x0, y0), z−y0〉 for z ∈ R

m .
Using similar arguments as in the proof of Proposition 2.3, we deduce from (3.16), (3.17) and
(3.18) that L0(y0) ≤ L0(z) for all z ∈ Z(x0), whichmeans that 〈�(x0, y0), z−y0〉 ≥ 0 for all
z ∈ Z(x0). It shows that y0 ∈ Y (x0). Combining this with (3.11), we see that (x0, y0) ∈ K ,
which concludes that K is closed.

Furthermore, K is bounded due to Assumption A, and so K is compact. This together
with the continuity of f implies that there exists (x̄, ȳ) ∈ K with the property:

f (x̄, ȳ) ≤ f (x, y) for all (x, y) ∈ K .

So (x̄, ȳ) is a global solution of the equilibrium constrained problem (REP) and then,

val(REP) = f (x̄, ȳ).

Now, we set

X : =
{
(x, y, λ) ∈ R

n × R
m × R

r1s2+1 | −Gγ (x, y, λ) ≥ 0, γ ∈ JG ,

Hγ (x, y, λ) ≥ 0,−Hγ (x, y, λ) ≥ 0, γ ∈ JH
}
, (3.19)

where Gγ , γ ∈ JG and Hγ , γ ∈ JH , are defined respectively as in (2.6) and (2.7). By
Assumption A, ||(x, y)|| ≤ √

MK for all (x, y) ∈ K , we claim that

X ⊆ 
 := {
(x, y, λ) ∈ R

n × R
m × R

r1s2+1 | ‖(x, y, λ)‖2 ≤ 1 + MK
}
. (3.20)

To see this, let (x, y, λ) ∈ X , where λ := (
λ0, λ

1
1, . . . , λ

1
s2 , . . . , λ

r1
1 , . . . , λ

r1
s2

) ∈ R
r1s2+1. In

view of Proposition 2.3, it holds that

(x, y) ∈ K , ‖λ‖ = 1. (3.21)
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So ‖(x, y, λ)‖2 ≤ 1 + MK ; i.e., (x, y, λ) ∈ 
 and hence our claim in (3.20) holds. So we
have

R ≥ max
(x,y,λ)∈X{−Gγ (x, y, λ), γ ∈ JG},

where R is given as in (3.1). This ensures that 0 ≤ Ĝ p ≤ 1 on X for all p ∈ JG and Ĝ p = 0
on X for all p ∈ J\JG , where Ĝ p, p ∈ J are given by (3.2).

Let d ∈ IN0. By the construction of relaxation problems, it is clear that val(SDP1dk )≤
val(SDP1dk+1), val(SOCP1

d
k )≤ val(SOCP1dk+1), val(LP1

d
k )≤ val(LP1dk+1) and val(LP1k)

≤ val(LP1k+1) for all k ∈ IN . Moreover, by Remark 3.1, we have

val(LP1k) ≤ val(LP1dk ) ≤ val(SOCP1dk ) ≤ val(SDP1dk ) for all k ∈ IN . (3.22)

To justify (3.4)–(3.7), it is sufficient to show that

val(SDP1dk ) ≤ f (x̄, ȳ) for all k ∈ IN . (3.23)

Let k ∈ IN . If the feasible set of problem (SDP1dk ) is empty, then (3.23) holds trivially as
val(SDP1dk )= −∞. Now, let (t, cα,β) be a feasible point of problem (SDP1dk ). This means
that cα,β ≥ 0 for all α, β ∈ (N0)

|J |, |α| + |β| ≤ k and

f −
∑

α,β∈(N0)|J |,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp − t ∈ SOSd [x, y, λ]. (3.24)

Since (x̄, ȳ) ∈ K and (MFCQ) holds, we invoke Proposition 2.3 to assert that there exists
λ̄ ∈ R

r1s2+1 such that

Gγ (x̄, ȳ, λ̄) ≤ 0, γ ∈ JG , Hγ (x̄, ȳ, λ̄) = 0, γ ∈ JH ,

which shows that (x̄, ȳ, λ̄) ∈ X and thus 0 ≤ Ĝ p(x̄, ȳ, λ̄) ≤ 1 for all p ∈ JG
and Ĝ p(x̄, ȳ, λ̄) = 0 for all p ∈ J \ JG . Therefore, by recalling the nonnegativity of
SOS polynomials, we evaluate (3.24) at (x̄, ȳ, λ̄) to obtain that f (x̄, ȳ) ≥ t . This yields
val(SDP1dk )≤ f (x̄, ȳ); i.e., (3.23) has been proved.

By virtue of Assumption B, the polynomials {1,−Gγ , γ ∈ JG , Hγ ,−Hγ , γ ∈ JH } gen-
erates the ring R[x, y, λ]. We can employ the convergence of linear programming hierarchy
in polynomial optimization (see [35] or also, [13, Theorem 3.2 and Remark 3.3(ii)]) applied
to our problem with the objective f over the feasible set X to assert that

lim
k→∞ val(LP1k) = val(REP).

This, together with (3.22) and (3.23), justifies (3.8), and so the proof is complete. ��
The next example illustrates that without the validation of the MFCQ condition given in

(2.1), the bounded degree polynomial convergences obtained in Theorem 3.2 may fail.

Example 3.3 (The importance of MFCQ) Consider the following robust equilibrium con-
strained polynomial problem

min
(x,y)∈R2×R2

{
x41 + 2x22 + y31 + 2y2 + 4 | −u1(x

2
1 + x42 ) − u2y1 − 1 ≤ 0, (EP1)

u1x1 + u2x2 ≤ 0, ∀u := (u1, u2) ∈ U ,

y ∈ Z(x) :=
{
z ∈ R

2 | v1(x
4
1 + x22 + 1)z41 + v2z

2
2 ≤ 0, z2 ≤ 0, ∀v := (v1, v2) ∈ V

}
,
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〈(x31 + y51 , y
4
2 ), z − y〉 ≥ 0, ∀z ∈ Z(x)

}
,

where U := conv {(−1, 0), (0, 1)} and V := conv {(−1, 0), (1, 0)} are uncertainty sets.
The robust problem (EP1) can be viewed in terms of (REP), where f (x, y) := x41 +

2x22 + y31 + 2y2 + 4, f1(x, y) := −1, f1,1(x, y) := −x21 − x42 , f2,1(x, y) := −y1,
f2(x, y) := 0, f1,2(x, y) := x1, f2,2(x, y) := x2, g1(x, z) := 0, g1,1(x, z) := (x41 +
x22 + 1)z41, g2,1(x, z) := z22, g2(x, z) := z2, g1,2(x, z) := 0, g2,2(x, z) := 0, �(x, y) :=
(x31 + y51 , y

4
2 ) for x := (x1, x2) ∈ R

2, y := (y1, y2) ∈ R
2 and z := (z1, z2) ∈ R

2, and
ū1 := (−1, 0), ū2 := (0, 1), v̄1 := (−1, 0), v̄2 := (1, 0).

Observe by −u1(x21 + x42 ) − u2y1 − 1 ≤ 0 for all u := (u1, u2) ∈ U that x21 + x42 ≤ 1,
and then ||x || ≤ √

2. Furthermore, we can verify directly that for x ∈ R
2, one has Z(x) =

{0} × (−∞, 0] and Y (x) = {(0, 0)}, where Y (x) := {y ∈ Z(x) | 〈(x31 + y51 , y
4
2 ), z − y〉 ≥

0, ∀z ∈ Z(x)}. Hence, by setting MK := 2, it yields ||(x, y)|| ≤ √
MK for all (x, y) ∈ K ,

where K is the feasibility set of (EP1). This shows that Assumption A is valid. Similarly, we
see that Assumption B also holds. Moreover, we can check that (x̄, ȳ), where x̄ := (0, 0)
and ȳ := (0, 0), is a solution of problem (EP1).

In this setting, the functions Gγ , γ ∈ JG and Hγ , γ ∈ JH defined respectively in (2.6)
and (2.7) reduce to the following ones:

⎧⎪⎨
⎪⎩
G1,1(x, y, λ) = x21 + x42 − 1, G1,2(x, y, λ) = −1 − y1, G2,1(x, y, λ) = −x1, G2,2(x, y, λ) = x2,

G3,3(x, y, λ) = −(x41 + x22 + 1)y41 , G3,4(x, y, λ) = (x41 + x22 + 1)y41 , G4,3(x, y, λ) = G4,4(x, y, λ) = y2,

G5,5(x, y, λ) = −λ11, G5,6(x, y, λ) = −λ21,G6,5(x, y, λ) = −λ12, G6,6(x, y, λ) = −λ22,G7,7(x, y, λ) = −λ0,⎧⎪⎨
⎪⎩
H1,1(x, y, λ) = −λ11(x

4
1 + x22 + 1)y41 , H1,2(x, y, λ) = λ21(x

4
1 + x22 + 1)y41 , H2,1(x, y, λ) = λ12 y2,

H2,2(x, y, λ) = λ22 y2, H3,3(x, y, λ) = λ0(x31 + y51 ) + 4(λ21 − λ11)y
3
1 (x

4
1 + x22 + 1),

H4,4(x, y, λ) = λ0 y42 + λ12 + λ22, H5,5(x, y, λ) = ‖λ‖2 − 1,

where (x, y) ∈ R
2 × R

2, λ := (λ0, λ
1
1, λ

2
1, λ

1
2, λ

2
2) ∈ R

5, JG := {( j, k) | j = 1, 2, k =
1, 2} ∪ {(2 + j, 2 + k), (4 + j, 4 + k) | j = 1, 2, k = 1, 2} ∪{(7, 7)} and JH := {( j, k) |
j = 1, 2, k = 1, 2} ∪ {(2 + �, 2 + �) | � = 1, 2, 3}.

Let R be a positive number such that R ≥ max
(x,y,λ)∈


{−Gγ (x, y, λ), γ ∈ JG}, where


 := {(x, y, λ) ∈ R
2 × R

2 × R
5 | ‖(x, y, λ)‖2 ≤ 1 + MK }, and define the following

functions

Ĝ p :=

⎧⎪⎨
⎪⎩

− 1
R Gγ , p = γ, γ ∈ JG ,

−Hγ , p = (7 + γ1, 7 + γ2), γ := (γ1, γ2) ∈ JH
Hγ , p = (12 + γ1, 12 + γ2), γ := (γ1, γ2) ∈ JH .

Now, the relaxation problems (SDP1dk ) for k ∈ IN become the following problems

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)27,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp (EDd
k )

− t ∈ SOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
,

where d ∈ IN0 is given and J := JG ∪{(7+γ1, 7+γ2), (12+γ1, 12+γ2) | (γ1, γ2) ∈ JH }.
We claim that the representation of the SOS polynomial in (EDd

k ) is not valid for any
k ∈ IN and d ∈ IN0, and any t ∈ (2,+∞). If this is not the case, we would find k ∈ IN ,
d ∈ IN0, t ∈ (2,+∞), cα,β ≥ 0, where α, β ∈ (N0)

27, |α|+ |β| ≤ k and σ ∈ SOSd [x, y, λ]
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such that

f −
∑

α,β∈(N0)27,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp − t = σ, (3.25)

where we should note that |J | = 27. Picking ỹ := (0,−1), x̄ := (0, 0) and λ̃ :=
(0, 1√

2
, 1√

2
, 0, 0), it holds that −1 ≤ Gγ (x̄, ỹ, λ̃) ≤ 0 for all γ ∈ JG and Hγ (x̄, ỹ, λ̃) = 0

for all γ ∈ JH .Note further that (x̄, ỹ, λ̃) ∈ 
, which ensures that R ≥ −G1,1(x̄, ỹ, λ̃) = 1.
Consequently, we arrive at 0 ≤ Ĝ p(x̄, ỹ, λ̃) ≤ 1 for p ∈ JG and Ĝ p(x̄, ỹ, λ̃) = 0 for
p ∈ J \ JG . Now, we can deduce from (3.25) that

σ(x̄, ỹ, λ̃) ≤ f (x̄, ỹ) − t .

This means that σ(x̄, ỹ, λ̃) ≤ 2− t < 0, which is impossible as σ ∈ SOSd [x, y, λ] and then
σ(x̄, ỹ, λ̃) ≥ 0.

The above observation entails that val(EDd
k )≤ 2 for any k ∈ IN and d ∈ IN0. So the

conclusion (3.8) of Theorem 3.2 is not valid for this setting as val(EP1)= f (x̄, ȳ) = 4. The
reason is that the MFCQ condition is violated for the associated sets Z(x) with x ∈ R

2 of
the underlying problem. To see this, just take any x̂ ∈ R

2 and ȳ := (0, 0) ∈ Z(x̂). Then
g1(x̂, ȳ) + v̄11g1,1(x̂, ȳ) + v̄12g2,1(x̂, ȳ) = 0 and

∇yg1(x̂, ȳ) + v̄11∇yg1,1(x̂, ȳ) + v̄12∇g2,1(x̂, ȳ) = (0, 0),

which shows the violation of the strict inequalities in (2.1).

3.2 Relaxations with the objective coercivity

We now consider the robust equilibrium constrained polynomial problem (REP) in which
the feasibility set is arbitrary and the objective function is coercive. Namely, we impose the
following assumption of coercivity:

Assumption C. Let f be coercive on Rn × R
m .

Let τ ∈ R be such that τ ≥ f (x0, y0) for some (x0, y0) ∈ K , where K is the feasible set
of problem (REP) given as in (2.4). Define a function G0,0 : Rn ×R

m ×R
r1s2+1 → R given

by G0,0(x, y, λ) := f (x, y)− τ for (x, y, λ) ∈ R
n ×R

m ×R
r1s2+1, and let R0 be a positive

number such that

R0 ≥ max
(x,y,λ)∈
0

{ − Gγ (x, y, λ), γ ∈ JG ∪ {(0, 0)}}, (3.26)

where 
0 := {(x, y, λ) ∈ R
n × R

m × R
r1s2+1 | f (x, y) + ‖λ‖2 ≤ 1 + τ } and Gγ , γ ∈ JG

are given as in (2.6). Under the coercivity of f , the set 
0 is compact and thus R0 in
(3.26) is well-defined, and some possible ways of choosing R0 can be similarly done as in
Remark 3.1(iv).

Then we can define the following functions

Ĝ p :=

⎧⎪⎨
⎪⎩

− 1
R0

Gγ , p = γ, γ ∈ JG ∪ {(0, 0)},
−Hγ , p = (s1 + 2s2 + 1 + γ1, l1 + 2r1 + 1 + γ2), γ := (γ1, γ2) ∈ JH ,

Hγ , p = (s1 + 3s2 + m + 2 + γ1, l1 + 3r1 + m + 2 + γ2), γ := (γ1, γ2) ∈ JH ,

(3.27)

where Hγ , γ ∈ JH are given in (2.7). Denoting by

J0 : = JG ∪ {(0, 0)} ∪ {(s1 + 2s2 + 1 + γ1, l1 + 2r1 + 1 + γ2),
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(s1 + 3s2 + m + 2 + γ1, l1 + 3r1 + m + 2 + γ2) | (γ1, γ2) ∈ JH },
we see that the cardinality of J0 is 4r1s2 + l1s1 +2m+4 (i.e., |J0| = 4r1s2 + l1s1 +2m+4).

Similarly as above, we address three types of relaxations for the equilibrium constrained
problem (REP), and these relaxation problems are constructed via the functions Ĝγ given in
(3.27).

Bounded degree SOS relaxation problems. Fix a positive even number d ∈ IN0 and define
a hierarchy of SOS relaxations for the equilibrium constrained problem (REP) as

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)

|J0 |,|α|+|β|≤k

cα,β

∏
p∈J0

(Ĝ p)
αp (1 − Ĝ p)

βp

− t ∈ SOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
, (SDP2dk )

where k ∈ N.

Bounded degree SDSOS relaxation problems. Fix a positive even number d ∈ IN0 and
define a hierarchy of SDSOS relaxations for the equilibrium constrained problem (REP) as

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)

|J0 |,|α|+|β|≤k

cα,β

∏
p∈J0

(Ĝ p)
αp (1 − Ĝ p)

βp

− t ∈ SDSOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
, (SOCP2dk )

where k ∈ N.

BoundeddegreeDSOSrelaxation problems. Fix a positive even number d ∈ IN0 and define
a hierarchy ofDSOS relaxations problems for the equilibrium constrained problem (REP) as

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)

|J0 |,|α|+|β|≤k

cα,β

∏
p∈J0

(Ĝ p)
αp (1 − Ĝ p)

βp

− t ∈ DSOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
, (LP2dk )

where k ∈ N.
It is worth noting that there is a slight difference between the definitions of the bounded

degree relaxations (SDP2dk ), (SOCP2
d
k ) and (LP2dk ) in this subsection and those (SDP1dk ),

(SOCP1dk ) and (LP1dk ) in the previous subsection. More precisely, the relaxations of this
subsection involve the polynomial G0,0, which relates to an upper bound τ of the coercive
objective, while the previous ones do not haveG0,0. This in turn results in the variant manners
of choosing R over the set 
 in (3.1) and choosing R0 on the set 
0 in (3.26).

We now show that, under the coercivity of the objective and regularity, the robust equi-
librium constrained polynomial problem (REP) possesses a global solution and its optimal
value is the limit of bounded degree hierarchy relaxation problems (SDP2dk ), (SOCP2

d
k ) and

(LP2dk ), where d ∈ IN0 is fixed and k ∈ IN goes to infinity.
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Theorem 3.4 (Convergence of Relaxations) Let AssumptionsB andChold for the equilibrium
constrained problem (REP). Assume that the associated sets of the variational inequality of
problem (REP) satisfy (MFCQ). Then, the equilibrium constrained problem (REP) possesses
a solution, say (x̄, ȳ), satisfying

val(SDP2dk ) ≤ val(SDP2dk+1) ≤ val(REP) = f (x̄, ȳ) for k ∈ IN , (3.28)

val(SOCP2dk ) ≤ val(SOCP2dk+1) ≤ val(REP) for k ∈ IN , (3.29)

val(LP2dk ) ≤ val(LP2dk+1) ≤ val(REP) for k ∈ IN , (3.30)

and

lim
k→∞ val(LP2dk ) = lim

k→∞ val(SOCP2dk ) = lim
k→∞ val(SDP2dk ) = val(REP), (3.31)

where d ∈ IN0 is given.

Proof Let (x0, y0) ∈ R
n × R

m be a feasible point of (REP) mentioned in Assumption C.
Then, we see that τ ≥ f (x0, y0), and invoke Proposition 2.3 to find λ̄ ∈ R

r1s2+1 such that

Gγ (x0, y0, λ̄) ≤ 0, γ ∈ JG , Hγ (x0, y0, λ̄) = 0, γ ∈ JH ,

where Gγ , γ ∈ JG and Hγ , γ ∈ JH , are defined in (2.6) and (2.7), respectively. Let

X0 : = {(x, y, λ) ∈ R
n × R

m × R
r1s2+1 | −Gγ (x, y, λ) ≥ 0, γ ∈ JG ∪ {(0, 0)},

Hγ (x, y, λ) ≥ 0,−Hγ (x, y, λ) ≥ 0, γ ∈ JH }, (3.32)

where G0,0(x, y, λ) := f (x, y) − τ for (x, y, λ) ∈ R
n × R

m × R
r1s2+1 as above. It is easy

to see that X0 is a closed set and X0 �= ∅ because of (x0, y0, λ̄) ∈ X0.

Furthermore, for each (x, y, λ) ∈ X0, where λ := (
λ0, λ

1
1, . . . , λ

1
s2 , . . . , λ

r1
1 , . . . , λ

r1
s2

) ∈
R
r1s2+1, it holds thatG0,0(x, y, λ) ≤ 0 and Hs2+m+1,r1+m+1(x, y, λ) = 0, which means that

f (x, y) ≤ τ, ||λ|| = 1. (3.33)

This ensures that (x, y, λ) ∈ 
0; i.e., X0 ⊂ 
0, where 
0 := {(x, y, λ) ∈ R
n × R

m ×
R
r1s2+1 | f (x, y) + ‖λ‖2 ≤ 1 + τ }. Since f is coercive on R

n × R
m , 
0 is a compact

set, and so is X0. We now consider a function f0 : R
n × R

m × R
r1s2+1 → R given by

f0(x, y, λ) := f (x, y) for (x, y, λ) ∈ R
n × R

m × R
r1s2+1. The continuity of f0 and the

compactness of X0 guarantee that there exists (x̄, ȳ, λ̂) ∈ X0 such that

f0(x̄, ȳ, λ̂) ≤ f0(x, y, λ) for all (x, y, λ) ∈ X0. (3.34)

We now show that (x̄, ȳ) is a global solution of problem (REP). Observe by (x̄, ȳ, λ̂) ∈ X0

that

τ ≥ f (x̄, ȳ), (3.35)

and that

Gγ (x̄, ȳ, λ̂) ≤ 0, γ ∈ JG , Hγ (x̄, ȳ, λ̂) = 0, γ ∈ JH . (3.36)

Thus, by (MFCQ),we invoke Proposition 2.3 to conclude that (x̄, ȳ) is feasible for (REP). Let
(x, y) ∈ R

n ×R
m be an arbitrary feasible point of problem (REP). In view of Proposition 2.3

again, there exists λ ∈ R
r1s2+1 such that

Gγ (x, y, λ) ≤ 0, γ ∈ JG , Hγ (x, y, λ) = 0, γ ∈ JH .
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In the case of τ ≥ f (x, y), it holds (x, y, λ) ∈ X0, and so we get by (3.34) that f (x̄, ȳ) ≤
f (x, y). In the case of τ < f (x, y), we conclude by (3.35) that f (x, y) > f (x̄, ȳ). In
conclusion, (x̄, ȳ) is a solution of problem (REP). Then, it holds that

val(REP) = f (x̄, ȳ). (3.37)

By X0 ⊂ 
0, we see that

R0 ≥ max
(x,y,λ)∈X0

{ − Gγ (x, y, λ), γ ∈ JG ∪ {(0, 0)}},
where R0 is given in (3.26). This ensures that 0 ≤ Ĝ p ≤ 1 on X0 for all p ∈ JG ∪ {(0, 0)}
and Ĝ p = 0 on X0 for all p ∈ J0\(JG ∪ {(0, 0)}), where Ĝ p, p ∈ J0 are given by (3.27).

Let d ∈ IN0. By the construction of relaxation problems, it is clear that val(SDP2dk )≤
val(SDP2dk+1), val(SOCP2

d
k )≤ val(SOCP2dk+1) and val(LP2

d
k )≤ val(LP2dk+1) for all k ∈ IN .

Furthermore, it holds that

val(LP2dk ) ≤ val(SOCP2dk ) ≤ val(SDP2dk ) for all k ∈ IN . (3.38)

To justify (3.28) to (3.30), it is sufficient to show that

val(SDP2dk ) ≤ f (x̄, ȳ) for all k ∈ IN . (3.39)

Let k ∈ IN . If the feasible set of problem (SDP2dk ) is empty, then (3.39) holds trivially as
val (SDP2dk )= −∞. Now, let (t, cα,β) be feasible for (SDP2dk ). This means that cα,β ≥ 0 for
all α, β ∈ (N0)

|J0|, |α| + |β| ≤ k and

f −
∑

α,β∈(N0)
|J0 |,|α|+|β|≤k

cα,β

∏
p∈J0

(Ĝ p)
αp (1 − Ĝ p)

βp − t ∈ SOSd [x, y, λ]. (3.40)

Since (x̄, ȳ) ∈ K and (MFCQ) holds, we invoke Proposition 2.3 to assert that there exists
λ̄ ∈ R

r1s2+1 such that

Gγ (x̄, ȳ, λ̄) ≤ 0, γ ∈ JG , Hγ (x̄, ȳ, λ̄) = 0, γ ∈ JH .

Moreover, by (3.35), τ ≥ f (x̄, ȳ) and so (x̄, ȳ, λ̄) ∈ X0. This guarantees that 0 ≤
Ĝ p(x̄, ȳ, λ̄) ≤ 1 for all p ∈ JG∪{(0, 0)} and Ĝ p(x̄, ȳ, λ̄) = 0 for all p ∈ J0\(JG∪{(0, 0)}).
Therefore, by recalling the nonnegativity of SOS polynomials, we evaluate (3.40) at (x̄, ȳ, λ̄)

to obtain that f (x̄, ȳ) ≥ t . This yields val(SDP2dk )≤ f (x̄, ȳ); i.e., (3.39) has been proved.
Note that Assumption B ensures that the polynomials {1,−Gγ , γ ∈ JG ∪ {(0, 0)}, Hγ ,

−Hγ , γ ∈ JH } generates the ring R[x, y, λ]. We can employ the convergence of linear
programming hierarchy in polynomial optimization (see [13, Theorem 3.2 and a remark on
page 901]) applied to our problem with the objective f over the feasible set X0 to assert that

lim
k→∞ val(LP2dk ) = val(REP).

This, together with (3.38) and (3.39), justifies (3.31), and so the proof is complete. ��
The following example illustrates how one can employ the bounded degree polynomial

relaxations to identify the optimal value of a robust equilibrium constrained problem.

Example 3.5 (Finding optimal values using relaxations) Consider a robust equilibrium con-
strained problem given by

min
(x,y)∈R×R2

{
x3 + xy21 − 3y1y2 + y42 − 3 | −u1x

2 − u2y
2
2 − 1 ≤ 0, u1x ≤ 0, ∀u := (u1, u2) ∈ U ,

(EP2)
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y ∈ Z(x) :=
{
z ∈ R

2 | v1(x
2 + 1)z1 + v2z

2
2 − 1 ≤ 0,−v1z1 − v2z2 ≤ 0, ∀v := (v1, v2) ∈ V

}
,

〈(x2 + y21 , 2y
2
2 ), z − y〉 ≥ 0, ∀z ∈ Z(x)

}
,

where U := conv {(−1, 0), (0, 1)} and V := conv {(0, 1), (1, 0)} are uncertain sets. Note
that the problem (EP2) can be viewed by way of (REP), where f (x, y) := x3 + xy21 −
3y1y2 + y42 − 3, f1(x, y) := −1, f1,1(x, y) := −x2, f2,1(x, y) := −y22 , f2(x, y) :=
0, f1,2(x, y) := x, f2,2(x, y) := 0, g1(x, z) := −1, g1,1(x, z) := (x2 + 1)z1, g2,1(x, z) :=
z22, g2(x, z) := 0, g1,2(x, z) := −z1, g2,2(x, z) := −z2, �(x, y) := (x2 + y21 , 2y

2
2 ) for

x ∈ R, y := (y1, y2) ∈ R
2 and z := (z1, z2) ∈ R

2, and ū1 := (−1, 0), ū2 := (0, 1), v̄1 :=
(0, 1), v̄2 := (1, 0). We can verify directly that (x̄, ȳ), where x̄ := 0 and ȳ := (0, 0), is a
solution of (EP2) and therefore, the optimal value of (EP2) is val(EP2)= −3.

Let us now employ bounded degree polynomial relaxation schemes to check the optimal
value of (EP2). Observe first that the associated sets of the variational inequality of prob-
lem (EP2) satisfy (MFCQ). From −u1x2 − u2y22 − 1 ≤ 0 for all u := (u1, u2) ∈ U , it
holds that x2 ≤ 1 and hence, |x | ≤ 1. In addition, we can calculate directly that for x ∈ R,
Z(x) = [

0, 1
1+x2

] × [0, 1] and Y (x) = {(0, 0)}, where Y (x) := {
y ∈ Z(x) | 〈(x2 +

y21 , 2y
2
2 ), z− y〉 ≥ 0, ∀z ∈ Z(x)

}
. Thus, by letting MK := 1, one has ||(x, y)|| ≤ √

MK for

every (x, y) ∈ K , where K :=
{
(x, y) ∈ R × R

2 | f j (x, y) +
2∑

i=1
ui fi, j (x, y) ≤ 0,∀u ∈

U , j = 1, 2, y ∈ Y (x)
}
is the feasibility set of (EP2). This shows that Assumption A is true.

Similarly, we can verify that Assumption B also holds.
In this setting, the functions Gγ , γ ∈ JG and Hγ , γ ∈ JH defined respectively in (2.6)

and (2.7) reduce to the following ones:

⎧⎪⎨
⎪⎩
G1,1(x, y, λ) = x2 − 1, G1,2(x, y, λ) = −1 − y22 , G2,1(x, y, λ) = −x, G2,2(x, y, λ) = 0,

G3,3(x, y, λ) = y22 − 1, G3,4(x, y, λ) = (x2 + 1)y1 − 1, G4,3(x, y, λ) = −y2,G4,4(x, y, λ) = −y1,

G5,5(x, y, λ) = −λ11, G5,6(x, y, λ) = −λ21,G6,5(x, y, λ) = −λ12, G6,6(x, y, λ) = −λ22,G7,7(x, y, λ) = −λ0,⎧⎪⎨
⎪⎩
H1,1(x, y, λ) = λ11(y

2
2 − 1), H1,2(x, y, λ) = λ21[(x2 + 1)y1 − 1], H2,1(x, y, λ) = −λ12y2,

H2,2(x, y, λ) = −λ22y1, H3,3(x, y, λ) = λ0(x2 + y21 ) + λ21(x
2 + 1) − λ22,

H4,4(x, y, λ) = 2λ0 y22 + 2λ11y2 − λ12, H5,5(x, y, λ) = ‖λ‖2 − 1,

where (x, y) ∈ R × R
2, λ := (

λ0, λ
1
1, λ

2
1, λ

1
2, λ

2
2

) ∈ R
5, JG := {( j, k) | j = 1, 2, k =

1, 2} ∪ {(2 + j, 2 + k), (4 + j, 4 + k) | j = 1, 2, k = 1, 2} ∪{(7, 7)} and JH := {( j, k) |
j = 1, 2, k = 1, 2} ∪ {(2 + �, 2 + �) | � = 1, 2, 3}.

Let R be a positive number such that

R ≥ max
(x,y,λ)∈


{−Gγ (x, y, λ), γ ∈ JG}, (3.41)

where 
 := {(x, y, λ) ∈ R × R
2 × R

5 | ‖(x, y, λ)‖2 ≤ 1 + MK }, and define the following
functions

Ĝ p :=

⎧⎪⎨
⎪⎩

− 1
R Gγ , p = γ, γ ∈ JG ,

−Hγ , p = (7 + γ1, 7 + γ2), γ := (γ1, γ2) ∈ JH
Hγ , p = (12 + γ1, 12 + γ2), γ := (γ1, γ2) ∈ JH .

Let J := JG ∪ {(7+ γ1, 7+ γ2), (12+ γ1, 12+ γ2) | (γ1, γ2) ∈ JH }, it holds that |J | = 27.
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In this setting, the relaxation problems (SDP1dk ), (SOCP1
d
k ) and (LP1dk ) for k ∈ IN are

respectively given as

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)27,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp

− t ∈ SOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
, (SDEd

k )

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)27,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp

− t ∈ SDSOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
, (SOCEd

k )

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)27,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp

− t ∈ DSOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
, (LEd

k )

where d ∈ IN0. Taking a given number d ∈ IN0, Theorem 3.2 tells us that the equilib-
rium constrained problem (EP2) admits a global solution, and its optimal value satisfies the
following relations

val(SDEd
k ) ≤ val(SDEd

k+1) ≤ val(EP2), val(SOCEd
k ) ≤ val(SOCEd

k+1) ≤ val(EP2),

val(LEd
k ) ≤ val(LEd

k+1) ≤ val(EP2)

for all k ∈ IN and

lim
k→∞ val(LEd

k ) = lim
k→∞ val(SOCEd

k ) = lim
k→∞ val(SDEd

k ) = val(EP2).

Now, take an arbitrary R > 0 satisfying (3.41) (for instance, R := 5), we solve the
relaxation problems (SDEd

k ), (SOCE
d
k ) and (LEd

k ) with d = 4 for k = 1, 2, 3 within the
DSOS, SDSOS and SOS hierarchies using the polynomial optimization toolbox SPOT [40]
and the conic program solver MOSEK [42]. More explicitly, the polynomial optimization
toolbox SPOT allows us to first convert relaxation problems within the SOS, SDSOS or
DSOS hierarchy into corresponding semidefinite programming (SDP), second-order cone
programming (SOCP) or linear programming (LP) problems, and then solve the converted
programs to find lower bounds/optimal values. We also compare the proposed bounded
degree hierarchies with the LP relaxation hierarchy defined by (LP1k) for k = 1, 2, 3 and the
moment-SOS relaxation hierarchy [33] implemented by Gloptipoly 3 [23]. The numerical
tests are conducted on a computer with a Quad-Core Intel Core i5-8279U CPU2.40GHz,
16GB 2133MHz LPDDR3 memory, equipped with MATLAB R2021b.

Table 1 summarizes the computed optimal values of relaxation problems as well as the
CPU time used in seconds. In this table, “Output=infeasible" means that the corresponding
method provides trivial lower bound −∞, and particularly, for the case of Gloptipoly 3, this
means that the corresponding SOS relaxation is infeasible. As we can see from the table that,
for the relaxation order k = 2, the SOS relaxation provides a better lower bound than the
SDSOS relaxation, and in its turn the SDSOS relaxation provides a better lower bound than
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Table 1 Computing optimal values of relaxation problems

k LP hierarchy DSOS hierarchy SDSOS hierarchy SOS hierarchy Gloptipoly 3

1 Output = infeasible Output = infeasible Output = infeasible Output = infeasible Output = infeasible

2 Output = infeasible Output = − 7.7500 Output = − 6.2834 Output = − 3.9401 Output = infeasible

Time = 2.258319 Time = 2.719339 Time = 2.675706

Status: lower bound Status: lower bound Status: lower bound

3 Out of memory Output = − 4.1250 Output = − 3.0000 Output = − 3.0000 Output = − 3.0000

Time = 31.498645 Time = 39.059717 Time = 105.968693 Time = 225.281314

Status: lower bound Status: optimal value Status: optimal value Status: optimal value

the DSOS relaxation while the SOS and SDSOS relaxations occupy more CPU time than the
DSOS relaxation. Moreover, for the relaxation order k = 3, while the LP relaxation runs out
of memory, the SDSOS relaxation, the SOS relaxation and Gloptipoly 3 return the optimal
value of the testing problem, where Gloptipoly 3 requires the most CPU time.

Observe that the robust equilibriumconstrained polynomial problems considered inExam-
ples 3.3 and 3.5 could be expressed in terms of robust bilevel polynomial programs [14] by
using related reformulation techniques (see e.g., [15, 16]). It would be interesting to examine
whether a randomly given equilibrium constrained polynomial problem can be conveniently
transferred into a corresponding robust bilevel format. If this is the case, we can exploit the
semidefinite programming (SDP) hierarchies for a robust bilevel polynomial program in [14],
which were established by means of Lasserre hierarchy of semidefinite programming relax-
ations [33], to find the global optimal value of a robust equilibrium constrained polynomial
problem.

We close this section with some remarks on the proposed bounded degree DSOS, SDSOS
and SOS polynomial relaxations.

Remark 3.6 (Asymptotic and Finite convergences & Global optimal solutions)

(i) The proposed bounded degree SOS, SDSOS andDSOS hierarchies allow one to calculate
lower bounds/optimal value of a robust equilibrium constrained program by way of
the so-called asymptotic convergences. We recall, for instance, a result of asymptotic
convergence in Theorem 3.2 as

lim
k→∞ val(LP1dk ) = lim

k→∞ val(SOCP1dk ) = lim
k→∞ val(SDP1dk ) = val(REP),

which shows that the optimal values of these relaxations tend to the optimal value of the
considered robust equilibrium constrained problem whenever the degrees of the approx-
imating polynomials in the hierarchies go to infinity (k → ∞). So, in general, we do not
knowwhen the optimal values of relaxations in the hierarchies reach the optimal value of
the underlying robust equilibrium constrained program. Moreover, since these relaxation
problems are built from the view of nonnegative polynomials, the proposed schemes are
generally not able to provide a solution for the considered robust equilibrium constrained
program.

(ii) If one can find k0 ∈ IN such that

val(LP1dk0) = val(SOCP1dk0) = val(SDP1dk0) = val(REP),
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then the corresponding results are called finite convergences. For a class of standard
polynomial programs, a sufficient criterion in terms of rank conditions [22] and certain
commonly used constraint qualification conditions for the bounded degree SOS poly-
nomial relaxation to have a finite convergence can be found in [36]. For some special
classes of convex polynomial programs, other sufficient criteria for finite convergences
to occur at the first relaxation (i.e., k0 = 1) in the hierarchies can be found in [35, 36]
for the setting of SOS polynomial relaxations and in [13] for the settings of SDSOS and
DSOS polynomial relaxations. As the above-mentioned sufficient criteria are checked
via the Lagrangian dual problems of relaxations, a global optimal solution can also be
extracted as long as a finite convergence takes place.
However, for the class of our robust equilibrium constrainedpolynomial programs, a ques-
tion on how to find verifiable sufficient conditions that guarantee finite convergences for
the proposed bounded degree DSOS, SDSOS and SOS polynomial relaxations deserves
a further investigation due to the fact that the related functions and sets in the constraints
(such as K in (2.4)) of equilibrium constrained programs often violate almost all com-
monly used constraint qualification conditions [18, 44].

4 Applications to electric vehicle charging under uncertain discharging
supplies

In this section, we employ the bounded degree SOS, SDSOS andDSOS relaxation hierarchies
and the LP hierarchy to solve a practical problem in Electric Vehicle Charging Scheduling
(EVCS). In this EVCS model, each electric vehicle (EV) user seeks to minimize her/him
utility cost in a competitive market condition that the underlying station operator wants to
maximize its trading profits under the setting of vehicle to grid (V2G) technology and uncer-
tain discharging supplies. By making use of uncertainty data, the considered EV charging
scheduling model below is more dynamic than a certain/standard electric vehicle charging
scheduling problem (cf. [50]), which has been examined in [8] by using a noncooperative
game model and recently in [25] by using a multiobjective approach.

A mathematical model for electric vehicle charging scheduling. Consider an electric
vehicle charging schedulingmodel, where the objective is to achieve a minimized utility cost
for each EV user and amaximized trading profit for the station operator within the framework
of competitive markets. During the parking time T , with the help of V2G technology, if the
EV parking time is more than the EV charging time, the EV user has the ability to reduce its
utility cost by deciding on how much for charging amount xt and how much for discharging
amount yt of the electricity to the power grid at time slot t . Meanwhile, the charging station
operator should arrange the charging and discharging amounts for the EVuser tomaximize its
trading profits by supplying the charging service consistently and by selling the discharging
amount from the EV user to other EV users timely. So, in this schedulingmodel, each EV user
and the charging station operator share an equilibrium condition on the charging xt amount
and the discharging yt amount. Moreover, under the consideration of discharging supplies,
which are uncertain amounts from other EV users, the electricity price is hardly determined
at every charging time slot t .

With the EV charging and discharging constraints described as above, a new electric vehi-
cle charging scheduling problem under uncertain discharging supplies can bemathematically
modeled as follows:
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min
x∈RT ,y∈RT

T∑
t=1

(Lt + xt − yt )(xt − yt ), (4.1)

s.t . xt ≤ X , t = 1, . . . , T , (4.2)

yt ≤ Y , t = 1, . . . , T , (4.3)

Lt + ut xt ≤ M, t = 1, . . . , T , (4.4)

T∑
t=1

(xt − yt ) = D, (4.5)

yt ≤
t−1∑
t ′=1

(xt ′ − yt ′), t = 2, . . . , T , (4.6)

t−1∑
t ′=1

(xt ′ − yt ′) + xt ≤ C, t = 2, . . . , T , (4.7)

xt ≥ 0, yt ≥ 0, xt yt = 0, t = 1, . . . , T , (4.8)

where x := (x1, . . . , xT ) and y := (y1, . . . , yT ). The Lt indicates the baseload at the charging
station at t . (Lt + xt − yt )(xt − yt ) denotes the electricity price at t . Equations (4.2) and (4.3)
constrain the charging and discharging efficiencies, where X and Y are the maximal charging
and discharging amounts at t , respectively. Equation (4.4) describes the power transmission
from the power grid to the charging station at t . ut is the discharged electricity from other
EV users. Parameter ut is uncertain and ut ∈ [α1, γ1] for given α1 ∈ R and γ1 ∈ R. M is the
maximal power transmission at t . Equation (4.5) explains the charging demand that must be
satisfied. Equation (4.6) describes that the discharging amount is equal or less than the sum
of earlier charged amounts. Equation (4.7) constrains the total charging amounts, whereC is
the EV battery capacity. The EV user and the charging station operator share an (implicitly)
equilibrium constraint in (4.8), where in each time slot t , the EV user can either charge with
xt or discharge with yt , while the charging station operator can either provide with xt or sell
with yt from the EV user to others.

As we can see from the above model, which contains uncertain discharging supplies from
other EV users, the electricity price is often fluctuated and is unable to be precisely deter-
mined at every charging time slot. This leads to a fact that both the EV user and the charging
station operator face challenging on how to effectively schedule EV charging and discharging
amounts to achieve their goals. Below, we employ our robust equilibrium constrained poly-
nomial program to handle the above-mentioned electric vehicle charging scheduling model
with data uncertainties.

Transforming into equilibrium constrained polynomial programs. Denote by U :=
[α1, γ1]T , which is a box in R

T . Then this set can be presented as U = conv {ūk |
k = 1, . . . , 2T }, where ūk := (ūk1, . . . , ū

k
T ), k = 1, . . . , 2T are extreme points of the

box [α1, γ1]T . For x := (x1, . . . , xT ) ∈ R
T and y := (y1, . . . , yT ) ∈ R

T , we let

� : RT ×R
T → R

T be given by�(x, y) := x and let f (x, y) :=
T∑
t=1

(Lt +xt − yt )(xt − yt ),
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f j (x, y) : =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x j − X , j = 1, . . . , T ,

y j−T − Y j = T + 1, . . . , 2T ,

L j−2T − M, j = 2T + 1, . . . , 3T ,
T∑
t=1

(xt − yt ) − D, j = 3T + 1,

−
T∑
t=1

(xt − yt ) + D, j = 3T + 2,

y j−3T −1 −
j−3T −2∑

t=1
(xt − yt ), j = 3T + 3, . . . , 4T + 1,

j−4T −1∑
t=1

(xt − yt ) + x j−4T − C, j = 4T + 2 . . . , 5T ,

(4.9)

fi, j (x, y) : =
{
xi , i = j − 2T , j = 2T + 1, . . . , 3T ,

0 others,
(4.10)

g j (x, y) : = −y j , j = 1, . . . , T , gi, j (x, y) := 0, i = 1, . . . , T , j = 1, . . . , T . (4.11)

Now, the problem of (4.1)–(4.8) is rewritten in an uncertain equilibrium constrained
problem:

min
(x,y)∈RT ×RT

{
f (x, y) | f j (x, y) +

T∑
i=1

ui fi, j (x, y) ≤ 0, j = 1, . . . , 5T , (UVP)

y ∈ Z(x, v) :=
{
z ∈ R

T | g j (x, z) +
T∑
i=1

vi gi, j (x, z) ≤ 0, j = 1, . . . , T
}
,

〈�(x, y), z − y〉 ≥ 0, ∀z ∈ Z(x, v)

}
,

where u := (u1, . . . , uT ) ∈ U and v := (v1, . . . , vT ) ∈ V := conv {0T }, are uncertain
sets. To deal with the uncertain equilibrium constrained program (UVP), we consider its
associated robust problem:

min
(x,y)∈RT ×RT

{
f (x, y) | f j (x, y) +

T∑
i=1

ui fi, j (x, y) ≤ 0,∀u ∈ U , j = 1, . . . , 5T ,

(RVP)

y ∈ Z(x) :=
{
z ∈ R

T | g j (x, z) +
T∑
i=1

vi gi, j (x, z) ≤ 0,∀v ∈ V , j = 1, . . . , T
}
,

〈�(x, y), z − y〉 ≥ 0, ∀z ∈ Z(x)

}
.

Verifying assumptions. Letting MK := 2T (max {X , Y })2 > 0, it holds that ||(x, y)|| ≤
√
MK for all (x, y) ∈ K , where K :=

{
(x, y) ∈ R

T × R
T | f j (x, y) +

T∑
i=1

ui fi, j (x, y) ≤

0,∀u ∈ U , j = 1, . . . , 5T , y ∈ Z(x), 〈�(x, y), z − y〉 ≥ 0,∀z ∈ Z(x)

}
is the feasibility

set of (RVP). This shows that Assumption A is valid. Since the polynomials

{
1, f j +
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T∑
i=1

ūki fi, j , j = 1, . . . , 5T , k = 1, . . . , 2T
}
generates the ring R[x, y], Assumption B is

also valid. Moreover, we can see by (4.11) that (MFCQ) holds for the associated sets of the
variational inequality of problem (RVP).

Formulating relaxation problems. For (x, y) ∈ R
T × R

T and λ := (λ0, λ1, . . . , λT ) ∈
R
T +1, we define the following functions:

Gγ (x, y, λ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f j (x, y) +
T∑
i=1

ūki fi, j (x, y), γ = ( j, k), j = 1, . . . , 5T , k = 1, . . . , 2T ,

g j (x, y), γ = (5T + j, 2T + j), j = 1, . . . , T ,

−λ j , γ = (6T + j, 2T + T + j), j = 1, . . . , T ,

−λ0, γ = (7T + 1, 2T + 2T + 1),
(4.12)

and

Hγ (x, y, λ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ j g j (x, y), γ = ( j, j), j = 1, . . . , T ,

(
λ0�(x, y) +

T∑
i=1

λi∇ygi (x, y)
)
j , γ = (T + j, T + j), j = 1, . . . , T ,

‖λ‖2 − 1, γ = (2T + 1, 2T + 1).
(4.13)

Let R be a positive number such that

R ≥ max
(x,y,λ)∈


{−Gγ (x, y, λ), γ ∈ JG}, (4.14)

where 
 := {(x, y, λ) ∈ R
T × R

T × R
T +1 | ‖(x, y, λ)‖2 ≤ 1 + MK } and JG := {( j, k) |

j = 1, . . . , 5T , k = 1, . . . , 2T } ∪ {(5T + j, 2T + j) | j = 1, . . . , 2T + 1}. Similarly, we
denote JH := {( j, j) | j = 1, . . . , 2T + 1} and put

Ĝ p :=

⎧⎪⎨
⎪⎩

− 1
R Gγ , p = γ, γ ∈ JG ,

−Hγ , p = (7T + 1 + j, 2T + 2T + 1 + j), ( j, j) ∈ JH ,

Hγ , p = (9T + 2 + j, 2T + 4T + 2 + j), ( j, j) ∈ JH .

(4.15)

Let J := JG ∪{(7T +1+ j, 2T +2T +1+ j), (9T +2+ j, 2T +4T +2+ j) | ( j, j) ∈ JH },
it holds that |J | = 2T 5T + 6T + 3.

We now state bounded degree polynomial relaxations for the equilibrium constrained
problem (RVP).

Bounded degree relaxation problems. Fix a positive even number d ∈ IN0 and define a
hierarchy of SOS relaxations for the equilibrium constrained problem (RVP) as

sup
(t,cα,β )

{
t | f −

∑
α,β∈(N0)|J |,|α|+|β|≤k

cα,β

∏
p∈J

(Ĝ p)
αp (1 − Ĝ p)

βp − t ∈ SOSd [x, y, λ], t ∈ R, cα,β ≥ 0

}
,

(SDPVd
k )

where k ∈ N. Similarly, in the problem (SDPVd
k ), if the cone SOSd [x, y, λ] is replaced

by the cone SDSOSd [x, y, λ] (respectively, DSOSd [x, y, λ]), we obtain the SDSOS relax-
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Fig. 1 The 24h-baseload for an office building for two days

ation problem (SOCPEd
k ) (respectively, theDSOS relaxation (LPEd

k ) problem) for the robust
equilibrium constrained polynomial problem (RVP).

EV charging and discharging environment settings. We apply the Tesla Model 31 to be
the EV example, which is equipped with a 75 kWh capacity battery, the maximum charging
rate is 30 kWh per hour, and the maximum discharging rate is 45 kWh per hour. The EV
is parking at the charging station for three hours and the initial state of charge is 6.6% (5
kWh power in the battery). Namely, the charging demand is 70 kWh. We randomly select an
office building electricity load [7] for two days from Chongqing City of China that is shown
in Fig. 1. For the uncertain parameter, we set 0% to 50% charging load that can be covered
by other EV discharging loads. The maximal power transmission is 500 kWh per hour.

We test the proposed EV charging scheduling problem of (4.1)–(4.8) by using our relax-
ation problems in (SDPVd

k ), (SOCPE
d
k ) and (LPEd

k ) for 8 different baseload scenarios in 24h.
In other words, there are 8 parking sessions in one day and 3h for each parking session. The
relaxation problems are solved by the DSOS hierarchy, the SDSOS hierarchy, and the SOS
hierarchy, respectively. We generate feasible values, which play the roles as upper bounds
of the optimal costs, to evaluate the tightness of the DSOS hierarchy, the SDSOS hierarchy,
and the SOS hierarchy. The interested reader is referred to [31] for a heuristic method that
employs SDSOS and DSOS polynomial relaxations to generate favorable feasible solutions.
We also compare the proposed bounded degree hierarchies with the LP relaxation hierarchy
defined by (LP1k) for k = 1, 2, 3 and the moment-SOS relaxation hierarchy implemented
by Gloptipoly 3. The outputs of LP and Gloptipoly 3 are trivial lower bound −∞ for the
relaxation orders of k = 1 and k = 2. Unfortunately, for the relaxation order k = 3, both LP
and Gloptipoly 3 do not give us any helpful information as they run out of memory for our
current simulation computer system.

The optimized EV charging cost is shown in Tables 2 and 3. As we can see from the table,
the charging cost is more when the EV is charged at the peak load parking sessions. The
DSOS relaxation scheme always obtains a (minimal) lower charging cost than the SDSOS
and SOS ones do in each session. For the relaxation order k = 2, SOS cannot obtain any
results with the restrained computing memory. Moreover, in the relaxation order of k = 2,
the DSOS and SDSOS relaxation schemes take more time on calculation and obtain a higher
charging cost than k = 1’s cases. Notably, the SOS relaxation problems in Session 5 achieve
the best result in terms of higher charging cost and less computing time compared to other
relaxation ones for the relaxation order of k = 1. Consequently, the SOS relaxations with

1 https://en.wikipedia.org/wiki/Tesla_Model_3.
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Table 2 The optimized EV charging cost in 8 sessions on Day 1

k Sessions 1 2 3 4 5 6 7 8

Upper bounds 17.620 36.648 42.300 18.120 34.950 81.032 61.530 64.320

Cost 1.0000 1.0000 1.0000 15.7709 10.1220 10.7037 16.9859 0.6722

SOS Time 0.5141 0.5235 0.5278 0.7629 0.7336 0.6862 0.8632 0.5410

Cost 0.0014 0.0005 0.9996 13.8710 8.4170 8.9190 15.0850 0.0006

SDSOS Time 0.5291 0.5276 0.5772 0.7930 0.7384 0.7818 0.7730 0.5356

Cost 0.0014 0.0005 0.9996 13.8710 8.4170 8.9190 15.0850 0.0006

1 DSOS Time 0.5941 0.5876 0.6810 0.8320 0.8523 0.9240 0.8340 0.7324

Cost Out of memory

SOS Time 59.0894 57.6158 84.8312 90.9339 71.2964 67.6654 71.0360 81.6045

Cost 1.1066 1.1386 1.1178 17.6763 12.5736 11.5637 18.4314 0.9138

SDSOS Time 52.5728 51.9841 64.7232 60.0645 63.8659 50.9398 60.9498 59.0917

Cost 0.6865 0.2702 1.0000 14.4295 8.9700 9.1224 15.696 0.2152

2 DSOS Time 50.6919 52.3267 52.4467 53.9142 54.069 54.0523 51.2345 51.1222

Table 3 The optimized EV charging cost in 8 sessions on Day 2

k Sessions 1 2 3 4 5 6 7 8

Upper bounds 12.82 64.46 41.44 36.27 36.51 48.48 49.86 46.53

Cost 2.8263 2.0450 2.0186 1.5629 1.4571 1.3855 1.3329 1.2928

SOS Time 1.9755 1.2102 1.0422 1.1728 1.1317 1.0956 1.0082 1.0256

Cost 1.1028 1.2573 1.0319 1.0000 1.0000 1.0000 1.0000 1.0000

SDSOS Time 1.5559 1.2444 1.2109 1.1836 1.2080 1.1343 1.1164 1.0747

Cost 1.0000 1.0000 1.0000 0.6589 0.9491 0.5943 0.5892 0.7278

1 DSOS Time 1.4227 1.3145 1.2289 1.1992 1.3066 1.1710 1.1580 1.1267

Cost Out of memory

SOS Time 52.1544 72.8037 74.0027 69.6755 62.0868 55.1067 58.4149 63.3937

Cost 3.2324 3.7782 3.5848 2.2717 1.7147 1.6788 2.2398 1.9308

SDSOS Time 79.3250 72.5282 57.9678 74.2287 54.5370 99.5889 96.6429 54.9770

Cost 1.4752 1.8263 1.6733 0.8584 1.3707 1.1862 1.2206 0.9767

2 DSOS Time 52.1566 51.6146 50.5009 51.1079 54.5234 55.4089 54.5169 54.0463

k = 1 and the SDSOS relaxations with k = 2 have the best performance on the proposed
EV charging scheduling problem in an acceptable computing time.

5 Conclusions and outlook

In this paper, we have exploited the robust approach to examine an equilibrium constrained
polynomial problem, where the constraint functions and the equilibrium constraints involve
uncertainty data. We have established bounded degree DSOS, SDSOS and SOS polynomial
relaxation problems for solving the considered robust equilibrium constrained program. It has
been shown that the optimal value of the considered equilibrium constrained problem is the
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limit of sequences of optimal values of bounded degree DSOS, SDSOS or SOS relaxations
whenever the degrees of the approximated polynomials go to infinity. The bounded degree
hierarchical relaxation convergences have been established by reformulating the robust equi-
librium constrained polynomial program into a resulting nonconvex polynomial program
with the help of a dual characterization of the equilibrium constraints of the underlying pro-
gram and the convergences of linear programming hierarchy or bounded degree hierarchies
in polynomial optimization [13, 35, 36].

We have also presented numerical examples that show how lower bounds and the optimal
value of a robust equilibrium constrained polynomial problem can be calculated by way of
the obtained relaxation schemes with the polynomial optimization toolbox SPOT [40]. An
application to electric vehicle charging scheduling problems under uncertain discharging
supplies shows that for the lower relaxation degrees, the DSOS, SDSOS and SOS relaxations
obtain reasonable charging costs and for the higher relaxation degrees, the SDSOS relaxation
scheme has the best performance, which is recommended for similar practical scenarios.

In the process of reformulating the robust equilibrium constrained polynomial problem
into our relaxation hierarchies, many new variables have shown up in the relaxation models,
and as a result, this leads to a computational burden for the proposed relaxation shemes when
applying to higher dimensional practical problems. The sparse convergent SDP-relaxations
[32] or the sparse moment-SOS hierarchy (TSSOS) [49], which have demonstrated better
performances in terms of efficiency and scalability for polynomial optimization problems,
would be good candidates to reduce the computational cost. Moreover, it is worth exploring
how we can develop and apply the proposed DSOS, SDSOS and SOS relaxations schemes
to solve other practical problems, such as the process engineering models as in [46] or
the electric power market problems as in [24, 26], where the problem data often contain
uncertainty factors. These aspects will be our future research topics.
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