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Abstract
This paper focuses on the study of robust two-stage quadratic multiobjective opti-
mization problems. We formulate new necessary and sufficient optimality conditions
for a robust two-stage multiobjective optimization problem. The obtained optimality
conditions are presented by means of linear matrix inequalities and thus they can be
numerically validated by using a semidefinite programming problem. The proposed
optimality conditions can be elaborated further as second-order conic expressions for
robust two-stage quadratic multiobjective optimization problems with separable func-
tions and ellipsoidal uncertainty sets.We also propose relaxation schemes for finding a
(weak) efficient solution of the robust two-stage multiobjective problem by employing
associated semidefinite programming or second-order cone programming relaxations.
Moreover, numerical examples are given to demonstrate the solution variety of our
flexible models and the numerical verifiability of the proposed schemes.
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1 Introduction

The data or system parameters of practical decision making problems are often noisy
or fluctuating because of errors in estimation, prediction or misinformation. Robust
optimization has become a powerful deterministic approach to handle effectively such
uncertain real-life decision making models, see e.g., [3, 4, 8, 10, 13, 20, 22] and the
references therein. Adjustable robust optimization [2], where some decision variables
can be adjusted after the realization of uncertain parameters, is known as an extension
of robust optimization. The adjustable robust optimization handles flexibly dynamic
decision-making models under data uncertainties by allowing some decision variables
to evolve over time in phases/stages based on the updated information of uncertainty
data. This is often seen in practice, for instance, the cost of producing a product is
just an estimated value until the product is actually made [23], and so the production
decision maker needs to wait and possibly adjust the investment strategy according
to the actual production cost. More generally, the decision variables of such a model
would depend on the uncertainty factors and a robust counterpart of the underlying
model is called a robust two-stage (or more general multi-stage) decision making
problem [2, 5, 11, 14–16, 27, 33].

Furthermore, many real-world decision making problems are in the face of
two-stage/multi-stage nature with multiple objectives (called two-stage/multi-stage
multiobjective optimization programs) such as the integrated community management
model [26], the reliability growth planning problem [25], the problemof energy retrofit
of buildings [18, 19] or the electric-vehicle charging station placement problem [31].
As an illustration, in the operation of coordinated gas and electricity networks, the sys-
tem operators may face the conflicting benefits between the demands of the natural gas
network and the electricity network under an uncertain environment evolving over time
[34]. Therefore, a more flexible two-stage multiobjective procedure was employed to
schedule the coordinated community energy systems (see [26]). One important fea-
ture of the above-mentioned models is that, beside (standard) here-and-now decision
variables, the problem data also contain wait-and-see decision variables that can be
adjusted after some of uncertain parameters have revealed their values. These obser-
vations motivate us to investigate the forthcoming two-stage multiobjective problems
involving data uncertainties.

An uncertain quadratic multiobjective problem is given (see e.g., [13]) by

min
x∈Rq

{(
f1(x, v), . . . , fm(x, v)

) | g j (x, v) ≤ 0, j = 1, . . . , n
}
, (P)

where v ∈ V is an uncertain parameter, V ⊂ R
r is a nonempty compact uncertainty

set, and fi : Rq × R
r → R, i = 1, . . . ,m, g j : Rq × R

r → R, j = 1, . . . , n are
quadratic functions defined by, for x ∈ R

q and v := (v1, . . . , vr ) ∈ V ,
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fi (x, v) := x�Qi
1x + (ξ i1)

�x + β i
1 +

r∑

l=1

vl
(
(ξ i1,l)

�x + β i
1,l

)
,

g j (x, v) := x�Q j
2x + (ξ

j
2 )�x + β

j
2 +

r∑

l=1

vl
(
(ξ

j
2,l)

�x + β
j
2,l

)
(1)

with Qi
1 � 0, Q j

2 � 0, ξ i1 ∈ R
q , ξ i1,l ∈ R

q , ξ
j
2 ∈ R

q , ξ
j
2,l ∈ R

q , β i
1 ∈ R, β i

1,l ∈ R,

β
j
2 ∈ R, β

j
2,l ∈ R, i = 1, . . . ,m, j = 1, . . . , n, l = 1, . . . , r fixed. Here, the notation

A � 0 means that the matrix A is positive semidefinite.
We study an uncertain two-stage quadraticmultiobjective program of (P) as follows

min
x,y

(
f1(x, v) + (θ11 )�y(v), . . . , fm(x, v) + (θm1 )�y(v)

)
(UT)

s.t. g j (x, v) + (θ
j
2 )�y(v) ≤ 0, j = 1, . . . , n,

where x ∈ R
q is the first-stage or here-and-now decision variable, y : V → R

p is
the second-stage or wait-and-see decision variable and θ i1 ∈ R

p, i = 1, . . . ,m and

θ
j
2 ∈ R

p, j = 1, . . . , n are given parameters. Note that the wait-and-see variable y is
adjustable and it is depending on uncertain values.

According to the two-stage terminology of (scalar) programming problems (cf.
[2, 33]), the first-stage variable x is determined before the uncertain parameter v is
realized, while the second-stage variable y is determined after some of uncertainties
have shownup their values.As thewait-and-see variable y is an arbitrarymap involving
uncertain parameters from a general uncertainty set V , examining numerically the two-
stage multiobjective program (UT) is generally challenging and moreover, expected
optimality criteria would not be tractable/verifiable. To this end, we assume that the
uncertainty set V is a nonempty compact set, which is of a spectrahedral form (see
e.g., [28]) given by

V :=
{

v := (v1, . . . , vr ) ∈ R
r | A +

r∑

l=1

vl Al � 0

}

, (2)

where A, Al , l = 1, . . . , r are symmetric (m0 × m0) matrices and the second-stage
variable y is an affine rule (cf. [2, Page 356] or [33, Equation (8)]) given by

y(v) := y0 + Yv, v ∈ V ,

where y0 ∈ R
p and Y ∈ R

p×r are nonadjustable variables.
A robust two-stage multiobjective problem is defined via the robust counterpart of

(UT) as

min
x∈Rq ,y0∈Rp,Y∈Rp×r

(
max
v∈V { f1(x, v) + (θ11 )�y(v)}, . . . ,max

v∈V { fm(x, v) + (θm1 )�y(v)}) (RT)

s.t. g j (x, v) + (θ
j
2 )�y(v) ≤ 0, j = 1, . . . , n, y(v) = y0 + Yv,∀v ∈ V .
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Note that, in the model (RT), the constraints are stipulated for all possible values of
the uncertain parameter v within the corresponding uncertainty set V .

To state the solution notions of worst-case efficiency in multiobjective optimiza-
tion (see e.g., [17, 24]) for our robust two-stage multiobjective setting, we put
Fi (x, y0,Y ) := max

v∈V { fi (x, v)+ (θ i1)
�(y0+Yv)}, i = 1, . . . ,m for x ∈ R

q , y0 ∈ R
p

and Y ∈ R
p×r and denote by C the set of all feasible points of problem (RT), i.e.,

C :=
{
(x, y0,Y ) ∈ R

q+p+p×r | g j (x, v) + (θ
j
2 )�y(v) ≤ 0, j = 1, . . . , n,

y(v) = y0 + Yv,∀v ∈ V
}

.

Definition 1.1 (Weak/Efficient Solutions) For the problem (RT), let (̃x, ỹ0, Ỹ ) ∈ C.

(i) (̃x, ỹ0, Ỹ ) is said to be a weak efficient solution of (RT) if there does not exist
(x, y0,Y ) ∈ C such that

Fi (x, y
0,Y ) < Fi (̃x, ỹ

0, Ỹ ), i = 1, . . . , p.

(ii) (̃x, ỹ0, Ỹ ) is called an efficient solution of (RT) if there does not exist (x, y0,Y ) ∈ C
such that

Fi (x, y
0,Y ) ≤ Fi (̃x, ỹ

0, Ỹ ), i = 1, . . . , p and

Fi (x, y
0,Y ) < Fi (̃x, ỹ

0, Ỹ ) for some i ∈ {1, . . . , p}.

Despite there is a great deal of recent research on robust two-stage (scalar) opti-
mization (see e.g., [2–4, 6, 9, 15] and the references therein), an answer to a question
on how to establish verifiable optimality conditions as well as associated methods for
solving numerically a nonlinear robust two-stagemultiobjective optimization problem
such as (RT) is currently unavailable, which is because of the numerical nontractabil-
ity inherent in multiobjective and multi-stage structures. In this paper, we provide an
answer to the above question by examining tractable optimality conditions and asso-
ciated relaxation schemes for solving numerically the robust two-stage multiobjective
program (RT). A deeper understanding on these optimality conditions and relaxation
schemes could help us improve modeling formulations and corresponding computa-
tional methods for solving a broader class of nonlinear robust two-stagemultiobjective
optimization problems.

More precisely, the first aim of this paper is to establish new necessary and sufficient
optimality conditions for the robust two-stage multiobjective optimization problem
(RT). An advantage feature of the obtained optimality conditions is that these optimal-
ity criteria are linear matrix inequalities and hence they can be numerically validated
by using a semidefinite programming problem. It is also shown that such optimal-
ity conditions can be elaborated further as second-order conic expressions for robust
two-stage multiobjective optimization problems with separable functions and ellip-
soidal uncertainty sets. The second aim of this paper is to propose novel relaxation
schemes that allow one to calculate a (weak) efficient solution of the robust two-stage
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multiobjective problem (RT) bymeans of semidefinite programming (SDP) or second-
order cone programming (SOCP) relaxation problems. The third aim of this paper is
to provide numerical examples, which demonstrate that the proposed SDP or SOCP
relaxations can be employed to locate (weak) efficient solutions of concrete robust
two-stage multiobjective problems including those arisen from practical applications.
In particular, these numerical examples also illustrate the solution variety of the con-
sidered models and the numerical tractability of the associated relaxation schemes.
The interested reader is refered to [12] for some related results for an adjustable robust
linear multiobjective optimization problem.

The structure of this paper is as follows. In Sect. 2, after providing basic definitions
andnotations,wefirst present necessary and sufficient linearmatrix inequality optimal-
ity conditions for the robust two-stage multiobjective optimization problem (RT). We
then expound second-order cone optimality conditions for a special robust two-stage
multiobjective optimization problem. Section3 shows how (weak) efficient solutions
of the two-stage multiobjective optimization problem (RT) can be calculated by using
associated SDP or SOCP relaxation problems. In Sect. 4, we present numerical exam-
ples including those emerged from practical applications. Section5 is devoted to
providing conclusions and research perspectives.

2 Optimality for Two-stageMultiobjective Problems

In this section, we provide necessary conditions and sufficient conditions for (weak)
efficient solutions of the robust two-stage multiobjective optimization problem (RT).

Let us start by providing notations and definitions. We denote by Rq the Euclidean
space whose norm is denoted by ‖ · ‖ for each q ∈ IN := {1, 2, . . .}. We use 0 to
denote the origin of a space, but 0q is sometimes used for the origin of Rq for more
clarification. For each k ∈ {1, . . . , q}, eqk is the unit vector in R

q whose kth element
is one and the others are all zero. The inner product inRq is defined by 〈x, y〉 := x�y
for all x, y ∈ R

q . For a nonempty set � ⊂ R
q , conv� denotes the convex hull of �

and cl� stands for the closure of �, while int� is the interior of �.

An (m × n) real matrix A is denoted by A ∈ R
m×n . A ∈ R

n×n is symmetric if
A� = A,where A� is the transpose of A.The set of all symmetric (n×n) realmatrices
is denoted by Sn .For A ∈ Sn , the notation A−1 is the inverse of A. As usual, the symbol
In ∈ R

n×n stands for the identity (n×n)matrix. Amatrix A ∈ Sn is said to be positive
semidefinite, denoted by A � 0, whenever x�Ax ≥ 0 for all x ∈ R

n . If x�Ax > 0 for
all x ∈ R

n \ {0n}, then A is called positive definite, denoted by A  0. The trace of a
square matrix A is denoted by Tr(A). Given v := (v1, . . . , vn), the notation diag(v) or
diag(v1, . . . , vn) denotes a diagonal matrix with entries v1, . . . , vn along the diagonal
and zeros elsewhere. Similarly, diag(A1, . . . , An) denotes the block diagonal matrix
with submatrices A1, . . . , An along the diagonal and zero submatrices elsewhere.

The following theorem states necessary and sufficient optimality conditions for the
robust two-stage multiobjective optimization problem (RT). These optimality condi-
tions are exhibited in terms of linear matrix inequalities (LMIs) and so they can be
numerically validated by using a semidefinite programming problem.
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Theorem 2.1 (Linearmatrix inequality optimality)For the problem (RT), let (x, y0,Y )

∈ R
q+p+p×r be a feasible point.

(i) (Necessary optimality) Assume that the Slater qualification condition holds for the
problem (RT), i.e., there exists (̂x, ŷ0, Ŷ ) ∈ R

q+p+p×r such that

g j (̂x, v) + (θ
j
2 )�(ŷ0 + Ŷv) < 0,∀v ∈ V , j = 1, . . . , n. (3)

Let (x, y0,Y ) be a weak efficient solution of (RT). Then there exist (α1, . . . , αm) ∈
R
m+ \ {0}, αs

i ∈ R, i = 1, . . . ,m, s = 1, . . . , r and λ j ≥ 0, λsj ∈ R, j = 1, . . . , n,

s = 1, . . . , r such that

m∑

i=1

αiθ
i
1 +

n∑

j=1

λ jθ
j
2 = 0,

m∑

i=1

αs
i θ

i
1 +

n∑

j=1

λsjθ
j
2 = 0, s = 1, . . . , r , (4)

αi A +
r∑

s=1

αs
i As � 0, i = 1, . . . ,m, λ j A +

r∑

s=1

λsj As � 0, j = 1, . . . , n, (5)

( M1
1
2M2

1
2 (M2)

� M3

)
� 0, (6)

where M1 := ∑m
i=1 αi Qi

1 +
n∑

j=1
λ j Q

j
2 , M2 := ∑m

i=1(αiξ
i
1 + ∑r

s=1 αs
i ξ

i
1,s) +

∑n
j=1(λ jξ

j
2 +∑r

s=1 λsjξ
j
2,s) andM3 := ∑m

i=1(αiβ
i
1 +∑r

s=1 αs
i β

i
1,s) +

n∑

j=1
(λ jβ

j
2 +

∑r
s=1 λsjβ

j
2,s) − ∑m

i=1 αiFi (x, y0,Y ) with Fi (x, y0,Y ) := maxv∈V { fi (x, v) +
(θ i1)

�(y0 + Yv)} for i = 1, . . . ,m.
(ii) (Sufficient conditions for weak efficient solutions) Let (α1, . . . , αm) ∈ R

m+ \ {0},
αs
i ∈ R, i = 1, . . . ,m, s = 1, . . . , r and λ j ≥ 0, λsj ∈ R, j = 1, . . . , n, s = 1, . . . , r

satisfy (4)–(6). Then (x, y0,Y ) is a weak efficient solution of (RT).
(iii) (Sufficient conditons for efficient solutions) Let (α1, . . . , αm) ∈ intRm+, αs

i ∈
R, i = 1, . . . ,m, s = 1, . . . , r and λ j ≥ 0, λsj ∈ R, j = 1, . . . , n, s = 1, . . . , r

satisfy (4)–(6). Then (x, y0,Y ) is an efficient solution of (RT).

Proof (i) Let the Slater qualification condition in (3) hold, and assume that (x, y0,Y ) is
a weak efficient solution of problem (RT). Denoting G j (x, y0,Y ) := max

v∈V {g j (x, v)+
(θ

j
2 )�(y0 + Yv)} for j = 1, . . . , n and (x, y0,Y ) ∈ R

q+p+p×r , one can verify that

{
(x, y0,Y ) ∈ R

q+p+p×r |Fi (x, y
0,Y ) − Fi (x, y

0,Y ) < 0, i = 1, . . . ,m,

G j (x, y
0,Y ) < 0, j = 1, . . . , n

} = ∅,

where Fi (x, y0,Y ) := max
v∈V { fi (x, v) + (θ i1)

�(y0 + Yv)}, i = 1, . . . ,m are defined

as above. Since Fi , i = 1, . . . ,m and G j , j = 1, . . . , n are convex functions with
finite values on R

q+p+p×r , we invoke an alternative theorem in convex analysis (cf.
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[29, Theorem 21.1]) to find αi ≥ 0, i = 1, . . . ,m, λ j ≥ 0, j = 1, . . . , n, not all zero,
such that

m∑

i=1

αi
(Fi (x, y

0,Y ) − Fi (x, y
0,Y )

) +
n∑

j=1

λ j G j (x, y
0,Y ) ≥ 0 (7)

for all (x, y0,Y ) ∈ R
q+p+p×r . If αi = 0 for all i = 1, . . . ,m, then there exists

j0 ∈ {1, . . . , n} such that λ j0 > 0. Then, we get by (3) that
n∑

j=1
λ j G j (̂x, ŷ0, Ŷ ) < 0.

This together with (7) establishes a contradiction. So, there exists i0 ∈ {1, . . . ,m}
such that αi0 > 0.

Note that (7) can be rewritten as

inf
(x,y0,Y )∈Rq+p+p×r

{ m∑

i=1

αi max
vi1∈V

{ fi (x, vi1) + (θ i1)
�(y0 + Yvi1)}

+
n∑

j=1

λ j max
v
j
2∈V

{g j (x, v
j
2 ) + (θ

j
2 )�(y0 + Yv

j
2 )}

}
≥

m∑

i=1

αiFi (x, y
0, Y ),

which turns out to be the following inequality

inf
(x,y0,Y )∈Rq+p+p×r

max
vi1∈V ,i=1,...,m,v

j
2∈V , j=1,...,n

{ m∑

i=1

αi

(
fi (x, v

i
1) + (θ i1)

�(y0 + Yvi1)
)

+
n∑

j=1

λ j
(
g j (x, v

j
2 ) + (θ

j
2 )�(y0 + Yv

j
2 )

)} ≥
m∑

i=1

αiFi (x, y
0,Y ).

(8)

Letting � := Vm × V n and considering a function H : Rq+p+p×r ×R
(m+n)×r → R

defined by

H (̃x, ṽ) :=
m∑

i=1

αi
(
fi (x, v

i
1) + (θ i1)

�(y0 + Yvi1)
) +

n∑

j=1

λ j
(
g j (x, v

j
2 ) + (θ

j
2 )�(y0 + Yv

j
2 )

)

for x̃ := (x, y0,Y ) ∈ R
q+p+p×r and ṽ := (v11, . . . , v

m
1 , v12, . . . , v

n
2 ) ∈ R

(m+n)×r ,

we see that � is a convex compact set in R
(m+n)×r , and H is a convex function with

respect to x̃ and is an affine function with respect to ṽ. Thus, we can apply a minimax
theorem (see e.g., [30, Theorem 4.2]) to (8) and obtain that

max
ṽ∈�

inf
x̃∈Rq+p+p×r

H (̃x, ṽ) = inf
x̃∈Rq+p+p×r

max
ṽ∈�

H (̃x, ṽ) ≥
p∑

i=1

αiFi (x, y
0,Y ).
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This allows us tofind ṽ∗ :=(v1∗1 , . . . , vm∗
1 , v1∗2 , . . . , vn∗

2 ),where vi∗1 :=(vi∗1,1, . . . , vi∗1,r )
∈ V , i = 1, . . . ,m and v

j∗
2 := (v

j∗
2,1, . . . , v

j∗
2,r ) ∈ V , j = 1, . . . , n, such that

inf
x̃∈Rq+p+p×r

H (̃x, ṽ∗) ≥
p∑

i=1

αiFi (x, y
0,Y ). (9)

For i ∈ {1, . . . ,m}, let αs
i := αiv

i∗
1,s, s = 1, . . . , r . We get by vi∗1 ∈ V that

αi A +
r∑

l=1

αl
i Al = αi

(
A +

r∑

l=1

vi∗1,l Al
) � 0,

where it is noted that αi ≥ 0. Similarly, by letting λsj := λ jv
j∗
2,s, s = 1, . . . , r for

j = 1, . . . , n, we can verify that

λ j A +
r∑

l=1

λlj Al � 0, j = 1, . . . , n.

Let Y1, . . . ,Yr denote the columns of the matrix Y ∈ R
p×r . Then, it holds that

Ys ∈ R
p for all s = 1, . . . , r and

Yvi∗1 =
r∑

l=1

vi∗1,lYl , i = 1, . . . ,m, Yv
j∗
2 =

r∑

l=1

v
j∗
2,lYl , j = 1, . . . , n,

and so we can rewrite (9) as

h1(x) + h2(y
0,Y1, . . . ,Yr ) ≥ 0 for all x ∈ R

q , y0 ∈ R
p,Ys ∈ R

p, s = 1, . . . , r ,
(10)

where h1 and h2 are given respectively by

h1(x) := x�
( m∑

i=1

αi Q
i
1 +

n∑

j=1

λ j Q
j
2

)
x

+
( m∑

i=1

(
αiξ

i
1 +

r∑

l=1

αl
i ξ

i
1,l

)
+

n∑

j=1

(
λ jξ

j
2 +

r∑

s=1

λsjξ
j
2,s

))�
x

+
m∑

i=1

(
αiβ

i
1 +

r∑

l=1

αl
iβ

i
1,l

)
+

n∑

j=1

(
λ jβ

j
2 +

r∑

s=1

λsjβ
j
2,s

)
−

m∑

i=1

αiFi (x, y
0,Y ),

= x�M1x + (M2)
�x + M3, x ∈ R

n, (11)

h2(y
0,Y1, . . . ,Yr ) :=

( m∑

i=1

αiθ
i
1 +

n∑

j=1

λ jθ
j
2

)�
y0
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+
r∑

l=1

( m∑

i=1

αl
i θ

i
1 +

n∑

j=1

λljθ
j
2

)�
Yl , y

0 ∈ R
p, Ys ∈ R

p, s = 1, . . . , r , (12)

where M1 := ∑m
i=1 αi Qi

1 + ∑n
j=1 λ j Q

j
2, M2 := ∑m

i=1(αiξ
i
1 + ∑r

s=1 αs
i ξ

i
1,s) +

∑n
j=1(λ jξ

j
2 +∑r

s=1 λsjξ
j
2,s) andM3 := ∑m

i=1(αiβ
i
1+

∑r
s=1 αs

i β
i
1,s)+

∑n
j=1(λ jβ

j
2 +

∑r
s=1 λsjβ

j
2,s) − ∑m

i=1 αiFi (x, y0,Y ).
Since h2 is a linear function, (10) entails that

m∑

i=1

αiθ
i
1 +

n∑

j=1

λ jθ
j
2 = 0,

m∑

i=1

αl
i θ

i
1 +

n∑

j=1

λljθ
j
2 = 0, l = 1, . . . , r

and

h1(x) ≥ 0 for all x ∈ R
n . (13)

Note further that (13) can be written as the following matrix inequality (cf. [1, Simple
lemma, p. 163]):

( M1
1
2M2

1
2 (M2)

� M3

)
� 0.

So the assertions (4)–(6) are valid, which substantiates (i).
(ii) Assume that there exist (α1, . . . , αm) ∈ R

m+ \ {0}, αs
i ∈ R, i = 1, . . . ,m,

s = 1, . . . , r and λ j ≥ 0, λsj ∈ R, j = 1, . . . , n,

s = 1, . . . , r such that (4)–(6) hold.
As shown in the proof of (i), (6) is equivalent to the inequalities h1(x) ≥ 0 for all

x ∈ R
n, where h1 is given as in (11). Therefore, by taking (4) into account, we arrive

at

h1(x) + h2(y
0,Y1, . . . ,Yr ) ≥ 0 for all x ∈ R

q , y0 ∈ R
p,Ys ∈ R

p, s = 1, . . . , r ,
(14)

where h2 is given as in (12) and Y1, . . . ,Yr stand for the columns of the matrix
Y ∈ R

p×r .
Consider any i ∈ {1, . . . ,m}. As V is a compact set, we assert by (5) that if αi = 0,

then αs
i = 0 for all s = 1, . . . , r . Indeed, suppose by contradiction that αi = 0 and

there exists s0 ∈ {1, . . . , r} such thatαs0
i �= 0.Then,we get by (5) that

∑r
l=1 αl

i Al � 0.
Taking v := (v1, . . . , vr ) ∈ V , we see that

A +
r∑

l=1

(vl + γαl
i )Al =

(
A +

r∑

l=1

vl Al

)
+ γ

r∑

l=1

αl
i Al � 0 for all γ > 0,

which shows that v + γ (α1
i , . . . , α

r
i ) ∈ V for all γ > 0. This contradicts the fact that

(α1
i , . . . , α

r
i ) �= 0 and V is a bounded set. So our assertion above must be valid. Let
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us take v̂i := (̂vi1, . . . , v̂
i
r ) ∈ V and define vi∗1 := (vi∗1,1, . . . , vi∗1,r ) by

vi∗1,s :=
{

v̂is if αi = 0,
αs
i

αi
if αi �= 0,

s = 1, . . . , r ,

which by virtue of (5) shows that vi∗1 ∈ V and αs
i = αiv

i∗
1,s, s = 1, . . . , r . Similarly,

we can derive from (5) and the bounded property of V that for each j ∈ {1, . . . , n},
there exists v

j∗
2 := (v

j∗
2,1, . . . , v

j∗
2,r ) ∈ V such that λsj = λ jv

j∗
2,s, s = 1, . . . , r . Now,

(14) is rewritten as

m∑

i=1

αi
(
fi (x, v

i∗
1 ) + (θ i1)

�(y0 + Yvi∗1 )
) +

n∑

j=1

λ j
(
g j (x, v

j∗
2 ) + (θ

j
2 )�(y0 + Yv

j∗
2 )

)

−
m∑

i=1

αiFi (x, y
0,Y ) ≥ 0 for all x ∈ R

q , y0 ∈ R
p,Y ∈ R

p×r . (15)

To proceed, let (̂x, ŷ0, Ŷ ) ∈ R
q+p+p×r be an arbitrary feasible point of problem (RT),

i.e., (̂x, ŷ0, Ŷ ) ∈ C.Then, g j (̂x, v
j∗
2 )+(θ

j
2 )�(ŷ0+Ŷv

j∗
2 ) ≤ 0 for j = 1, . . . , n and so

we estimate (15) at (̂x, ŷ0, Ŷ ) to arrive at
∑m

i=1 αi
(
fi (̂x, vi∗1 ) + (θ i1)

�(ŷ0 + Ŷvi∗1 )
) ≥∑m

i=1 αiFi (x, y0,Y ). This in turn entails that

m∑

i=1

αiFi (̂x, ŷ
0, Ŷ ) ≥

m∑

i=1

αiFi (x, y
0,Y ) (16)

inasmuch as αi ≥ 0 and Fi (̂x, ŷ0, Ŷ ) := max
v∈V { fi (̂x, v) + (θ i1)

�(ŷ0 + Ŷv)} for all
i = 1, . . . ,m. By virtue of (α1, . . . , αm) ∈ R

m+ \ {0}, (16) implies that there does not
exist (̂x, ŷ0, Ŷ ) ∈ C such that

Fi (̂x, ŷ
0, Ŷ ) < Fi (x, y

0,Y ), i = 1, . . . ,m,

which means that the triple (x, y0,Y ) is a weak efficient solution of (RT).
(iii) Let (α1, . . . , αm) ∈ intRm+, αs

i ∈ R, i = 1, . . . ,m, s = 1, . . . , r and λ j ≥
0, λsj ∈ R, j = 1, . . . , n, s = 1, . . . , r be such that (4)–(6) hold. Similarly to the proof
of (ii), we are able to arrive at the assertion in (16). Granting this, we conclude by
(α1, . . . , αm) ∈ intRm+ that (x, y0,Y ) is an efficient solution of problem (RT), which
completes the proof of the theorem. ��

In the following example, we show that the Slater qualification condition (3) is
essential for obtaining the neccessary LMI optimality in (i) of Theorem 2.1.

Example 2.1 (The role of Slater qualification) Let us consider an uncertain two-stage
multiobjective problem:

min
x,y

{
(x1 + x22 − v1, 3x1 + v2) | v1x1 + (v2 + 2)x2 ≤ 0, x1 + θ�y(v) ≤ 1

}
, (E1)
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where θ := (2, 2) is fixed, x := (x1, x2) ∈ R
2 is the first-stage variable, y is the

second-stage variable, v := (v1, v2) ∈ R
2 is an uncertain parameter, which resides in

an uncertainty set V . In this setting, we assume that the uncertainty set V is defined
by

V := {v := (v1, v2) ∈ R
2 |v

2
1

5
+ v22

4
≤ 1}

and the second-stage variable y is given by

y(v) := y0 + Yv, v ∈ V ,

where y0 ∈ R
2 and Y ∈ R

2×2 are nonadjustable variables.
Consider now a robust counterpart of problem (E1) that is given by

min
x∈R2,y0∈R2,Y∈R2×2

{(
max
v∈V {x1 + x22 − v1},max

v∈V {3x1 + v2}
) | v1x1 + (v2 + 2)x2 ≤ 0, (R1)

x1 + θ�y(v) ≤ 1, y(v) = y0 + Yv, ∀v ∈ V
}
.

Clearly, the problem (R1) is of the formof problem (RT),where θ11 := θ21 := θ12 := 02,
θ22 := θ , fi : R2 × R

2 → R, i = 1, 2, g j : R2 × R
2 → R, j = 1, 2 are defined

by Q1
1 :=

(
0 0
0 1

)
, Q2

1 := 02×2, ξ11 := (1, 0), ξ21 := (3, 0), ξ11,l := ξ21,l := 02, l =
1, 2, β1

1 := β2
1 := β1

1,2 := β2
1,1 := 0, β1

1,1 := −1, β2
1,2 := 1 and Q1

2 := Q2
2 := 02×2,

ξ12 := (0, 2), ξ22,1 := ξ22,2 := 02, ξ12,1 := ξ22 := (1, 0), ξ12,2 := (0, 1), β1
2 := β1

2,1 :=
β1
2,2 := β2

2,1 := β2
2,2 := 0, β2

2 := −1, and V is a spectrahedron described by

A :=
⎛

⎝
5 0 0
0 4 0
0 0 1

⎞

⎠ , A1 :=
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , A2 :=
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ .

Denoting x := y := 02 and Y := 02×2, we claim that (x, y0,Y ) an efficient solution
of (R1). Otherwise, we would find a feasible point of (R1), denoted by (̃x, ỹ0, Ỹ ),
such that

max
v∈V {̃x1 + x̃22 − v1} ≤ max

v∈V {x1 + x22 − v1}, max
v∈V {3x̃1 + v2} ≤ max

v∈V {3x1 + v2},
(17)

(
max
v∈V {̃x1 + x̃22 − v1},max

v∈V {3x̃1 + v2}
) �= (

max
v∈V {x1 + x22 − v1},max

v∈V {3x1 + v2}
)
.

(18)

As (̃x, ỹ0, Ỹ ) is a feasible point of problem (R1), it follows that v1 x̃1+ (v2+2)̃x2 ≤ 0
for all v := (v1, v2) ∈ V . This guarantees that x̃1 = 0 and x̃2 ≤ 0. Hence, we get by
(17) that x̃2 = 0, which contradicts (18).
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In this setting, we show that the assertions in (4)–(6) are not valid at (x, y0,Y ).
Otherwise, one can find (α1, α2) ∈ R

2+\{0}, αr
i ∈ R, i = 1, 2, r = 1, 2 and λ j ≥

0, λrj ∈ R, j = 1, 2, r = 1, 2 such that

2∑

i=1

αiθ
i
1 +

2∑

j=1

λ jθ
j
2 = 0,

2∑

i=1

αl
i θ

i
1 +

2∑

j=1

λljθ
j
2 = 0, l = 1, 2, (19)

αi A +
2∑

l=1

αl
i Al � 0, i = 1, 2, λ j A +

2∑

l=1

λlj Al � 0, j = 1, 2, (20)

( M1
1
2M2

1
2 (M2)

� M3

)
� 0, (21)

where M1 := ∑2
i=1 αi Qi

1 + ∑2
j=1 λ j Q

j
2, M2 := ∑2

i=1(αiξ
i
1 + ∑2

l=1 αl
i ξ

i
1,l) +

∑2
j=1(λ jξ

j
2 +∑2

r=1 λrjξ
j
2,r ) andM3 := ∑2

i=1(αiβ
i
1+∑2

l=1 αl
iβ

i
1,l)+

∑2
j=1(λ jβ

j
2 +

∑2
r=1 λrjβ

j
2,r )−

∑2
i=1 αiFi (x, y0,Y )withF1(x, y0,Y ) := maxv∈V {x1+x22−v1} =√

5 and F2(x, y0,Y ) := maxv∈V {3x1 + v2} = 2. Observe that (20) is equivalent to
the following inequalities

(α1
i )

2

5
+ (α2

i )
2

4
≤ (αi )

2, i = 1, 2,
(λ1j )

2

5
+ (λ2j )

2

4
≤ (λ j )

2, j = 1, 2. (22)

We get by (21) that

α1x
2
2 + (α1 + 3α2 + λ11 + λ2)x1 + (2λ1 + λ21)x2 − α1

1 + α2
2 − λ2 − √

5α1 − 2α2 ≥ 0

for all x1 ∈ R and all x2 ∈ R. This implies, in particular, that

(α1 + 3α2 + λ11 + λ2)x1 − α1
1 + α2

2 − λ2 − √
5α1 − 2α2 ≥ 0 for all x1 ∈ R,

(23)

α1x
2
2 + (2λ1 + λ21)x2 − α1

1 + α2
2 − λ2 − √

5α1 − 2α2 ≥ 0 for all x2 ∈ R. (24)

Observe now by (23) that α1 + 3α2 + λ11 + λ2 = 0 and

−α1
1 + α2

2 − λ2 − √
5α1 − 2α2 ≥ 0.

Furthermore, it is easy to see that −α1
1 − √

5α1 ≤ |α1
1 | − √

5α1 ≤ 0, where the
validation of the last inequality is due to (22). Similarly, it holds that α2

2 − 2α2 ≤ 0,
and so we arrive at

−α1
1 + α2

2 − λ2 − √
5α1 − 2α2 ≤ 0

by virtue of λ2 ≥ 0. Consequently, −α1
1 +α2

2 −λ2 −√
5α1 − 2α2 = 0. This, together

with (24), ensures that 2λ1 + λ21 = 0.
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Next, we substitute λ11 = −λ2 − α1 − 3α2 and λ21 = −2λ1 into (22), we arrive at
(λ2 + α1 + 3α2)

2 ≤ 0, which is impossible as (α1, α2) ∈ R
2+\{0} and λ2 ≥ 0.

In conlusion, the linear matrix inequality conditions in (19)–(21) go awry for the
above Pareto solution (x, y0,Y ). This is because the Slater qualification condition (3)
is violated for this setting.

Second-Order Cone Optimality Conditions. We now consider a special setting
of the robust two-stage multiobjective optimization problem (RT), where the objec-
tives fi , i = 1, . . . ,m and the constraints g j , j = 1, . . . , n are separable quadratic
functions in the first-state variable defined by, for x := (x1, . . . , xq) ∈ R

q and
v := (v1, . . . , vr ) ∈ V ,

fi (x, v) :=
q∑

k=1

ωi
1,k x

2
k + (ξ i1)

�x + β i
1 +

r∑

l=1

vl
(
(ξ i1,l)

�x + β i
1,l

)
,

g j (x, v) :=
q∑

k=1

ω
j
2,k x

2
k + (ξ

j
2 )�x + β

j
2 +

r∑

l=1

vl
(
(ξ

j
2,l)

�x + β
j
2,l

)
(25)

with ωi
1,k ≥ 0, ω j

2,k ≥ 0, ξ i1 := (ξ
i,1
1 , . . . , ξ

i,q
1 ) ∈ R

q , ξ i1,l := (ξ
i,1
1,l , . . . , ξ

i,q
1,l ) ∈ R

q ,

ξ
j
2 := (ξ

j,1
2 , . . . , ξ

j,q
2 ) ∈ R

q , ξ
j
2,l := (ξ

j,1
2,l , . . . , ξ

j,q
2,l ) ∈ R

q , β i
1 ∈ R, β i

1,l ∈ R,

β
j
2 ∈ R, β

j
2,l ∈ R, k = 1, . . . , q, i = 1, . . . ,m, l = 1, . . . , r , j = 1, . . . , n fixed, and

the uncertainty set V is given by the following ellipsoid

V := {
v ∈ R

r | v�Ev ≤ 1
}

(26)

with a symmetric (r × r) matrix E  0. Let Ed be an (r × r) matrix such that
E = (Ed)�Ed .

In this framework, we obtain necessary/sufficient optimality conditions by way of
second-order cone (SOC) expressions for the robust two-stage multiobjective prob-
lem (RT).

Corollary 2.1 (SOC optimality) Consider the problem (RT), where fi , i = 1, . . . ,m
and g j , j = 1, . . . , n in (1) are replaced by those in (25), and V in (2) is replaced by
the one in (26). Let (x, y0,Y ) ∈ R

q+p+p×r be a feasible point of this problem.
(i) (Necessary optimality) Assume that the Slater qualification condition (3) holds for
this setting. If (x, y0,Y ) is a weak efficient solution of this problem, then there exist
(α1, . . . , αm) ∈ R

m+ \ {0}, αs
i ∈ R, i = 1, . . . ,m, s = 1, . . . , r , λ j ≥ 0, λsj ∈ R,

j = 1, . . . , n, s = 1, . . . , r and tk ≥ 0, k = 1, . . . , q such that

m∑

i=1

αiθ
i
1 +

n∑

j=1

λ jθ
j
2 = 0,

m∑

i=1

αl
i θ

i
1 +

n∑

j=1

λljθ
j
2 = 0, l = 1, . . . , r , (27)

∥∥∥∥∥∥∥
Ed

⎛

⎜
⎝

α1
i
...

αr
i

⎞

⎟
⎠

∥∥∥∥∥∥∥
≤ αi , i = 1, . . . ,m,

∥∥∥∥∥∥∥
Ed

⎛

⎜
⎝

λ1j
...

λrj

⎞

⎟
⎠

∥∥∥∥∥∥∥
≤ λ j , j = 1, . . . , n, (28)
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m∑

i=1

(
αiβ

i
1 +

r∑

l=1

αl
iβ

i
1,l

)
+

n∑

j=1

(
λ jβ

j
2 +

r∑

s=1

λsjβ
j
2,s

)

−
m∑

i=1

αiFi (x, y
0,Y ) −

q∑

k=1

tk ≥ 0, (29)

∥∥∥∥

(
tk −

( m∑

i=1

αiω
i
1,k +

n∑

j=1

λ jω
j
2,k

)
,

m∑

i=1

(
αiξ

i,k
1 +

r∑

l=1

αl
i ξ

i,k
1,l

)

+
n∑

j=1

(
λ jξ

j,k
2 +

r∑

s=1

λsjξ
j,k
2,s

))∥∥∥∥ ≤

tk +
m∑

i=1

αiω
i
1,k +

n∑

j=1

λ jω
j
2,k, k = 1, . . . , q, (30)

where Fi (x, y0,Y ) := max
v∈V { fi (x, v) + (θ i1)

�(y0 + Yv)} for i = 1, . . . ,m.

(ii) (Sufficient conditions for weak efficient solutions) Let (α1, . . . , αm) ∈ R
m+ \ {0},

αs
i ∈ R, i = 1, . . . ,m, s = 1, . . . , r , λ j ≥ 0, λsj ∈ R, j = 1, . . . , n, s = 1, . . . , r

and tk ≥ 0, k = 1, . . . , q satisfy (27)–(30). Then, we assert that (x, y0,Y ) is a weak
efficient solution of this problem.
(iii) (Sufficient conditions for efficient solutions) Let (α1, . . . , αm) ∈ intRm+, αs

i ∈
R, i = 1, . . . ,m, s = 1, . . . , r , λ j ≥ 0, λsj ∈ R, j = 1, . . . , n, s = 1, . . . , r and

tk ≥ 0, k = 1, . . . , q satisfy (27)–(30). Then (x, y0,Y ) is an efficient solution of this
problem.

Proof Considering (r + 1) × (r + 1) matrices A and Al for l = 1, ..., r as

A :=
(
E−1 0
0 1

)
, Al :=

(
0 erl

(erl )
� 0

)
, l = 1, . . . , r , (31)

it holds that the ellipsoid in (26) is in the form of (2) with A, Al , l = 1, ..., r in (31).
In this case, for (α1, . . . , αm) ∈ R

m+ \ {0}, αs
i ∈ R, i = 1, . . . ,m, s = 1, . . . , r , one

can check that

αi A +
r∑

l=1

αl
i Al � 0 ⇔

∥∥∥∥∥∥∥
Ed

⎛

⎜
⎝

α1
i
...

αr
i

⎞

⎟
⎠

∥∥∥∥∥∥∥
≤ αi .

Similarly, for λ j ≥ 0, λsj ∈ R, j = 1, . . . , n, s = 1, . . . , r , we have

λ j A +
r∑

l=1

λlj Al � 0 ⇔

∥∥∥∥∥∥∥
Ed

⎛

⎜
⎝

λ1j
...

λrj

⎞

⎟
⎠

∥∥∥∥∥∥∥
≤ λ j .

123



Journal of Optimization Theory and Applications

Note that our problem here is a particular case of problem (RT), where Qi
1 :=

diag(ωi
1,1, . . . , ω

i
1,q), i = 1, . . . ,m, Q j

2 := diag(ω j
2,1, . . . , ω

j
2,q), j = 1, . . . , n, and

V is defined by the matrices A, Al , l = 1, . . . , r in (31).
Now, in view of Theorem 2.1, the proof will be completed if we can show that (6)

in this case is equivalent to (29) and (30) for some tk ≥ 0, k = 1, . . . , q.
To this end, we first assume that there exist (α1, . . . , αm) ∈ R

m+ \ {0}, αs
i ∈

R, i = 1, . . . ,m, s = 1, . . . , r and λ j ≥ 0, λsj ∈ R, j = 1, . . . , n, s = 1, . . . , r

such that (6) holds with Qi
1 := diag(ωi

1,1, . . . , ω
i
1,q), i = 1, . . . ,m and Q j

2 :=
diag(ω j

2,1, . . . , ω
j
2,q), j = 1, . . . , n. We show that there exist tk ≥ 0, k = 1, . . . , q

such that (29) and (30) hold. To see this, we consider two possibilities as below.

Case 1:
m∑

i=1
αiω

i
1,k +

n∑

j=1
λ jω

j
2,k = 0 for all k = 1, . . . , q. In this case, (6) entails

that

m∑

i=1

(
αiξ

i
1 +

r∑

l=1

αl
i ξ

i
1,l

)
+

n∑

j=1

(
λ jξ

j
2 +

r∑

s=1

λsjξ
j
2,s

)
= 0,

m∑

i=1

(
αiβ

i
1 +

r∑

l=1

αl
iβ

i
1,l

)
+

n∑

j=1

(
λ jβ

j
2 +

r∑

s=1

λsjβ
j
2,s

)
−

m∑

i=1

αiFi (x, y
0,Y ) ≥ 0,

which shows that (29) and (30) hold by choosing tk := 0, k = 1, . . . , q.

Case 2: There exists k ∈ {1, . . . , q} such that∑m
i=1 αiω

i
1,k +∑n

j=1 λ jω
j
2,k > 0. In

this case, we denote I := {k ∈ {1, . . . , q} | ∑m
i=1 αiω

i
1,k +∑n

j=1 λ jω
j
2,k > 0},which

is a nonempty set. Observe similarly as inCase 1 that if
∑m

i=1 αiω
i
1,k+

∑n
j=1 λ jω

j
2,k =

0 (i.e., k ∈ {1, . . . , q} \ I), then (6) guarantees that
∑m

i=1(αiξ
i,k
1 + ∑r

l=1 αl
i ξ

i,k
1,l ) +

∑n
j=1(λ jξ

j,k
2 + ∑r

s=1 λsjξ
j,k
2,s ) = 0. For each k ∈ {1, . . . , q}, put

tk :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

4

(
m∑

i=1
αiω

i
1,k+

n∑

j=1
λ jω

j
2,k

)
(

m∑

i=1
(αi ξ

i,k
1 +

r∑

l=1
αl
i ξ

i,k
1,l ) +

n∑

j=1

(
λ j ξ

j,k
2 +

r∑

s=1
λsj ξ

j,k
2,s

))2

if k ∈ I,

0 otherwise.

We see that tk ≥ 0 and

1

4

⎛

⎝
m∑

i=1

(αi ξ
i,k
1 +

r∑

l=1

αl
i ξ

i,k
1,l ) +

n∑

j=1

(λ j ξ
j,k
2 +

r∑

s=1

λsj ξ
j,k
2,s )

⎞

⎠

2

≤ tk

( m∑

i=1

αiω
i
1,k +

n∑

j=1

λ jω
j
2,k

)
(32)

for k = 1, . . . , q.Letting a := ∑m
i=1 αiω

i
1,k+

∑n
j=1 λ jω

j
2,k and b := 1

2

(∑m
i=1(αiξ

i,k
1

+∑r
l=1 αl

i ξ
i,k
1,l )+∑n

j=1(λ jξ
j,k
2 +∑r

s=1 λsjξ
j,k
2,s )

)
, we rewrite the inequalities in (30)

as

‖(tk − a, 2b)‖ ≤ tk + a, k = 1, . . . , q. (33)
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As a ≥ 0 and tk ≥ 0, k = 1, . . . , q, the inequalities in (33) are equivalent to the
following ones:

b2 ≤ tka, k = 1, . . . , q.

This shows that (32) and (30) are equivalent to each other. Denote vI :=(∑m
i=1(αiξ

i,k
1 + ∑r

l=1 αl
i ξ

i,k
1,l ) + ∑n

j=1(λ jξ
j,k
2 + ∑r

s=1 λsjξ
j,k
2,s ), k ∈ I)

and con-

sider a diagonal (|I|× |I|)matrix MI := diag(
∑m

i=1 αiω
i
1,k +∑n

j=1 λ jω
j
2,k, k ∈ I).

We get by (6) that

⎛

⎝
MI 1

2vI
1
2v�

I
m∑

i=1
(αiβ

i
1 +

r∑

l=1
αl
iβ

i
1,l) +

n∑

j=1
(λ jβ

j
2 +

r∑

s=1
λsjβ

j
2,s) −

m∑

i=1
αiFi (x, y0, Y )

⎞

⎠ � 0. (34)

By MI  0, (34) reduces to the following inequality (cf. [1, Lemma 4.2.1]):

m∑

i=1

(
αiβ

i
1 +

r∑

l=1

αl
iβ

i
1,l

)
+

n∑

j=1

(
λ jβ

j
2 +

r∑

s=1

λsjβ
j
2,s

)
−

m∑

i=1

αiFi (x, y
0,Y )

≥ 1

4
v�
I M−1

I vI =
q∑

k=1

tk,

which concludes that (29) holds.
Therefore, in all cases, we have shown that (6) under the current setting implies

(29) and (30). The converse implication is similarly proceeded and so we omit it. ��

3 Finding Pareto Solutions by Semidefinite Programming Relaxations

This section is devoted to showing how (weak) efficient solutions of our two-stage
multiobjective program (RT) can be calculated by using associated semidefinite pro-
gramming (SDP) or second-order cone programming (SOCP) relaxations.
Semidefinite Programming Relaxations. For each α := (α1, . . . , αm) ∈ R

m+ \ {0},
one considers a robust two-stage scalarized program of (UT) defined by

min
x∈Rq ,y0∈Rp ,Y∈Rp×r

{ m∑

i=1

αi max
v∈V { fi (x, v) + (θ i1)

�y(v)} | g j (x, v) + (θ
j
2 )�y(v) ≤ 0, (Pα)

j = 1, . . . , n, y(v) = y0 + Yv,∀v ∈ V

}
,

where fi , i = 1, . . . ,m and g j , j = 1, . . . , n are given as in (1), V is given as in (2),

and θ i1, i = 1, . . . ,m and θ
j
2 , j = 1, . . . , n are given as in the definition of (UT).
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We now address a semi-definite programming (SDP) relaxation program for (Pα)
that is defined by

min
(z,ν0,νl ,Z ,Wi

1,W
j
2 )

m∑

i=1

αi
(
βi
1 + (ξ i1)

�z + (θ i1)
�ν0 + Tr(ZQi

1) + Tr(Wi
1A)

)
(P∗

α)

s.t.

(
1 z�
z Z

)
� 0, z ∈ R

q , Z ∈ Sq , ν0 ∈ R
p, νl ∈ R

p, l = 1, . . . , r ,

βi
1,l + (θ i1)

�νl + (ξ i1,l )
�z + Tr(Wi

1Al ) = 0, i = 1, . . . ,m, l = 1, . . . , r ,

β
j
2 + (ξ

j
2 )�z + (θ

j
2 )�ν0 + Tr(ZQ j

2) + Tr(W j
2 A) ≤ 0, j = 1, . . . , n,

β
j
2,l + (θ

j
2 )�νl + (ξ

j
2,l )

�z + Tr(W j
2 Al ) = 0, j = 1, . . . , n, l = 1, . . . , r ,

Wi
1 � 0,Wi

1 ∈ Sm0 ,W j
2 � 0,W j

2 ∈ Sm0 , i = 1, . . . ,m, j = 1, . . . , n.

The forthcoming theoremdescribes relationships between (weak) efficient solutions
of the two-stage multiobjective problem (RT) and optimal solutions of the SDP prob-
lem (P∗

α), which is a relaxation of the two-stage scalarized problem (Pα). This provides
a method to calculate (weak) efficient solutions of the robust two-stage multiobjec-
tive program (RT) by solving related (scalar) semidefinite programming relaxation
problems (P∗

α) with α ∈ R
m+ \ {0}.

Theorem 3.1 (Calculating Solutions via Semidefinite Programming Relaxations) For
the problem (RT), suppose that there is v̂ := (̂v1, . . . , v̂r ) ∈ R

r such that

A +
r∑

l=1

v̂l Al  0. (1)

Then, the following statements are valid.
(i)Let the Slater qualification condition in (3) hold and assume that (x , y0,Y ) is aweak

efficient solution of (RT). Then one canfindα ∈ R
m+\{0},Wi

1 ∈ Sm0 , i = 1, . . . ,m and

W
j
2 ∈ Sm0 , j = 1, . . . , n such that (x, y0,Y l , Z ,W

i
1,W

j
2)i=1,...,m, j=1,...,n,l=1,...,r is

a solution of (P∗
α), where Z := xx� and Y l , l = 1, . . . , r are the columns of the matrix

Y .
(ii) (Findingweakefficient solutions)Suppose that the problem (Pα) admits a solution

for α ∈ R
m+ \ {0} and let (z, ν0, νl , Z ,W

i
1,W

j
2)i=1,...,m, j=1,...,n,l=1,...,r be a solution

of (P∗
α). Then (z, ν0,Y ) is a weak efficient solution of (RT), where Y := (ν1, . . . , νr )

is a matrix whose columns are those of νl , l = 1, . . . , r .
(iii) (Finding efficient solutions) Suppose that the problem (Pα) admits a solution for

α ∈ intRm+ and let (z, ν0, νl , Z ,W
i
1,W

j
2)i=1,...,m, j=1,...,n,l=1,...,r be a solution of (P∗

α).
Then (z, ν0,Y ) is an efficient solution of (RT), where Y := (ν1, . . . , νr ) is a matrix
whose columns are those of νl , l = 1, . . . , r .
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Proof Let α := (α1, . . . , αm) ∈ R
m+ \ {0} be such that the two-stage scalar-

ized problem (Pα) possesses a solution and assume that (x, y0,Y ) is a solution of
this problem. Let val(Pα) and val(P∗

α) denote the optimal values of problems (Pα)

and (P∗
α), respectively. We justify that there exist W

i
1 ∈ Sm0 , i = 1, . . . ,m and

W
j
2 ∈ Sm0 , j = 1, . . . , n such that (x, y0,Y l , Z ,W

i
1,W

j
2)i=1,...,m, j=1,...,n,l=1,...,r is

a solution of (P∗
α) and

val(Pα) = val(P∗
α) =

m∑

i=1

αi
(
x�Qi

1x + (ξ i1)
�x + β i

1 + (θ i1)
�y0 + Tr(W

i
1A)

)
, (2)

where Z := xx� and Y l , l = 1, . . . , r are the columns of the matrix Y .
Since (x, y0,Y ) is a solution of problem (Pα), we see that

val(Pα) =
m∑

i=1

αiFi (x, y
0,Y ), (3)

where Fi (x, y0,Y ) := max
v∈V { fi (x, v) + (θ i1)

�(y0 + Yv)} for i = 1, . . . ,m, and that

max
v∈V {g j (x, v) + (θ

j
2 )�(y0 + Yv)} ≤ 0, j = 1, . . . , n. (4)

For each i ∈ {1, . . . ,m}, we rewrite Fi (x, y0,Y ) = max
v∈V { fi (x, v)+ (θ i1)

�(y0 +Yv)}
as follows

max
v∈Rr

{ r∑

l=1

vl
(
(ξ i1,l)

�x + β i
1,l + (θ i1)

�Y l
) | A +

r∑

l=1

vl Al � 0
}

= Fi (x, y
0,Y ) − λ

i
1 − (θ i1)

�y0, (5)

whereλ
i
1 := x�Qi

1x+(ξ i1)
�x+β i

1. The condition (1)means that a regularity condition
is valid for the semidefinite programming (SDP) problem in (5). So we can employ a

strong duality in SDP (see e.g., [7, Theorem 2.15]) to find W
i
1 ∈ Sm0 ,W

i
1 � 0 such

that

λ
i
1 + (θ i1)

�y0 + Tr(W
i
1A) = Fi (x, y

0,Y ),

β i
1,l + (θ i1)

�Y l + (ξ i1,l)
�x + Tr(W

i
1Al) = 0, l = 1, . . . , r . (6)

Similarly, for each j ∈ {1, . . . , n}, we derive by (4) that there existW j
2 ∈ Sm0 ,W

j
2 � 0

such that

λ
j
2 + (θ

j
2 )�y0 + Tr(W

j
2A) ≤ 0,

β
j
2,s + (θ

j
2 )�Y s + (ξ

j
2,s)

�x + Tr(W
j
2As) = 0, s = 1, . . . , r ,
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where λ
j
2 := x�Q j

2x + (ξ
j
2 )�x + β

j
2 .

Since Z := xx�, we see that (x, y0,Y l , Z ,W
i
1,W

j
2)i=1,...,m, j=1,...,n,l=1,...,r is a

feasible point of problem (P∗
α). This in turn implies that

val(P∗
α)(P∗

α) ≤
m∑

i=1

αi
(
λ
i
1 + (θ i1)

�y0 + Tr(W
i
1A)

) =
m∑

i=1

αiFi (x, y
0,Y ) = val(Pα),

(7)

where the first equality holds by (6) and the second one holds by (3).
Let us now justify that val(Pα) ≤ val(P∗

α). Assume that (z, ν0, νl , Z ,Wi
1,

W j
2 )i=1,...,m, j=1,...,n,l=1,...,r is feasible for (P∗

α). Then, z ∈ R
q , ν0 ∈ R

p, νl ∈ R
p, Z ∈

Sq , Wi
1 ∈ Sm0 ,Wi

1 � 0, W j
2 ∈ Sm0 ,W j

2 � 0, i = 1, . . . ,m, j = 1, . . . , n,

l = 1, . . . , r and

(
1 z�
z Z

)
� 0, (8)

β i
1,l + (θ i1)

�νl + (ξ i1,l)
�z + Tr(Wi

1Al) = 0, i = 1, . . . ,m, l = 1, . . . , r , (9)

β
j
2 + (ξ

j
2 )�z + (θ

j
2 )�ν0 + Tr(ZQ j

2) + Tr(W j
2 A) ≤ 0, j = 1, . . . , n, (10)

β
j
2,l + (θ

j
2 )�νl + (ξ

j
2,l)

�z + Tr(W j
2 Al) = 0, l = 1, . . . , r , j = 1, ..., n. (11)

Note that for each j ∈ {1, . . . , n} and any v := (v1, . . . , vr ) ∈ V , Tr
[
W j

2 (A +
r∑

l=1
vl Al)

] ≥ 0 due to W j
2 � 0 and A +

r∑

l=1
vl Al � 0 and thus, Tr(W j

2 A) ≥

−
r∑

l=1
vlTr(W

j
2 Al). Denote Y0 := (ν1, . . . , νr ) as a matrix whose columns are those

of νl , l = 1, . . . , r . Then, for any v ∈ V , we derive from (11) that

g j (z, v) + (θ
j
2 )�(ν0 + Y0v) = β

j
2 + (ξ

j
2 )�z + Tr(zz�Q j

2) + (θ
j
2 )�ν0 −

r∑

l=1

vlTr(W
j
2 Al)

≤ β
j
2 + (ξ

j
2 )�z + (θ

j
2 )�ν0 + Tr(ZQ j

2)

+ Tr(W j
2 A), j = 1, . . . , n, (12)

where we note that Tr(ZQ j
2) ≥ Tr(zz�Q j

2) due to Q j
2 � 0 and, by (8), Z − zz� � 0.

Now, we conclude by (10) and (12) that

max
v∈V {g j (z, v) + (θ

j
2 )�(ν0 + Y0v)} ≤ 0, j = 1, . . . , n,

which means that (z, ν0,Y0) is a feasible point of problem (Pα). Hence, it holds that

val(Pα) ≤
m∑

i=1

αiFi (z, ν0,Y0), (13)
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where Fi (z, ν0,Y0) := max
v∈V { fi (z, v) + (θ i1)

�(ν0 + Y0v)}, i = 1, . . . ,m.

Similarly, for any v ∈ V , we can derive from (8) and (9) that

fi (z, v) + (θ i1)
�(ν0 + Y0v) ≤ β i

1 + (ξ i1)
�z + (θ i1)

�ν0 + Tr(ZQi
1)

+ Tr(Wi
1A), i = 1, . . . ,m,

which guarantees that

Fi (z, ν0,Y0) ≤ β i
1 + (ξ i1)

�z + (θ i1)
�ν0 + Tr(ZQi

1) + Tr(Wi
1A), i = 1, . . . ,m.

This together with (13) entails that

val(Pα) ≤
m∑

i=1

αi
(
β i
1 + (ξ i1)

�z + (θ i1)
�ν0 + Tr(ZQi

1) + Tr(Wi
1A)

)
,

and consequently, val(Pα)≤ val(P∗
α) because (z, ν0, νl , Z ,Wi

1,

W j
2 )i=1,...,m, j=1,...,n,l=1,...,r was arbitrarily taken.
Now, in view of (7), we conclude that

val(Pα) = val(P∗
α) =

m∑

i=1

αi
(
λ
i
1 + (θ i1)

�y0 + Tr(W
i
1A)

)
,

which also confirms that (x, y0,Y l , Z ,W
i
1,W

j
2)i=1,...,m, j=1,...,n,l=1,...,r is a solu-

tion of (P∗
α). Namely, the assertion in (2) has been justified.

(i) Assume that (x, y0,Y ) is a weak efficient solution of (RT). Since the Slater
qualification condition (3) is satisfied, we apply Theorem 2.1(i) to conclude that there
exist α := (α1, . . . , αm) ∈ R

m+ \ {0}, αs
i ∈ R, i = 1, . . . ,m, s = 1, . . . , r and

λ j ≥ 0, λsj ∈ R, j = 1, . . . , n, s = 1, . . . , r such that the linear matrix inequality
optimality conditions in (4)–(6) are valid.

Recall Fi (x, y0,Y ) := max
v∈V { fi (x, v) + (θ i1)

�(y0 + Yv)}, i = 1, . . . ,m for

(x, y0,Y ) ∈ R
q+p+p×r and C the set of feasible points of problem (RT). Note that C

is also the set of feasible points of problem (Pα). Following similar arguments as in
the proof of Theorem 2.1(ii), we employ (4)–(6) to arrive at

m∑

i=1

αiFi (̂x, ŷ
0, Ŷ ) ≥

m∑

i=1

αiFi (x, y
0,Y ) for all (̂x, ŷ0, Ŷ ) ∈ C,

which means that the triple (x, y0,Y ) is a solution of (Pα). This, as shown above,

guarantees that there exist W
i
1 ∈ Sm0 , i = 1, . . . ,m and W

j
2 ∈ Sm0 , j = 1, . . . , n

such that (x, y0,Y l , Z ,W
i
1,W

j
2)i=1,...,m, j=1,...,n,l=1,...,r is a solution of (P∗

α), where
Y l , l = 1, . . . , r are the columns of Y and Z := xx�.
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(ii) Assume that the problem (Pα) possesses a solution for α := (α1, . . . , αm) ∈
R
m+ \ {0}. Then, as shown by (2), we have

val(Pα) = val(P∗
α). (14)

Let (z, ν0, νl , Z ,W
i
1,W

j
2)i=1,...,m, j=1,...,n,l=1,...,r be a solution of (P∗

α). Then, z ∈
R
q , ν0 ∈ R

p, νl ∈ R
p, Z ∈ Sq , W

i
1 ∈ Sm0 ,W

i
1 � 0, W

j
2 ∈ Sm0 , W

j
2 � 0,

i = 1, . . . ,m, j = 1, . . . , n, l = 1, . . . , r and

val(P∗
α) =

m∑

i=1

αi
(
β i
1 + (ξ i1)

�z + (θ i1)
�ν0 + Tr(ZQi

1) + Tr(W
i
1A)

)
, (15)

(
1 z�
z Z

)
� 0, (16)

β i
1,l + (θ i1)

�νl + (ξ i1,l)
�z + Tr(W

i
1Al) = 0, i = 1, . . . ,m, l = 1, . . . , r , (17)

β
j
2 + (ξ

j
2 )�z + (θ

j
2 )�ν0 + Tr(ZQ j

2) + Tr(W
j
2A) ≤ 0, j = 1, . . . , n, (18)

β
j
2,l + (θ

j
2 )�νl + (ξ

j
2,l)

�z + Tr(W
j
2Al) = 0, j = 1, . . . , n, l = 1, . . . , r . (19)

Denote by Y := (ν1, . . . νr ) a matrix with columns of νl , l = 1, . . . , r . Proceeding
as above, we derive from (16), (18) and (19) that (z, ν0,Y ) is feasible for (Pα). This
also shows that (z, ν0,Y ) is feasible for (RT). Similarly, we can derive from (16) and
(17) that

Fi (z, ν0,Y ) ≤ β i
1 + (ξ i1)

�z + (θ i1)
�ν0 + Tr(ZQi

1) + Tr(W
i
1A), i = 1, . . . ,m.

(20)

We assert that the triple (z, ν0,Y ) is a weak efficient solution of (RT). Otherwise, we
would find (̂x, ŷ0, Ŷ ) ∈ C such that

Fi (̂x, ŷ
0, Ŷ ) < Fi (z, ν0,Y ), i = 1, . . . ,m.

It is worth noting here that (̂x, ŷ0, Ŷ ) is also a feasible point of problem (Pα). In view
of (20) and (15), we conclude that

val(Pα) ≤
m∑

i=1

αiFi (̂x, ŷ
0, Ŷ ) <

m∑

i=1

αiFi (z, ν0,Y ) ≤ val(P∗
α),

which is absurd by virtue of (14). In conclusion, the triple (z, ν0,Y ) is a weak efficient
solution of (RT).

(iii) Assume that the problem (Pα) admits a solution for α := (α1, . . . , αm) ∈
intRm+. Let (z, ν0, νl , Z ,W

i
1,W

j
2)i=1,...,m, j=1,...,n,l=1,...,r be a solution of (P∗

α). Then,
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(14)–(20) are valid for this setting. Proceeding similarly as in the proof of (ii), we
come to an assertion that there does not exist (̂x, ŷ0, Ŷ ) ∈ C such that

Fi (̂x, ŷ
0, Ŷ ) ≤ Fi (z, ν0,Y ), i = 1, . . . ,m

and Fi (̂x, ŷ
0, Ŷ ) < Fi (z, ν0,Y ) for some i ∈ {1, . . . ,m},

which concludes that the triple (z, ν0,Y ) is an efficient solution of (RT). ��

Second-OrderConeProgrammingRelaxations.Wenow consider the special robust
two-stage multiobjective optimization problem (RT), where the objectives fi , i =
1, . . . ,m and the constraints g j , j = 1, . . . , n are separable quadratic functions in
the first-stage variable given by (25) and the uncertainty set V is an ellipsoid given by
(26). It should be noted here that the two-stage scalarized problem (Pα) is considered
under the current setting.

In this framework, we address a relaxation problem in terms of second-order cone
programming (SOCP) for (Pα) as follows:

min
(z,ν0,νl ,ηk ,γ i

1 ,γ
j
2 ,zi1,z

j
2 )

m∑

i=1

αi
(
β i
1 + (ξ i1)

�z + (θ i1)
�ν0 +

q∑

k=1

ωi
1,kηk + γ i

1

)
(S∗

α)

s.t. ‖(1 − ηk , 2zk)‖ ≤ 1 + ηk , z := (z1, . . . , zq ) ∈ R
q , ηk ∈ R, k = 1, . . . , q,

β i
1,l + (θ i1)

�νl + (ξ i1,l)
�z + (Ed

l )�zi1 = 0, i = 1, . . . ,m, l = 1, . . . , r ,

β
j
2 + (ξ

j
2 )�z + (θ

j
2 )�ν0 +

n∑

k=1

ω
j
2,kηk + γ

j
2 ≤ 0, ν0 ∈ R

p, j = 1, . . . , n,

β
j
2,l + (θ

j
2 )�νl + (ξ

j
2,l)

�z + (Ed
l )�z j2 = 0, j = 1, . . . , n, l = 1, . . . , r ,

‖zi1‖ ≤ γ i
1 , ‖z j2‖ ≤ γ

j
2 , zi1 ∈ R

r , γ i
1 ∈ R, z j2 ∈ R

r , γ
j
2 ∈ R, i = 1, . . . ,m, j = 1, . . . , n,

where Ed
l , l = 1, . . . , r are the columns of the matrix Ed given as in (26).

In the forthcoming theorem, we present links between (weak) efficient solutions of
the two-stage multiobjective problem (RT) under the current setting and optimal solu-
tions of (scalar) second-order cone programming problem (S∗

α), which is a relaxation
of the two-stage scalarized problem (Pα).

Theorem 3.2 (Calculating Solutions via second-order cone programming relaxations)
Consider the problem (RT) and the problem (Pα) with fi , i = 1, . . . ,m and g j , j =
1, . . . , n given in (25), and V given in (26). Then, the following assertions are valid.
(i) Let the Slater qualification condition in (3) hold and let (x, y0,Y ) be a
weak efficient solution of (RT). Then, we can find α ∈ R

m+\{0}, zi1 ∈ R
r ,

γ i
1 ∈ R, i = 1, . . . ,m and z j2 ∈ R

r , γ
j
2 ∈ R, j = 1, . . . , n such that

(x, y0,Y l , ηk, γ
i
1, γ

j
2, z

i
1, z

j
2)k=1,...,q,i=1,...,m, j=1,...,n,l=1,...,r is a solution of (S∗

α),
where ηk := x2k, k = 1, . . . , q and Y l , l = 1, . . . , r are the columns of the matrix Y .
(ii) (Findingweakefficient solutions)Suppose that the problem (Pα) admits a solution
for α ∈ R

m+ \ {0} and let (z, ν0, νl , ηk, γ
i
1, γ

j
2, z

i
1, z

j
2)k=1,...,q,i=1,...,m, j=1,...,n,l=1,...,r
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be a solution of (S∗
α). Then (z, ν0,Y ) is a weak efficient solution for (RT), where

Y := (ν1, . . . , νr ) is a matrix whose columns are those of νl , l = 1, . . . , r .
(iii) (Finding efficient solutions) Suppose that the problem (Pα) admits a solution
for α ∈ intRm+ and let (z, ν0, νl , ηk, γ

i
1, γ

j
2, z

i
1, z

j
2)k=1,...,q,i=1,...,m, j=1,...,n,l=1,...,r

be a solution of (S∗
α). Then (z, ν0,Y ) is an efficient solution for (RT), where Y :=

(ν1, . . . , νr ) is a matrix whose columns are those of νl , l = 1, . . . , r .

Proof Let α := (α1, . . . , αm) ∈ R
m+ \ {0} be such that the problem (Pα) admits a

solution and assume that (x, y0,Y ) is a solution of (Pα) under the current setting. Let
val(Pα) denote the optimal value of (Pα) and let val(S∗

α) denote the optimal value of

(S∗
α). We justify that there exist zi1 ∈ R

r , γ i
1 ∈ R, i = 1, . . . ,m and z j2 ∈ R

r , γ
j
2 ∈

R, j = 1, . . . , n such that (x, y0,Y l , ηk, γ
i
1, γ

j
2, z

i
1, z

j
2)k=1,...,q,i=1,...,m, j=1,...,n,l=1,...,r

is a solution of (S∗
α) and

val(Pα) = val(S∗
α) =

m∑

i=1

αi
(
β i
1 + (ξ i1)

�x + (θ i1)
�y0 +

q∑

k=1

ωi
1,kηk + γ i

1

)
, (21)

where x := (x1, . . . , xq), ηk := x2k, k = 1, . . . , q and Y l , l = 1, . . . , r are the
columns of the matrix Y .

Since (x, y0,Y ) is a solution of (Pα), we see that

val(Pα) =
m∑

i=1

αiFi (x, y
0,Y ), (22)

where Fi (x, y0,Y ) := max
v∈V { fi (x, v) + (θ i1)

�(y0 + Yv)} for i = 1, . . . ,m, and that

max
v∈V {g j (x, v) + (θ

j
2 )�(y0 + Yv)} ≤ 0, j = 1, . . . , n. (23)

For each i ∈ {1, . . . ,m}, we rewrite Fi (x, y0,Y ) = max
v∈V { fi (x, v)+ (θ i1)

�(y0 +Yv)}
as follows

min
v∈Rr

{
−

r∑

l=1

vl
(
(ξ i1,l)

�x + β i
1,l + (θ i1)

�Y l
) | ‖Edv‖ ≤ 1

}
=

q∑

k=1

ωi
1,k x

2
k + (ξ i1)

�x + β i
1

+ (θ i1)
�y0 − Fi (x, y

0, Y ).

(24)

Letting v̂ := 0r ∈ R
r , it holds that ‖Ed v̂‖ < 1, i.e., the strict feasibility condition

holds for the second-order cone programming problem in (24). Thus, we can invoke
a strong duality result in second-order cone programming (see e.g., [1, Page 81]) to
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find zi1 ∈ R
r , γ i

1 ∈ R, ‖zi1‖ ≤ γ i
1 such that

β i
1 + (ξ i1)

�x + (θ i1)
�y0 +

q∑

k=1

ωi
1,k x

2
k + γ i

1 = Fi (x, y
0,Y ),

β i
1,l + (θ i1)

�Y l + (ξ i1,l)
�x + (Ed

l )�zi1 = 0, l = 1, . . . , r . (25)

Similarly, for each j ∈ {1, . . . , n}, we derive by (23) that there exist z j2 ∈ R
r , γ

j
2 ∈ R,

‖z j2‖ ≤ γ
j
2 such that

β
j
2 + (ξ

j
2 )�x + (θ

j
2 )�y0 +

q∑

k=1

ω
j
2,k x

2
k + γ

j
2 ≤ 0,

β
j
2,l + (θ

j
2 )�Y l + (ξ

j
2,l)

�x + (Ed
l )�z j2 = 0, l = 1, . . . , r .

So, it holds that (x, y0,Y l , ηk, γ
i
1, γ

j
2, z

i
1, z

j
2)k=1,...,q,i=1,...,m, j=1,...,n,l=1,...,r is a fea-

sible point of problem (S∗
α). This in turn implies that

val(S∗
α) ≤

m∑

i=1

αi
(
β i
1 + (ξ i1)

�x + (θ i1)
�y0 +

q∑

k=1

ωi
1,kηk + γ i

1

)

=
m∑

i=1

αiFi (x, y
0,Y ) = val(Pα), (26)

where the first equality holds by (25) and the second one holds by (22). Let us now jus-
tify that val(Pα)≤ val(S∗

α). Assume that (z, ν0, νl , ηk, γ i
1 , γ

j
2 , zi1,

z j2)k=1,...,q,i=1,...,m, j=1,...,n,l=1,...,r is feasible for (S∗
α). Then, z := (z1, . . . , zq) ∈

R
q , ν0 ∈ R

p, νl ∈ R
p, ηk ∈ R, γ i

1 ∈ R, zi1 ∈ R
r , ‖zi1‖ ≤ γ i

1 , γ
j
2 ∈ R, z j2 ∈

R
r , ‖z j2‖ ≤ γ

j
2 , k = 1, . . . , q, i = 1, . . . ,m, j = 1, . . . , n, l = 1, . . . , r and

‖(1 − ηk, 2zk)‖ ≤ 1 + ηk, k = 1, . . . , q, (27)

β i
1,l + (θ i1)

�νl + (ξ i1,l)
�z + (Ed

l )�zi1 = 0, i = 1, . . . ,m, l = 1, . . . , r , (28)

β
j
2 + (ξ

j
2 )�z + (θ

j
2 )�ν0 +

q∑

k=1

ω
j
2,kηk + γ

j
2 ≤ 0, j = 1, . . . , n, (29)

β
j
2,l + (θ

j
2 )�νl + (ξ

j
2,l)

�z + (Ed
l )�z j2 = 0, j = 1, ..., n, l = 1, . . . , r . (30)

Note that for each j ∈ {1, . . . , n} and any v := (v1, . . . , vr ) ∈ V , ‖Edv‖ ≤ 1. Then,
we get by ‖z j2‖ ≤ γ

j
2 and the Cauchy-Schwarz inequality that

γ
j
2 ≥ ‖z j2‖‖Edv‖ ≥ −(z j2)

�(Edv) = −
r∑

l=1

vl(E
d
l )�z j2 .
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Denote Y0 := (ν1, . . . , νr ) as a matrix whose columns are those of νl , l = 1, . . . , r .
Then, for any v ∈ V , we derive from (30) that

g j (z, v) + (θ
j
2 )�(ν0 + Y0v) = β

j
2 + (ξ

j
2 )�z +

q∑

k=1

ω
j
2,k z

2
k + (θ

j
2 )�ν0 −

r∑

l=1

vl(E
d
l )�z j2

≤ β
j
2 + (ξ

j
2 )�z + (θ

j
2 )�ν0 +

q∑

k=1

ω
j
2,kηk + γ

j
2 , (31)

where we note that z2k ≤ ηk, k = 1, . . . , q by virtue of (27). Now, we conclude by
(29) and (31) that

max
v∈V {g j (z, v) + (θ

j
2 )�(ν0 + Y0v)} ≤ 0, j = 1, . . . , n,

which means that (z, ν0,Y0) is feasible for (Pα). Hence, we obtain that

val(Pα) ≤
m∑

i=1

αiFi (z, ν0,Y0), (32)

where Fi (z, ν0,Y0) := max
v∈V { fi (z, v) + (θ i1)

�(ν0 + Y0v)}, i = 1, . . . ,m. Similarly,

for any v ∈ V , we derive from (27) and (28) that

Fi (z, ν0,Y0) ≤ β i
1 + (ξ i1)

�z + (θ i1)
�ν0 +

q∑

k=1

ωi
1,kηk + γ i

1 , i = 1, . . . ,m.

This together with (32) entails that

val(Pα) ≤
m∑

i=1

αi
(
β i
1 + (ξ i1)

�z + (θ i1)
�ν0 +

q∑

k=1

ωi
1,kηk + γ i

1

)
,

and consequently, val(Pα)≤ val(S∗
α) because (z, ν0, νl , ηk, γ i

1 , γ
j
2 , zi1,

z j2)k=1,...,q,i=1,...,m, j=1,...,n,l=1,...,r was arbitrarily taken.
Now, in view of (26), we conclude that

val(Pα) = val(S∗
α) =

m∑

i=1

αi
(
β i
1 + (ξ i1)

�x + (θ i1)
�y0 +

q∑

k=1

ωi
1,kηk + γ i

1

)
,

which also confirms that (x, y0,Y l , ηk, γ
i
1, γ

j
2, z

i
1, z

j
2)k=1,...,q,i=1,...,m, j=1,...,n,l=1,...,r

is a solution of (S∗
α). Namely, the assertion in (21) has been justified.

(i) Let (x, y0,Y ) be a weak efficient solution of (RT). Since the Slater qual-
ification condition (3) holds, we apply Corollary 2.1(i) to assert that there exist
α := (α1, . . . , αm) ∈ R

m+ \ {0}, αs
i ∈ R, i = 1, . . . ,m, s = 1, . . . , r , λ j ≥ 0, λsj ∈
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R, j = 1, . . . , n, s = 1, . . . , r and tk ≥ 0, k = 1, . . . , q such that the second-order
cone conditions in (27)–(30) are valid. Similarly as in the proof of Theorem 3.1, we
can show that (x, y0,Y ) is a solution of (Pα). This, as shown above, guarantees that
there exist zi1 ∈ R

r , γ i
1 ∈ R, i = 1, . . . ,m and z j2 ∈ R

r , γ
j
2 ∈ R, j = 1, ..., n such

that (x, y0,Y l , ηk, γ
i
1, γ

j
2, z

i
1, z

j
2)k=1,...,q,i=1,...,m, j=1,...,n,l=1,...,r is a solution of (S∗

α),
where ηk := x2k, k = 1, . . . , q and Y l , l = 1, . . . , r are the columns of the matrix Y .

The proofs of (ii) and (iii) are similar to the corresponding ones in Theorem 3.1
specified for this setting and so, they are omitted. ��

4 Solving Examples Numerically via Relaxations

In this section,we present numerical examples to illustrate that one can employ the pro-
posed semidefinite programming (SDP) or second-order cone programming (SOCP)
relaxations to find (weak) efficient solutions for the considered two-stage multiobjec-
tive problems including those arisen from practical applications.

4.1 A Numerical Example

Consider an uncertain two-stage multiobjective program:

min
x,y

(
f1(x, v) + (θ11 )�y(v), f2(x, v) + (θ21 )�y(v), f3(x, v) + (θ31 )�y(v)

)
(E2)

s.t. g j (x, v) + (θ
j
2 )�y(v) ≤ 0, j = 1, 2, 3,

where θ i1 ∈ R
3, i = 1, 2, 3 and θ

j
2 ∈ R

3, j = 1, 2, 3 are fixed parameters, v is an
uncertain parameter, which is residing in the uncertainty set V ⊂ R

2, x ∈ R
3 is the

first-stage decision variable, y : V → R
3 is the second-stage decision variable, and

fi : R3 ×R
2 → R, i = 1, 2, 3, g j : R3 ×R

2 → R, j = 1, 2, 3 are functions, defined
respectively by, for x := (x1, x2, x3) ∈ R

3, v := (v1, v2) ∈ V ,

f1(x, v) := 2x21 − (v1 + 4)x1 + (1 − v2)x2 + x3 + v1 − 1,

g1(x, v) := −x2 − x3 + v1,

f2(x, v) := x21 + (v2 − 2)x1 − v1x2 + x3 − v2 + 1,

g2(x, v) := 2x21 + (v1 − 4)x1 + v2x2 − v1 + 2,

f3(x, v) := x21 − (v1 + 2)x1 + (1 − v2)x2 + v1 + 2,

g3(x, v) := x21 − (v2 + 2)x1 + v1x2 + v2 + 1.

Here, the uncertainty set V is given by

V := {v := (v1, v2) ∈ R
2 | v21 + 1

2
v22 ≤ 1}
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and the second-stage decision variable y is given by

y(v) := y0 + Yv, v ∈ V ,

where y0 ∈ R
3 and Y ∈ R

3×2 are nonadjustable variables.
We consider a robust two-stagemultiobjective optimization problem that is a robust

counterpart of (E2) defined by

min
x∈R3,y0∈R3,Y∈R3×2

(
max
v∈V { f1(x, v) + (θ11 )�y(v)}, (R2)

max
v∈V { f2(x, v) + (θ21 )�y(v)},max

v∈V { f3(x, v) + (θ31 )�y(v)})

s.t. g j (x, v) + (θ
j
2 )�y(v) ≤ 0, j = 1, 2, 3, y(v) = y0 + Yv,∀v ∈ V .

It is easy to see that the problem (R2) is of the form of (RT), where the functions

fi , i = 1, 2, 3 and g j , j = 1, 2, 3 are defined by Q1
1 := Q2

2 :=
⎛

⎝
2 0 0
0 0 0
0 0 0

⎞

⎠ , Q1
2 :=

03×3, Q2
1 := Q3

1 := Q3
2 :=

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , ξ11 := (−4, 1, 1), ξ21 := (−2, 0, 1),

ξ31 := (−2, 1, 0), ξ11,1 := ξ31,1 := (−1, 0, 0), ξ11,2 := ξ21,1 := ξ31,2 := (0,−1, 0),

ξ21,2 := (1, 0, 0), β1
1 := −1, β2

1 := 1, β3
1 := 2, β1

1,1 := 1, β1
1,2 := β3

1,2 := 0, β3
1,1 :=

1, β2
1,1 := 0, β2

1,2 := −1, ξ12 := (0,−1,−1), ξ32 := (−2, 0, 0), ξ22 := (−4, 0, 0),

ξ12,1 := ξ12,2 := 03, ξ22,1 := (1, 0, 0), ξ32,1 := ξ22,2 := (0, 1, 0), ξ32,2 := (−1, 0, 0),

β1
2 := 0, β3

2 := 1, β2
2 := 2, β1

2,1 := 1,β1
2,2 := β2

2,2 := β3
2,1 := 0, β2

2,1 := −1, β3
2,2 :=

1, and the uncertainty set V is described by

A :=
⎛

⎝
1 0 0
0 2 0
0 0 1

⎞

⎠ , A1 :=
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , A2 :=
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ .

Case I: Two-stage multiobjective programs. Let θ11 := θ31 := (1, 1,−1), θ12 := 03,
θ21 := (−1, 1,−1), θ22 := (−1,−1, 1) and θ32 := (1,−1, 1). We employ the obtained
relaxations from Theorem 3.1 to find (weak) efficient solutions of problem (R2). By

choosing v̂ := 02 ∈ R
2, it holds that A +

2∑

l=1
v̂l Al  0, which means that the

condition (1) holds for this setting.
For each α := (α1, α2, α3) ∈ R

3+\{0}, we examine a robust scalarized optimization
problem of (R2) given by

min
x∈R2,y0∈R3,Y∈R3×2

{ 3∑

i=1

αi max
v∈V { fi (x, v) + (θ i1)

�y(v)} |g j (x, v) + (θ
j
2 )�y(v) ≤ 0, j = 1, 2, 3,

(E2α)

y(v) = y0 + Yv,∀v ∈ V
}
.
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By considering the case of α := (α1, α2, α3) ∈ R
3+\{0} with α2 = α3, we assert

that this weighted sum problem admits an optimal solution. To see this, just take
x := (1, 0, 1), y0 := 03 and Y := 03×2. Then (x, y0,Y ) is a solution of problem
(E2α) and the optimal value is val(E2α)= −2α1 + α2 + α3.

The SDP relaxation problem of (E2α) is given by

min
(z,ν0,νl ,Z ,Wi

1,W
j
2 )

3∑

i=1

αi
(
β i
1 + (ξ i1)

�z + (θ i1)
�ν0 + Tr(ZQi

1) + Tr(Wi
1A)

)
(E2∗

α)

s.t.

(
1 z�
z Z

)
� 0, z ∈ R

3, Z ∈ S3, ν0 ∈ R
3, νl ∈ R

3, l = 1, 2,

β i
1,l + (θ i1)

�νl + (ξ i1,l)
�z + Tr(Wi

1Al) = 0, i = 1, 2, 3, l = 1, 2,

β
j
2 + (ξ

j
2 )�z + (θ

j
2 )�ν0 + Tr(ZQ j

2) + Tr(W j
2 A) ≤ 0, j = 1, 2, 3,

β
j
2,l + (θ

j
2 )�νl + (ξ

j
2,l)

�z + Tr(W j
2 Al) = 0, j = 1, 2, 3, l = 1, 2,

Wi
1 � 0,Wi

1 ∈ S3,W j
2 � 0,W j

2 ∈ S3, i = 1, 2, 3, j = 1, 2, 3.

Consider (for instance) α := (1, 2, 2). We utilize the toolbox CVX (see e.g.,
[21]) to solve the problem (E2∗

α) and obtain the optimal value as 2.0000, which
is nothing else but val(E2α). Furthermore, the solver returns (optimal) variables

as (z, ν0, νl , Z ,W
i
1,W

j
2)i=1,2,3, j=1,2,3,l=1,2, where z = (1.0000, 0.4025, 0.5975),

ν0 = (0.0000, 0.0000, 0.0000), ν1 = (−0.2012, 0.1006,−0.1006) and ν2 =
(0.2012, 0.1006,−0.1006). By denoting Y := (ν1, ν2) as a matrix with the columns
of ν1 and ν2, we assert from Theorem 3.1 that (z, ν0,Y ) is a weak/efficient solution
of (R2).
Case II: Multiobjective programs. Let θ11 := θ12 := θ21 := θ22 := θ31 := θ32 :=
03. Then, the problem (E2) collapses to an uncertain (single-stage) multiobjective
problem, which lands in the form of (P). By fixing θ11 := θ12 := θ21 := θ22 := θ31 :=
θ32 := 03 and disregarding redundant variables in (R2), (E2α) and (E2∗

α), we obtain
corresponding problems for this case.

In this way, we can use other different vectors of α := (α1, α2, α3) ∈ R
3+ \{0}with

α2 = α3 to locate and compare (weak) efficient solutions for the frameworks in Case
I and Case II.

As we can see from Table 1 that, when scalarizing with a same set of weighted
sum vectors, the two-stage multiobjective problem of Case I provides many different
(first-stage) weak/efficient solutions, while the (standard/single-stage) multiobjective
program of Case II just gives a unique weak/efficient solution.

4.2 An Example Inspired by Bidding Strategies in Electricity Markets

Consider an uncertain two-stage multiobjective program:
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Table 1 Comparison of solutions of Case I and Case II

Vectors: α’s (First-stage) Solutions of Case I: x’s Solutions of Case II: x’s

(0, 0.5, 0.5) (1.0000, 0.4823, 0.5177) (1.0000, 0.0000, 1.0000)

(0.1, 0.45, 0.45) (1.0000, 0.4420, 0.5580) (1.0000, 0.0000, 1.0000)

(0.2, 0.4, 0.4) (1.0000, 0.2878, 0.7122) (1.0000, 0.0000, 1.0000)

(0.3, 0.35, 0.35) (1.0000,−0.0294, 1.0294) (1.0000, 0.0000, 1.0000)

(0.4, 0.3, 0.3) (1.0000,−0.0864, 1.0864) (1.0000, 0.0000, 1.0000)

(0.5, 0.25, 0.25) (1.0000, 0.2996, 0.7004) (1.0000, 0.0000, 1.0000)

(0.6, 0.2, 0.2) (1.0000, 0.8889, 0.1111) (1.0000, 0.0000, 1.0000)

(0.7, 0.15, 0.15) (1.0000, 1.0240,−0.0240) (1.0000, 0.0000, 1.0000)

(0.8, 0.1, 0.1) (1.0000, 0.9151, 0.0849) (1.0000, 0.0000, 1.0000)

(0.9, 0.05, 0.05) (1.0000, 0.8622, 0.1378) (1.0000, 0.0000, 1.0000)

(1, 0, 0) (1.0000, 0.8837, 0.1163) (1.0000, 0.0000, 1.0000)

min
x,y

(
f1(x, v) + (θ11 )�y(v), f2(x, v) + (θ21 )�y(v), f3(x, v) + (θ31 )�y(v)

)
(E3)

s.t. g j (x, v) + (θ
j
2 )�y(v) ≤ 0, j = 1, 2, 3, (33)

0 ≤ xl ≤ xmax
c , l = 1, ..., T , (34)

0 ≤ xl+T ≤ xmax
p , l = 1, ..., T ,

xl + xl+T ≥ σ4Dl , l = 1, ..., T , (35)

where θ i1 ∈ R
2T , i = 1, 2, 3, θ j

2 ∈ R
2T , j = 1, 2, 3, Dl ∈ R, l = 1, . . . , T , σ4 > 0,

xmax
c and xmax

p are fixed parameters, v := (v1, ..., v2T ) is an uncertain parameter,
which resides in the uncertainty set V ⊂ R

2T , x := (x1, ..., x2T ) is the first-stage
variable and y : V → R

2T is the second-stage variable. In this setting, the functions
fi : R2T × R

2T → R, i = 1, 2, 3, g j : R2T × R
2T → R, j = 1, 2, 3 are defined,

respectively by, for x := (x1, ..., x2T ) ∈ R
2T and v := (v1, ..., v2T ) ∈ V ,

f1(x, v) :=
T∑

i=1

(πi x
2
i − vi xi ) − M, f2(x, v) :=

2T∑

i=T+1

(πi x
2
i − Cvi xi ), (36)

f3(x, v) :=
T∑

i=1

πi xi +
2T∑

i=T+1

viπi xi , g1(x, v) :=
T∑

i=1

(σ1Di − vi xi ), (37)

g2(x, v) :=
2T∑

i=T+1

(σ2Di−T − vi xi ), g3(x, v) :=
T∑

i=1

(σ3Di − vi xi − vi+T xi+T ),

(38)
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where πi > 0, i = 1, . . . , 2T ,M ∈ R, σl > 0, l = 1, 2, 3 andC ∈ R. The uncertainty

set V is defined by V :=
2T∏

j=1
[λ j , γ j ], where λ j ∈ R, γ j ∈ R are fixed and λ j < γ j

for j = 1, . . . , 2T , and the second-stage decision variable y is given by

y(v) := y0 +
2T∑

i=1

vi y
i , v := (v1, . . . , v2T ) ∈ V ,

where yi ∈ R
2T , i = 0, 1, . . . , 2T are non-adjustable decision variables.

MotivationbyBiddingStrategies ofElectricityMarkets.The study of problem (E3)
is inspired by modeling coal-fired power plants and photovoltaic (PV) systems in the
electricity market. In this scenario, the objective function f1 in (36) is to minimize cost
for the coal-fired power stations, where πi is a day-ahead electricity price at time slot
i . M is the fixed operation cost for coal-fired power plants. xi is the reserved power
generation amount at time slot i in the day-ahead market. The objective function f2
in (36) is to minimize cost for the PV systems, where C is the generation cost for
the PV systems. The objective function f3 in (37) is to minimize power purchasing
costs for the customers. In the objective f3, the first term denotes the total cost of
purchasing power from the coal-fired power stations, while the second term indicates
the cost of purchasing power from the PV systems. The first-stage constraints g1 in
(37) and g2, g3 in (38) explain the total power generation from the coal-fired power
stations and the PV systems should satisfy the power demand at every time slot, where
Di is the amount of power demand at time slot i . σl , l = 1, 2, 3, 4 is scale parameters
for the power demand. The constraints (34) to (35) explain the lower bound and
upper bound of power generation amount for the coal-fired power plants and the PV
systems, respectively, where xmax

c is the maximal power output from the coal-fired
power plants and xmax

p is the maximal power output from the PV systems. vi is an
uncertain extra electricity price that is applied based on the actual scenarios such as
higher or lower demands of power customers or affected weather conditions on the
PV power generation over the prescribed time periods, while y is an adjustable rule
of reserved power generation amounts that could be implemented and controlled by
θ i1 and θ

j
2 .

Semidefinite Programming Relaxations. For x := (x1, ..., x2T ) ∈ R
2T and v :=

(v1, ..., v2T ) ∈ V , put

g j (x, v) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−x j−3, j = 4, . . . , 3 + T ,

x j−3−T − xmax
c , j = 4 + T , . . . , 3 + 2T ,

−x j−3−T , j = 4 + 2T , . . . , 3 + 3T ,

x j−3−2T − xmax
p , j = 4 + 3T , . . . , 3 + 4T ,

σ4Dj−3−4T − x j−3−4T − x j−3−3T , j = 4 + 4T , . . . , 3 + 5T ,

and denote by Y := (y1, . . . y2T ) a matrix whose columns are those of yi , i =
1, . . . , 2T . Then the uncertain two-stage problem (E3) can be relabeled as the fol-
lowing one:
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min
x,y

(
f1(x, v) + (θ11 )�y(v), f2(x, v) + (θ21 )�y(v), f3(x, v) + (θ31 )�y(v)

)
(A3)

s.t. g j (x, v) + (θ
j
2 )�y(v) ≤ 0, j = 1, . . . , 3 + 5T ,

where x ∈ R
2T , y(v) = y0 + Yv for v ∈ V and θ

j
2 := 02T for all j = 4, . . . , 3+ 5T .

Now, consider a robust two-stagemultiobjective problem, which is the robust coun-
terpart of (A3) defined by

min
(x,y0,Y )

(
max
v∈V { f1(x, v) + (θ11 )�y(v)},max

v∈V { f2(x, v) + (θ21 )�y(v)},max
v∈V { f3(x, v) + (θ31 )�y(v)})

(R3)

s.t. g j (x, v) + (θ
j
2 )�y(v) ≤ 0, j = 1, . . . , 3 + 5T ,

x ∈ R
2T , y0 ∈ R

2T , Y ∈ R
2T×2T , y(v) = y0 + Yv,∀v ∈ V .

Note further that the box V :=
2T∏

j=1
[λ j , γ j ] can be written as the following spectrahe-

dron:

V = {v := (v1, . . . , v2T ) ∈ R
2T | A +

2T∑

l=1

vl Al � 0}, (39)

where A := diag(−λ1, . . . ,−λ2T , γ1, . . . , γ2T ) and Al := diag

(
e2Tl−e2Tl

)
, l =

1, . . . , 2T . Therefore, the problem (R3) lands in the form of (RT), where the functions

fi , i = 1, 2, 3 and g j , j = 1, . . . , 3+ 5T are defined by Q1
1 := diag

(∑T
l=1 πl e2Tl

)
,

Q2
1 := diag

(∑2T
l=T+1 πl e2Tl

)
, Q3

1 := 02T×2T , ξ11 := ξ21 := 02T , ξ31 :=
∑T

l=1 πl e2Tl , β1
1 := −M, β2

1 := β3
1 := 0, ξ11,l :=

{
−e2Tl , l = 1, . . . , T ,

02T , l = T + 1, . . . , 2T ,

ξ21,l :=
{
02T , l = 1, . . . , T ,

−Ce2Tl , l = T + 1, . . . , 2T ,
ξ31,l :=

{
02T , l = 1, . . . , T ,

πl e2Tl , l = T + 1, . . . , 2T ,

β i
1,l := 0, l = 1, . . . , 2T , i = 1, 2, 3, Q j

2 := 02T×2T , j = 1, . . . 3 + 5T ,

β
j
2,l := 0, l = 1, . . . , 2T , j = 1, . . . , 3 + 5T , ξ12,l :=

{
−e2Tl , l = 1, . . . , T ,

02T , l = T + 1, . . . , 2T ,

ξ22,l :=
{
02T , l = 1, . . . , T ,

−e2Tl , l = T + 1, . . . , 2T ,
ξ32,l := −e2Tl , l = 1, . . . , 2T , ξ

j
2,l := 02T , l =

1, . . . , 2T , j = 4, . . . , 3 + 5T ,
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ξ
j
2 :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

02T , j = 1, 2, 3,

−e2Tj−3, j = 4, . . . , 3 + T ,

e2Tj−3−T j = 4 + T , . . . , 3 + 2T ,

−e2Tj−3−T , j = 4 + 2T , . . . , 3 + 3T ,

e2Tj−3−2T , j = 4 + 3T , . . . , 3 + 4T ,

−e2Tj−3−4T − e2Tj−3−3T , j = 4 + 4T , . . . , 3 + 5T ,

β
j
2 :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∑

l=1
σ1Dl , j = 1,

T∑

l=1
σ2Dl , j = 2,

T∑

l=1
σ3Dl , j = 3,

0, j = 4, . . . , 3 + T ,

−xmax
c j = 4 + T , . . . , 3 + 2T ,

0, j = 4 + 2T , . . . , 3 + 3T ,

−xmax
p , j = 4 + 3T , . . . , 3 + 4T ,

σ4Dj−3−4T , j = 4 + 4T , . . . , 3 + 5T .

Let us employ the obtained relaxations from Theorem 3.1 to calculate (weak) efficient
solutions of (R3). By choosing v̂ := (

λ1+γ1
2 , . . . ,

λ2T +γ2T
2 ) ∈ R

2T , it holds that

A +
2T∑

l=1
v̂l Al  0, which means that the condition (1) holds for this setting.

For each α := (α1, α2, α3) ∈ R
3+\{0}, one considers a robust weighted sum opti-

mization problem of (R3) given by

min
x∈R2T ,y0∈R2T ,Y∈R2T×2T

{ 3∑

i=1

αi max
v∈V { fi (x, v) + (θ i1)

�y(v)} | g j (x, v) + (θ
j
2 )�y(v) ≤ 0,

(E3α)

j = 1, . . . , 3 + 5T , y(v) = y0 + Yv,∀v ∈ V
}
.

The SDP relaxation problem of (E3α) is given by

min
(z,ν0,νl ,Z ,Wi

1,W
j
2 )

3∑

i=1

αi
(
β i
1 + (ξ i1)

�z + (θ i1)
�ν0 + Tr(ZQi

1) + Tr(Wi
1A)

)
(E3∗

α)

s.t.

(
1 z�
z Z

)
� 0, z ∈ R

2T , Z ∈ S2T , ν0 ∈ R
2T , νl ∈ R

2T , l = 1, . . . , 2T ,

β i
1,l + (θ i1)

�νl + (ξ i1,l)
�z + Tr(Wi

1Al) = 0, i = 1, 2, 3, l = 1, . . . , 2T ,

β
j
2 + (ξ

j
2 )�z + (θ

j
2 )�ν0 + Tr(ZQ j

2) + Tr(W j
2 A) ≤ 0, j = 1, . . . , 3 + 5T ,

β
j
2,l + (θ

j
2 )�νl + (ξ

j
2,l )

�z + Tr(W j
2 Al) = 0, j = 1, . . . , 3 + 5T , l = 1, . . . , 2T ,
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Wi
1 � 0,Wi

1 ∈ S4T ,W j
2 � 0,W j

2 ∈ S4T , i = 1, 2, 3, j = 1, . . . , 3 + 5T .

According to the obtained relaxation schemes in Theorem 3.1, we assert that, for a

givenα ∈ intR3 (resp.,α ∈ R
3+\{0}), if (z, ν0, νl , Z ,W

i
1,W

j
2)i=1,2,3, j=1,...,3+5T ,l=1,...,2T

is a solution of (E3∗
α), then (z, ν0,Y ) is a (resp., weak) efficient solution of (R3), where

Y := (ν1, . . . , ν2T ) stands for a matrix with the columns of νl , l = 1, . . . , 2T . So,

(z, y) is a robust solution of (E3), where y(v) = ν0+
2T∑

l=1
vlν

l for v := (v1, . . . , v2T ) ∈
V .

Numerical Simulations. Our study utilizes a day-ahead dataset provided by the Aus-
tralian Energy Market Operator (AEMO), which features information on electricity
price and demand in the Victoria state of Australia. We extract data from 8:00 to 17:00
on March 2, 2022, as shown in Table 2. In our model, we set the maximal power
output from the coal-fired power plants as xmax

c = 71160 MWh, while the maximal
power output by the PV systems is xmax

p = 1000 MWh. Furthermore, we utilize a
fixed operation cost of AUD $50,000 for coal-fired power plants, and a generation cost
of AUD $40 per MWh for the PV systems. We random the values of θ11 , θ

2
1 and θ31 as

given in Table 3 and set θ12 = −θ11 , θ
2
2 = −θ21 and θ32 = −θ31 .

Note that the weights of the objective functions satisfy α1 + α2 + α3 = 1, where
the values of α1, α2 and α3 range from 0.00001 to 1 with increments of 0.025 up to
0.05, and further increments of 0.075 and so on. To evaluate the effectiveness of the
proposed two-stage model, we conducted simulations using two-stage multiobjective
programs and (single-stage/standard) multiobjective programs. We simulated all pos-
sible combinations of weights and obtained the results presented in Fig. 1, which is an
almost comprehensive set of (first-stage) efficient/Pareto solutions.

The figure presented in the analysis illustrates the varying costs associated with
three different tasks, based on the different weights assigned to three objective func-
tions. In the case of single-stage analysis, the efficient/Pareto solutions for the three
objective functions are consolidated within a single range. However, in the two-stage
analysis, the (first-stage) efficient/Pareto solutions for the three objective functions
are distributed across multiple ranges, highlighting the greater flexibility afforded to
the electricity market operator to adjust costs between different sources of electricity
generation, such as power plant generation, PV generation and market purchasing.
The deployment of a two-stage multiobjective approach presents several advantages,
such as facilitating the increased integration of renewable energy sources into the grid
and reducing reliance on fossil fuels. The flexibility provided by this approach enables
the operator to adjust costs to incentivize the use of surplus electricity generated by
renewable energy sources, and thus promote their utilization and facilitate their inte-
gration into the electricity system. This not only contributes to the achievement of
environmental objectives by reducing greenhouse gas emissions but also supports the
overall stability and reliability of the electricity grid. Consequently, the two-stagemul-
tiobjective approach offers more flexible and efficient means of adjusting electricity
costs than a standard (single-stage) multiobjective approach that leads to far-reaching
benefits for the electricity market and society at large.
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Table 3 The values of θ i1

i 1 2 3 4 5 6 7 8 9 10

θ11 0.547 0.296 0.745 0.189 0.687 0.184 0.368 0.626 0.780 0.081

θ21 0.644 0.379 0.812 0.533 0.351 0.939 0.876 0.550 0.622 0.587

θ31 0.311 0.923 0.430 0.185 0.905 0.980 0.439 0.111 0.258 0.409

i 11 12 13 14 15 16 17 18 19 20

θ11 0.929 0.776 0.487 0.436 0.447 0.306 0.509 0.511 0.818 0.795

θ21 0.208 0.301 0.471 0.230 0.844 0.195 0.226 0.171 0.228 0.436

θ31 0.595 0.262 0.603 0.711 0.222 0.117 0.297 0.319 0.424 0.508

Fig. 1 Solutions of single-stage and two-stage bidding strategies

5 Conclusions with Study Perspectives

We provided verifiable necessary and sufficient optimality conditions for a class of
robust two-stage multiobjective optimization problems. The obtained optimality con-
ditions can be numerically validated by using a semidefinite programming problem as
they are presented by way of linear matrix inequalities. These optimality criteria can
be expressed further as second-order conic conditions for robust two-stagemultiobjec-
tive optimization problems involving separable functions and ellipsoidal uncertainty
sets. We addressed relaxation schemes that allow one to locate (weak) efficient solu-
tions for a robust two-stage multiobjective optimization problem by solving related
semidefinite programming or second-order cone programming relaxation problems.
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Given numerical examples have exemplified that our two-stage multiobjective
model is more flexible than a (single-stage) multiobjective version in terms of solution
variety. In more detail, the former produces more (first-stage) efficient solutions than
the latter does when solving them through a same set of weighted sum vectors. Fur-
thermore, the simulation on an example arisen from practical applications has shown
that the two-stage multiobjective approach offers various benefits such as reducing
the dependence on fossil fuels, achieving environmental objectives and supporting the
stability and reliability of the electricity grid. Consequently, this approach presents a
more efficient and flexible mean of adjusting electricity costs than a standard (single-
stage) multiobjective approach that leads to far-reaching benefits for the electricity
market and society.

When dealing with a general two-stage multiobjective optimization problem
in practice, where the problem data involve nonconvex functions, corresponding
scalarized/weighted summethods often lose their effectiveness in locating (weak) effi-
cient/Pareto solutions. Therefore, a further investigation on how to make use of such
relaxation schemes to solve nonconvex two-stage multiobjective problems would be
of great interest from practical implementations. It is also worth looking at whether
the current approach can be exploited to formulate and solve other real-world uncer-
tain multiobjective models such as integrated energy systems with load uncertainties
(see e.g., [32]), where the decision makers would deal with conflicting demands and
benefits of the energy efficiency and the carbon emissions reduction under load budget
uncertainty scenarios.
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