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ABSTRACT As breast cancer is a leading cause of death for women globally, there is a critical need for better diagnostic tools. 

To address this challenge, we propose MoEffNet, a cutting-edge framework that offers high-performance breast cancer 

diagnosis. MoEffNet is characterised by its innovative hybrid integration of EfficientNet and Mixture of Experts (MoEs), two 

powerful techniques developed to enhance accuracy and efficiency. EfficientNet, known for its robust feature extraction 

capabilities, utilises compound scaling and depth-wise separable convolutions to capture image features across multiple levels 

of abstraction. This is combined with MoEs framework, which employs specialised expert networks to analyse distinct aspects 

of mammograms. MoEffNet analyses features at various levels: low-level for basic patterns, mid-level for detailed analyses, 

and high-level for complex contents. Features extracted from various EfficientNet model stages are assigned to specialised 

experts to optimise diagnostic precision. A dynamic gating mechanism (EffiGate) is introduced to ensure that the most relevant 

experts contribute to each diagnostic decision, by dynamically adjusting their influence based on input data characteristics. 

This approach ensures that the most effective experts are utilised for each case, resulting in superior accuracy. The scalability 

of MoEffNet is highlighted by its ability to adapt to various computational constraints and accuracy requirements, using 

EfficientNet’s architecture, which ranges from B0 to B7 models. We have validated MoEffNet's effectiveness on three 

mammographic datasets (MIAS, CBIS-DDSM, and INbreast) achieving outstanding results (AUC > 0.99 across all datasets), 

outperforming existing methods. Particularly, EfficientNet B1 and B2 models with three or four experts achieved the highest 

accuracy, demonstrating MoEffNet's potential as a robust diagnostic tool for early breast cancer detection. Through its 

innovative hybrid model, robust feature extraction, dynamic gating, and specialised expert networks, MoEffNet sets a new 

benchmark in automated mammogram analysis, offering a powerful tool for more accurate and reliable breast cancer diagnosis.  

INDEX TERMS Breast cancer diagnosis, Computer-aided diagnosis, Deep learning, Machine learning, 

Multi-view analysis, Mammography.  

I. INTRODUCTION 

Breast cancer represents a major global public health 

burden, with an estimated 2.3 million new cases diagnosed 

leading to 685,000 deaths in 2020 alone. This number 

remained significant in 2022, with approximately 670,000 

deaths attributed to the disease [1, 2]. As the most common 

cancer affecting women, it necessitates continuous efforts 

to raise awareness, improve early detection strategies, 

which is vital for improved treatment outcomes [3], and 

develop effective treatment modalities and comprehensive 

care for patients worldwide. Breast cancer staging groups 

the disease based on the degree of its spread, which helps 

doctors decide the best course of treatment. The earliest 

stage, stage 0 (in situ cancer), involves abnormal cells 

confined within milk ducts or lobules. Stages I-IV 

incorporate invasive cancers that have spread into 

surrounding tissue. Stage I features small tumours with 

possible lymph node involvement, while stages progress 

with increasing tumour size, more lymph node 

involvement, or even chest wall/skin invasion. In stage IV 

(metastatic), cancer has spread to distant organs. Generally, 

a lower stage indicates a better prognosis, but other factors 

like cancer cell biology also influence treatment decisions 

[4 - 6]. For example, in Canada, the chance of surviving for 

5 years (net survival) is very high (nearly 99.8%) for 

women diagnosed with stage I breast cancer. This survival 

rate decreases significantly for more advanced stages of 

breast cancer, with a 5-year net survival rate of 91.9% for 

stage II, 74.0% for stage III, and 23.2% for stage IV [7]. 

Also, a recent study conducted by the American Cancer 
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Society revealed significant variations in a woman's 

likelihood of surviving for five years (net survival) 

following a breast cancer diagnosis, depending on the 

cancer's stage at diagnosis. Patients who were diagnosed 

with stage I breast cancer from 2012 to 2018 had an 

outstanding 5-year survival rate of more than 99%. 

However, as the cancer progresses through stages, the 

survival rate significantly decreases. For stage II, the 5-year 

survival rate is 93%, for stage III it is 75%, and for stage 

IV it drops to 29% [8]. Supporting this, a study conducted 

in the Netherlands analysing breast cancer trends from 

1989 to 2017 confirms the global importance of early 

detection. This study shows that while initial breast cancer 

diagnoses rose, recent years have shown a decline. 

Treatment advancements are evident, with less invasive 

surgeries and a rise in systemic therapies. Most 

importantly, survival rates have improved significantly 

across all stages, and overall breast cancer mortality rates 

have declined regardless of age [9]. This highlights the 

critical role early detection plays in improving a woman's 

chances of successful treatment and long-term survival.  

 
II. REVIEW OF SELECTED METHODS 

Advancements in diagnostic medical imaging have 

produced a diverse toolbox for breast cancer detection, 

including mammograms, breast thermography, magnetic 

resonance imaging, ultrasound, positron emission 

tomography, histopathology, and computed tomography 

[10-16]. Understanding these techniques empowers 

informed decision-making regarding screening and early 

detection strategies. Mammography is an essential 

component of early detection for breast cancer and is 

known to significantly improve patient outcomes in terms 

of treatment success and survival rates. It excels at 

identifying abnormalities before they become noticeable or 

cause symptoms. Numerous studies have shown that digital 

mammography is highly effective in accurately diagnosing 

breast cancer [17 - 27]. This makes it a fundamental tool 

for both screening and detailed evaluation of abnormal 

findings. Besides detecting breast cancer, mammography 

plays an important role in treatment planning by providing 

detailed information about tumour size and location, which 

is essential for surgery and other therapies. Furthermore, it 

has been shown that digital mammography offers 

comparable accuracy to screen-film mammography (SFM) 

in detecting breast cancer, but it has a significant advantage 

in identifying tumours, particularly in women with dense 

breast tissue [28]. Additionally, despite limited healthcare 

access, mammography remains a valuable tool for early 

breast cancer detection in low and middle-income countries 

[29]. These studies set mammography's critical role in 

breast cancer diagnosis, with its value across settings and 

its continuous evolution for better patient outcomes.  

The main benefit of mammogram screening lies in its 

capability to reduce breast cancer mortality. It achieves this 

by detecting the disease at an early stage, allowing for 

earlier intervention, and potentially improving patient 

prognosis [30]. While breast cancer screening saves lives, 

it has limitations such as high costs, lengthy procedures, 

false positives, and human error. Furthermore, existing 

imaging methods have certain limitations [31]. For 

instance, up to 35% of breast cancers can be missed during 

mammography screening, often due to factors such as 

dense breast tissue or overlying breast tissue. This can 

result in interval cancers that are detected between regular 

screenings [32]. Hence, advanced technologies are 

necessary to improve accuracy, efficiency, and eventually, 

patient experience. Advancements in AI and automatic 

diagnostic systems are transforming the field of breast 

cancer screening. These systems act as powerful assistants 

to physicians, employing advanced learning and analysis to 

improve accuracy and efficiency. By detecting subtle 

patterns that may be missed by the human eye, they can 

reduce the number of false positives and provide more 

precise initial assessments. In the end, this supports better 

decision-making for patient care [33].  
Computer-aided diagnostic (CAD) systems powered by 

Artificial Intelligence (AI) are being developed to detect 

breast cancer. Studies show that using these systems can 

lead to a significant increase of 7.62% in detection rates 

with minimal impact on recall rates, which increased by 

only 0.93%. By using advanced imaging analysis, these 

systems help to improve the accuracy and efficiency of 

diagnosis and could potentially result in reduced mortality 

and morbidity rates associated with breast cancer [34 – 36]. 

Traditional machine learning methods have proved to be an 

essential tool in advancing the field of breast cancer 

detection through the development of CAD systems using 

mammograms. These systems assist radiologists by 

automatically identifying and segmenting suspicious 

regions, including masses and calcifications [37]. For 

example, early breast cancer detection in mammograms 

utilises various segmentation and classification techniques. 

These techniques range from analysing the entire image 

(non-segmentation) to segmenting the breast tissue based 

on its distance from the skin. More precise segmentations 

can be obtained using advanced methods such as Fuzzy C-

Means, Fractal Analysis, and Statistical Analysis. After 

segmenting the tissue, its shape and texture are analysed to 

extract features. Finally, a Bayesian framework combining 

k-Nearest Neighbours and C4.5 decision trees is used to 

classify tissue. This study shows that Breast segmentation 

using internal information improves cancer detection. The 

results demonstrated that the fuzzy C-Means technique 

significantly enhances breast cancer detection, achieving 

an accuracy of 82% compared to the 62% accuracy of non-

segmentation methods, highlighting the importance of this 

initial step in improving breast cancer detection [38].  

Furthermore, a technique using the Contourlet transform, 

a combination of Laplacian Pyramidal and Steerable 
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Gaussian Filters, was proposed to detect architectural 

distortions in mammograms. This approach aimed to 

analyse textural features through an Artificial Neural 

Network (ANN) for classification. However, despite its 

innovative design, the system generated a high number of 

false positives (1255 out of 1502 regions flagged), 

emphasizing the need for further development to improve 

accuracy [39]. Moreover, a breast cancer identification 

system utilises image processing techniques and neural 

networks to distinguish between benign and malignant 

tumours in mammograms. The system works in stages: 

first, image processing techniques including grayscale 

conversion, intensity adjustment, and filtering enhance 

tumour visibility. Then, segmentation methods 

incorporating thresholding and morphological operations 

isolate the tumour region. Next, feature extraction analyses 

the segmented area using the Gray-Level Co-occurrence 

Matrix (GLCM) to capture texture and by directly 

measuring properties like asymmetry and roundness to 

capture shape. Finally, a neural network classifier, trained 

on these extracted features, distinguishes between benign 

and malignant tumours with an impressive 92% 

identification rate, indicating the effectiveness of this 

combined image processing and neural network approach 

[40]. Nevertheless, these techniques rely heavily on hand-

crafted features, such as morphological, topological, and 

textural descriptors. This dependence makes them 

challenging to develop and highly sensitive to the quality 

of the selected features. 

While these conventional techniques were valuable, 

especially when dealing with limited annotated data, there 

has been a significant idea towards deep learning. Deep 

learning offers a powerful alternative by automating feature 

extraction directly from raw mammogram images. This 

eliminates manual feature engineering, allowing the model 

to identify and learn effective features automatically. This 

shift shows a major advancement in enhancing breast 

cancer detection through mammography, possibly leading 

to improved performance metrics such as accuracy, 

sensitivity, and specificity. For instance, a novel approach 

for breast cancer detection in mammograms using 

convolutional neural networks (CNNs) for feature 

extraction was introduced in [32]. In this approach, the 

most informative features are selected from multiple pre-

trained CNN models and used to train various machine 

learning algorithms including neural networks (NN) and 

support vector machines (SVMs). The experimental results 

of this method achieved remarkable accuracy (92-96%) 

across three datasets (RSNA, MIAS, and DDSM), 

highlighting its effectiveness and potential to outperform 

other methods in breast cancer detection [41]. In [42], a 

deep-learning methodology for breast cancer detection in 

mammograms is presented. This approach segments the 

breast tissue using a modified U-Net model and then 

classifies the isolated region as benign or malignant using 

several CNN architectures such as InceptionV3. This 

approach employs data augmentation and transfer learning 

techniques to address the challenge of limited data used in 

this study. Additionally, both CC and MLO views were 

used to improve the accuracy. This approach achieved 

notable results, particularly on the DDSM dataset, with 

99% accuracy and under 1.2 seconds processing time [42]. 

In [43], a deep learning method employing CNNs is used 

to analyse mammogram and tomosynthesis images for 

breast cancer detection. Over 3,000 images with confirmed 

pathology results are utilised to develop CNN models. The 

validation results showed promising accuracy, suggesting 

CNNs' potential for automatic breast cancer detection in 

mammograms and tomosynthesis [43].  

Moreover, a Breast Mass Classification (BMC) system, 

combining deep learning and ensemble learning has been 

introduced for breast mass classification in mammograms. 

This system integrates k-means clustering, Long Short-

Term Memory (LSTM) networks, Convolutional Neural 

Networks (CNNs), Random Forest, and Boosting 

techniques. By segmenting mammograms and extracting 

features through LSTM, CNNs, and pre-trained CNN 

models, the system achieves high accuracy (over 95%) and 

strong generalisability across datasets [44]. In [45], a deep 

learning model employing transfer learning is proposed for 

breast cancer detection and classification. Pre-trained 

CNNs such as Inception V3 are improved to analyse 

mammograms. Data preprocessing, segmentation, and 

augmentation techniques prepare the images. The model 

achieves excellent performance with an overall accuracy 

exceeding 98%, demonstrating its effectiveness in 

identifying breast cancer from mammograms [45]. In [46], 

a Fully Connected Layer First CNN (FCLF-CNN) 

technique is proposed to address the limitations of 

traditional CNNs on structured data. It places fully 

connected layers before convolutions, acting as encoders to 

transform raw data into localized representations. This 

structure significantly improves classification 

performance, as shown by its remarkable accuracy (over 

98%) and sensitivity/specificity on two breast cancer 

datasets, namely, the Wisconsin Diagnostic Breast Cancer 

(WDBC) database and the Wisconsin Breast Cancer 

Database (WBCD), outperforming both multi-layer 

perceptron (MLP) and pure CNNs [46]. 

Additionally, a deep learning framework applying a dual-

path CNN is proposed for breast mass segmentation and 

diagnosis in mammography simultaneously. This dual 

approach employs the Locality Preserving Learner (LPL) 

to extract image features for classification, while the 

Conditional Graph Learner (CGL) focuses on pixel-wise 

relationships for segmentation. By combining these learned 

features, the method achieves superior performance in both 

tasks, surpassing other methods on benchmark datasets 

with segmentation accuracies of 92.27% (DDSM) and 

93.69% (INbreast), alongside strong classification results 
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[47]. In [48], researchers propose a Shallow-Deep CNN 

(SD-CNN) to improve breast cancer diagnosis. This dual-

CNN approach utilises a shallow CNN to create virtual 

images from standard mammograms and a deep CNN to 

analyse these alongside the originals for better feature 

extraction. By combining information from both standard 

and enhanced imaging, the SD-CNN achieves an accuracy 

of 89% and an AUC of 91%, significantly outperforming 

the analysis of mammograms alone (accuracy: 85%, AUC: 

84%). This suggests the SD-CNN effectively uses 

additional imaging data to improve diagnostic accuracy. 

Recently, researchers introduced a new method using 

Deep Convolutional Generative Adversarial Networks 

(DCGANs) that aims to create synthetic mammograms 

identical to real ones to improve breast cancer detection. 

Researchers evaluated the technique by having radiologists 

assess image authenticity, revealing a significant gap 

between real and synthetic images. This highlights the need 

for further development in DCGANs to ensure synthetic 

mammograms can be reliably used for medical diagnosis 

[49]. In [50], a new approach employing radiomics and 

deep learning techniques for breast cancer diagnosis with 

multiparametric mammography is presented. This 

methodology employed adaptive filtering and data 

augmentation for robust model training. A novel Chaotic 

Leader Selective Filler Swarm Optimization (cLSFSO) 

extracts textural features to locate suspicious lesions, while 

modified deep learning models (VGGNet and SE-

ResNet152) with transfer learning classify normal from 

concerning regions. Hybrid models incorporating CNNs, 

Long Short-Term Memory (LSTM) networks, and SVMs 

further enhance diagnosis and grading. Finally, Grad-CAM 

techniques highlight crucial areas within mammograms, 

improving interpretability and accuracy. These 

advancements achieved a sensitivity result of 99% and an 

AUC of 99% [50].  

Deep learning algorithms have also allowed for advances 

in the use of multi-view mammography in breast cancer 

diagnosis, offering a novel approach to diagnosis. Multi-

view learning utilises multiple views of the same data, where 

each view represents a different subset of features or a 

different representation of the data. The main idea is that 

combining these views can result in a broader insight and 

better performance than using a single view alone. A 

comprehensive overview of the current literature on multi-

view information fusion in mammograms is provided in 

reference [51], which provides an in-depth discussion on 

the application of multi-view information fusion (MVIF) 

within the framework of computer-aided diagnosis (CAD) 

for breast cancer. It elaborates on how screening 

mammography, which provides two views of each breast 

(MLO and CC), benefits from MVIF to enhance diagnostic 

accuracy. The paper categorises MVIF methods into 

detection, classification, and content-based mammogram 

retrieval (CBMR), with each category further subdivided 

into various approaches based on how they utilize the 

information from different views. The review highlights the 

advantages of combining these views to reduce false 

positives and improve detection and classification rates, 

ultimately aiding radiologists in decision-making [51]. In 

[52], the Anatomy-Aware Graph Convolutional Network 

(AGN) method, was designed for mammography mass 

detection with multi-view reasoning capabilities. The AGN 

process involves three key steps. First, the AGN employs a 

Bipartite Graph Convolutional Network (BGN) to model 

the relationships of ipsilateral views. Second, an Inception 

Graph Convolutional Network (IGN) captures the 

structural similarities of bilateral views, aiding in lesion 

detection. Finally, AGN distributes multi-view information 

across its network, enhancing feature analysis for multi-

view reasoning. Benchmark tests confirm AGN's 

considerable improvements in detection capabilities [52]. 

The researchers in [53] developed a Multi-View Feature 

Fusion (MVFF) based Computer-Aided Diagnosis (CADx) 

system using deep learning to classify mammograms. This 

system processes four different mammogram views 

through Convolutional Neural Networks (CNNs) to extract 

features. These features are then combined into a single 

predictive layer to enhance classification accuracy. The 

system is trained on augmented data from public datasets 

like CBIS-DDSM and mini-MIAS, showing improved 

performance over single-view systems in detecting normal 

vs. abnormal, mass vs. calcification, and malignant vs. 

benign classifications. This multi-view approach uses 

complementary information, achieving superior 

performance (AUC of 93.2% for mass/calcification, 84% 

for malignant/benign, and 93% for normal/abnormal) 

compared to single-view systems, highlighting its potential 

for improving mammogram classification accuracy. Also, 

an automated deep learning-based analysis of unregistered 

multi-view mammograms is introduced to assess breast 

cancer risk. It uses deep learning models, initially trained 

on large, non-medical image datasets through transfer 

learning and subsequently fine-tuned on mammogram data. 

This method analyses MLO and CC views and their lesion 

segmentation maps holistically, rather than focusing on 

individual lesions. The approach utilises defined and 

automatically generated segmentation maps, enhancing 

flexibility and effectiveness [54]. A breast cancer diagnosis 

technique using an EfficientNet-based convolutional 

network trained end-to-end on two-view mammograms 

incorporates three stages of transfer learning. It starts with 

a patch classifier developed from a model trained on natural 

images, progresses to a single-view whole-image classifier, 

and culminates in a two-view classifier integrating both 

mammographic views. This technique achieves high 

diagnostic effectiveness accuracy, with an AUC of up to 

93.44%, proving its effectiveness in breast cancer 

detection. 
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Ref Aspect Medical Application Data Type Detail Benefits 

[57] Data Integration Cancer Diagnosis Clinical and Genetic 

Markers 

Integrates clinical factors with gene 

markers for cancer diagnosis, 

handling diverse data types. 

Enhances diagnostic 

accuracy by utilising richer 

data analyses. 

[58] Repeated 

Measures 

Rectal Cancer 

Monitoring 

MRI Data Adapts MoEs for MRI data in rectal 

cancer monitoring via perfusion MRI. 

Allows dynamic modeling 

of disease progression, 

adjusting to changes over 

time. 

[59] Improved 

Diagnostic 

Accuracy 

Breast Cancer Clinical Records Uses MoEs in breast cancer diagnosis, 

achieving higher accuracy rates 

compared to standalone models. 

Increases the reliability of 

diagnostic outcomes, 

supporting better clinical 

decisions. 

[60] Prognostic 

Modeling 

Cancer Treatment 

Response 

(understanding how 

different proteins and 

genetic markers affect 

survival outcomes 

among breast cancer 

patients) 

survival times and 

protein expression levels 

from breast cancer 

patients 

A Bayesian approach is used to 

enforce sparsity on regression 

coefficients, pinpointing key factors 

for each sub-group. The mixture 

model allows modeling of data from 

multiple, unknown sub-groups with 

distinct survival characteristics.  

The study's benefits include 

improved sub-group 

identification, precise 

feature selection, potential 

for personalized medicine, 

and a robust model capable 

of handling complex 

survival data through a 

Bayesian mixture-of-experts 

framework. 

[61] Identify hidden 

subgroups and 

assess liver 

stiffness in 

patients, 

potentially 

indicating liver 

cirrhosis. 

Identifying liver 

cirrhosis by non-

invasively measuring 

liver stiffness using 

transient elastography 

(Fibroscan). 

liver stiffness 

measurements from 228 

HBsAg-positive patients, 

were collected using the 

Fibroscan system over 

six months. 

MoEs to process input data (liver 

stiffness measurements), using the 

expectation-maximization algorithm 

for effective training and 

classification of patient data into 

subgroups indicative of liver health 

statuses. 

improved diagnostic 

accuracy for liver cirrhosis, 

providing a non-invasive 

and rapid method for 

medical professionals to 

assess liver fibrosis and 

cirrhosis, which is crucial 

for timely and effective 

patient management. 

[62] Classify 3D 

optical 

coherence 

tomography 

(OCT) images 

Automatic diagnosis of 

retinal diseases 

Optical coherence 

tomography (OCT) 

images 

Wavelet-based Convolutional 

Mixture of Experts (WCME) model 

combines wavelet-based feature 

extraction with CNNs in a MoEs 

framework to classify OCT images 

using high-level features and spatial-

frequency information, achieving 

high precision and accuracy without 

needing manual retinal layer 

segmentation. 

The WCME model 

significantly enhances the 

diagnosis of macular 

diseases.  

[63] A decision tree-

based ensemble 

model using a 

mixture of 

discriminative 

experts 

optimized with 

the Epistocracy 

algorithm for 

classifying 

COVID-19 

infections 

Diagnosis of COVID-

19. 

chest X-ray imaging EpistoNet uses two mixtures of 

discriminative experts, trained on 

similar X-ray image clusters and 

optimized with the Epistocracy 

algorithm, enhancing accuracy and 

adapting the model architecture and 

hyperparameters effectively. 

Increased Diagnostic 

Accuracy. 

TABLE I 

SUMMARY OF MIXTURE OF EXPERTS (MOES) APPLICATIONS AND THEIR BENEFITS ACROSS VARIOUS MEDICAL CONTEXTS  
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Together, these studies show that a multi-view approach 

can involve multiple models, each trained on different 

views or a single model that combines several views into 

its design. In this context, ensemble methods such as co-

training, where two models are trained at the same time on 

different viewpoints and teach each other are common.  

    Another aspect of multi-view analysis highlighting the 

power of ensemble and composite approaches in supervised 

machine learning is the Mixture of Experts (MoEs) 

technique. This technique consists of multiple separate 

networks, each specialised in managing a subset of the full 

training dataset [56]. Several studies show that MoEs 

models play a key role in advancing personalised medicine 

and medical diagnostics by efficiently processing various 

data types like genetic markers, clinical data, and images. 

These models enhance diagnostic precision and treatment 

results in areas such as oncology and neurology. MoEs 

support real-time disease monitoring and customised 

treatment modifications, significantly improving individual 

patient care [57 – 63]. Table I details their wide-ranging 

applications and benefits across different medical fields 

and data types.  

    Advanced techniques such as ensemble models 

contribute to the robustness and accuracy of disease 

diagnosis systems. One of the potentials of these advanced 

techniques is to assist clinical professionals by offering a 

promising tool for mammography interpretation, which can 

represent a reliable second opinion and support complex 

diagnostic decisions. Looking forward, advancements in 

the field could be driven by developing further innovations, 

incorporating larger, more diverse datasets, and introducing 

real-time adaptive learning models. These innovations 

could continuously refine diagnostic capabilities and adapt 

to new challenges in breast cancer detection. In this vein, 

our research explores the application of MoEs for breast 

cancer diagnosis in mammograms. 

   MoEs use a divide-and-conquer strategy, employing a 

collection of expert networks. Each network within the 

MoEs ensemble specialises in handling specific aspects of 

the data. This allows the model to become more complex 

and adaptable without a corresponding increase in 

computational demands during inference. Only a subset of 

the experts is activated for a given input, promoting 

efficient resource allocation. While there are currently 

limited direct references to MoEs being used for breast 

cancer diagnosis through mammograms, the inherent 

flexibility and capacity for detail-specific processing make 

MoEs a promising solution for such complicated tasks. Our 

research aims to address this gap by investigating the 

potential of MoEs in this domain. We propose to integrate 

MoEs with EfficientNet features, known for their state-of-

the-art performance in image classification. EfficientNet 

applies depth-wise separable convolutions, which 

contribute to model efficiency and facilitate compound 

scaling [64].  

By integrating the adaptability of MoEs with the robust 

capabilities of EfficientNet, we aim to develop a novel 

method for diagnosing breast cancer in mammograms. This 

innovative hybrid approach, termed MoEffNet, 

distinguishes itself by efficiently extracting and processing 

features across multiple levels of abstraction. MoEffNet 

analyses low-level features for basic patterns, mid-level 

features for detailed analyses, and high-level features for 

complex content, assigning these features to specialised 

expert networks to optimise diagnostic precision. 

Additionally, MoEffNet incorporates a dynamic gating 

mechanism, named EffiGate, which evaluates the relevance 

of each expert network based on specific mammographic 

data characteristics, thereby enhancing diagnostic 

accuracy. These attributes allow MoEffNet to achieve high-

performance breast diagnosis accuracy, as validated across 

diverse mammogram datasets. Our key contributions to the 

field include: 

1. Investigating the application of MoEs for breast 

cancer classification in mammograms: This research 

explores the potential of MoEs for this specific task, 

potentially paving the way for further exploration 

within the medical imaging domain. 

2. Integrating MoEs with EfficientNet features: This 

integration uses the adaptability of MoEs and the 

robust feature extraction capabilities of 

EfficientNet, taking advantage of the strengths of 

both methodologies. 

3. Optimised MoEs with EfficientNet features for 

mammogram diagnosis: Our work examines the 

impact of hyperparameters (number of experts, 

network architecture) on the MoEs performance 

when combined with EfficientNet feature 

extraction. 

4. Achieving Superior Diagnostic Accuracy Across 

Multiple Datasets: MoEffNet achieves high 

accuracy in breast cancer diagnosis, validated 

through rigorous testing on three distinct 

mammographic datasets (MIAS, CBIS-DDSM, and 

INbreast). The model demonstrates AUC values of 

99.2% for MIAS, 99.5% for CBIS-DDSM, and 

99.7% for INbreast, significantly outperforming 

existing methods and establishing a new technique 

in automated mammogram analysis. 

 

The remainder of the paper proceeds as follows: Section 

III is devoted to descriptions of the proposed method. 

Section IV is dedicated to a description of the performed 

experimental study. Finally, section V draws some 

conclusions from this study. 

 

III.  PROPOSED METHOD 

    This section details the MoEffNet methodology, an 

innovative approach for the diagnosing of breast cancer. As 

illustrated in Figure 1, MoEffNet integrates a CNN 
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architecture with a dynamic gating mechanism.  This 

combination is designed to enhance the accuracy and 

efficiency of breast cancer detection from mammographic 

images. This developed methodology adopts a hybrid 

strategy, employing EfficientNet for its robust capability to 

extract features across multiple levels of abstraction. It is 

integrated with a Mixture of Experts (MoEs) framework, 

wherein each expert is adapted to process distinct subsets 

of features extracted from one or more intermediate layers 

of EfficientNet to capture different scales and complexities 

of the image data. The decision-making process is guided 

by an advanced gating network, named "EffiGate." This 

network adjusts how much influence each expert has, 

effectively combining their insights to produce a precise 

and consistent diagnostic result. This ensures that the final 

output is accurate and fits the specific examined features. 

The design of this system is aimed at optimising diagnostic 

accuracy by utilising the extensive depth of feature 

extraction provided by EfficientNet, coupled with the 

specialised analytical capabilities of the multiple expert 

networks. The methodology ensures an advanced, accurate, 

and reliable diagnostic process that utilises deep and expert 

computational insights. The following subsections provide 

a detailed description of the methods and techniques 

employed in the proposed approach MoEffNet.  

A. ADVANCED FEATURE EXTRACTION USING 
EFFICIENTNET 

As depicted in Figure 1, MoEffNet utilises the EfficientNet 

architecture for its powerful ability to extract features at 

various levels of abstraction. The EfficientNet series 

encompasses a collection of CNN models designed for 

enhanced accuracy and efficiency. These models were 

developed through a broad analysis of model scaling, 

focusing on three key dimensions: the depth, width, and 

resolution of the networks [64]. The key novelty of the 

EfficientNet architecture lies in its use of a multiple 

coefficient to scale the network's width, depth, and 

resolution uniformly and systematically, rather than 

adjusting them independently. This multiple scaling 

technique enhances effectiveness by preserving a balanced 

proportion among all dimensions, which is essential for 

achieving higher accuracy without sacrificing the 

computational cost. EfficientNets are derived from a 

baseline model crafted through neural architecture search, 

which optimises for both accuracy and computational 

efficiency. This baseline model is scaled up, resulting in a 

series of models from EfficientNet B0 to EfficientNet B7 

each offering different levels of accuracy and efficiency. 

These models consistently outperform previous ConvNet 

architectures like ResNet and MobileNet, achieving state-

of-the-art accuracy on benchmarks such as ImageNet and 

other datasets. Notably, EfficientNet B7 reaches a top 1 

accuracy of 84.4% on ImageNet, while being considerably 

smaller and faster than other top-performing networks like 

GPipe. 

     EfficientNet models are formed in blocks, each capable 

of capturing features at varying levels of abstraction. The 

fundamental component of EfficientNet-B0, the mobile 

inverted bottleneck MBConv layer, is illustrated in Figure 

2. All eight models of the EfficientNet series (B0 - B7) 

incorporate these common blocks, though each model 

introduces slight variations and increasing complexities in 

their architectural designs [65, 66]. 

     Given its exceptional balance between high accuracy 

and computational efficiency, EfficientNet was selected as 

the feature extraction backbone of our proposed MoEffNet. 

Its proven capability to outperform previous ConvNet 

architectures with fewer parameters and reduced 

FIGURE 1. Overview of the Proposed MoEffNet Architecture: Integrating EfficientNet for Multi-Level Feature Extraction and Mixture of 
Experts (MoEs) for Adaptive Breast Cancer Classification. 
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computational load makes it an ideal choice for achieving 

state-of-the-art results without suffering high 

computational costs. The scalable design of EfficientNet, 

ranging from B0 to B7 models, also allows for adapted 

formations to match the specific needs of our research 

framework.  

B. INTERMEDIATE LAYER SELECTION  

    As described above, EfficientNet is a scalable deep-

learning model structured as a series of sequential blocks. 

Each block is designed to process image features with 

progressively greater complexity and abstraction. This 

hierarchical structure is particularly effective in medical 

imaging applications, such as mammograms, where 

distinguishing between benign and malignant features is 

crucial for precise diagnoses. MoEffNet applies a Mixture 

of Experts (MoEs) model, where each expert is designed to 

process specific subsets of features extracted from one or 

more intermediate layers of EfficientNet. The features 

extracted from EfficientNet models, as CNN-based pre-

trained architectures, can be categorised as follows:  

 

a) Low-level features: Typically captured in the initial 

layers, these are essential for identifying simple 

patterns and textures. In breast cancer diagnosis 

using mammograms, we believe that the initial 

layers of an EfficientNet are crucial for detecting 

low-level features. These features, which include 

fundamental elements such as edges, lines, and 

simple textures, are essential in analysing 

mammograms. They enable the identification of 

basic outlines and contours of breast tissues, which 

are critical for accurate diagnosis.  

b) Mid-level features: Captured in middle layers, these 

features focus on shapes and specific parts of the 

input. These layers may identify more complex 

shapes and specific regions within the input image, 

such as masses or calcifications in mammograms. 

They serve as middle features, connecting the basic 

textural elements detected by the lower-level layers 

with the more abstract features recognised in the 

deeper layers.  

c) High-level features: Extracted from the deeper 

layers, representing complex content such as 

objects. Generally, they may illustrate entire objects 

or complex configurations within the images, 

providing a comprehensive perspective that could be 

necessary for determining the final diagnostic 

decisions. 

 

   In the MoEffNet architecture, the integration of features 

extracted from the EfficientNet model plays a key role in 

enhancing efficiency and performance. Within the 

MoEffNet system, features are gathered from various 

stages - early, middle, and late layers - of a single 

EfficientNet model. This approach ensures a 

comprehensive representation across a diverse set of 

feature maps, which are critical for acquiring different 

levels of image complexity. Once extracted, these features 

are allocated to experts in the MoEffNet ensemble, which 

includes varying numbers of experts, typically ranging 

from two to four. Each expert is explicitly adapted to handle 

features based on their complexity and abstraction level. 

For example, experts, such as Expert 1, typically process 

low-level features to identify basic patterns. Mid-level 

features are assigned to Experts 1 and 2, to conduct more 

detailed analyses. High-level features are directed to other 

experts (such as experts 3 and 4) capable of interpreting 

more complex content, including entire objects. 

    The structured distribution of tasks within the MoEffNet 

system allows each expert to focus on definite types of 

features, enhancing the system’s adaptability and capability 

to generalise. Each expert focuses on different levels of 

image complexity, enabling the ensemble to effectively 

process various image types. This targeted approach 

enhances both the accuracy and robustness of the model, 

making it exceptionally effective in diagnosing breast 

cancer through mammographic imaging.  

C. MIXTURE OF EXPERTS (MoEs) MODEL  

    MoEffNet employs the MoEs model, where each expert 

is proposed to process given subsets of features extracted 

from one or more intermediate layers of EfficientNet. 

Figure 3 presents a graphical representation of the MoEs 

model. As shown in Figure 3 the MoEs is a hierarchical 

machine learning architecture consisting of multiple expert 

networks and a central gating network. This structure can 

be imagined as a tree where the expert networks (labelled 

FIGURE 2. Detailed Architecture of EfficientNet-B0: Depicting Key Blocks and Layers Used for Feature Extraction in MoEffNet [65, 66]. 
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Expert Network 1, Expert Network 2, through Expert 

Network n), placed at the leaves of the tree structure, 

process input vectors individually. Each expert network 

produces an output vector (𝑦𝑖), where 𝑖 = 1, 2, … , 𝑛 denotes 

the number of experts, in response to every input vector 

(𝑥). The output is a probability distribution over the 

number of classes. This distribution reflects the likelihood 

of each class being the correct classification for the given 

input. The output of each expert is thus a vector of 

probabilities where each component of the vector 

(corresponding to a class) represents the confidence level 

of the input belonging to that class.  

    The gating network highlighted in yellow, plays an 

essential role in integrating the outputs from the expert 

networks. Upon receiving an input vector 𝑥, the gating 

network generates scalar outputs (𝑔𝑖) that form a partition 

of unity across the input space, fundamentally distributing 

the influence among the expert networks based on the 

characteristics of the input. The gating network computes 

and assigns linear combination coefficients, acting as 

probabilistic weights for the outputs of the expert networks. 

These weights determine the relative contribution of each 

expert network’s output to the final decision. Accordingly, 

the final output of the architecture is a convex weighted 

sum of all the output vectors from the expert networks. 

    Suppose that there are 𝑛 expert networks in the MoEs 

architecture. The 𝑖𝑡ℎ expert network produces its output 

𝑦𝑖(𝑥) as a generalised linear function of the input 𝑥 such 

that. 

𝑦𝑖(𝑥) = 𝑓(𝑊𝑖𝑥) (1) 

Here 𝑊𝑖 is a weight matrix and 𝑓(. ) is usually considered 

the logistic function or the identity function. The gating 

network operates as a generalised function, where its 𝑖 − 𝑡ℎ 

output 𝑔𝑖 is determined by applying a multinomial logit, or 

softmax function, to an intermediate variable 𝜉𝑖 [56, 67 – 

68].  

𝑔𝑖(𝑥, 𝑣𝑖) = 
𝑒𝜉𝑖

∑ 𝑒𝜉𝑘𝑛
𝑘=1

 (2) 

   Here 𝜉𝑖 =  𝑣𝑖
𝑇𝑥 and 𝑣𝑖 represents a weight vector. The 

overall output 𝑌(𝑋) can be represented as follows:  

𝑌(𝑋) =  ∑ 𝑔(𝑥, 𝑣𝑖)𝑦𝑖(𝑥)𝑛
𝑖=1  (3) 

𝑌(𝑋) =  ∑ 𝑔𝑖(𝑋)𝑦𝑖(𝑋)𝑛
𝑖=1  (4) 

This structure allows the gating network to output a set of 

probabilities that sum to one, making it suitable for 

conducting classification tasks where decisions are 

distributed across multiple categories.  

  ∑ 𝑔𝑖(𝑋) = 1 (5) 

D. CUSTOM EXPERT LAYER 

The MoEffNet algorithm utilises the power of multiple 

expert networks, each designed to focus on different feature 

levels of the input data, thus enhancing the model's ability 

to handle complex and varied datasets efficiently. This 

capability is developed through the custom expert layer 

within our proposed method. The custom expert layer is 

fundamental to defining and adapting the layers for each 

expert within the ensemble. Each expert network is 

constructed using a sequence of neural network layers 

designed to improve performance for the kind of data it 

focuses on. These layers include dense layers with ReLU 

activation to introduce non-linearity and enable learning of 

complex patterns, followed by dropout layers that 

randomly deactivate a portion of neurons (specified by a 

dropout rate, of 30%) during training [69]. This prevents 

the network from becoming overly dependent on any single 

or small group of neurons, thereby reducing the risk of 

overfitting, and enhancing the model’s ability to generalise 

FIGURE 3. Graphical Representation of the Mixture of Experts (MoEs) Model: Showing the Integration of Expert Networks and the Gating 
Mechanism for Enhanced Diagnostic Accuracy [47]. 
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to new, unseen data. Additionally, L2 regularisation is 

applied to the weights of the dense layers, penalising large 

values which helps keep the model simpler and further 

guards against overfitting. The outputs from these experts 

are then collected using the gating mechanism's weights to 

produce a final, weighted output. 

E. EFFIGATE GATING NETWORK 

    The decision-making process in MoEffNet is guided by 

an advanced gating network, known as EffiGate. This 

mechanism dynamically evaluates the contribution of each 

expert network within the ensemble, utilising features 

extracted from mammogram input images via an 

EfficientNet model. By doing so, EffiGate ensures that the 

most relevant and effective experts are selected, based on 

the input data's unique characteristics. EffiGate contains 

two main components that define its functionality within 

MoEffNet. The first component includes the input features, 

sourced from an EfficientNet model known for its 

effectiveness in handling image data, particularly in 

medical imaging contexts like mammograms. These 

features, which are high-level abstractions of the input data, 

are rich in detail and critical for subsequent processing.  

  The second component is the dense layer, which is 

configured as a fully connected neural network layer with 

units equal to the number of expert networks in the 

ensemble. Each unit in this dense layer outputs a score 

indicating the significance of each expert's network relative 

to the current input features. These scores are then 

processed through a SoftMax activation function, which 

converts them into normalised gating weights. These 

weights represent probabilities that measure the confidence 

or expected efficiency of each expert's contribution to the 

final decision-making process. The SoftMax ensures that 

these gating weights are non-negative and sum to one, 

making them interpretable as the likelihood of each 

expert’s relevance to the specific input. This gating 

mechanism acts dynamically, continuously adjusting the 

weights of the various expert models based on the input 

data processed by EfficientNet, thus adjusting MoEffNet's 

response to diverse diagnostic scenarios. 

 
IV. EXPERIMENTAL STUDY 

   This section presents the validation of the proposed 

method, MoEffNet, utilising three distinct datasets: MIAS 

(Mammographic Image Analysis Society database), CBIS-

DDSM (Curated Breast Imaging Subset of the Digital 

Database for Screening Mammography), and INbreast. 

Each dataset was chosen to highlight different 

characteristics and capabilities of our methodology under 

varying conditions. Detailed descriptions of the datasets 

and the experimental setup are provided below: 

 

 

A. DATASETS   

Three diverse datasets, each with unique strengths, form the 

foundation of our study. These datasets encompass a wide 

range of mammographic cases with high-quality annotations, 

serving as the critical training and testing ground for our novel 

breast cancer diagnosis method MoEffNet.  

 

a) Mammographic Image Analysis Society (MIAS) 

Database:  

The MIAS database is one of the oldest and most widely 

utilized mammographic databases in breast cancer research. 

Developed by a consortium of UK-based research groups, 

MIAS provides a platform for the evaluation of computer-

aided diagnosis (CAD) systems. The database includes 322 

images across 161 cases, each annotated with details of the 

lesions present, including location and type. This dataset 

comprises 68 benign, 151 malignant, and 203 normal images, 

each with a resolution of 1024 x 1024 pixels in PGM format. 

The database exclusively contains MLO views from both the 

left and right breasts. The mammographic images in this 

collection were digitised using a high-precision scanning 

micro densitometer, achieving a resolution of 50𝜇𝑚 𝑥 50𝜇𝑚 

with each pixel represented at an 8-bit depth. For enhanced 

usability, the original MIAS database images have been 

downscaled to a resolution of 200𝜇𝑚 per pixel, as 

documented in references [70, 71]. This database has been 

instrumental in developing and validating algorithms for 

detecting and diagnosing breast cancer, ensuring consistency 

(c) 

(b) 

(a) 

FIGURE 4. Representative Samples from the MIAS Mammogram 
Dataset: Illustrating (a) Normal, (b) Benign, and (c) Malignant 
Cases Used for Training and Evaluation. 
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across different studies. Figure 4 presents examples from the 

MIAS dataset. 

 

b) Curated Breast Imaging Subset of DDSM (CBIS-

DDSM) 

The CBIS-DDSM is a refined and standardized version of the 

Digital Database for Screening Mammography (DDSM) [10, 

72]. It includes full-field digital mammographic images 

formatted in DICOM, offering decompressed images, data 

selection by trained mammographers, updated mass 

segmentation, and formatted similarly to modern computer 

vision data sets. This dataset includes 1,644 cases divided into 

four main categories: Benign Calcification, Benign Mass, 

Malignant Calcification, and Malignant Mass, with 753 cases 

of calcifications and 891 instances of masses. Our analysis 

focused exclusively on mass cases, comprising a benign 

training set of 355 cases, a benign testing set of 117 cases, a 

malignant training set of 336 cases, and a malignant testing set 

of 83 cases. Cases containing calcifications have been delayed 

for future investigation to allow a focused study on masses in 

the current research phase. The CBIS-DDSM is critical for our 

research due to its high-quality images and diverse case 

presentations, enabling the development of robust CAD 

algorithms. Figure 5 shows examples from the CBIS-DDSM 

mammogram dataset. 

c) INbreast Database 

The INbreast dataset is a more recent addition to the available 

mammographic databases and is noted for its high-resolution 

full-field digital mammography images [73]. Compiled at the 

Centro Hospitalar de S. João in Porto, Portugal, the dataset 

includes 410 images from 115 cases. It features a variety of 

mammographic findings such as masses, calcifications, and 

architectural distortions, all annotated with calcifications, 

asymmetries, and distortions. Specialists accurately outline 

each lesion, and the annotations are provided in XML format, 

enhancing the dataset's utility for precise algorithm 

development. This level of detail supports advanced 

algorithmic development and validation, particularly in the 

accurate detection and classification of subtle mammographic 

features. The INbreast dataset's comprehensive and detailed 

annotations make it an invaluable resource for enhancing the 

diagnostic accuracy of CAD systems. Figure 6 presents 

illustrative images from the INbreast dataset. 

B. DATA PROCESSING   

     In the pre-processing stage of our study, we employed 

various data augmentation techniques to enhance the 

robustness and generalizability of our deep learning model for 

breast cancer classification. Given the sensitive variations in 

mammogram appearance, which can arise from patient 

positioning and acquisition angles, we introduce controlled 

variability in the training data to enable the model to recognise 

features consistently across different images. Specifically, all 

images are resized to a uniform resolution of 224x224 pixels 

to ensure that the Convolutional Neural Network (CNN) 

processes standardized inputs. This standardization allows the 

network to effectively apply its filters and kernels during 

feature extraction. To resize the original mammogram images, 

we employed TensorFlow's image resizing capabilities. The 

process involved the following key steps: 

 

(a) Aspect Ratio Preservation: We ensured the original 

proportions of the mammogram were maintained during the 

resizing process to prevent any distortion of the image content. 

 

(a) (b) 

(c) (d) 

FIGURE 5. Sample Images from the CBIS-DDSM Dataset: Comparison 
of Full and Cropped Mammograms for Malignant (a, c) and Benign (b, d) 

Masses. 

 

(a) 

(b) 

FIGURE 6. Illustrative Images from the INbreast Dataset: (a) 
Craniocaudal (CC) and (b) Mediolateral Oblique (MLO) Views of Both 
Breasts Demonstrating the Diversity of Mammographic 
Presentations in the Dataset. 
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(b) Interpolation Method: Bilinear interpolation was chosen as 

the resizing method. This approach calculates the new pixel 

values by taking a weighted average of the four nearest pixels 

in the original image, resulting in smooth transitions and 

preserving the image quality, which is crucial for retaining the 

critical features in medical images. 

 

(c) Padding to Match Target Size: After resizing the images 

while maintaining their aspect ratio, the resulting images 

might not exactly match the target size of 224x224 pixels. To 

address this, we ensured the final output image was exactly 

224x224 pixels by symmetrically adding padding if the 

resized image was smaller than the target size or cropping if it 

exceeded the target size. Zero-padding was used, adding black 

pixels to the borders to avoid modifying the original image 

content.  

 

Figure 7 illustrates the mammogram image resizing process 

employed to ensure compatibility with the EfficientNet 

architecture while preserving critical diagnostic details. 

    To enhance the robustness and applicability of the datasets 

employed in this study, we have implemented a series of 

geometric transformations that simulate the realistic variations 

often observed during the acquisition of mammograms. These 

variations include rotations at subtle angles of -10, 0, and 10 

degrees to emulate the slight misalignments that can occur 

during patient positioning. Additionally, we applied 

translations with pixel offsets of (-11, 0, 11) along the 

horizontal and vertical axes, reflecting the potential shifts in 

imaging due to patient movement or equipment handling. 

Furthermore, we adjusted the scale of the images by factors of 

0.9, 1.0, and 1.1, which accounts for the natural fluctuations in 

image size due to variations in the distance between the 

imaging device and the breast tissue. Additional 

augmentations include horizontal flipping to account for 

laterality differences in lesions and minor adjustments to 

contrast and brightness (alpha=1.1 and beta=10 respectively) 

to aid the model in learning features less sensitive to brightness 

variations. These transformations were applied only to the 

training sets to enhance the diversity of the training data, 

improving the model's ability to generalise. The testing sets 

were intentionally left unaltered to provide a consistent and 

reliable metric for evaluating model performance. We tested 

and refined each transformation through multiple trials, 

achieving high-performance settings. This careful testing and 

validation process ensures our datasets are comprehensive and 

effective for training models that produce reliable diagnostic 

results. Through these methods, we expand the training 

dataset, providing a broader range of patterns for the CNN to 

learn from, which is crucial for improving performance on 

unseen mammograms and addressing the challenge of limited 

data availability in medical imaging.  

C. ASSIGNING FEATURES TO EXPERTS 

     In this study, we utilised the MoEffNet architecture to 

extract and assign features from an EfficientNet model to 

enhance performance across varied complexities of image 

data. EfficientNet models are structured with a consistent 

number of building blocks across different variants, but the 

assembly and information of the blocks can vary slightly 

depending on the version. Generally, the EfficientNet 

architecture consists of 7 blocks, followed by a top layer. Each 

of these blocks can have varying numbers of individual layers 

and might use different scaling parameters in terms of width, 

depth, and resolution in the different versions (B0 – B7). The 

EfficientNet architecture series (B0 to B7) employs a 

systematic scaling approach using a compound method to 

adjust network depth, width, and resolution based on a set of 

fixed scaling coefficients. This scaling is directed by the 

formula 𝑑 = 𝛼𝜙 , 𝑤 = 𝛽𝜙 , 𝑟 = 𝛾𝜙, where 𝑑 is the depth, 𝑤 

denotes width, 𝑟  represents resolution, and 𝜙 is a compound 

coefficient that increases progressively across the models from 

B0 to B7. Each subsequent model in the series increases in 

complexity and capability, with more layers.  

    We evaluated four EfficientNet models including 

EfficientNet B0, B1, B2, and B4 in our experiments. Our 

approach involves extracting features from multiple layers of 

the EfficientNet—early, middle, and late—which capture low, 

mid, and high-level features respectively. These are then 

systematically assigned to the experts within our MoEffNet 

ensemble. Depending on the experiment, our ensemble 

included configurations with two, three, and four experts, each 

designed to handle different types of features based on their 

complexity. This method allows for detailed and adaptive 

handling of image features, promoting understanding of image 

complexities among the experts. Table II summarises how 

features from an EfficientNet model are assigned to different 

experts in the MoEffNet system based on the number of 

experts used. For visualisation purposes, figure 8 displays the 

first 16 feature maps extracted from Blocks 3, 5, and 7 of the 

EfficientNet B0 model. These feature maps are arranged in a 

4x4 grid and visualised using the 'jet' colour map to enhance 

contrast and detail. The images used for this visualisation are 

samples of mammogram images from the CBIS-DDSM 

dataset, specifically selected to represent cases with malignant 

and benign conditions. 

 

(a) (b) (c) 

FIGURE 7. Resizing Process for Mammogram Images: (a) Original, 
(b) Aspect Ratio Preserved, and (c) Final Resized 224x224 Image. 
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TABLE II 

DISTRIBUTION OF EFFICIENTNET FEATURES ACROSS MOEFFNET EXPERTS: 

DETAILING LOW, MID, AND HIGH-LEVEL FEATURE ALLOCATION  

Number 

of 

Experts 

 Expert1  Expert2 Expert3 Expert4 

Two 

Experts 

 Low and 

Mid-level 

features 

(Block 3, 

5)  

Mid and 

High-level 

features 

(Blocks 5 and 

7) 

- - 

Three 

Experts 

 Low-level 

features 

(Block 3) 

Mid-level 

features 

(Block 5) 

High-level 

features 

(Block 7) 

- 

Four 

Experts 

 Low-level 

features 

(Block 3) 

Mid-level 

features 

(Block 5) 

High-level 

features 

(Block 7) 

High-level 

features 

(Block 7) 

D. MODEL TRAINING AND EVALUATION 
CONFIGURATION 

In the training configuration of the machine learning models 

in MoEffNet, the Stochastic Gradient Descent (SGD) 

optimiser is used with an initial learning rate of 0.001, chosen 

for its straightforward approach to navigating the optimisation 

landscape. Training involves batches of 32 to optimise 

computation speed and memory utilisation over up to 100 

epochs, allowing the network sufficient learning time. Key 

callbacks include Early Stopping, which halts training if 

there's no improvement in validation loss after 10 epochs to 

prevent overfitting, and ReduceLROnPlateau, which 

decreases the learning rate if no progress is seen after 3 epochs, 

helping the model navigate potential local minima more 

effectively [74]. Furthermore, the model's reliability and 

consistency are evaluated over 20 separate experiment runs, 

using accuracy, specificity, precision, recall, F1-score, area 

under the curve (AUC) of receiver operating characteristics 

(ROC), and Distance from the Ideal Position (DIP) to provide 

a detailed assessment of its classification capabilities across 

different training and testing cycles. Table III displays the 

hyperparameter settings and the options selected for training 

across the various scenarios in our experiments. 

TABLE III 

DETAILED CONFIGURATION OF TRAINING AND EVALUATION PARAMETERS 

FOR MOEFFNET ACROSS DIFFERENT DATASETS   

Hyperparameter/Dataset Value 

 

Classes 

MIAS Normal/Benign/Malignant 

CBIS-DDSM Benign/Malignant 

INbreast Benign/Malignant 

Training 

Configuration 

Optimizer SGD 

 

Learning Rate 0.001 

Batch Size 

 

32 

Epochs 

 

100 

 

 

Callbacks 

Early Stopping Patience 10 

Restore Best Weights True 

ReduceLROnPlateau 

Factor 

0.2 

ReduceLROnPlateau 

Patience 

3 

 

Evaluation 

Metrics 

Runs for Evaluation 20 

Metrics Accuracy, Precision, 

Recall, Specificity, F1-

Score, AUC, and DIP 

E. EVALUATION METRICS   

As described above, we employed several validation metrics 

to examine the efficacy of our method, including accuracy, 

specificity, precision, recall, F1-score, distance from the ideal 

position (DIP). and the area under the curve (AUC) of the 

receiver operating characteristics (ROC). To understand these 

metrics, it is essential first to define the components they are 

calculated from: TP (True Positives), TN (True Negatives), FP 

Block7 

features 

Block5 

features 

Block3 

features 

Original 

Mammogram 

image 

(a) (b) 

FIGURE 8.  Visualisation of Multi-Level Feature Maps Extracted by 
EfficientNetB0: Detailed Views from Blocks 3, 5, and 7 for (a) 
Malignant and (b) Benign Mammographic Conditions. 
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(False Positives), and FN (False Negatives), which are 

described as follows: 

• TP: True positives are the correctly predicted 

positive cases, which means that the actual class of 

the data point was positive, and the predicted class is 

also positive. 

• FN: False negatives are the cases where the actual 

class is positive, but the predicted class is negative.  

• TN: True negatives are the correctly predicted 

negative cases, which means that the actual class of 

the data point was negative, and the predicted class 

is also negative. 

• FP: False positives are the cases where the actual 

class is negative, but the predicted class is positive.  

 

a) Accuracy: Accuracy measures the overall accuracy of the 

model by computing the ratio of correct predictions (both 

TP and TN) to the total number of predictions made such 

that, 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6) 

b) Specificity: Specificity measures the proportion of actual 

negatives that are correctly identified, which indicates the 

model's ability to identify negative outcomes. It can be 

computed using the following equation: 

  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (7) 

c) Precision: Precision represents the accuracy of positive 

predictions, indicating the ratio of positive identifications 

that were correct such that,  

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

d) Recall or Sensitivity: Recall measures the percentage of 

real positives that are correctly identified, highlighting the 

model's ability to observe all relevant cases such that 

  𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

e) F1-score: The F1-score is a harmonic mean of precision 

and recall that can be calculated using the following 

equation: 

                          𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (10) 

f) Area under the curve (AUC): The AUC is the area under 

the Receiver Operating Characteristics (ROC) curve, 

which plots the true positive rate (Recall) against the false 

positive rate. The AUC measures the entire two-

dimensional area underneath the ROC curve from (0,0) to 

(1,1). A higher AUC indicates a better performing model, 

capable of correctly classifying positive and negative cases 

with high probability. 

g) Distance from the Ideal Position (DIP): The DIP is a 

performance measure used to evaluate an algorithm's 

quality when multiple independent and bounded metrics 

are considered. It can be computed by measuring the 

Euclidean distance from the ideal value, which is 1 for 

each metric for all metrics, normalising this by the number 

of metrics, and then transforming this distance into a score 

that ranges between 0 to 1. The formula for the DIP is:  

                          𝐷𝐼𝑃 = 1 −  
√∑ (1−𝑚𝑖)2𝑁

𝑖=1

√𝑁
                       (11) 

Here 𝑚𝑖 is the value of the i-th metric, and 𝑁 is the number 

of metrics. A higher DIP value indicates better performance, 

with 1 being the best possible score. DIP has been proven to 

be superior to F1 at the higher performance end [75]. 

F. RESULTS  

We conducted several experiments to verify the validity of 

MoEffNet for breast cancer diagnosis using the 

aforementioned preprocessing, feature selection, and model 

training and evaluation configurations. These experiments 

utilised three mammogram image datasets: MIAS, CBIS-

DDSM, and INbreast. The results for each dataset are detailed 

in the following subsections. 

1. MIAS dataset 

The MIAS dataset used in our study was originally composed 

of 338 images designated for the training set, with 10% 

reserved for validation, and 84 images designated for the 

testing set. After the validation split, the total number of 

training images was 304. The details of the augmentation 

process are summarised in Table IV. 

 
TABLE IV 

 MIAS DATASET COMPOSITION AND AUGMENTATION DETAILS.  

 

Before investigating the detailed results from applying 

MoEffNet in the MIAS dataset, it is important to understand 

the training progress of our model. Figure 9 shows an example 

of the training and validation accuracy over 30 epochs from 

one of our experiments. The blue line represents training 

accuracy, and the orange line represents validation accuracy. 

Both accuracies increase rapidly at first, with training 

accuracy steadying close to 100% and validation accuracy just 

below it, indicating effective learning and generalisation. 

     Table V presents the testing results of our investigation into 

the performance of MoEffNet with various EfficientNet 

Technique Parameters Combinations No. of 

Images 

Before 

No. of 

Images 

After 

Rotation -10°, 0°, 10° 3 304 912 

Translation (-11, 0, 11) 

pixels (x and 

y) 

9 912 8,208 

Scaling 0.9, 1.0, 1.1 3 8,208 24,624 

Horizontal 

Flipping 

Flipped, Not 

Flipped 

2 24,624 49,248 

Contrast/ 

Brightness 

Uniform 

(Alpha = 1.1, 

Beta = 10) 

1 49,248 49,248 
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models and different numbers of experts for breast cancer 

diagnosis using the MIAS dataset. The results provide 

valuable insights into the relationship between model 

complexity, the number of experts, and diagnostic accuracy. 

For EfficientNet B0, accuracy peaks at 99.4% with two 

experts using low to high-level features, but additional experts 

slightly reduce accuracy. EfficientNet B1 shows a similar 

pattern, achieving 99.2% with two experts, but accuracy drops 

with three and slightly improves with four experts. 

EfficientNet B2 peaks at 98.8% with three experts focusing on 

different feature levels, while adding a fourth expert offers 

reduced returns. EfficientNet B4 demonstrates continuous 

improvement, achieving the highest accuracy of 99.2% with 

four experts, benefiting from a combined input across all 

feature levels. These findings highlight that while all models 

benefit from expert involvement, the optimal number of 

experts varies. EfficientNet B0 and B1 perform best with two 

experts, EfficientNet B2 with three, and EfficientNet B4 with 

four, highlighting the importance of both model complexity 

and expert input in enhancing diagnostic accuracy. 

Furthermore, the low standard deviations across most models 

suggest that the classification accuracies are stable and 

reliable, with EfficientNet B2 and B4 showing slight increases 

in variability as more experts are added but achieving higher 

accuracy overall. 
TABLE V 

DETAILED CLASSIFICATION ACCURACY AND STANDARD DEVIATION OF 

MOEFFNET ACROSS DIFFERENT EFFICIENTNET MODELS AND EXPERT 

CONFIGURATIONS ON THE MIAS DATASET  

Figure 10 provides a clearer visualisation of the results in 

Table IV. The figure shows the results with two, three, and 

four experts involved. EfficientNet B0 and EfficientNet B1 

achieve peak performance with two experts, while 

EfficientNet B2 performs best with three experts. EfficientNet 

B4 demonstrates the highest accuracy with four experts. This 

trend suggests that while simpler models like EfficientNet B0 

and B1 benefit most from the involvement of fewer experts, 

the more complex EfficientNet B4 model gains significant 

improvements from the input of more experts. 

Figure 11 presents the performance metrics (Precision, Recall, 

Specificity, F1 score, and DIP) for MoEffNet using various 

EfficientNet models (B0, B1, B2, and B4) with two experts. 

EfficientNet B0 and B1 demonstrate the highest precision and 

recall, achieving values close to 99.5% and 99.0%, 

respectively, indicating their effectiveness in correctly 

identifying positive cases and capturing the most actual 

positives. They also maintain high specificity around 99.5%, 

suggesting strong performance in correctly identifying 

negative cases, and achieve the highest F1 scores around 

99.0%, indicating a balanced performance. EfficientNet B2 

and B4, while performing well with precision, recall, 

specificity, and F1 scores around 98.5% and 98.0%, are 

slightly lower across these metrics. This suggests that for 

MoEffNet with two experts, EfficientNet B0 and B1 offer the 

best performance in terms of diagnostic accuracy and 

reliability.  

Figure 12 displays the Receiver Operating Characteristic 

(ROC) curve for MoEffNet with two experts using 

EfficientNet B0. The ROC curve illustrates the trade-off 

between the true positive rate (sensitivity) and the false 

positive rate (1-specificity) across various threshold settings. 

 Number of experts 

Pre-trained 

model 

 2  3 4 

EfficientNet B0  99.4± 0.05  98.8± 0.04  98.0± 0.07  

EfficientNet B1  99. 2± 0.07  98.0± 0.06  98.6± 0.04  

EfficientNet B2  98. 6± 0.03  98.8± 0.05  98.2± 0.07  

EfficientNet B4  98.1 ± 0.09 99.1 ± 0.08 99.2 ± 0.08 

FIGURE 9. Training and Validation Accuracy Trends Over 30 Epochs: 

Demonstrating the Convergence and Generalisation Capabilities of the 
MoEffNet Model. 
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The curve is plotted with the true positive rate on the y-axis 

and the false positive rate on the x-axis. The orange line 

represents the performance of the model, while the diagonal 

blue dashed line represents the performance of a random 

classifier. 

The Area Under the Curve (AUC) is 0.992, which indicates an 

excellent level of discrimination by the model. An AUC of 

0.992 means that the model has a 99.2% chance of correctly 

distinguishing between positive and negative cases. This high 

AUC value demonstrates that MoEffNet with EfficientNet B0 

and two experts performs exceptionally well in identifying 

true positives while minimising false positives, thereby 

confirming its effectiveness in breast cancer diagnosis using 

the MIAS dataset.  

 

 

2. CBIS-DDSM dataset 

In our study, the CBIS-DDSM dataset was used, comprising a 

benign training set of 355 cases, a benign testing set of 117 

cases, a malignant training set of 336 cases, and a malignant 

testing set of 83 cases. Each case includes both CC and MLO 

views, doubling the number of images. Thus, the dataset 

contained a total of 1,782 images: 710 benign training images 

(with 10% reserved for validation), 234 benign testing images, 

672 malignant training images (with 10% reserved for 

validation), and 166 malignant testing images, leading to a 

total of 1,382 training images before augmentation. The 

details of the augmentation process are summarised in the 

following Table VI. 

 
TABLE VI 

CBIS-DDSM DATASET COMPOSITION AND AUGMENTATION DETAILS 

Technique Parameters Combinations No. of 

Images 

Before 

No. of 

Images 

After 

Rotation -10°, 0°, 10° 3 1,382 4,146 

Translation (-11, 0, 11) 

pixels (x and 

y) 

9 4,146 37,314 

Scaling 0.9, 1.0, 1.1 3 37,314 111,942 

Horizontal 

Flipping 

Flipped, Not 

Flipped 

2 111,942 223,884 

Contrast/ 

Brightness 

Uniform 

(Alpha = 1.1, 

Beta = 10) 

1 223,884 223,884 

 

Table VII presents the testing classification accuracy and 

standard deviation for validating MoEffNet using various 

EfficientNet models (B0, B1, B2, and B4) with different 

numbers of experts on the CBIS-DDSM dataset. EfficientNet 

B0 demonstrates the best performance with three experts, 

achieving 99.4% accuracy with a minimal standard deviation 

of 0.01%, indicating high stability. With two experts, it shows 

99.1% accuracy with a standard deviation of 0.02%, and with 

four experts, the accuracy drops to 98.7% with a standard 

deviation of 0.04%, indicating increased inconsistency with 

more experts. EfficientNet B1 performs consistently well, 

maintaining an accuracy of 99.4% across three and four 

experts with standard deviations of 0.03% and 0.04%, 

respectively and 99.3% with two experts, demonstrating 

consistent performance with slightly increasing variability. 

EfficientNet B2 achieves the highest accuracy of 99.6% with 

both three and four experts, showing excellent performance 

and stability. With two experts, it achieves 99.4% accuracy. 

EfficientNet B4 shows good performance with two experts at 

99.4% accuracy but exhibits a slight decrease in accuracy and 

increased variability with three experts at 99.3% with a 

standard deviation of 0.05% and four experts at 99.2% with a 

standard deviation of 0.06%. Taking together, these results 

suggest that EfficientNet B2, particularly with three or four 

experts, offers the best performance and stability for breast 

cancer diagnosis using the CBIS-DDSM dataset, validating 

the effectiveness of the MoEffNet method with optimal expert 

involvement. 

(AUC = 0.992) 

FIGURE 12. Receiver Operating Characteristic (ROC) Curve and 
Area Under the Curve (AUC) for MoEffNet: Assessing Diagnostic 
Accuracy with Two Experts Using EfficientNetB0. 
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TABLE VII 

COMPREHENSIVE ACCURACY AND STANDARD DEVIATION ANALYSIS OF 

MOEFFNET USING EFFICIENTNET VARIANTS AND EXPERT 

CONFIGURATIONS ON THE CBIS-DDSM DATASET  

 Number of experts 

Pre-trained 

model 

 2  3 4 

EfficientNet B0  99.1± 0.02 99.4± 0.01 98.7± 0.04 

EfficientNet B1  99. 3± 0.02 99.4± 0.03 99.4± 0.04 

EfficientNet B2  99. 4± 0.03 99.6± 0.04 99.6± 0.02 

EfficientNet B4  99.4 ± 0.05 99.3 ± 0.05 99.2 ± 0.06 

 

Figure 13 presents the performance metrics (Precision, Recall, 

Specificity, F1-score, and DIP) for MoEffNet using three 

experts and various EfficientNet models (B0, B1, B2, and B4) 

on the CBIS-DDSM dataset. EfficientNet B2 consistently 

outperforms the other models across all metrics, achieving 

approximately 99.6% in Precision, Recall, Specificity, and F1-

score, indicating superior performance. EfficientNet B0 and 

B1 also perform very well, with metrics around 99.3% to 

99.4%, demonstrating high effectiveness and reliability. 

EfficientNet B4, while still showing strong performance with 

metrics around 99.2%, is slightly lower compared to the other 

models. These results validate the effectiveness of MoEffNet, 

particularly with EfficientNet B2, for breast cancer diagnosis 

using the CBIS-DDSM dataset. 

Figure 14 shows the ROC curve for MoEffNet with three 

experts using EfficientNet B2. It demonstrates excellent 

performance with an AUC of 0.995, showing that the model is 

highly effective in distinguishing between positive and 

negative classes. An AUC of 0.995, close to the ideal value of 

1.0, indicates that the model has excellent discriminatory 

power, performing significantly better than random guessing 

(AUC of 0.5). This high AUC value suggests that the 

MoEffNet model is highly accurate in its predictions, making 

it particularly useful for applications where precise 

classification is crucial, such as medical diagnostics.  

3. INbreast dataset 

The INbreast dataset used comprises a total of 410 

mammogram images, with 287 normal cases and 123 

abnormal cases. For our study, we divided the dataset into 

training, validation, and testing sets. The training set contains 

328 images, of which 10% (33 images) were reserved for 

validation purposes. The testing set consists of 82 images. The 

details of the augmentation process are summarised in the 

following Table VIII. 
TABLE VIII 

DETAILS OF GEOMETRIC TRANSFORMATIONS APPLIED TO THE INBREAST 

DATASET 

Technique Parameters Combinations No. of 

Images 

Before 

No. of 

Images 

After 

Rotation -10°, 0°, 10° 3 328 984 

Translation (-11, 0, 11) 

pixels (x and 

y) 

9 984 8,856 

Scaling 0.9, 1.0, 1.1 3 8,856 26,568 

Horizontal 

Flipping 

Flipped, Not 

Flipped 

2 26,568 53,136 

Contrast/ 

Brightness 

Uniform 

(Alpha = 1.1, 

Beta = 10) 

1 53,136 53,136 

Table IX shows the testing classification accuracy and 

standard deviation for validating MoEffNet using various 

EfficientNet models (B0, B1, B2, and B4) with different 

numbers of experts on the INbreast dataset. According to the 

table, EfficientNet B0 shows a steady improvement in 

accuracy, from 99.1% with 2 experts to 99.5% with 4 experts. 

EfficientNet B1 also demonstrates an upward trend, achieving 

the highest accuracy of 99.8% with 4 experts. EfficientNet B2 

demonstrates very high accuracy across all configurations, 

with a slight edge at 3 and 4 experts, both achieving around 

99.8%. In contrast, EfficientNet B4's performance decreases 

(AUC = 0.995) 

FIGURE 14. ROC Curve and AUC Analysis for MoEffNet with Three 
Experts: Demonstrating High Diagnostic Precision Using 
EfficientNetB2 on the CBIS-DDSM Dataset. 
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as more experts are added, from 99.4% with 2 experts to 

99.1% with 4 experts, suggesting potential overfitting or 

increased complexity not benefiting this variant. Overall, all 

configurations display high accuracy, confirming MoEffNet's 

efficacy for this task. However, EfficientNet B2 with 3 or 4 

experts stands out as the optimal choice for the highest 

accuracy, whereas the reducing returns with EfficientNet B4 

indicate the need for careful tuning of the number of experts 

to avoid performance drops.  

 
TABLE IX 

PERFORMANCE EVALUATION: CLASSIFICATION ACCURACY AND 

STANDARD DEVIATION OF MOEFFNET ACROSS EFFICIENTNET MODELS 

AND EXPERT CONFIGURATIONS ON THE INBREAST DATASET  

 Number of experts 

Pre-trained model  2  3 4 

EfficientNet B0  99.1± 0.02  99.3± 0.04  99.5± 0.07 

EfficientNet B1  99.5± 0.04 99.7± 0.04  99.8± 0.06  

EfficientNet B2  99.7± 0.03 99.8± 0.06  99.8± 0.08  

EfficientNet B4  99.4 ± 0.05 99.3 ± 0.05 99.1 ± 0.06 

 

Figure 15 depicts the performance of the MoEffNet model on 

the INbreast mammogram dataset using various EfficientNet 

models (B0, B1, B2, B4) evaluated on Precision, Recall, 

Specificity, F1-score, and DIP with four experts. As 

demonstrated in the figure, EfficientNet B0 shows the lowest 

performance across all metrics, with lower precision and 

recall, leading to the lowest F1 score. EfficientNet B1 stands 

out with the highest precision, recall, and F1-score, indicating 

fewer false positives and effective detection of true positives. 

EfficientNet B2 also performs exceptionally well, closely 

following B1 in precision and recall while achieving the 

highest specificity. EfficientNet B4, although competitive, 

does not surpass B1 and B2, with its metrics being lower but 

still better than B0. Overall, EfficientNet B1 and B2 are the 

best performers, making them the optimal choices for the 

MoEffNet model on this dataset, while B4 and B0 show 

relatively lower effectiveness. Figure 16 presents the ROC 

curve for MoEffNet with four experts using EfficientNet B1. 

It shows excellent performance with an AUC of 0.997, 

indicating that the model is highly efficient in classifying 

between positive and negative classes. 

 

    In summary, these results show that the proposed MoEffNet 

model, when applied to three distinct datasets—MIAS, CBIS-

DDSM, and INbreast—demonstrates remarkable performance 

in breast cancer diagnosis using various EfficientNet models 

(B0, B1, B2, B4) and configurations with multiple experts. For 

the MIAS dataset, EfficientNet B0 and B1 achieve peak 

accuracies with two experts at 99.4% and 99.2%, respectively, 

while EfficientNet B2 performs best with three experts at 

98.8%, and EfficientNet B4 reaches the highest accuracy of 

99.2% with four experts, suggesting that simpler models 

benefit from fewer experts while more complex models 

benefit from more. On the CBIS-DDSM dataset, EfficientNet 

B2 with three and four experts shows the best performance 

with an accuracy of 99.6%, indicating its superiority in 

handling diverse and high-quality mammographic images. 

EfficientNet B0 and B1 also perform well, with slight 

variability in accuracy and standard deviation across different 

numbers of experts. For the INbreast dataset, EfficientNet B1 

and B2 consistently achieve the highest accuracy, reaching up 

to 99.8% with three and four experts, while EfficientNet B4 

shows a decrease in performance as more experts are added. 

Overall, EfficientNet B1 and B2 stand out across all datasets, 

particularly with three or four experts, making them the 

optimal choices for high accuracy and stability in breast cancer 

detection using MoEffNet. 

G. DISCUSSION 

The experimental evaluation of the MoEffNet model across 

the three well-known mammographic datasets, MIAS, CBIS-

(AUC = 0.997) 

FIGURE 16. Receiver Operating Characteristic (ROC) Curve and Area 
Under the Curve (AUC) Analysis for MoEffNet: Evaluating the 
Diagnostic Performance with Four Experts Using EfficientNet B1. 
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DDSM, and INbreast, demonstrates the robustness and 

adaptability of the model in handling varying degrees of 

complexity and image quality. These datasets, each with its 

unique characteristics, provided a comprehensive testing 

ground to assess the efficacy of MoEffNet, particularly when 

integrated with different EfficientNet variants (B0, B1, B2, 

B4).  

The MIAS dataset, known for its lower resolution and less 

complex imaging, presented a moderate challenge. Despite 

these challenges, MoEffNet achieved consistently high 

accuracy across all EfficientNet variants, with the simpler 

models, EfficientNet B0 and B1, performing optimally when 

paired with two experts. This indicates that for datasets with 

lower complexity, a simpler model combined with a limited 

number of experts can efficiently capture and analyse the 

necessary features, leading to accurate diagnostic outcomes. 

The high performance on the MIAS dataset suggests that 

MoEffNet is well-suited for application in environments 

where computational resources are limited or where the 

imaging data is less complex. 

The CBIS-DDSM dataset, which includes high-resolution 

digital mammograms, allowed us to evaluate MoEffNet’s 

performance on more complex cases, particularly in the 

detection of masses. The results were particularly impressive 

with the EfficientNet B2 model, especially when configured 

with three or four experts. The model achieved the highest 

accuracy (99.6%) with minimal variance, highlighting the 

importance of using a more complex model with an optimal 

number of experts to handle the complex details and 

variability present in this dataset. The consistent performance 

across different configurations further validates the model's 

adaptability to complex diagnostic tasks, making it a reliable 

tool for mass detection in digital mammography. 

The INbreast dataset, known for its high-resolution images 

and detailed annotations, provided a rigorous test for 

MoEffNet. The EfficientNet B1 and B2 models showed 

superior performance, particularly when four experts were 

utilized. This highlights the necessity of combining a more 

complex model with a higher number of experts when dealing 

with high-resolution images that contain fine-grained details, 

as found in the INbreast dataset. The results suggest that 

MoEffNet can effectively use the detailed information 

available in such high-quality datasets to improve diagnostic 

accuracy. 

Across all datasets, the number of experts was a critical factor 

influencing performance metrics such as accuracy, precision, 

recall, F1-score and DIP. Simpler models like EfficientNet B0 

and B1 reached peak performance with two experts, indicating 

that fewer experts are sufficient to extract and analyse features 

effectively from less complex datasets. However, for more 

complex models like EfficientNet B2 and B4, increasing the 

number of experts to four generally led to improved 

performance, especially on the more challenging CBIS-

DDSM and INbreast datasets. This finding emphasises the 

importance of making the model's complexity and the number 

of experts to the specific characteristics of the dataset being 

analysed. It is also important to note that adding too many 

experts, particularly in simpler models, can lead to 

diminishing returns or even a slight decrease in accuracy. This 

suggests that while multiple experts can enhance the model's 

ability to capture diverse features, there is an optimal number 

of experts beyond which the benefits start to plateau or 

decline. 

The consistent high performance of MoEffNet across all three 

datasets, particularly when using the EfficientNet B2 variant, 

underscores the robustness of the model. Its ability to adapt to 

different dataset characteristics—ranging from low-resolution 

images in MIAS to high-resolution, complex images in 

INbreast—demonstrates its potential as an adaptable tool for 

breast cancer diagnosis. The low standard deviations observed 

in performance metrics across multiple experimental runs 

further validate the robustness of MoEffNet, indicating that 

the model's predictions are stable and reproducible, regardless 

of the specific dataset or model configuration used. This 

robustness is crucial in clinical settings, where consistency and 

reliability are paramount for effective diagnosis. Moreover, 

the results also reveal the exceptional discriminatory power of 

MoEffNet, as indicated by the high Area Under the Curve 

(AUC) values observed in the ROC analyses. For instance, the 

EfficientNet B2 model, particularly when configured with 

three experts, consistently achieved AUC values close to 1.0, 

highlighting its ability to accurately distinguish between 

benign and malignant cases. This level of performance is 

critical for clinical applications, where the ability to correctly 

identify positive cases while minimising false positives and 

negatives can significantly impact patient outcomes. 

In short, the experimental results confirm that MoEffNet, 

particularly when combined with the EfficientNet B2 model 

and an optimal number of experts, offers a robust and 

adaptable solution for breast cancer diagnosis across diverse 

mammographic datasets. The model's ability to maintain high 

performance across datasets with varying complexity and 

resolution demonstrates its potential as a powerful tool in 

clinical diagnostics, capable of improving the accuracy and 

reliability of breast cancer detection in real-world settings. 

H. COMPARISON OF RESULTS 

      To further evaluate the effectiveness of our proposed 

method, Table X, the comparison with some recently 

published results [42, 45, 55, 76-83] with the same datasets 

used in this study. The first left column presents the datasets 

used while the second column shows the reference number. 

Columns three, four, and five display validation metrics used 

in the comparison, namely, accuracy, sensitivity, specificity, 

and AUC respectively. In [76] a technique uses a 2D-Fourier-

Bessel decomposition method to extract texture features from 

mammogram images, which are then enhanced using a linear 

regression-based feature space for improved classification of 

benign and malignant masses. In [77] a method involves 

segmenting regions of interest (ROIs) in mammograms with a 
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modified K-means algorithm, then applying the bidimensional 

empirical mode decomposition (BEMD) algorithm to derive 

multiple layers (BIMFs) from these ROIs, extracting texture 

features from these layers, and finally classifying the features 

using a support vector machine (SVM) classifier to 

automatically assess breast cancer. In [78] a methodology 

includes applying a two-dimensional discrete wavelet 

transform (2D-DWT) to extract texture features from 

mammogram regions of interest (ROIs), followed by feature 

selection using grey-level co-occurrence matrix (GLCM), and 

classification using a back-propagation neural network 

(BPNN) to differentiate between normal, benign, and 

malignant breast tissues.  

    In [45] a technique utilises a deep-learning model based on 

transfer learning, where features from mammogram images 

are extracted using pre-trained CNN architectures like VGG-

16, ResNet50, and Inception V3, and then fine-tuned to 

classify breast cancer. In [79] a method integrates multi-

feature fusions for breast mass classification by extracting 

complementary features (SIFT, GIST, HOG, LBP, ResNet, 

DenseNet, and VGG), mining cross-modal pathological 

semantics, and applying dynamic weight computation for mid-

level fusion, followed by ensemble learning with voting 

strategies for final classification. In [80] a technique involves 

using two automated methods for breast tumour classification. 

The first method employs region-growing segmentation with 

thresholds determined by a trained artificial neural network 

(ANN). The second method uses cellular neural network 

(CNN) segmentation with parameters optimized by a genetic 

algorithm (GA), followed by feature extraction and 

classification using ANN and other classifiers. In [81] a 

method encompasses integrating pre-trained CNN models 

(such as EfficientNet) with ensemble learning using majority 

and soft voting strategies to classify mammogram images. In 

[55] an approach applying a three-stage transfer learning 

process using EfficientNet for breast cancer diagnosis in two-

view mammography. It trains sequentially on natural images, 

mammogram patches, and whole mammogram views, 

achieving high accuracy using complementary information 

from both views. Reference [42] presents a method using a 

modified U-Net model for segmenting mammogram images, 

followed by classification using pre-trained CNN models 

(InceptionV3, DenseNet121, ResNet50, VGG16, and 

MobileNetV2) with transfer learning and data augmentation 

to enhance performance. In [82] a technique involves training 

a deep learning model for breast cancer diagnosis using 

discriminative fine-tuning, which assigns different learning 

rates to each layer of the deep CNN, and mixed-precision 

training to reduce computational demands. Data augmentation 

is also employed to enhance the model's performance on a 

small dataset, achieving rapid convergence and high accuracy. 

Reference [83] introduces a method using deep Convolutional 

Neural Networks (CNNs) with transfer learning and fine-

tuning strategies to classify mammogram images, achieving 

high accuracy by leveraging pre-trained models like VGG16, 

ResNet50, and Inception v3. This approach enhances the 

model's ability to differentiate between benign and malignant 

breast lesions by optimising the networks with large datasets. 

 
TABLE X 

COMPARATIVE ANALYSIS OF MOEFFNET’S PERFORMANCE ON MULTIPLE 

DATASETS AGAINST STATE-OF-THE-ART DIAGNOSTIC MODELS 

      It is apparent from Table VII that the comparison of 

various methods for classifying mammograms across the 

MIAS, CBIS-DDSM, and INbreast datasets demonstrates the 

superior performance of the proposed method, MoEffNet. In 

the MIAS dataset, MoEffNet achieves the highest accuracy of 

99.4%, significantly higher than other methods, with a 

sensitivity of 99.2%, specificity of 99.2%, and an AUC of 

0.992, indicating its excellent ability to identify both positive 

and negative cases. Remarkably, the technique introduced in 

[45] achieves competitive results with an accuracy of 98.96% 

and an AUC of 0.995. Similarly, in the CBIS-DDSM dataset, 

MoEffNet outperforms other methods with an accuracy of 

99.6%, sensitivity of 99.5%, specificity of 99.5%, and an AUC 

of 0.995, demonstrating its robustness and high precision in 

detecting breast cancer. Competitive methods include [76], 

  Validation Metrics 

Dataset Ref Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AUC 

 

 

 

MIAS 

[76] 96.2 96.02 98.48 0.96 

[77] 98.04 98.12 98.31 0.9817 

[78] 94.2 100 90.0 0.95 

[45] 98.96 97.83 99.13 0.995 

MoEffNet 

(proposed 

method) 

99.4 99.2 99.2 0.992 

 

 

 

 

 

CBIS-

DDSM 

[76] 99.06 98.48 99.74 0.99 

[77] 98.62 98.60 98.65 0.9818 

[79] 90.91 82.96 98.38 0.983 

[80] 96.47 96.87 95.94 - 

[81] 96.05 - - - 

[55] 92.98 85.13 85.13 93.44 

[42] 98.87 98.98 - 09888 

MoEffNet 

(proposed 

method) 

99.6 99.5 99.5 0.995 

 

 

INbreast 

[77] 98.26 97.60 98.21 0.9823 

[82] 99.8 - - - 

[83] 95.5 - - 0.97 

MoEffNet 

(proposed 

method) 

99.8 99.8 99.7 0.997 
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with an accuracy of 99.06% and an AUC of 0.99, and [42], 

with an accuracy of 98.87% and an AUC of 0.9888. In the 

INbreast dataset, MoEffNet achieves the highest recorded 

accuracy of 99.8%, along with a sensitivity of 99.8%, 

specificity of 99.7%, and an AUC of 0.997, surpassing all 

other methods. However, the technique introduced in [82] 

achieves competitive accuracy at 99.8%. These results 

highlight MoEffNet's consistent and outstanding performance 

across different datasets, making it an effective method for 

breast cancer diagnosis in mammograms compared to existing 

techniques. 
 

V. CONCLUSION 

      In this study, we have introduced MoEffNet, an advanced 

integration of EfficientNet and MoEs, coupled with its 

scalability, dynamic gating mechanism, and expert network 

specialisation for high-performance breast cancer diagnosis. 

Using EfficientNet's advanced feature extraction and MoEs' 

adaptive specialization, MoEffNet processes features at 

multiple levels. The EffiGate mechanism further refines 

precision by dynamically weighting each expert network 

based on input characteristics. Our broad validation of three 

mammographic datasets, MIAS, CBIS-DDSM, and INbreast, 

demonstrated MoEffNet's outstanding performance. The 

proposed model achieved high diagnostic accuracy, with AUC 

values of 0.992 for MIAS, 0.995 for CBIS-DDSM, and 0.997 

for INbreast, outperforming existing methods. These results 

highlight the effectiveness of integrating MoEs with 

EfficientNet, showing that EfficientNet B1 and B2 models, 

particularly with three or four experts, offer the highest 

accuracy across all datasets. 

     In conclusion, MoEffNet with its characteristics has proven 

high performance in early breast cancer diagnosis using 

mammographic images. These not only differentiate 

MoEffNet from existing methods but also establish it as a new 

benchmark in automated mammogram analysis.  Future work 

will focus on expanding the diversity of datasets and MoEs, 

and on further optimising adaptive learning models to enhance 

MoEffNet’s diagnostic capabilities even further. 

REFERENCES 
[1] Breast cancer: World Health Organisation (WHO) webpage [Online]. 

Available: https://www.who.int/news-room/fact-sheets/detail/breast-

cancer, Accessed on: April. 4, 2024 

[2] Cancer: World Health Organisation (WHO) webpage [Online]. 

Available: https://www.who.int/news-room/fact-sheets/detail/cancer, 

Accessed on: April. 4, 2024 

[3] D. R. Youlden, S. M. Cramb, N. A. Dunn, J. M. Müller, C. M. Pyke, 

and P. D. Baade, ‘‘The descriptive epidemiology of female breast 

cancer: An international comparison of screening, incidence, survival 

and mortality,’’ Cancer Epidemiol., vol. 36, no. 3, 2012, pp. 237–248.  

[4] M. B. Amin et al., “The eighth edition ajcc cancer staging manual: 

continuing to build a bridge from a population-based to a more 

“personalized” approach to cancer staging,” CA: a cancer journal for 

clinicians, vol. 67, no. 2, 2017, pp. 93–99. 

[5] G. N. Sharma, R. Dave, J. Sanadya, P. Sharma, and K. Sharma, 

“Various types and management of breast cancer: An overview,” J. 

Adv. Pharm. Technol. Res., vol. 1, no. 2, 2010, pp. 109–126. 

[6] M. Akram, M. Iqbal, M. Daniyal and A. U. Khan, "Awareness and 

current knowledge of breast cancer." Biological research 50, 2017, pp. 

1-23. 

[7] L.F. Ellison and N. Saint-Jacques “Five-year cancer survival by stage 

at diagnosis in Canada. Health reports”, 34(1), 2023, pp.3-15. 

[8] A.N. Giaquinto, H. Sung, K.D. Miller, J.L. Kramer, L.A. Newman, A. 

Minihan, A. Jemal, and R.L. Siegel, “Breast cancer statistics, 2022. 

CA”: a cancer journal for clinicians, 72(6), 2022, pp.524-541. 

[9] D. J. van Der Meer, I. Kramer, M. C. van Maaren, P. J. van Diest, S. 

C Linn, J.H. Maduro, ... & A. C. Voogd, “Comprehensive trends in 

incidence, treatment, survival and mortality of first primary invasive 

breast cancer stratified by age, stage and receptor subtype in the 

Netherlands between 1989 and 2017.” International journal of cancer, 

148(9), 2021, pp.2289-2303. 

[10] M. Heath, K. Bowyer, D. Kopans, P. Kegelmeyer, R. Moore, K. 

Chang, S. Munishkumaran,  “Current status of the digital database for 

screening mammography.” Digit. Mammogr.: Nijmegen 1998, pp. 

457–460.  

[11] R. Lavayssière, A.E. Cabée, J.E. Filmont, “Positron emission 

tomography (PET) and breast cancer in clinical practice.” Eur. J. 

Radiol. 1 69(1), 2009, pp. 50–58. 

[12] M. Moghbel, S. Mashohor, “A review of computer assisted 

detection/diagnosis (CAD) in breast thermography for breast cancer 

detection.” Artif. Intell. Rev. 39, 2013, pp. 305–313. 

[13] M. Veta, J.P. Pluim, P.J Van Diest, M.A Viergever, “Breast cancer 

histopathology image analysis: A review.” IEEE Trans. Biomed. Eng. 

30 61(5), 2014, pp. 1400–1411. 

[14] C.H Lee, D.D Dershaw, D. Kopans, P. Evans, B. Monsees, D. 

Monticciolo, R.J Brenner, L. Bassett, W. Berg, S. Feig, E. Hendrick, 

“Breast cancer screening with imaging: Recommendations from the 

Society of Breast Imaging and the ACR on the use of mammography, 

breast MRI, breast ultrasound, and other technologies for the detection 

of clinically occult breast cancer.” J. Am. Coll. Radiol. 1 7(1), 2010, 

pp. 18–27.  

[15] C.H. Chang, J.L Sibala, S.L Fritz, S.J Dwyer, A.W Templeton, F. Lin, 

W.R Jewell, “Computed tomography in detection and diagnosis of 

breast cancer.” Cancer 46(4 Suppl), 1980, pp. 939–946. 

[16] C.K. Kuhl, S. Schrading, K. Strobel, H.H. Schild, R.D Hilgers, H.B 

Bieling, “Abbreviated breast magnetic resonance imaging (MRI): 

First postcontrast subtracted images and maximum-intensity 

projection—a novel approach to breast cancer screening with MRI.” 

J. Clin. Oncol. 1 32(22), 2014, pp. 2304–2310.  

[17] M. Zeeshan, B. Salam, Q.S.B  Khalid, S. Alam, and R. Sayani. “ 

Diagnostic accuracy of digital mammography in the detection of 

breast cancer”. Cureus, 10(4), 2018, pp. 1-10. 

[18] W.A. Berg, L. Gutierrez, M.S  NessAiver, W.B. Carter, M. Bhargavan, 

R.S Lewis, and O.B Ioffe. “Diagnostic accuracy of mammography, 

clinical examination, US, and MR imaging in preoperative assessment 

of breast cancer”. radiology, 233(3), 2004, pp.830-849. 

[19] H O A Ahmed and A K Nandi, "Colour clustering and deep transfer 

learning techniques for breast cancer detection using mammography 

images", In: Strumiłło, P., Klepaczko, A., Strzelecki, M., Bociąga, D. 

(eds) The Latest Developments and Challenges in Biomedical 

Engineering. PCBEE 2023. Lecture Notes in Networks and Systems, 

vol 746. Springer, Cham. 2023, pp. 105 – 119, DOI: 10.1007/978-3-

031-38430-1_9.  

[20] R M Rangayyan, T M Nguyen, F J Ayres, and A K Nandi, "Effect of 

pixel resolution on texture features of breast masses in mammograms", 

Journal of Digital Imaging, vol. 23, no. 5, 2010, pp. 547-553. 

[21] A R Dominguez and A K Nandi, "Development of tolerant features 

for characterization of masses in mammograms”, Computers in 

Biology and Medicine, vol. 39, no. 8, 2009, pp. 678-688. 

[22] A Rojas and A K Nandi, "Toward breast cancer diagnosis based on 

automated segmentation of masses in mammograms", Pattern 

Recognition, vol. 42, no. 6, 2009, pp. 1138-1148. 

[23] A Rojas and A K Nandi, "Detection of masses in mammograms via 

statistically-based enhancement, multilevel-thresholding 

segmentation, and region selection", Computerized Medical Imaging 

and Graphics, vol. 32, no. 4, 2008, pp. 304-315. 

[24] T Mu, A K Nandi, and R M Rangayyan, "Analysis of breast tumors in 

mammograms using the pairwise Rayleigh quotient classifier”, 

Journal of Electronic Imaging, vol. 16, no. 4, 2007, doi: 043004:1-11. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3461360

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2017 22 

[25] A Rojas and A K Nandi, "Improved dynamic-programming-based 

algorithms for segmentation of masses in mammograms", Medical 

Physics, vol. 34, no. 11, 2007, pp. 4256-4269. 

[26] R J Nandi, A K Nandi, R M Rangayyan and D Scutt, "Classification 

of breast masses in mammograms using genetic programming and 

feature selection”, Medical and Biological Engineering and 

Computing, vol. 44, no. 8, 2006, pp. 683-694. 

[27] T Mu, A K Nandi, and R M Rangayyan, "Classification of breast 

masses via nonlinear transformation of features based on a kernel 

matrix”, Medical and Biological Engineering and Computing, vol. 45, 

no. 8, 2007, pp. 769-780. 

[28] Y. Faridah. “Digital versus screen film mammography: a clinical 

comparison.” Biomedical imaging and intervention journal, 4(4), 

2008. pp. 1-6. 

[29] P. Singh, B. Shahi, S. Paudyal, P. Sayami, and P.R. Neupane. “Risk 

Factors of Breast Cancer among Patients from Lower Middle Income 

Country; A Case-Control Study from Nepal”, MAR Oncology & 

Hematology 4: 01, 2024, pp. 1-18. 

[30] M.G. Marmot, D.G. Altman, D.A Cameron, J.A Dewar, S.G 

Thompson, M. and Wilcox, “ The benefits and harms of breast cancer 

screening: an independent review.” British journal of 

cancer, 108(11),2013, pp.2205-2240. 

[31] M. Madani, M.M. Behzadi, S. Nabavi, “The role of deep learning in 

advancing breast cancer detection using different imaging modalities: 

A systematic review”. Cancers 29 14(21), 2022, pp. 5334.  

[32] K. Freeman, J. Geppert, C. Stinton, D. Todkill, S. Johnson, A. Clarke, 

S. Taylor-Phillips. “Use of artificial intelligence for image analys is in 

breast cancer screening programmes: Systematic review of test 

accuracy.” Bmj, 2021, pp. 374. 

[33] A. Gangwal, R.K. and Gautam, “Artificial Intelligence‐Driven 

Decisions in Breast Cancer Diagnosis.” Drug and Therapy 

Development for Triple Negative Breast Cancer, 2023, pp.131-151. 

[34] N.I. Yassin, S. Omran, E.M. El Houby, H. Allam. “Machine learning 

techniques for breast cancer computer aided diagnosis using diff erent 

image modalities: A systematic review.” Comput. Methods Programs 

Biomed.156, 2018, pp. 25–45.  

[35] E.J Topol, “High-performance medicine: the convergence of human 

and artificial intelligence.” Nat. Med. 25(1), 2019, pp. 44–56.  

[36] J. Tang, R.M Rangayyan, J. Xu, I. El Naqa, Y. Yang, “Computer-aided 

detection and diagnosis of breast cancer with mammography: Recent 

advances.” IEEE Trans. Inf Technol. Biomed. 13(2), 2009, pp. 236–

251.  

[37] A. Hamidinekoo, E. Denton, A. Rampun, K. Honnor, and R. 

Zwiggelaar, “Deep learning in mammography and breast histology, an 

overview and future trends.” Medical image analysis, 47, 2018, pp.45-

67. 

[38] A. Oliver, J. Freixenet, R. Martí, and R. Zwiggelaar, “A comparison 

of breast tissue classification techniques.” In Medical Image 

Computing and Computer-Assisted Intervention–MICCAI 2006: 9th 

International Conference, Copenhagen, Denmark, October 1-6, 2006. 

Proceedings, Part II 9, Springer Berlin Heidelberg., 2006, pp. 872-

879.  

[39] S. Anand and R.A.V. Rathna, “Architectural distortion detection in 

mammogram using contourlet transform and texture 

features.” International Journal of Computer Applications, 74(5), 

2013,  pp.12-19. 

[40] A. Helwan and R. Abiyev, “October. Shape and texture features for 

the identification of breast cancer.” In Proceedings of the world 

congress on engineering and computer science , Vol. 2, 2016, pp. 19-

21. 

[41] Z. Jafari and E. Karami. “Breast cancer detection in mammography 

images: A CNN-based approach with feature 

selection.” Information, 14(7), 2023, p.410. 

[42] W.M. Salama and M.H Aly. “Deep learning in mammography images 

segmentation and classification: Automated CNN 

approach.” Alexandria Engineering Journal, 60(5), 2021, pp.4701-

4709. 

[43] X. Zhang, Y.  Zhang, E.Y. Han, N.  Jacobs, Q Han, X. Wang, and J. 

Liu, “ Classification of whole mammogram and tomosynthesis images 

using deep convolutional neural networks”. IEEE transactions on 

nanobioscience, 17(3), 2018, pp.237-242. 

[44] S.J. Malebary and A. Hashmi, “ Automated breast mass classification 

system using deep learning and ensemble learning in digital 

mammogram.” IEEE Access, 9, 2021, pp.55312-55328. 

[45] A. Saber, M. Sakr, O.M. Abo-Seida, A. Keshk, and H. Chen. “ A novel 

deep-learning model for automatic detection and classification of 

breast cancer using the transfer-learning technique.” IEEE Access, 9, 

2021, pp.71194-71209. 

[46] K. Liu, G. Kang, N. Zhang, and B. Hou, “ Breast cancer classification 

based on fully-connected layer first convolutional neural networks.” 

IEEE Access, 6, 2018, pp.23722-23732. 

[47] H. Li, D. Chen, W.H. Nailon, M.E  Davies, and D.L Laurenson. “Dual 

convolutional neural networks for breast mass segmentation and 

diagnosis in mammography.” IEEE Transactions on Medical 

Imaging, 41(1), 2021, pp.3-13. 

[48] F. Gao, T. Wu, J. Li, B. Zheng, L. Ruan, D. Shang, and B. Patel, “SD-

CNN: A shallow-deep CNN for improved breast cancer 

diagnosis.” Computerized Medical Imaging and Graphics, 70, 2018, 

pp.53-62. 

[49] D. Shah, M.A.U. Khan, M. Abrar, F. Amin, B.F Alkhamees, and H. 

AlSalman, “Enhancing the Quality and Authenticity of Synthetic 

Mammogram Images for Improved Breast Cancer Detection.” IEEE 

Access, 2024, pp. 12189- 12198. 

[50] T. Mahmood, T. Saba, A. Rehman,  and F.S.Alamri, F.S., “Harnessing 

the power of radiomics and deep learning for improved breast cancer 

diagnosis with multiparametric breast mammography. Expert Systems 

with Applications, 2024, p.123747. 

[51] A. Jouirou, A. Baâzaoui, W. Barhoumi. “Multi-view information 

fusion in mammograms: A comprehensive overview.”, Information 

Fusion. 2019, 1;52, pp. 308-21. 

[52] Y. Liu, F. Zhang, C. Chen, S. Wang, Y Wang, Y Yu. “Act like a 

radiologist: towards reliable multi-view correspondence reasoning for 

mammogram mass detection.” IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 2021, 1;44(10), pp. 5947-61. 

[53] H.N. Khan, A.R. Shahid, B. Raza, A.H.  Dar, and H. Alquhayz, 

“Multi-view feature fusion based four views model for mammogram 

classification using convolutional neural network.” IEEE Access, 7, 

2019, pp.165724-165733. 

[54] G. Carneiro, J. Nascimento, and A.P. Bradley. “Automated analysis of 

unregistered multi-view mammograms with deep learning”. IEEE 

Transactions on medical imaging, 36(11), 2017, pp.2355-2365. 

[55] D.G. Petrini, C. Shimizu, RA. Roela, GV. Valente, MA. Folgueira, 

HY. Kim. “Breast cancer diagnosis in two-view mammography using 

end-to-end trained efficientnet-based convolutional network”, IEEE 

Access, 21;10, 2022, pp. 77723-31. 

[56] Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE. Adaptive mixtures of 

local experts. Neural computation. 1991 Mar;3(1):79-87. 

[57] K. A. Lê Cao, E. Meugnier, and G.J. McLachlan,. “Integrative mixture 

of experts to combine clinical factors and gene 

markers.” Bioinformatics, 26(9), 2010, pp.1192-1198. 

[58] S. Myoung. “Modified Mixture of Experts for the Diagnosis of 

Perfusion Magnetic Resonance Imaging Measures in Locally Rectal 

Cancer Patients. Healthcare Informatics Research”. Healthcare 

Informatics Research, 19(2), 2013, pp. 130. 

[59] E.D. Übeyli, “A mixture of experts network structure for breast cancer 

diagnosis.” Journal of medical systems, 29(5), 2005, pp.569-579. 

[60] S. Raman, T.J. Fuchs, P.J. Wild, E. Dahl, J.M Buhmann, and V. Roth, 

“Infinite mixture-of-experts model for sparse survival regression with 

application to breast cancer.” BMC bioinformatics, 11, 2010, pp.1-10. 

[61] S. Myoung, J.H. Chang, and K. Song. “A mixture of experts model for 

the diagnosis of liver cirrhosis by measuring the liver 

stiffness.” Healthcare Informatics Research, 18(1), 2012, p.29. 

[62] R. Rasti, A. Mehridehnavi, H. Rabbani, and F. Hajizadeh. “Wavelet-

based convolutional mixture of experts model: An application to 

automatic diagnosis of abnormal macula in retinal optical coherence 

tomography images.” In 2017 10th Iranian Conference on Machine 

Vision and Image Processing (MVIP), IEEE, 2017, pp. 192-196. 

[63] S.Z. Mousavi Mojab, S. Shams, F. Fotouhi, and H. Soltanian-Zadeh. 

“EpistoNet: an ensemble of Epistocracy-optimized mixture of experts 

for detecting COVID-19 on chest X-ray images.” Scientific 

Reports, 11(1), 2021, p.21564. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3461360

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2017 23 

[64] M, Tan, and Q. Le, “Efficientnet: Rethinking model scaling for 

convolutional neural networks.” In International conference on 

machine learning. PMLR, 2019, pp. 6105-6114.  

[65] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen. 

“Mobilenetv2: Inverted residuals and linear bottlenecks.” 

In Proceedings of the IEEE conference on computer vision and pattern 

recognition, 2018, pp. 4510-4520. 

[66] H. Alhichri,  A. S. Alswayed, Y. Bazi, N. Ammour, and N. A. Alajlan, 

“ Classification of remote sensing images using EfficientNet-B3 CNN 

model with attention.” IEEE access, 9, 2021, pp.14078-14094. 

[67] P. McCullagh. Generalized linear models. Routledge; 2019. 

[68] S. Myoung, J. H. Chang, and K. Song, “A mixture of experts model 

for the diagnosis of liver cirrhosis by measuring the liver 

stiffness.” Healthcare Informatics Research, 18(1), 2012, p.29. 

[69] G. Wang, G. B. Giannakis, and J. Chen, “Learning ReLU networks on 

linearly separable data: Algorithm, optimality, and 

generalization.” IEEE Transactions on Signal Processing, 67(9), 

2019, pp.2357-2370. 

[70] J. Suckling. “The mammographic images analysis society digital 

mammogram database.” In Exerpta Medica. International Congress 

Series, Vol. 1069, 1994,  pp. 375-378. 

[71] J. Suckling, J. Parker, D. Dance, S. Astley, I. Hutt, C. Boggis, I. 

Ricketts, E. Stamatakis, N. Cerneaz, S. Kok, P. Taylor, D. Betal,  

&amp; J. Savage. “Mammographic Image Analysis Society (MIAS) 

database v1.21.” Apollo - University of Cambridge Repository, 2015. 

https://doi.org/10.17863/CAM.105113  

[72] R.S. Lee, F. Gimenez, A. Hoogi, K.K. Miyake, M. Gorovoy, and D.L. 

Rubin. “A curated mammography data set for use in computer-aided 

detection and diagnosis research.” Scientific data, 4(1), 2017, pp.1-9. 

[73] I.C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M.J. Cardoso, and 

J.S. Cardoso, “Inbreast: toward a full-field digital mammographic 

database.” Academic radiology, 19(2), 2012, pp.236-248. 

[74] A. Thakur, M. Gupta, D.K. Sinha, K.K. Mishra, V.K. Venkatesan, and 

S. Guluwadi, “Transformative Breast Cancer Diagnosis using CNNs 

with Optimized ReduceLROnPlateau and Early Stopping 

Enhancements.” International Journal of Computational Intelligence 

Systems, 17(1), 2024, p.14. 

[75] A. K. Nandi, “From multiple independent metrics to single 

performance measure based on objective function.” IEEE Access, 11, 

2023, pp.3899-3913. 

[76] P.K. Chaudhary and R.B. Pachori, “Differentiation of Benign and 

Malignant Masses in Mammogram Using 2D-Fourier-Bessel Intrinsic 

Band Functions and Improved Feature Space.” IEEE Transactions on 

Artificial Intelligence, 2024, pp.1 – 10 

[77] A. Elmoufidi. “Deep multiple instance learning for automatic breast 

cancer assessment using digital mammography.” IEEE transactions 

on instrumentation and measurement, 71, 2022, pp.1-13. 

[78] S. Beura, B. Majhi, and R. Dash, “Mammogram classification using 

two dimensional discrete wavelet transform and gray-level co-

occurrence matrix for detection of breast 

cancer.” Neurocomputing, 154, 2015, pp.1-14. 

[79] H. Zhang, R. Wu, T. Yuan, Z. Jiang, S. Huang, J. Wu, J. Hua, Z. Niu, 

and D. Ji. “DE-Ada*: A novel model for breast mass classification 

using cross-modal pathological semantic mining and organic 

integration of multi-feature fusions.” Information Sciences, 539, 

2020, pp.461-486. 

[80] R. Rouhi, M. Jafari, S. Kasaei, and P. Keshavarzian. “Benign and 

malignant breast tumors classification based on region growing and 

CNN segmentation.” Expert Systems with Applications, 42(3), 2015, 

pp.990-1002. 

[81] F. Azour, and A. Boukerche. “An efficient transfer and ensemble 

learning based computer aided breast abnormality diagnosis 

system.” IEEE Access, 11, 2022, pp.21199-21209. 

[82] A.P. Adedigba, S.A. Adeshina, and A.M. Aibinu. “Performance 

evaluation of deep learning models on mammogram classification 

using small dataset.” Bioengineering, 9(4), 2022, p.161. 

[83] H. Chougrad, H. Zouaki, and O. Alheyane. “Deep convolutional 

neural networks for breast cancer screening.” Computer methods and 

programs in biomedicine, 157, 2018, pp.19-30. 

 

 

 

 
HOSAMELDIN AHMED received the PhD degree in 

Electronic and Computer Engineering from the 

University of Brunel London. Dr. Ahmed is a 

distinguished researcher and author specialising in signal 

and image processing, machine learning, and condition 

monitoring. Currently, he is focusing on advancing 

breast cancer diagnosis by applying deep transfer 

learning and image processing techniques. His recent 

work involves developing innovative methods for detecting breast cancer 

using mammography images, demonstrating his commitment to improving 

healthcare outcomes through technology. In addition to his healthcare-

focused research, he has collaborated extensively with Prof. Asoke Nandi, 

contributing to numerous publications on various aspects of machine 

condition monitoring. He co-authored the book "Condition Monitoring with 

Vibration Signals: Compressive Sampling and Learning Algorithms for 

Rotating Machines" (IEEE - John Wiley & Sons, 2020) which explores 

advanced methods for monitoring rotating machinery health using 

compressive sampling and machine learning. Furthermore, he has published 

widely on topics such as bearing fault diagnosis, intelligent fault diagnosis 

frameworks for modular multilevel converters, and internet addiction 

disorder detection using machine learning. His interdisciplinary research 

has also contributed to cultural heritage preservation through digital image 

inpainting and 3D visual interaction techniques. The H-index of his 

publications is 11and the i10-index is 13 (Google Scholar).  
 

 

 
PROFESSOR NANDI received the PhD degree 

in Physics from the University of Cambridge 

(Trinity College). He held academic positions in 

several universities, including Oxford, Imperial 

College London, Strathclyde, and Liverpool as well 

as Finland Distinguished Professorship. In 2013 he 

moved to Brunel University London. 

In 1983 Professor Nandi co-discovered the three 

fundamental particles known as W+, W− and Z0, providing the evidence for 

the unification of the electromagnetic and weak forces, for which the Nobel 

Prize for Physics in 1984 was awarded to two of his team leaders for their 

decisive contributions. His current research interests lie in signal processing 

and machine learning, with applications to machine health monitoring, 

functional magnetic resonance data, gene expression data, communications, 

and biomedical data. He made fundamental theoretical and algorithmic 

contributions to many aspects of signal processing and machine learning. 

He has much expertise in “Big Data”. Professor Nandi has authored over 

650 technical publications, including 300 journal papers as well as six 

books, entitled Image Segmentation: Principles, Techniques, and 

Applications (Wiley, 2022), Condition Monitoring with Vibration Signals: 

Compressive Sampling and Learning Algorithms for Rotating Machines 

(Wiley, 2020), Automatic Modulation Classification: Principles, 

Algorithms and Applications (Wiley, 2015), Integrative Cluster Analysis in 

Bioinformatics (Wiley, 2015), Blind Estimation Using Higher-Order 

Statistics (Springer, 1999), and Automatic Modulation Recognition of 

Communications Signals (Springer, 1996). The H-index of his publications 

is 91 (Google Scholar) and ERDOS number is 2. 

Professor Nandi is a Fellow of the Royal Academy of Engineering and a 

Fellow of six other institutions including the IEEE. In 2023, he has been 

honoured by the Academia Europaea and the Academia Scientiarum et 

Artium Europaea. He has received many awards, including the IEEE 

Heinrich Hertz Award in 2012, the Glory of Bengal Award for his 

outstanding achievements in scientific research in 2010, the Water 

Arbitration Prize of the Institution of Mechanical Engineers in 1999, and the 

Mountbatten Premium of the Institution of Electrical Engineers in 1998. 

Professor Nandi is an IEEE Distinguished Lecturer (EMBS, 2018-2019). 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3461360

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.17863/CAM.105113

