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ABSTRACT As breast cancer is a leading cause of death for women globally, there is a critical need for
better diagnostic tools. To address this challenge, we proposeMoEffNet, a cutting-edge framework that offers
high-performance breast cancer diagnosis. MoEffNet is characterised by its innovative hybrid integration of
EfficientNet and Mixture of Experts (MoEs), using two powerful techniques developed to enhance accuracy
and efficiency. EfficientNet, known for its robust feature extraction capabilities, utilises compound scaling
and depth-wise separable convolutions to capture image features across multiple levels of abstraction. This
is combined with MoEs framework, which employs specialised expert networks to analyse distinct aspects
of mammograms. MoEffNet analyses features at various levels: low-level for basic patterns, mid-level for
detailed analyses, and high-level for complex contents. Features extracted from various EfficientNet model
stages are assigned to specialised experts to optimise diagnostic precision. A dynamic gating mechanism
(EffiGate) is introduced to ensure that the most relevant experts contribute to each diagnostic decision,
by dynamically adjusting their influence based on input data characteristics. This approach ensures that the
most effective experts are utilised for each case, resulting in superior accuracy. The scalability of MoEffNet
is highlighted by its ability to adapt to various computational constraints and accuracy requirements, using
EfficientNet’s architecture, which ranges fromB0 to B7models.We have validatedMoEffNet’s effectiveness
on three mammographic datasets (MIAS, CBIS-DDSM, and INbreast) achieving outstanding results (AUC
> 0.99 across all datasets), outperforming existing methods. Particularly, EfficientNet B1 and B2 models
with three or four experts achieved the highest accuracy, demonstrating MoEffNet’s potential as a robust
diagnostic tool for early breast cancer detection. Through its innovative hybrid model, robust feature
extraction, dynamic gating, and specialised expert networks, MoEffNet sets a new benchmark in automated
mammogram analysis, offering a powerful tool for more accurate and reliable breast cancer diagnosis.

INDEX TERMS Breast cancer diagnosis, computer-aided diagnosis, deep learning, machine learning, multi-
view analysis, mammography.

I. INTRODUCTION
Breast cancer represents a major global public health burden,
with an estimated 2.3 million new cases diagnosed leading to
685,000 deaths in 2020 alone. This number remained signif-
icant in 2022, with approximately 670,000 deaths attributed
to the disease [1], [2]. As the most common cancer affecting
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women, it necessitates continuous efforts to raise aware-
ness, improve early detection strategies, which is vital for
improved treatment outcomes [3], and develop effective
treatment modalities and comprehensive care for patients
worldwide. Breast cancer staging groups the disease based
on the degree of its spread, which helps doctors decide the
best course of treatment. The earliest stage, stage 0 (in situ
cancer), involves abnormal cells confined within milk ducts
or lobules. Stages I-IV incorporate invasive cancers that have

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 133703

https://orcid.org/0000-0002-8523-1099
https://orcid.org/0000-0001-6248-2875
https://orcid.org/0000-0002-7542-4356


H. O. A. Ahmed, A. K. Nandi: High Performance Breast Cancer Diagnosis From Mammograms Using MoEs

spread into surrounding tissue. Stage I features small tumours
with possible lymph node involvement, while stages progress
with increasing tumour size, more lymph node involvement,
or even chest wall/skin invasion. In stage IV (metastatic),
cancer has spread to distant organs. Generally, a lower stage
indicates a better prognosis, but other factors like cancer cell
biology also influence treatment decisions [4], [5], [6]. For
example, in Canada, the chance of surviving for 5 years (net
survival) is very high (nearly 99.8%) for women diagnosed
with stage I breast cancer. This survival rate decreases sig-
nificantly for more advanced stages of breast cancer, with a
5-year net survival rate of 91.9% for stage II, 74.0% for stage
III, and 23.2% for stage IV [7]. Also, a recent study con-
ducted by the American Cancer Society revealed significant
variations in a woman’s likelihood of surviving for five years
(net survival) following a breast cancer diagnosis, depending
on the cancer’s stage at diagnosis. Patients who were diag-
nosed with stage I breast cancer from 2012 to 2018 had an
outstanding 5-year survival rate of more than 99%. However,
as the cancer progresses through stages, the survival rate
significantly decreases. For stage II, the 5-year survival rate
is 93%, for stage III it is 75%, and for stage IV it drops to 29%
[8]. Supporting this, a study conducted in the Netherlands
analysing breast cancer trends from 1989 to 2017 confirms
the global importance of early detection. This study shows
that while initial breast cancer diagnoses rose, recent years
have shown a decline. Treatment advancements are evident,
with less invasive surgeries and a rise in systemic therapies.
Most importantly, survival rates have improved significantly
across all stages, and overall breast cancer mortality rates
have declined regardless of age [9]. This highlights the critical
role early detection plays in improving a woman’s chances of
successful treatment and long-term survival.

II. REVIEW OF SELECTED METHODS
Advancements in diagnostic medical imaging have produced
a diverse toolbox for breast cancer detection, including mam-
mograms, breast thermography, magnetic resonance imaging,
ultrasound, positron emission tomography, histopathology,
and computed tomography [10], [11], [12], [13], [14], [15],
[16]. Understanding these techniques empowers informed
decision-making regarding screening and early detection
strategies. Mammography is an essential component of early
detection for breast cancer and is known to significantly
improve patient outcomes in terms of treatment success and
survival rates. It excels at identifying abnormalities before
they become noticeable or cause symptoms. Numerous stud-
ies have shown that digital mammography is highly effective
in accurately diagnosing breast cancer [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27]. This makes it a fun-
damental tool for both screening and detailed evaluation of
abnormal findings. Besides detecting breast cancer, mam-
mography plays an important role in treatment planning
by providing detailed information about tumour size and
location, which is essential for surgery and other therapies.

Furthermore, it has been shown that digital mammography
offers comparable accuracy to screen-film mammography
(SFM) in detecting breast cancer, but it has a significant
advantage in identifying tumours, particularly in women
with dense breast tissue [28]. Additionally, despite limited
healthcare access, mammography remains a valuable tool
for early breast cancer detection in low and middle-income
countries [29]. These studies set mammography’s critical role
in breast cancer diagnosis, with its value across settings and
its continuous evolution for better patient outcomes.

The main benefit of mammogram screening lies in its
capability to reduce breast cancer mortality. It achieves this
by detecting the disease at an early stage, allowing for
earlier intervention, and potentially improving patient prog-
nosis [30]. While breast cancer screening saves lives, it has
limitations such as high costs, lengthy procedures, false
positives, and human error. Furthermore, existing imaging
methods have certain limitations [31]. For instance, up to
35% of breast cancers can be missed during mammography
screening, often due to factors such as dense breast tissue
or overlying breast tissue. This can result in interval cancers
that are detected between regular screenings [32]. Hence,
advanced technologies are necessary to improve accuracy,
efficiency, and eventually, patient experience. Advancements
in AI and automatic diagnostic systems are transforming the
field of breast cancer screening. These systems act as pow-
erful assistants to physicians, employing advanced learning
and analysis to improve accuracy and efficiency. By detecting
subtle patterns that may be missed by the human eye, they
can reduce the number of false positives and provide more
precise initial assessments. In the end, this supports better
decision-making for patient care [33].
Computer-aided diagnostic (CAD) systems powered by

Artificial Intelligence (AI) are being developed to detect
breast cancer. Studies show that using these systems can lead
to a significant increase of 7.62% in detection rates with min-
imal impact on recall rates, which increased by only 0.93%.
By using advanced imaging analysis, these systems help to
improve the accuracy and efficiency of diagnosis and could
potentially result in reduced mortality and morbidity rates
associated with breast cancer [34], [35], [36]. Traditional
machine learning methods have proved to be an essential tool
in advancing the field of breast cancer detection through the
development of CAD systems using mammograms. These
systems assist radiologists by automatically identifying and
segmenting suspicious regions, including masses and calci-
fications [37]. For example, early breast cancer detection in
mammograms utilises various segmentation and classifica-
tion techniques. These techniques range from analysing the
entire image (non-segmentation) to segmenting the breast
tissue based on its distance from the skin. More precise
segmentations can be obtained using advanced methods such
as Fuzzy C-Means, Fractal Analysis, and Statistical Anal-
ysis. After segmenting the tissue, its shape and texture are
analysed to extract features. Finally, a Bayesian framework
combining k-Nearest Neighbours and C4.5 decision trees is
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used to classify tissue. This study shows that Breast segmen-
tation using internal information improves cancer detection.
The results demonstrated that the fuzzy C-Means technique
significantly enhances breast cancer detection, achieving an
accuracy of 82% compared to the 62% accuracy of non-
segmentation methods, highlighting the importance of this
initial step in improving breast cancer detection [38].

Furthermore, a technique using the Contourlet transform,
a combination of Laplacian Pyramidal and Steerable Gaus-
sian Filters, was proposed to detect architectural distortions
in mammograms. This approach aimed to analyse textural
features through an Artificial Neural Network (ANN) for
classification. However, despite its innovative design, the
system generated a high number of false positives (1255
out of 1502 regions flagged), emphasizing the need for
further development to improve accuracy [39]. Moreover,
a breast cancer identification system utilises image process-
ing techniques and neural networks to distinguish between
benign and malignant tumours in mammograms. The sys-
tem works in stages: first, image processing techniques
including grayscale conversion, intensity adjustment, and
filtering enhance tumour visibility. Then, segmentation meth-
ods incorporating thresholding and morphological operations
isolate the tumour region. Next, feature extraction analy-
ses the segmented area using the Gray-Level Co-occurrence
Matrix (GLCM) to capture texture and by directly mea-
suring properties like asymmetry and roundness to capture
shape. Finally, a neural network classifier, trained on these
extracted features, distinguishes between benign and malig-
nant tumours with an impressive 92% identification rate,
indicating the effectiveness of this combined image process-
ing and neural network approach [40]. Nevertheless, these
techniques rely heavily on hand-crafted features, such as
morphological, topological, and textural descriptors. This
dependence makes them challenging to develop and highly
sensitive to the quality of the selected features.

While these conventional techniques were valuable, espe-
cially when dealing with limited annotated data, there has
been a significant idea towards deep learning. Deep learning
offers a powerful alternative by automating feature extrac-
tion directly from raw mammogram images. This eliminates
manual feature engineering, allowing the model to identify
and learn effective features automatically. This shift shows
a major advancement in enhancing breast cancer detection
through mammography, possibly leading to improved perfor-
mance metrics such as accuracy, sensitivity, and specificity.
For instance, a novel approach for breast cancer detection in
mammograms using convolutional neural networks (CNNs)
for feature extractionwas introduced in [32]. In this approach,
the most informative features are selected from multiple
pre-trained CNN models and used to train various machine
learning algorithms including neural networks (NN) and sup-
port vector machines (SVMs). The experimental results of
this method achieved remarkable accuracy (92-96%) across
three datasets (RSNA, MIAS, and DDSM), highlighting

its effectiveness and potential to outperform other methods
in breast cancer detection [41]. In [42], a deep-learning
methodology for breast cancer detection in mammograms is
presented. This approach segments the breast tissue using a
modified U-Net model and then classifies the isolated region
as benign or malignant using several CNN architectures such
as InceptionV3. This approach employs data augmentation
and transfer learning techniques to address the challenge
of limited data used in this study. Additionally, both CC
and MLO views were used to improve the accuracy. This
approach achieved notable results, particularly on the DDSM
dataset, with 99% accuracy and under 1.2 seconds processing
time [42]. In [43], a deep learningmethod employing CNNs is
used to analyse mammogram and tomosynthesis images for
breast cancer detection. Over 3,000 images with confirmed
pathology results are utilised to develop CNN models. The
validation results showed promising accuracy, suggesting
CNNs’ potential for automatic breast cancer detection in
mammograms and tomosynthesis [43].

Moreover, a Breast Mass Classification (BMC) system,
combining deep learning and ensemble learning has been
introduced for breast mass classification in mammograms.
This system integrates k-means clustering, Long Short-Term
Memory (LSTM) networks, Convolutional Neural Net-
works (CNNs), Random Forest, and Boosting techniques.
By segmentingmammograms and extracting features through
LSTM, CNNs, and pre-trained CNN models, the system
achieves high accuracy (over 95%) and strong generalis-
ability across datasets [44]. In [45], a deep learning model
employing transfer learning is proposed for breast cancer
detection and classification. Pre-trained CNNs such as Incep-
tion V3 are improved to analyse mammograms. Data prepro-
cessing, segmentation, and augmentation techniques prepare
the images. The model achieves excellent performance with
an overall accuracy exceeding 98%, demonstrating its effec-
tiveness in identifying breast cancer frommammograms [45].
In [46], a Fully Connected Layer First CNN (FCLF-CNN)
technique is proposed to address the limitations of traditional
CNNs on structured data. It places fully connected layers
before convolutions, acting as encoders to transform raw data
into localized representations. This structure significantly
improves classification performance, as shown by its remark-
able accuracy (over 98%) and sensitivity/specificity on two
breast cancer datasets, namely, the Wisconsin Diagnostic
Breast Cancer (WDBC) database and the Wisconsin Breast
Cancer Database (WBCD), outperforming both multi-layer
perceptron (MLP) and pure CNNs [46].
Additionally, a deep learning framework applying a

dual-path CNN is proposed for breast mass segmenta-
tion and diagnosis in mammography simultaneously. This
dual approach employs the Locality Preserving Learner
(LPL) to extract image features for classification, while the
Conditional Graph Learner (CGL) focuses on pixel-wise
relationships for segmentation. By combining these learned
features, the method achieves superior performance in both

VOLUME 12, 2024 133705



H. O. A. Ahmed, A. K. Nandi: High Performance Breast Cancer Diagnosis From Mammograms Using MoEs

tasks, surpassing other methods on benchmark datasets with
segmentation accuracies of 92.27% (DDSM) and 93.69%
(INbreast), alongside strong classification results [47].
In [48], researchers propose a Shallow-Deep CNN (SD-
CNN) to improve breast cancer diagnosis. This dual-CNN
approach utilises a shallow CNN to create virtual images
from standard mammograms and a deep CNN to analyse
these alongside the originals for better feature extraction.
By combining information from both standard and enhanced
imaging, the SD-CNN achieves an accuracy of 89% and
an AUC of 91%, significantly outperforming the analysis
of mammograms alone (accuracy: 85%, AUC: 84%). This
suggests the SD-CNN effectively uses additional imaging
data to improve diagnostic accuracy.

Recently, researchers introduced a newmethod using Deep
Convolutional Generative Adversarial Networks (DCGANs)
that aims to create synthetic mammograms identical to real
ones to improve breast cancer detection. Researchers eval-
uated the technique by having radiologists assess image
authenticity, revealing a significant gap between real and
synthetic images. This highlights the need for further devel-
opment in DCGANs to ensure synthetic mammograms can
be reliably used for medical diagnosis [49]. In [50], a new
approach employing radiomics and deep learning techniques
for breast cancer diagnosis with multiparametric mammog-
raphy is presented. This methodology employed adaptive
filtering and data augmentation for robust model training.
A novel Chaotic Leader Selective Filler Swarm Optimiza-
tion (cLSFSO) extracts textural features to locate suspicious
lesions, while modified deep learning models (VGGNet and
SE-ResNet152) with transfer learning classify normal from
concerning regions. Hybrid models incorporating CNNs,
Long Short-Term Memory (LSTM) networks, and SVMs
further enhance diagnosis and grading. Finally, Grad-CAM
techniques highlight crucial areas within mammograms,
improving interpretability and accuracy. These advancements
achieved a sensitivity result of 99% and an AUC of 99% [50].
Deep learning algorithms have also allowed for advances

in the use of multi-view mammography in breast cancer
diagnosis, offering a novel approach to diagnosis. Multi-view
learning utilises multiple views of the same data, where each
view represents a different subset of features or a different
representation of the data. The main idea is that combining
these views can result in a broader insight and better per-
formance than using a single view alone. A comprehensive
overview of the current literature on multi-view informa-
tion fusion in mammograms is provided in reference [51],
which provides an in-depth discussion on the application of
multi-view information fusion (MVIF) within the framework
of computer-aided diagnosis (CAD) for breast cancer. It elab-
orates on how screening mammography, which provides two
views of each breast (MLO and CC), benefits from MVIF
to enhance diagnostic accuracy. The paper categorises MVIF
methods into detection, classification, and content-based
mammogram retrieval (CBMR), with each category further

subdivided into various approaches based on how they utilize
the information from different views. The review highlights
the advantages of combining these views to reduce false
positives and improve detection and classification rates, ulti-
mately aiding radiologists in decision-making [51]. In [52],
the Anatomy-Aware Graph Convolutional Network (AGN)
method, was designed formammographymass detectionwith
multi-view reasoning capabilities. The AGN process involves
three key steps. First, the AGN employs a Bipartite Graph
Convolutional Network (BGN) to model the relationships
of ipsilateral views. Second, an Inception Graph Convolu-
tional Network (IGN) captures the structural similarities of
bilateral views, aiding in lesion detection. Finally, AGN dis-
tributes multi-view information across its network, enhancing
feature analysis for multi-view reasoning. Benchmark tests
confirm AGN’s considerable improvements in detection
capabilities [52].
The researchers in [53] developed a Multi-View Feature

Fusion (MVFF) based Computer-Aided Diagnosis (CADx)
system using deep learning to classify mammograms. This
system processes four different mammogram views through
Convolutional Neural Networks (CNNs) to extract features.
These features are then combined into a single predic-
tive layer to enhance classification accuracy. The system
is trained on augmented data from public datasets like
CBIS-DDSM and mini-MIAS, showing improved perfor-
mance over single-view systems in detecting normal vs.
abnormal, mass vs. calcification, and malignant vs. benign
classifications. This multi-view approach uses complemen-
tary information, achieving superior performance (AUC of
93.2% for mass/calcification, 84% for malignant/benign, and
93% for normal/abnormal) compared to single-view systems,
highlighting its potential for improving mammogram classi-
fication accuracy. Also, an automated deep learning-based
analysis of unregistered multi-view mammograms is intro-
duced to assess breast cancer risk. It uses deep learning
models, initially trained on large, non-medical image datasets
through transfer learning and subsequently fine-tuned on
mammogram data. This method analyses MLO and CC
views and their lesion segmentation maps holistically, rather
than focusing on individual lesions. The approach utilises
defined and automatically generated segmentation maps,
enhancing flexibility and effectiveness [54]. A breast cancer
diagnosis technique using an EfficientNet-based convolu-
tional network trained end-to-end on two-viewmammograms
incorporates three stages of transfer learning. It starts with a
patch classifier developed from a model trained on natural
images, progresses to a single-view whole-image classifier,
and culminates in a two-view classifier integrating bothmam-
mographic views. This technique achieves high diagnostic
effectiveness accuracy, with anAUCof up to 93.44%, proving
its effectiveness in breast cancer detection.

Together, these studies show that a multi-view approach
can involve multiple models, each trained on different views
or a single model that combines several views into its design.
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TABLE 1. Summary of mixture of experts (moes) applications and their benefits across various medical contexts.
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In this context, ensemble methods such as co-training, where
two models are trained at the same time on different view-
points and teach each other are common.

Another aspect of multi-view analysis highlighting the
power of ensemble and composite approaches in supervised
machine learning is the Mixture of Experts (MoEs) tech-
nique. This technique consists of multiple separate networks,
each specialised in managing a subset of the full training
dataset [56]. Several studies show that MoEs models play
a key role in advancing personalised medicine and medical
diagnostics by efficiently processing various data types like
genetic markers, clinical data, and images. These models
enhance diagnostic precision and treatment results in areas
such as oncology and neurology. MoEs support real-time
disease monitoring and customised treatment modifications,
significantly improving individual patient care [57], [58],
[59], [60], [61], [62], [63]. Table 1 details their wide-ranging
applications and benefits across different medical fields and
data types.

Advanced techniques such as ensemble models contribute
to the robustness and accuracy of disease diagnosis systems.
One of the potentials of these advanced techniques is to
assist clinical professionals by offering a promising tool for
mammography interpretation, which can represent a reliable
second opinion and support complex diagnostic decisions.
Looking forward, advancements in the field could be driven
by developing further innovations, incorporating larger, more
diverse datasets, and introducing real-time adaptive learning
models. These innovations could continuously refine diag-
nostic capabilities and adapt to new challenges in breast
cancer detection. In this vein, our research explores the appli-
cation of MoEs for breast cancer diagnosis in mammograms.

MoEs use a divide-and-conquer strategy, employing a
collection of expert networks. Each network within the
MoEs ensemble specialises in handling specific aspects of
the data. This allows the model to become more complex
and adaptable without a corresponding increase in compu-
tational demands during inference. Only a subset of the
experts is activated for a given input, promoting efficient
resource allocation. While there are currently limited direct
references to MoEs being used for breast cancer diagnosis
through mammograms, the inherent flexibility and capac-
ity for detail-specific processing make MoEs a promising
solution for such complicated tasks. Our research aims to
address this gap by investigating the potential of MoEs in this
domain. We propose to integrate MoEs with EfficientNet fea-
tures, known for their state-of-the-art performance in image
classification. EfficientNet applies depth-wise separable con-
volutions, which contribute to model efficiency and facilitate
compound scaling [64].
By integrating the adaptability of MoEs with the robust

capabilities of EfficientNet, we aim to develop a novel
method for diagnosing breast cancer in mammograms. This
innovative hybrid approach, termed MoEffNet, distinguishes
itself by efficiently extracting and processing features across
multiple levels of abstraction. MoEffNet analyses low-level

features for basic patterns, mid-level features for detailed
analyses, and high-level features for complex content, assign-
ing these features to specialised expert networks to optimise
diagnostic precision. Additionally, MoEffNet incorporates a
dynamic gating mechanism, named EffiGate, which evalu-
ates the relevance of each expert network based on specific
mammographic data characteristics, thereby enhancing diag-
nostic accuracy. These attributes allow MoEffNet to achieve
high-performance breast diagnosis accuracy, as validated
across diverse mammogram datasets. Our key contributions
to the field include:

1. Investigating the application of MoEs for breast cancer
classification in mammograms: This research explores
the potential of MoEs for this specific task, potentially
paving the way for further exploration within the med-
ical imaging domain.

2. Integrating MoEs with EfficientNet features: This inte-
gration uses the adaptability of MoEs and the robust
feature extraction capabilities of EfficientNet, taking
advantage of the strengths of both methodologies.

3. Optimised MoEs with EfficientNet features for mam-
mogram diagnosis: Our work examines the impact of
hyperparameters (number of experts, network architec-
ture) on the MoEs performance when combined with
EfficientNet feature extraction.

4. Achieving Superior Diagnostic Accuracy Across Mul-
tiple Datasets: MoEffNet achieves high accuracy
in breast cancer diagnosis, validated through rigor-
ous testing on three distinct mammographic datasets
(MIAS, CBIS-DDSM, and INbreast). The model
demonstrates AUC values of 99.2% for MIAS, 99.5%
for CBIS-DDSM, and 99.7% for INbreast, significantly
outperforming existing methods and establishing a new
technique in automated mammogram analysis.

The remainder of the paper proceeds as follows: Section III
is devoted to descriptions of the proposed method. Section IV
is dedicated to a description of the performed experimental
study. Finally, section V draws some conclusions from this
study.

III. PROPOSED METHOD
This section details the MoEffNet methodology, an innova-
tive approach for the diagnosing of breast cancer. As illus-
trated in Figure 1, MoEffNet integrates a CNN architecture
with a dynamic gating mechanism. This combination is
designed to enhance the accuracy and efficiency of breast
cancer detection from mammographic images. This devel-
oped methodology adopts a hybrid strategy, employing
EfficientNet for its robust capability to extract features across
multiple levels of abstraction. It is integrated with a Mix-
ture of Experts (MoEs) framework, wherein each expert
is adapted to process distinct subsets of features extracted
from one or more intermediate layers of EfficientNet to
capture different scales and complexities of the image data.
The decision-making process is guided by an advanced
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FIGURE 1. Overview of the proposed MoEffNet Architecture: Integrating EfficientNet for multi-level feature extraction and mixture of experts
(MoEs) for adaptive breast cancer classification.

gating network, named ‘‘EffiGate.’’ This network adjusts how
much influence each expert has, effectively combining their
insights to produce a precise and consistent diagnostic result.
This ensures that the final output is accurate and fits the spe-
cific examined features. The design of this system is aimed
at optimising diagnostic accuracy by utilising the extensive
depth of feature extraction provided by EfficientNet, coupled
with the specialised analytical capabilities of the multiple
expert networks. The methodology ensures an advanced,
accurate, and reliable diagnostic process that utilises deep
and expert computational insights. The following subsections
provide a detailed description of the methods and techniques
employed in the proposed approach MoEffNet.

A. ADVANCED FEATURE EXTRACTION USING
EFFICIENTNET
As depicted in Figure 1, MoEffNet utilises the Efficient-
Net architecture for its powerful ability to extract features
at various levels of abstraction. The EfficientNet series
encompasses a collection of CNN models designed for
enhanced accuracy and efficiency. These models were devel-
oped through a broad analysis of model scaling, focusing
on three key dimensions: the depth, width, and resolution
of the networks [64]. The key novelty of the EfficientNet
architecture lies in its use of a multiple coefficient to scale
the network’s width, depth, and resolution uniformly and sys-
tematically, rather than adjusting them independently. This
multiple scaling technique enhances effectiveness by preserv-
ing a balanced proportion among all dimensions, which is
essential for achieving higher accuracy without sacrificing
the computational cost. EfficientNets are derived from a base-
line model crafted through neural architecture search, which
optimises for both accuracy and computational efficiency.

This baseline model is scaled up, resulting in a series of
models fromEfficientNet B0 to EfficientNet B7 each offering
different levels of accuracy and efficiency. These models
consistently outperform previous ConvNet architectures like
ResNet and MobileNet, achieving state-of-the-art accuracy
on benchmarks such as ImageNet and other datasets. Notably,
EfficientNet B7 reaches a top 1 accuracy of 84.4% on Ima-
geNet, while being considerably smaller and faster than other
top-performing networks like GPipe.

EfficientNet models are formed in blocks, each capable of
capturing features at varying levels of abstraction. The fun-
damental component of EfficientNet-B0, the mobile inverted
bottleneck MBConv layer, is illustrated in Figure 2. All
eight models of the EfficientNet series (B0 - B7) incorporate
these common blocks, though each model introduces slight
variations and increasing complexities in their architectural
designs [65], [66].

Given its exceptional balance between high accuracy and
computational efficiency, EfficientNet was selected as the
feature extraction backbone of our proposed MoEffNet. Its
proven capability to outperform previous ConvNet architec-
tures with fewer parameters and reduced computational load
makes it an ideal choice for achieving state-of-the-art results
without suffering high computational costs. The scalable
design of EfficientNet, ranging from B0 to B7 models, also
allows for adapted formations to match the specific needs of
our research framework.

B. INTERMEDIATE LAYER SELECTION
As described above, EfficientNet is a scalable deep-learning
model structured as a series of sequential blocks. Each block
is designed to process image features with progressively
greater complexity and abstraction. This hierarchical
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FIGURE 2. Detailed architecture of EfficientNet-B0: Depicting key blocks and layers used for feature extraction in MoEffNet [65], [66].

structure is particularly effective in medical imaging applica-
tions, such as mammograms, where distinguishing between
benign and malignant features is crucial for precise diag-
noses.MoEffNet applies aMixture of Experts (MoEs) model,
where each expert is designed to process specific subsets
of features extracted from one or more intermediate layers
of EfficientNet. The features extracted from EfficientNet
models, as CNN-based pre-trained architectures, can be cat-
egorised as follows:

a. Low-level features: Typically captured in the initial
layers, these are essential for identifying simple pat-
terns and textures. In breast cancer diagnosis using
mammograms, we believe that the initial layers of
an EfficientNet are crucial for detecting low-level
features. These features, which include fundamental
elements such as edges, lines, and simple textures, are
essential in analysing mammograms. They enable the
identification of basic outlines and contours of breast
tissues, which are critical for accurate diagnosis.

b. Mid-level features: Captured in middle layers, these
features focus on shapes and specific parts of the
input. These layers may identify more complex shapes
and specific regions within the input image, such as
masses or calcifications in mammograms. They serve
as middle features, connecting the basic textural ele-
ments detected by the lower-level layers with the more
abstract features recognised in the deeper layers.

c. High-level features: Extracted from the deeper layers,
representing complex content such as objects. Gen-
erally, they may illustrate entire objects or complex
configurations within the images, providing a com-
prehensive perspective that could be necessary for
determining the final diagnostic decisions.

In the MoEffNet architecture, the integration of features
extracted from the EfficientNet model plays a key role in
enhancing efficiency and performance. Within the MoEffNet
system, features are gathered from various stages - early,
middle, and late layers - of a single EfficientNet model. This
approach ensures a comprehensive representation across a
diverse set of feature maps, which are critical for acquiring
different levels of image complexity. Once extracted, these
features are allocated to experts in the MoEffNet ensem-
ble, which includes varying numbers of experts, typically

ranging from two to four. Each expert is explicitly adapted
to handle features based on their complexity and abstraction
level. For example, experts, such as Expert 1, typically pro-
cess low-level features to identify basic patterns. Mid-level
features are assigned to Experts 1 and 2, to conduct more
detailed analyses. High-level features are directed to other
experts (such as experts 3 and 4) capable of interpreting more
complex content, including entire objects.

The structured distribution of tasks within the MoEffNet
system allows each expert to focus on definite types of
features, enhancing the system’s adaptability and capabil-
ity to generalise. Each expert focuses on different levels
of image complexity, enabling the ensemble to effectively
process various image types. This targeted approach enhances
both the accuracy and robustness of the model, making it
exceptionally effective in diagnosing breast cancer through
mammographic imaging.

C. MIXTURE OF EXPERTS (MoEs) MODEL
MoEffNet employs the MoEs model, where each expert is
proposed to process given subsets of features extracted from
one or more intermediate layers of EfficientNet. Figure 3
presents a graphical representation of the MoEs model.
As shown in Figure 3 the MoEs is a hierarchical machine
learning architecture consisting of multiple expert networks
and a central gating network. This structure can be imag-
ined as a tree where the expert networks (labelled Expert
Network 1, Expert Network 2, through Expert Network n),
placed at the leaves of the tree structure, process input vectors
individually. Each expert network produces an output vector
(yi), where i = 1, 2, . . . , n denotes the number of experts,
in response to every input vector (x). The output is a probabil-
ity distribution over the number of classes. This distribution
reflects the likelihood of each class being the correct classi-
fication for the given input. The output of each expert is thus
a vector of probabilities where each component of the vector
(corresponding to a class) represents the confidence level of
the input belonging to that class.

The gating network highlighted in yellow, plays an
essential role in integrating the outputs from the expert
networks. Upon receiving an input vector x, the gating net-
work generates scalar outputs (gi) that form a partition of
unity across the input space, fundamentally distributing the
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FIGURE 3. Graphical representation of the mixture of experts (MoEs) Model: showing the integration of expert
networks and the gating mechanism for enhanced diagnostic accuracy [47].

influence among the expert networks based on the char-
acteristics of the input. The gating network computes and
assigns linear combination coefficients, acting as probabilis-
tic weights for the outputs of the expert networks. These
weights determine the relative contribution of each expert
network’s output to the final decision. Accordingly, the final
output of the architecture is a convex weighted sum of all the
output vectors from the expert networks.

Suppose that there are n expert networks in the MoEs
architecture. The ith expert network produces its output yi(x)
as a generalised linear function of the input x such that.

yi(x) = f (W ix) (1)

HereWi is a weight matrix and f (·) is usually considered the
logistic function or the identity function. The gating network
operates as a generalised function, where its i − th output
gi is determined by applying a multinomial logit, or softmax
function, to an intermediate variable ξi [56], [61], [67].

gi(x, vi) =
eξi∑n
k=1 e

ξk
(2)

Here ξi = vTi x and vi represents a weight vector. The
overall output Y (X ) can be represented as follows:

Y (X) =

∑n

i=1
g(x, vi)yi(x) (3)

Y (X) =

∑n

i=1
gi(X )yi(X ) (4)

This structure allows the gating network to output a set of
probabilities that sum to one, making it suitable for conduct-
ing classification tasks where decisions are distributed across
multiple categories. ∑

gi (X) = 1 (5)

D. CUSTOM EXPERT LAYER
TheMoEffNet algorithm utilises the power of multiple expert
networks, each designed to focus on different feature levels
of the input data, thus enhancing the model’s ability to han-
dle complex and varied datasets efficiently. This capability
is developed through the custom expert layer within our
proposed method. The custom expert layer is fundamental
to defining and adapting the layers for each expert within
the ensemble. Each expert network is constructed using
a sequence of neural network layers designed to improve
performance for the kind of data it focuses on. These lay-
ers include dense layers with ReLU activation to introduce
non-linearity and enable learning of complex patterns, fol-
lowed by dropout layers that randomly deactivate a portion
of neurons (specified by a dropout rate, of 30%) during train-
ing [68]. This prevents the network from becoming overly
dependent on any single or small group of neurons, thereby
reducing the risk of overfitting, and enhancing the model’s
ability to generalise to new, unseen data. Additionally, L2
regularisation is applied to the weights of the dense layers,
penalising large values which helps keep the model sim-
pler and further guards against overfitting. The outputs from
these experts are then collected using the gating mechanism’s
weights to produce a final, weighted output.

E. EFFIGATE GATING NETWORK
The decision-making process in MoEffNet is guided by an
advanced gating network, known as EffiGate. This mecha-
nism dynamically evaluates the contribution of each expert
network within the ensemble, utilising features extracted
from mammogram input images via an EfficientNet model.
By doing so, EffiGate ensures that the most relevant and
effective experts are selected, based on the input data’s unique
characteristics. EffiGate contains two main components that
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define its functionality within MoEffNet. The first compo-
nent includes the input features, sourced from an EfficientNet
model known for its effectiveness in handling image data,
particularly in medical imaging contexts like mammograms.
These features, which are high-level abstractions of the input
data, are rich in detail and critical for subsequent processing.

The second component is the dense layer, which is con-
figured as a fully connected neural network layer with units
equal to the number of expert networks in the ensemble.
Each unit in this dense layer outputs a score indicating the
significance of each expert’s network relative to the cur-
rent input features. These scores are then processed through
a SoftMax activation function, which converts them into
normalised gating weights. These weights represent proba-
bilities that measure the confidence or expected efficiency
of each expert’s contribution to the final decision-making
process. The SoftMax ensures that these gating weights are
non-negative and sum to one, making them interpretable
as the likelihood of each expert’s relevance to the specific
input. This gating mechanism acts dynamically, continuously
adjusting the weights of the various expert models based
on the input data processed by EfficientNet, thus adjusting
MoEffNet’s response to diverse diagnostic scenarios.

IV. EXPERIMENTAL STUDY
This section presents the validation of the proposed method,
MoEffNet, utilising three distinct publicly available datasets:
MIAS (Mammographic Image Analysis Society database),
CBIS-DDSM (Curated Breast Imaging Subset of the Digital
Database for Screening Mammography), and INbreast. Each
dataset was chosen to highlight different characteristics and
capabilities of our methodology under varying conditions.
Detailed descriptions of the datasets and the experimental
setup are provided below:

A. DATASETS
Three diverse datasets, each with unique strengths, form the
foundation of our study. These datasets encompass a wide
range of mammographic cases with high-quality annotations,
serving as the critical training and testing ground for our novel
breast cancer diagnosis method MoEffNet.

1) MAMMOGRAPHIC IMAGE ANALYSIS SOCIETY (MIAS)
DATABASE
The MIAS database is one of the oldest and most
widely utilized mammographic databases in breast can-
cer research. Developed by a consortium of UK-based
research groups, MIAS provides a platform for the eval-
uation of computer-aided diagnosis (CAD) systems. The
database includes 322 images across 161 cases, each anno-
tated with details of the lesions present, including location
and type. This dataset comprises 68 benign, 151 malignant,
and 203 normal images, each with a resolution of 1024 ×

1024 pixels in PGM format. The database exclusively con-
tains MLO views from both the left and right breasts. The
mammographic images in this collection were digitised using

a high-precision scanning micro densitometer, achieving a
resolution of 50µmx50µm with each pixel represented at
an 8-bit depth. For enhanced usability, the original MIAS
database images have been downscaled to a resolution of
200µm per pixel, as documented in references [69], [70]. This
database has been instrumental in developing and validating
algorithms for detecting and diagnosing breast cancer, ensur-
ing consistency across different studies. Figure 4 presents
examples from the MIAS dataset.

FIGURE 4. Representative samples from the MIAS Mammogram Dataset:
Illustrating (a) Normal, (b) Benign, and (c) Malignant Cases used for
training and evaluation.

2) CURATED BREAST IMAGING SUBSET OF DDSM
(CBIS-DDSM)
The CBIS-DDSM is a refined and standardized version of
the Digital Database for Screening Mammography (DDSM)
[10], [71]. It includes full-field digital mammographic images
formatted in DICOM, offering decompressed images, data
selection by trained mammographers, updated mass segmen-
tation, and formatted similarly to modern computer vision
data sets. This dataset includes 1,644 cases divided into
four main categories: Benign Calcification, Benign Mass,
Malignant Calcification, andMalignant Mass, with 753 cases
of calcifications and 891 instances of masses. Our analy-
sis focused exclusively on mass cases, comprising a benign
training set of 355 cases, a benign testing set of 117 cases,
a malignant training set of 336 cases, and a malignant testing
set of 83 cases. Cases containing calcifications have been
delayed for future investigation to allow a focused study
on masses in the current research phase. The CBIS-DDSM
is critical for our research due to its high-quality images
and diverse case presentations, enabling the development of
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robust CAD algorithms. Figure 5 shows examples from the
CBIS-DDSM mammogram dataset.

FIGURE 5. Sample images from the CBIS-DDSM Dataset: Comparison of
full and cropped mammograms for malignant (a, c) and benign (b, d)
masses.

3) INbreast DATABASE
The INbreast dataset is a more recent addition to the available
mammographic databases and is noted for its high-resolution
full-field digital mammography images [72]. Compiled at the
Centro Hospitalar de S. João in Porto, Portugal, the dataset
includes 410 images from 115 cases. It features a variety
of mammographic findings such as masses, calcifications,
and architectural distortions, all annotatedwith calcifications,
asymmetries, and distortions. Specialists accurately outline
each lesion, and the annotations are provided in XML for-
mat, enhancing the dataset’s utility for precise algorithm
development. This level of detail supports advanced algorith-
mic development and validation, particularly in the accurate
detection and classification of subtle mammographic fea-
tures. The INbreast dataset’s comprehensive and detailed
annotations make it an invaluable resource for enhancing
the diagnostic accuracy of CAD systems. Figure 6 presents
illustrative images from the INbreast dataset.

B. DATA PROCESSING
In the pre-processing stage of our study, we employed vari-
ous data augmentation techniques to enhance the robustness
and generalizability of our deep learning model for breast
cancer classification. Given the sensitive variations in mam-
mogram appearance, which can arise from patient positioning
and acquisition angles, we introduce controlled variability in
the training data to enable the model to recognise features
consistently across different images. Specifically, all images
are resized to a uniform resolution of 224 × 224 pixels to
ensure that the Convolutional Neural Network (CNN) pro-
cesses standardized inputs. This standardization allows the

FIGURE 6. Illustrative images from the INbreast Dataset: (a) Craniocaudal
(CC) and (b) Mediolateral Oblique (MLO) Views of both breasts
demonstrating the diversity of mammographic presentations in the
dataset.

network to effectively apply its filters and kernels during fea-
ture extraction. To resize the original mammogram images,
we employed TensorFlow’s image resizing capabilities. The
process involved the following key steps:

(a) Aspect Ratio Preservation: We ensured the original
proportions of the mammogram were maintained during the
resizing process to prevent any distortion of the image con-
tent.

(b) Interpolation Method: Bilinear interpolation was cho-
sen as the resizing method. This approach calculates the new
pixel values by taking a weighted average of the four nearest
pixels in the original image, resulting in smooth transitions
and preserving the image quality, which is crucial for retain-
ing the critical features in medical images.

(c) Padding toMatch Target Size: After resizing the images
while maintaining their aspect ratio, the resulting images
might not exactly match the target size of 224 × 224 pixels.
To address this, we ensured the final output imagewas exactly
224 × 224 pixels by symmetrically adding padding if the
resized image was smaller than the target size or cropping
if it exceeded the target size. Zero-padding was used, adding
black pixels to the borders to avoid modifying the original
image content.

Figure 7 illustrates the mammogram image resizing pro-
cess employed to ensure compatibility with the EfficientNet
architecture while preserving critical diagnostic details.

To enhance the robustness and applicability of the datasets
employed in this study, we have implemented a series of
geometric transformations that simulate the realistic varia-
tions often observed during the acquisition of mammograms.
These variations include rotations at subtle angles of −10,
0, and 10 degrees to emulate the slight misalignments that
can occur during patient positioning. Additionally, we applied
translations with pixel offsets of (−11, 0, 11) along the
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FIGURE 7. Resizing process for mammogram images: (a) Original,
(b) Aspect ratio preserved, and (c) Final resized 224 × 224 image.

TABLE 2. Distribution of EfficientNet features across MoEffNet experts:
detailing low, mid, and high-level feature allocation.

horizontal and vertical axes, reflecting the potential shifts
in imaging due to patient movement or equipment handling.
Furthermore, we adjusted the scale of the images by factors of
0.9, 1.0, and 1.1, which accounts for the natural fluctuations
in image size due to variations in the distance between the
imaging device and the breast tissue. Additional augmen-
tations include horizontal flipping to account for laterality
differences in lesions and minor adjustments to contrast and
brightness (alpha=1.1 and beta=10 respectively) to aid the
model in learning features less sensitive to brightness varia-
tions. These transformations were applied only to the training
sets to enhance the diversity of the training data, improv-
ing the model’s ability to generalise. The testing sets were
intentionally left unaltered to provide a consistent and reli-
able metric for evaluating model performance. We tested and
refined each transformation throughmultiple trials, achieving
high-performance settings. This careful testing and validation
process ensures our datasets are comprehensive and effective
for training models that produce reliable diagnostic results.
Through these methods, we expand the training dataset, pro-
viding a broader range of patterns for the CNN to learn
from, which is crucial for improving performance on unseen
mammograms and addressing the challenge of limited data
availability in medical imaging.

C. ASSIGNING FEATURES TO EXPERTS
In this study, we utilised the MoEffNet architecture to
extract and assign features from an EfficientNet model to
enhance performance across varied complexities of image

FIGURE 8. Visualisation of multi-level feature maps extracted by
EfficientNetB0: Detailed views from blocks 3, 5, and 7 for (a) Malignant
and (b) Benign mammographic conditions.

data. EfficientNet models are structured with a consistent
number of building blocks across different variants, but the
assembly and information of the blocks can vary slightly
depending on the version. Generally, the EfficientNet archi-
tecture consists of 7 blocks, followed by a top layer. Each of
these blocks can have varying numbers of individual layers
and might use different scaling parameters in terms of width,
depth, and resolution in the different versions (B0 – B7).
The EfficientNet architecture series (B0 to B7) employs a
systematic scaling approach using a compound method to
adjust network depth, width, and resolution based on a set
of fixed scaling coefficients. This scaling is directed by the
formula d = αφ,w = βφ, r = γ φ , where d is the depth, w
denotes width, r represents resolution, and φ is a compound
coefficient that increases progressively across the models
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TABLE 3. Detailed configuration of training and evaluation parameters
for MoEffNet across different datasets.

from B0 to B7. Each subsequent model in the series increases
in complexity and capability, with more layers.

We evaluated four EfficientNet models including Effi-
cientNet B0, B1, B2, and B4 in our experiments. Our
approach involves extracting features from multiple layers
of the EfficientNet—early, middle, and late—which cap-
ture low, mid, and high-level features respectively. These
are then systematically assigned to the experts within our
MoEffNet ensemble. Depending on the experiment, our
ensemble included configurations with two, three, and four
experts, each designed to handle different types of features
based on their complexity. This method allows for detailed
and adaptive handling of image features, promoting under-
standing of image complexities among the experts. Table 2
summarises how features from an EfficientNet model are
assigned to different experts in the MoEffNet system based
on the number of experts used. For visualisation purposes,
figure 8 displays the first 16 feature maps extracted from
Blocks 3, 5, and 7 of the EfficientNet B0model. These feature
maps are arranged in a 4×4 grid and visualised using the ‘jet’
colour map to enhance contrast and detail. The images used
for this visualisation are samples of mammogram images
from the CBIS-DDSM dataset, specifically selected to rep-
resent cases with malignant and benign conditions.

1) MODEL TRAINING AND EVALUATION CONFIGURATION
In the training configuration of the machine learning models
in MoEffNet, the Stochastic Gradient Descent (SGD) opti-
miser is used with an initial learning rate of 0.001, chosen for
its straightforward approach to navigating the optimisation
landscape. Training involves batches of 32 to optimise com-
putation speed and memory utilisation over up to 100 epochs,

TABLE 4. Mias dataset composition and augmentation details.

allowing the network sufficient learning time. Key callbacks
include Early Stopping, which halts training if there’s no
improvement in validation loss after 10 epochs to prevent
overfitting, and ReduceLROnPlateau, which decreases the
learning rate if no progress is seen after 3 epochs, helping the
model navigate potential local minima more effectively [73].
Furthermore, the model’s reliability and consistency are eval-
uated over 20 separate experiment runs, using accuracy,
specificity, precision, recall, F1-score, area under the curve
(AUC) of receiver operating characteristics (ROC), and Dis-
tance from the Ideal Position (DIP) to provide a detailed
assessment of its classification capabilities across different
training and testing cycles. Table 3 displays the hyperparam-
eter settings and the options selected for training across the
various scenarios in our experiments.

2) EVALUATION METRICS
As described above, we employed several validation metrics
to examine the efficacy of our method, including accuracy,
specificity, precision, recall, F1-score, distance from the ideal
position (DIP). and the area under the curve (AUC) of the
receiver operating characteristics (ROC). To understand these
metrics, it is essential first to define the components they are
calculated from: TP (True Positives), TN (True Negatives),
FP (False Positives), and FN (False Negatives), which are
described as follows:

• TP: True positives are the correctly predicted positive
cases, which means that the actual class of the data
point was positive, and the predicted class is also posi-
tive.

• FN: False negatives are the cases where the actual class
is positive, but the predicted class is negative.

• TN: True negatives are the correctly predicted negative
cases, which means that the actual class of the data
point was negative, and the predicted class is also neg-
ative.

• FP: False positives are the cases where the actual class
is negative, but the predicted class is positive.

a) Accuracy: Accuracy measures the overall accuracy of
the model by computing the ratio of correct predictions
(both TP and TN) to the total number of predictions
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made such that,

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

b) Specificity: Specificity measures the proportion of
actual negatives that are correctly identified, which
indicates the model’s ability to identify negative
outcomes. It can be computed using the following
equation:

Specificity =
TN

TN + FP
(7)

c) Precision: Precision represents the accuracy of positive
predictions, indicating the ratio of positive identifica-
tions that were correct such that,

Precision =
TP

TP+ FP
(8)

d) Recall or Sensitivity: Recall measures the percentage
of real positives that are correctly identified, highlight-
ing themodel’s ability to observe all relevant cases such
that

Recall =
TP

TP+ FN
(9)

e) F1-score: The F1-score is a harmonic mean of pre-
cision and recall that can be calculated using the
following equation:

F1 − score = 2x
PrecisionxRecall
Precision+ Recall

(10)

f) Area under the curve (AUC): The AUC is the area
under the Receiver Operating Characteristics (ROC)
curve, which plots the true positive rate (Recall) against
the false positive rate. The AUC measures the entire
two-dimensional area underneath the ROC curve from
(0,0) to (1,1). A higher AUC indicates a better perform-
ing model, capable of correctly classifying positive and
negative cases with high probability.

g) Distance from the Ideal Position (DIP): The DIP is
a performance measure used to evaluate an algorithm’s
quality when multiple independent and bounded met-
rics are considered. It can be computed by measuring
the Euclidean distance from the ideal value, which is
1 for each metric for all metrics, normalising this by the
number of metrics, and then transforming this distance
into a score that ranges between 0 to 1. The formula for
the DIP is:

DIP = 1 −

√∑N
i=1 (1 − mi)2

√
N

(11)

Here mi is the value of the i-th metric, and N is the number
of metrics. A higher DIP value indicates better performance,
with 1 being the best possible score. DIP has been proven to
be superior to F1 at the higher performance end [74].

D. RESULTS
We conducted several experiments to verify the validity of
MoEffNet for breast cancer diagnosis using the aforemen-
tioned preprocessing, feature selection, and model training
and evaluation configurations. These experiments utilised
three mammogram image datasets: MIAS, CBIS-DDSM, and
INbreast. The results for each dataset are detailed in the
following subsections.

1) MIAS DATASET
TheMIAS dataset used in our study was originally composed
of 338 images designated for the training set, with 10%
reserved for validation, and 84 images designated for the
testing set. After the validation split, the total number of
training images was 304. The details of the augmentation
process are summarised in Table 4.

Before investigating the detailed results from applying
MoEffNet in the MIAS dataset, it is important to understand
the training progress of ourmodel. Figure 9 shows an example
of the training and validation accuracy over 30 epochs from
one of our experiments. The blue line represents training
accuracy, and the orange line represents validation accuracy.
Both accuracies increase rapidly at first, with training accu-
racy steadying close to 100% and validation accuracy just
below it, indicating effective learning and generalisation.

FIGURE 9. Training and validation accuracy trends over 30 Epochs:
Demonstrating the convergence and generalisation capabilities of the
MoEffNet model.

Table 5 presents the testing results of our investigation
into the performance of MoEffNet with various EfficientNet
models and different numbers of experts for breast cancer
diagnosis using the MIAS dataset. The results provide valu-
able insights into the relationship between model complexity,
the number of experts, and diagnostic accuracy. For Efficient-
Net B0, accuracy peaks at 99.4% with two experts using
low to high-level features, but additional experts slightly
reduce accuracy. EfficientNet B1 shows a similar pattern,
achieving 99.2% with two experts, but accuracy drops with
three and slightly improves with four experts. EfficientNet
B2 peaks at 98.8% with three experts focusing on different
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feature levels, while adding a fourth expert offers reduced
returns. EfficientNet B4 demonstrates continuous improve-
ment, achieving the highest accuracy of 99.2% with four
experts, benefiting from a combined input across all feature
levels. These findings highlight that while all models bene-
fit from expert involvement, the optimal number of experts
varies. EfficientNet B0 and B1 perform best with two experts,
EfficientNet B2 with three, and EfficientNet B4 with four,
highlighting the importance of both model complexity and
expert input in enhancing diagnostic accuracy. Furthermore,
the low standard deviations across most models suggest that
the classification accuracies are stable and reliable, with Effi-
cientNet B2 and B4 showing slight increases in variability as
more experts are added but achieving higher accuracy overall.

TABLE 5. Detailed classification accuracy and standard deviation of
MoEffNet across different EfficientNet models and expert configurations
on the MIAS dataset.

Figure 10 provides a clearer visualisation of the results in
Table 4. The figure shows the results with two, three, and
four experts involved. EfficientNet B0 and EfficientNet B1
achieve peak performance with two experts, while Efficient-
Net B2 performs best with three experts. EfficientNet B4
demonstrates the highest accuracy with four experts. This
trend suggests that while simpler models like EfficientNet B0
and B1 benefit most from the involvement of fewer experts,
the more complex EfficientNet B4 model gains significant
improvements from the input of more experts.

Figure 11 presents the performance metrics (Precision,
Recall, Specificity, F1 score, and DIP) for MoEffNet using
various EfficientNet models (B0, B1, B2, and B4) with two
experts. EfficientNet B0 and B1 demonstrate the highest pre-
cision and recall, achieving values close to 99.5% and 99.0%,
respectively, indicating their effectiveness in correctly identi-
fying positive cases and capturing the most actual positives.
They alsomaintain high specificity around 99.5%, suggesting
strong performance in correctly identifying negative cases,
and achieve the highest F1 scores around 99.0%, indicating
a balanced performance. EfficientNet B2 and B4, while per-
forming well with precision, recall, specificity, and F1 scores
around 98.5% and 98.0%, are slightly lower across these
metrics. This suggests that for MoEffNet with two experts,
EfficientNet B0 and B1 offer the best performance in terms
of diagnostic accuracy and reliability.

Figure 12 displays the Receiver Operating Character-
istic (ROC) curve for MoEffNet with two experts using

FIGURE 10. Summary of classification results using MoEffNet on the
MIAS Dataset: Comparison across different numbers of experts.

FIGURE 11. Comparison of key performance metrics for MoEffNet:
Evaluating precision, recall, specificity, F1 score, and DIP across different
EfficientNet models with two experts.

EfficientNet B0. The ROC curve illustrates the trade-off
between the true positive rate (sensitivity) and the false posi-
tive rate (1-specificity) across various threshold settings. The
curve is plotted with the true positive rate on the y-axis and
the false positive rate on the x-axis. The orange line represents
the performance of the model, while the diagonal blue dashed
line represents the performance of a random classifier.

The Area Under the Curve (AUC) is 0.992, which indicates
an excellent level of discrimination by the model. An AUC of
0.992 means that the model has a 99.2% chance of correctly
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FIGURE 12. Receiver operating characteristic (ROC) curve and area under
the curve (AUC) for MoEffNet: assessing diagnostic accuracy with two
experts using EfficientNetB0.

distinguishing between positive and negative cases. This high
AUC value demonstrates thatMoEffNet with EfficientNet B0
and two experts performs exceptionally well in identifying
true positives while minimising false positives, thereby con-
firming its effectiveness in breast cancer diagnosis using the
MIAS dataset.

2) CBIS-DDSM DATASET
In our study, the CBIS-DDSM dataset was used, compris-
ing a benign training set of 355 cases, a benign testing set
of 117 cases, a malignant training set of 336 cases, and a
malignant testing set of 83 cases. Each case includes both CC
and MLO views, doubling the number of images. Thus, the
dataset contained a total of 1,782 images: 710 benign training
images (with 10% reserved for validation), 234 benign testing
images, 672 malignant training images (with 10% reserved
for validation), and 166 malignant testing images, leading to
a total of 1,382 training images before augmentation. The
details of the augmentation process are summarised in the
following Table 6.

TABLE 6. CBIS-DDSM dataset composition and augmentation details.

Table 7 presents the testing classification accuracy and
standard deviation for validating MoEffNet using various

EfficientNet models (B0, B1, B2, and B4) with different
numbers of experts on the CBIS-DDSM dataset. EfficientNet
B0 demonstrates the best performance with three experts,
achieving 99.4% accuracy with a minimal standard deviation
of 0.01%, indicating high stability. With two experts, it shows
99.1% accuracy with a standard deviation of 0.02%, and with
four experts, the accuracy drops to 98.7% with a standard
deviation of 0.04%, indicating increased inconsistency with
more experts. EfficientNet B1 performs consistently well,
maintaining an accuracy of 99.4% across three and four
experts with standard deviations of 0.03% and 0.04%, respec-
tively and 99.3% with two experts, demonstrating consistent
performance with slightly increasing variability. Efficient-
Net B2 achieves the highest accuracy of 99.6% with both
three and four experts, showing excellent performance and
stability. With two experts, it achieves 99.4% accuracy. Effi-
cientNet B4 shows good performance with two experts at
99.4% accuracy but exhibits a slight decrease in accuracy
and increased variability with three experts at 99.3% with a
standard deviation of 0.05% and four experts at 99.2% with
a standard deviation of 0.06%. Taking together, these results
suggest that EfficientNet B2, particularly with three or four
experts, offers the best performance and stability for breast
cancer diagnosis using the CBIS-DDSM dataset, validating
the effectiveness of theMoEffNetmethodwith optimal expert
involvement.

TABLE 7. Comprehensive accuracy and standard deviation analysis of
MoEffNet using EfficientNet variants and expert configurations on the
CBIS-DDSM dataset.

Figure 13 presents the performance metrics (Precision,
Recall, Specificity, F1-score, and DIP) for MoEffNet using
three experts and various EfficientNet models (B0, B1,
B2, and B4) on the CBIS-DDSM dataset. EfficientNet B2
consistently outperforms the other models across all met-
rics, achieving approximately 99.6% in Precision, Recall,
Specificity, and F1-score, indicating superior performance.
EfficientNet B0 and B1 also perform very well, with metrics
around 99.3% to 99.4%, demonstrating high effectiveness
and reliability. EfficientNet B4, while still showing strong
performance with metrics around 99.2%, is slightly lower
compared to the other models. These results validate the
effectiveness of MoEffNet, particularly with EfficientNet B2,
for breast cancer diagnosis using the CBIS-DDSM dataset.

Figure 14 shows the ROC curve for MoEffNet with three
experts using EfficientNet B2. It demonstrates excellent
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FIGURE 13. Detailed performance analysis of MoEffNet: Metrics
comparison across EfficientNet variants with three experts for the
CBIS-DDSM dataset.

performance with an AUC of 0.995, showing that themodel is
highly effective in distinguishing between positive and nega-
tive classes. An AUC of 0.995, close to the ideal value of 1.0,
indicates that the model has excellent discriminatory power,
performing significantly better than random guessing (AUC
of 0.5). This high AUC value suggests that the MoEffNet
model is highly accurate in its predictions, making it partic-
ularly useful for applications where precise classification is
crucial, such as medical diagnostics.

FIGURE 14. ROC curve and AUC Analysis for MoEffNet with Three Experts:
Demonstrating high diagnostic precision using EfficientNetB2 on the
CBIS-DDSM dataset.

3) INbreast DATASET
The INbreast dataset used comprises a total of 410 mammo-
gram images, with 287 normal cases and 123 abnormal cases.
For our study, we divided the dataset into training, valida-
tion, and testing sets. The training set contains 328 images,

of which 10% (33 images) were reserved for validation pur-
poses. The testing set consists of 82 images. The details of
the augmentation process are summarised in the following
Table 8.

TABLE 8. Details of geometric transformations applied to the INbreast
dataset.

Table 9 shows the testing classification accuracy and
standard deviation for validating MoEffNet using various
EfficientNetmodels (B0, B1, B2, and B4) with different num-
bers of experts on the INbreast dataset. According to the table,
EfficientNet B0 shows a steady improvement in accuracy,
from 99.1% with 2 experts to 99.5% with 4 experts. Effi-
cientNet B1 also demonstrates an upward trend, achieving the
highest accuracy of 99.8% with 4 experts. EfficientNet B2
demonstrates very high accuracy across all configurations,
with a slight edge at 3 and 4 experts, both achieving around
99.8%. In contrast, EfficientNet B4’s performance decreases
as more experts are added, from 99.4% with 2 experts to
99.1% with 4 experts, suggesting potential overfitting or
increased complexity not benefiting this variant. Overall, all
configurations display high accuracy, confirmingMoEffNet’s
efficacy for this task. However, EfficientNet B2 with 3 or
4 experts stands out as the optimal choice for the highest
accuracy, whereas the reducing returns with EfficientNet B4
indicate the need for careful tuning of the number of experts
to avoid performance drops.

TABLE 9. Performance evaluation: classification accuracy and standard
deviation of MoEffNet across EfficientNet models and expert
configurations on the INbreast dataset.

Figure 15 depicts the performance of the MoEffNet model
on the INbreast mammogram dataset using various Effi-
cientNet models (B0, B1, B2, B4) evaluated on Precision,
Recall, Specificity, F1-score, and DIP with four experts.
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FIGURE 15. Comprehensive performance metrics for MoEffNet across
different EfficientNet models with four experts: evaluation of precision,
recall, specificity, F1-Score, and DIP on the INbreast dataset.

As demonstrated in the figure, EfficientNet B0 shows the
lowest performance across all metrics, with lower precision
and recall, leading to the lowest F1 score. EfficientNet B1
stands out with the highest precision, recall, and F1-score,
indicating fewer false positives and effective detection of true
positives. EfficientNet B2 also performs exceptionally well,
closely following B1 in precision and recall while achieving
the highest specificity. EfficientNet B4, although compet-
itive, does not surpass B1 and B2, with its metrics being
lower but still better than B0. Overall, EfficientNet B1 and
B2 are the best performers, making them the optimal choices
for the MoEffNet model on this dataset, while B4 and B0
show relatively lower effectiveness. Figure 16 presents the
ROC curve forMoEffNet with four experts using EfficientNet
B1. It shows excellent performance with an AUC of 0.997,
indicating that the model is highly efficient in classifying
between positive and negative classes.

In summary, these results show that the proposed
MoEffNet model, when applied to three distinct datasets—
MIAS, CBIS-DDSM, and INbreast—demonstrates remark-
able performance in breast cancer diagnosis using various
EfficientNet models (B0, B1, B2, B4) and configurations
with multiple experts. For the MIAS dataset, EfficientNet B0
and B1 achieve peak accuracies with two experts at 99.4%
and 99.2%, respectively, while EfficientNet B2 performs best
with three experts at 98.8%, and EfficientNet B4 reaches the
highest accuracy of 99.2% with four experts, suggesting that
simpler models benefit from fewer experts while more com-
plex models benefit from more. On the CBIS-DDSM dataset,
EfficientNet B2 with three and four experts shows the best
performance with an accuracy of 99.6%, indicating its supe-
riority in handling diverse and high-quality mammographic
images. EfficientNet B0 and B1 also performwell, with slight
variability in accuracy and standard deviation across different

FIGURE 16. Receiver operating characteristic (ROC) Curve and area under
the curve (AUC) analysis for MoEffNet: evaluating the diagnostic
performance with four experts using EfficientNet B1.

numbers of experts. For the INbreast dataset, EfficientNet B1
and B2 consistently achieve the highest accuracy, reaching
up to 99.8% with three and four experts, while EfficientNet
B4 shows a decrease in performance as more experts are
added. Overall, EfficientNet B1 and B2 stand out across all
datasets, particularly with three or four experts, making them
the optimal choices for high accuracy and stability in breast
cancer detection using MoEffNet.

E. DISCUSSION
The experimental evaluation of the MoEffNet model across
the three well-known mammographic datasets, MIAS, CBIS-
DDSM, and INbreast, demonstrates the robustness and
adaptability of the model in handling varying degrees of com-
plexity and image quality. These datasets, eachwith its unique
characteristics, provided a comprehensive testing ground to
assess the efficacy of MoEffNet, particularly when integrated
with different EfficientNet variants (B0, B1, B2, B4).

The MIAS dataset, known for its lower resolution and less
complex imaging, presented a moderate challenge. Despite
these challenges, MoEffNet achieved consistently high accu-
racy across all EfficientNet variants, with the simpler models,
EfficientNet B0 and B1, performing optimally when paired
with two experts. This indicates that for datasets with lower
complexity, a simpler model combined with a limited number
of experts can efficiently capture and analyse the necessary
features, leading to accurate diagnostic outcomes. The high
performance on the MIAS dataset suggests that MoEffNet is
well-suited for application in environments where computa-
tional resources are limited or where the imaging data is less
complex.

The CBIS-DDSM dataset, which includes high-resolution
digital mammograms, allowed us to evaluate MoEffNet’s
performance on more complex cases, particularly in the
detection of masses. The results were particularly impressive
with the EfficientNet B2 model, especially when configured
with three or four experts. The model achieved the highest
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accuracy (99.6%) with minimal variance, highlighting the
importance of using a more complex model with an optimal
number of experts to handle the complex details and vari-
ability present in this dataset. The consistent performance
across different configurations further validates the model’s
adaptability to complex diagnostic tasks, making it a reliable
tool for mass detection in digital mammography.

The INbreast dataset, known for its high-resolution images
and detailed annotations, provided a rigorous test for
MoEffNet. The EfficientNet B1 and B2 models showed
superior performance, particularly when four experts were
utilized. This highlights the necessity of combining a more
complex model with a higher number of experts when deal-
ing with high-resolution images that contain fine-grained
details, as found in the INbreast dataset. The results suggest
that MoEffNet can effectively use the detailed information
available in such high-quality datasets to improve diagnostic
accuracy.

Across all datasets, the number of experts was a critical
factor influencing performance metrics such as accuracy,
precision, recall, F1-score and DIP. Simpler models like Effi-
cientNet B0 and B1 reached peak performance with two
experts, indicating that fewer experts are sufficient to extract
and analyse features effectively from less complex datasets.
However, for more complex models like EfficientNet B2 and
B4, increasing the number of experts to four generally led to
improved performance, especially on the more challenging
CBIS-DDSM and INbreast datasets. This finding emphasises
the importance of making the model’s complexity and the
number of experts to the specific characteristics of the dataset
being analysed. It is also important to note that adding too
many experts, particularly in simpler models, can lead to
diminishing returns or even a slight decrease in accuracy.
This suggests that while multiple experts can enhance the
model’s ability to capture diverse features, there is an optimal
number of experts beyond which the benefits start to plateau
or decline.

The consistent high performance of MoEffNet across all
three datasets, particularly when using the EfficientNet B2
variant, underscores the robustness of the model. Its ability
to adapt to different dataset characteristics—ranging from
low-resolution images in MIAS to high-resolution, com-
plex images in INbreast—demonstrates its potential as an
adaptable tool for breast cancer diagnosis. The low standard
deviations observed in performance metrics across multi-
ple experimental runs further validate the robustness of
MoEffNet, indicating that the model’s predictions are sta-
ble and reproducible, regardless of the specific dataset or
model configuration used. This robustness is crucial in clini-
cal settings, where consistency and reliability are paramount
for effective diagnosis. Moreover, the results also reveal the
exceptional discriminatory power of MoEffNet, as indicated
by the high Area Under the Curve (AUC) values observed in
the ROC analyses. For instance, the EfficientNet B2 model,
particularly when configured with three experts, consistently
achieved AUC values close to 1.0, highlighting its ability to

accurately distinguish between benign and malignant cases.
This level of performance is critical for clinical applications,
where the ability to correctly identify positive cases while
minimising false positives and negatives can significantly
impact patient outcomes.

In short, the experimental results confirm that MoEffNet,
particularly when combined with the EfficientNet B2 model
and an optimal number of experts, offers a robust and
adaptable solution for breast cancer diagnosis across diverse
mammographic datasets. Themodel’s ability tomaintain high
performance across datasets with varying complexity and
resolution demonstrates its potential as a powerful tool in
clinical diagnostics, capable of improving the accuracy and
reliability of breast cancer detection in real-world settings.

TABLE 10. Comparative analysis of MoEffNet’s performance on multiple
datasets against state-of-the-art diagnostic models.

F. COMPARISON OF RESULTS
To further evaluate the effectiveness of our proposed method,
Table 10, the comparison with some recently published
results [42], [45], [55], [75], [76], [77], [78], [79], [80],
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[81], [82] with the same datasets used in this study. The
first left column presents the datasets used while the sec-
ond column shows the reference number. Columns three,
four, and five display validation metrics used in the com-
parison, namely, accuracy, sensitivity, specificity, and AUC
respectively. In [75] a technique uses a 2D-Fourier-Bessel
decomposition method to extract texture features from mam-
mogram images, which are then enhanced using a linear
regression-based feature space for improved classification
of benign and malignant masses. In [76] a method involves
segmenting regions of interest (ROIs) in mammograms with
a modified K-means algorithm, then applying the bidimen-
sional empirical mode decomposition (BEMD) algorithm to
derive multiple layers (BIMFs) from these ROIs, extracting
texture features from these layers, and finally classifying the
features using a support vector machine (SVM) classifier
to automatically assess breast cancer. In [77] a methodol-
ogy includes applying a two-dimensional discrete wavelet
transform (2D-DWT) to extract texture features from mam-
mogram regions of interest (ROIs), followed by feature
selection using grey-level co-occurrence matrix (GLCM),
and classification using a back-propagation neural network
(BPNN) to differentiate between normal, benign, and malig-
nant breast tissues.

In [45] a technique utilises a deep-learning model based
on transfer learning, where features from mammogram
images are extracted using pre-trained CNN architectures
like VGG-16, ResNet50, and Inception V3, and then
fine-tuned to classify breast cancer. In [78] a method inte-
grates multi-feature fusions for breast mass classification by
extracting complementary features (SIFT, GIST, HOG, LBP,
ResNet, DenseNet, and VGG), mining cross-modal patho-
logical semantics, and applying dynamic weight computation
for mid-level fusion, followed by ensemble learning with
voting strategies for final classification. In [79] a technique
involves using two automated methods for breast tumour
classification. The first method employs region-growing seg-
mentation with thresholds determined by a trained artificial
neural network (ANN). The second method uses cellular neu-
ral network (CNN) segmentation with parameters optimized
by a genetic algorithm (GA), followed by feature extraction
and classification using ANN and other classifiers. In [80]
a method encompasses integrating pre-trained CNN models
(such as EfficientNet) with ensemble learning using majority
and soft voting strategies to classify mammogram images.
In [55] an approach applying a three-stage transfer learn-
ing process using EfficientNet for breast cancer diagnosis
in two-view mammography. It trains sequentially on natu-
ral images, mammogram patches, and whole mammogram
views, achieving high accuracy using complementary infor-
mation from both views. Reference [42] presents a method
using a modified U-Net model for segmenting mammogram
images, followed by classification using pre-trained CNN
models (InceptionV3, DenseNet121, ResNet50, VGG16, and
MobileNetV2) with transfer learning and data augmentation
to enhance performance. In [81] a technique involves training

a deep learning model for breast cancer diagnosis using dis-
criminative fine-tuning, which assigns different learning rates
to each layer of the deep CNN, and mixed-precision train-
ing to reduce computational demands. Data augmentation
is also employed to enhance the model’s performance on a
small dataset, achieving rapid convergence and high accuracy.
Reference [82] introduces a method using deep Convo-
lutional Neural Networks (CNNs) with transfer learning
and fine-tuning strategies to classify mammogram images,
achieving high accuracy by leveraging pre-trained models
like VGG16, ResNet50, and Inception v3. This approach
enhances the model’s ability to differentiate between benign
and malignant breast lesions by optimising the networks with
large datasets.

It is apparent from Table 7 that the comparison of vari-
ous methods for classifying mammograms across the MIAS,
CBIS-DDSM, and INbreast datasets demonstrates the supe-
rior performance of the proposed method, MoEffNet. In the
MIAS dataset, MoEffNet achieves the highest accuracy of
99.4%, significantly higher than other methods, with a sen-
sitivity of 99.2%, specificity of 99.2%, and an AUC of
0.992, indicating its excellent ability to identify both positive
and negative cases. Remarkably, the technique introduced
in [45] achieves competitive results with an accuracy of
98.96% and an AUC of 0.995. Similarly, in the CBIS-DDSM
dataset, MoEffNet outperforms other methods with an accu-
racy of 99.6%, sensitivity of 99.5%, specificity of 99.5%,
and an AUC of 0.995, demonstrating its robustness and high
precision in detecting breast cancer. Competitive methods
include [75], with an accuracy of 99.06% and an AUC of
0.99, and [42], with an accuracy of 98.87% and an AUC of
0.9888. In the INbreast dataset, MoEffNet achieves the high-
est recorded accuracy of 99.8%, along with a sensitivity of
99.8%, specificity of 99.7%, and anAUCof 0.997, surpassing
all other methods. However, the technique introduced in [81]
achieves competitive accuracy at 99.8%. These results high-
light MoEffNet’s consistent and outstanding performance
across different datasets, making it an effective method for
breast cancer diagnosis in mammograms compared to exist-
ing techniques.

V. CONCLUSION
In this study, we have introduced MoEffNet, an advanced
integration of EfficientNet and MoEs, coupled with its
scalability, dynamic gating mechanism, and expert network
specialisation for high-performance breast cancer diagno-
sis. Using EfficientNet’s advanced feature extraction and
MoEs’ adaptive specialization, MoEffNet processes features
at multiple levels. The EffiGate mechanism further refines
precision by dynamically weighting each expert network
based on input characteristics. Our broad validation of three
mammographic datasets, MIAS, CBIS-DDSM, and INbreast,
demonstratedMoEffNet’s outstanding performance. The pro-
posed model achieved high diagnostic accuracy, with AUC
values of 0.992 for MIAS, 0.995 for CBIS-DDSM, and
0.997 for INbreast, outperforming existing methods. These
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results highlight the effectiveness of integrating MoEs with
EfficientNet, showing that EfficientNet B1 and B2 models,
particularly with three or four experts, offer the highest accu-
racy across all datasets.

In conclusion,MoEffNet with its characteristics has proven
its high performance in breast cancer diagnosis using mam-
mographic images. These not only differentiate MoEffNet
from existing methods but also establish it as a new bench-
mark in automated mammogram analysis. Future work will
focus on expanding the diversity of datasets andMoEs, and on
further optimisation of adaptive learning models to enhance
MoEffNet’s diagnostic capabilities even further.

DATA STATEMENT
In this study, we use three publicly available datasets:
MIAS (Mammographic Image Analysis Society database)
(https://www.repository.cam.ac.uk/items/b6a97f0c-3b9b-
40ad-8f18-3d121eef1459), CBIS-DDSM (Curated Breast
Imaging Subset of the Digital Database for Screen-
ing Mammography) (https://www.cancerimagingarchive.net/
collection/cbis-ddsm/), and INbreast (http://medicalresearch.
inescporto.pt/breastresearch/index.php/Get_INbreast_
Database).
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