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Accurate pricing of basket options, which are financial derivatives on multiple underlying assets, is a chal-
lenging and practically important task for financial institutions. We propose several new control variates for 
accurate, fast and efficient pricing of basket options. The first approach to deriving new control variates 
is the use of Hermite polynomial approximation of appropriate function of the underlying asset prices, 
which leads to a Black–Scholes-like analytic solution. This approach is new in the option pricing context 
and opens up new possibilities in derivative pricing. Further control variates are analytically derived 
using Jensen’s inequality in one case, and distributional properties of multivariate Wiener processes in 
other cases. All the newly proposed control variates are shown to lead to excellent variance reduction in 
numerical experiments based on realistic data. The proposed methods are novel, computationally simple 
and have a strong potential to replace more conventional methods, such as the geometric lower bound in 
simulation-based pricing of basket options and similar products used in financial risk management. 

Keywords : finance; simulation; stochastic processes. 

1 . Introduction 

A basket option is an option whose underlying is a group of assets and whose payoff depends 
on the weighted average of these assets at the maturity date. Basket options are popular over-the-
counter financial instruments for cost-effective hedging of multiple underlying positions. Pricing baskets 
accurately can be challenging since the weighted average of the assets do not follow a closed-form 
distribution in general, even when the individual prices have a closed-form (e.g. lognormal) distribution. 
There is a significant amount of research over the past few decades on deriving approximate closed-
form prices for baskets. Kemna & Vorst (1990) and Curran (1994) approximated the price of a basket 
option using the geometric mean of the prices of assets in the basket. Besides being a lower bound on 
the arithmetic mean, the geometric mean of lognormal random variables is also lognormal and leads to 
a closed-form estimate of basket option price. However, Gentle (1993) found that using a superposition 
of the strike and the expected difference of the average value of the basket and its geometric average 
yielded better approximations of the basket option price. In a different approach, Milevsky & Posner 
(1998) obtained closed-form estimates for the basket option price, by approximating the distribution of 
the sum of the lognormal distribution by reciprocal gamma distribution. The only drawback is it was 
found to under-price out-of-the-money call options when compared with the Monte Carlo prices. Other 
closed-form approximations are based on moment matching and numerical approximations. 

Methods of moment matching were used by Brigo et al. (2001) and Henriksen (2008) to approximate 
the price of a basket option. This approach generally involves using a lognormal random variable and 
matching its first and second moments with those of the basket. Ju (2002) used Taylor series expansion 
to price basket and Asian options.
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2 K. JIPREZE AND P. DATE

Despite several analytical approximations to pricing a basket option, Monte Carlo simulation remains 
the most accurate way of valuing such options. The biggest downsides of this approach are a high 
variance of the resulting estimates and a high computational cost. This has led to the use of various 
variance reduction methods, including antithetic variates and control variates based on closed-form 
bounds or approximations. De Luigi & Maire (2010) used adaptive numerical techniques to price low-
dimensional basket options and found that this technique served as good control variates in pricing high-
dimensional baskets. Dingeç& Hörmann (2013) used a conditional Monte Carlo method along with 
geometric average as control variate to price basket options. Korn & Zeytun (2013) proposed the use of 
a limiting approximation of the arithmetic mean by the geometric mean, to obtain closed-form estimates 
as well as low variance Monte Carlo estimates for the basket option price. Lai et al. (2015) used control 
variate to price basket option under jump diffusion models. This was extended to stochastic volatility 
models with jumps using relevant asymptotic expansions as control variates (Shiraya & Takahashi, 2017). 
This method of asymptotic expansion was also previously used by Xu & Zheng (2010) with Forward 
Partial Integro-Differential Equation to approximate the basket option price.

Dingeç (2019) also proposed new control variate models using time-changed Brownian motions 
for pricing and sensitivity analysis of Basket options. Shiraya et al. (2020) proposed a class of control 
variates for pricing basket options driven by Lévy processes with the use of subordinated Wiener 
processes. Zhang et al. (2019) extended this to exponential subordinated Wiener processes. Kreckel 
et al. (2004) provide a systematic numerical comparison of different basket option pricing methods. In 
the context of the existing work described above, the contribution of the paper can be summarized as 
follows: 

1. For a basket of assets (which includes a practically important class of spread options), we 
introduce a new control variate for pricing basket options. This is done using a first-order Hermite 
polynomial approximation on the logarithm of a derived lower bound of the value of the basket, 
which is lognormally distributed. This leads to closed-form option price on the lower bound with 
modified strike, which is the logarithm of the strike of the basket. 

2. We suggest the use of a new closed-form upper bound in terms of the Jensen’s inequality as 
a control variate. To our knowledge, the use of this bound has not been explored in published 
literature. Using a fictitious basket option with volatilities and correlations of real-world indices, 
we demonstrate that the use of this bound as a control variate dramatically improves the variance 
of a Monte Carlo estimate. 

3. We also propose two new distributional closed-form bounds on the basket option price: a lower 
bound using the minimum of Brownian motions and an upper bound using the maximum of 
Brownian motions provided certain integrability conditions are imposed. These bounds are new 
and contribute to the literature on stochastics. We demonstrate that these bounds can be used for 
variance reduction, with the distributional lower bound giving excellent variance reduction. 

All our numerical experiments are benchmarked against a standard control variate, viz the geometric 
mean approximation as a lower bound on basket option price. 

Note that the focus of this paper is variance reduction using novel control variates, which perform 
better than the benchmark method and lead to explicit analytic expressions. They also havethe potential 
to be useful for other multivariate Monte Carlo applications related to financial derivative pricing. Other 
variance reduction methods, such as importance sampling, hybrid methods (Sun & Chenglong, 2018) 
and quasi-Monte Carlo methods are important in their own right, but are beyond the scope of this 
paper.
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NEW CONTROL VARIATES FOR PRICING BASKET OPTIONS 3

The rest of the paper is organized as follows. Section 2 covers the modelling of the problem. Section 
3 comprises numerical experiments which compare our new algorithms with the benchmark algorithms 
on realistic data sets. Section 4 concludes the paper. 

2 . Modelling approach 

We model the economy with a filtered probability space (Ω , F, Ft, Q), where Ω represents the sample 
space, {Ft}t≥0 represents the filtration generated by n independent Brownian motions W1(t), ..., Wn(t) 
and Q is the risk neutral measure. We assume that the asset prices Si(t) are Ft-measurable and follow a 
geometric Brownian motion (GBM) model given by 

Si(t) = Si(0) exp 

⎡⎣(r − 
1 
2 
σ 2 

i

)
t + 

n∑
j=1 

σijWj(t) 

⎤⎦, ∀i = 1, ..., n, (1)  

i.e. each Si(t) satisfies the stochastic differential equation, 

dSi(t) 
Si(t) 

= rdt + 
n∑

j=1 
σijdWj(t). (2)  

Here r is the risk-free rate and σi is the volatility of the asset i such that σ 2 
i = ∑n 

j=1 σ
2 
ij . 

The value of a basket of n assets at a time t which satisfies (1)–(2) is given by 

S(t) = 
n∑

i=1 
ωiSi(t), (3)  

where ωi ≥ 0 such that
∑n 

i=1 ωi = 1. 
The price C(0, T , K) of a basket call option at a time 0, with a strike K and maturing at time T , is  

C(0, T , K) = e−rTEQ
[
(S(T) − K)+

]
, (4)  

where EQ[−] denotes the expectation under risk-neutral measure. In the subsequent subsections, we 
derive the first-order Hermite polynomial control variate for pricing a basket option, which will later be 
used in Sections 3 and 4. 

2.1 . Lognormal approach using first-order hermite polynomials 

For n = 1, we know that S(t) is lognormal and C(0, T , K) is available in closed-form in terms of 
Black–Scholes formula. The main idea is to derive some lognormal random variable whose behaviour 
mimics that of the basket and which has a closed-form solution. If we can approximate the summation∑n 

i=1 ωiSi(t) by a lognormal random variable with a known finite variance in closed-form, we can 
obtain a Black–Scholes-type approximate solution for the price of the basket option. Instead of trying 
to approximate S(t) directly e.g. using moments as in Leccadito et al. (2016), we construct a linear 
approximation of y(t) := ln(S(t)) in terms of ln(Si(t)), using a multivariate Hermite polynomial basis. 
As each ln(Si(t)) is normal, so is our approximation to y(t). Consequently, ey(t) is lognormal and this
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4 K. JIPREZE AND P. DATE

allows us to use Black–Scholes-like formula for the basket option price, in terms of the parameters of our 
linear approximation. Evaluating the option price under GBM assumption always involves an accurate 
evaluation of integrals with respect to the Gaussian measure, which motivates our choice of Hermite 
polynomials as a basis for linear approximation. Given the function ϕ, which is the log of the terminal 
value of the basket, we can rewrite ϕ as a function of standard normal variables such that 

ϕ = ln
(
S(T)

)
, (5)  

= ln 

⎛⎝ n∑
i=1 

ωiSi(0) exp

((
r − 

1 
2 
σ 2 

i

)
T + 

n∑
j=1 

σijWj(T)

)⎞⎠, 

= ln 

⎛⎝ n∑
i=1 

ωiSi(0) exp

((
r − 

1 
2 
σ 2 

i

)
T + √

T 
n∑

j=1 
σijuj

)⎞⎠, (6)  

where uj ∼ N(0, 1) ∀j. 
A non-linear function of Gaussian random variables can be approximated by a linear combination of 

standard normally distributed random variables using Hermite polynomial basis as follows. Consider a 
class of functions Y such that 

Y =
{
ϕ(u) :

∫ ∞ 

−∞ 
φ(u; 0, I)Φ2(u)du < ∞, ∀j

}
, 

where φ(u; 0, I) is the density of a standard normal vector u = (u1, ..., un) with covariance matrix I. 
We define the first-order Hermite polynomials {h(1) 

j (u)}n 
j=1 as 

h(1) 
j (u) = (−1) 

∂φ(u; 0, I) 
∂uj 

φ−1(u; , 0, I), (7)  

where h(0) 
j (u) = 1∀j. These polynomials satisfy the orthogonality condition with respect to the Gaussian 

density: ∫ ∞ 

−∞ 
h(1) 

j (u)h(1) 
k (u)φ(u; 0, I)du = δjk, 

where δjk =
{

1, if j = k 
0, otherwise. 

Since ϕ ∈ Y, we can approximate ϕ(u) as 

ϕ(u) ≈ ϕ̂(u) = 
n∑

j=0 
bjh

(1) 
j (u), 

= b0 + 
n∑

j=1 
bjuj. (8)  
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NEW CONTROL VARIATES FOR PRICING BASKET OPTIONS 5 

The coefficients of the orthogonal expansion are obtained as 

b0 =
∫ ∞ 

−∞ 
ϕ(u)φ(u)du and, (9) 

bj =
∫ ∞ 

−∞ 
ujϕ(u)φ(u)du, 1 ≤ j ≤ n. (10) 

We can now approximate the basket option price under the assumption that the basket of assets in 
lognormally distributed. 

PROPOSITION 1. The approximate price Ĉ(0, T , K) of a basket option at a time 0 at an earlier time T with 
non-negative strike K is given by 

Ĉ(0, T , K) = e−rT
[

exp

(
1 
2

(
V + 2b0

))
Φ

(
b0 + V − ln K√

V

)
− KΦ

(
b0 − ln K√

V

)]
, (11) 

where V = ∑n 
j=1 b

2 
j . 

Proof. 

Ĉ(0, T , K) = e−rTEQ

[(
e Φ̂(u) − K

)+]
. (12) 

We define the density ρΦ(y) of Φ̂(u) as 

ρΦ(y) = 
1√
V 

φ

(
y − b0√

V

)
. (13) 

The approximate terminal payoff is given by 

EQ
[(

e Φ̂(u) − K
)+] =

∫ ∞ 

−∞
(
ey − K

)+ 
ρΦ(y)dy, 

= exp

(
1 
2y

[
(b0 + V)2 − b2 

0

])
Φ

(
b0 + V − ln K√

V

)
− KΦ

(
b0 − ln K√

V

)
. (14) 

The approximated price Ĉ(0, T , K) of the basket option, using a linear Hermite polynomial approxima-
tion, is thus given by 

Ĉ(0, T , K) = e−rT
[

exp

(
1 
2

(
V + 2b0

))
Φ

(
b0 + V − ln K√

V

)
− KΦ

(
b0 − ln K√

V

)]
, (15) 

which completes the proof. �
The closed-form approximation in equation (15) for a basket option price is analogous to Black– 

Scholes representation for the price of a single asset.
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6 K. JIPREZE AND P. DATE

In practice, we estimate bj’s using a third-order Taylor series expansion of Φ about zero in 
equations (9) and (10), which leads to the integral in question being approximated by a simple linear 
function of moments of a Gaussian variable. Details are straightforward and are omitted for brevity. 
An alternative would be to use Gaussian quadrature to evaluate the said one-dimensional integrals. 
Also, this closed-form estimate can be used as a control variate for pricing basket options. However, 
the computational complexity of calculating the basket option price increases as the number of assets in 
the basket increases. To overcome this, we suggest an adaptation to the previously mentioned method 
to allow for its use as a control variate for pricing basket options with sufficiently large assets in the 
basket. 

In general, 

ln(1 + Si(T)) ≤ Si(T), (16) 

where Si(T) = ωiSi(T). Taking sums of ( 16) over i, we can deduce the following inequality: 

ln

(
n∏

i=1 
Si(T)

)
< 

n∑
i=1 

ln
(

1 + Si(T)
)

< 
n∑

i=1 
Si(T) = S(T). (17) 

We can simplify the weighted products of assets as 

n∏
i=1 

Si(T) =
(

n∏
i=1 

Si(0)

)
exp

[(
nr − 

1 
2 

n∑
i=1 

σ 2 
i

)
T

]
exp 

⎛⎝ n∑
i=1 

n∑
j=1 

σijWj(T) 

⎞⎠, (18) 

and its logarithm becomes 

ln

(
n∏

i=1 
Si(T)

)
= ln

(
n∏

i=1 
Si(0)

)
+
(

nr − 
1 
2 

n∑
i=1 

σ 2 
i

)
T + 

n∑
i=1 

d∑
j=1 

σijWj(T), (19) 

= γ + 
n∑

i=1 

n∑
j=1 

σijWj(T), (20) 

where γ = ln
(∏n 

i=1 Si(0)
)

+
(

nr − 
1 
2 

n∑
i=1 

σ 2 
i

)
T . 
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NEW CONTROL VARIATES FOR PRICING BASKET OPTIONS 7

We define a new function ϕ′ by simply replacing S(T) in (5) with the logarithm of (20) and the strike 
of the basket with ln K to obtain 

ϕ′ = ln

(
ln

(
n∏

i=1 
S(T)

))
, (21) 

= ln 

⎛⎝γ + 
n∑

i=1 

n∑
j=1 

σijWj(T) 

⎞⎠, 

= ln 

⎛⎝γ + √
T 

n∑
i=1 

n∑
j=1 

σijuj 

⎞⎠, (22) 

where uj ∼ Φ(0, 1) ∀j. 
Since ϕ′ ∈ Y, we can approximate ϕ′(u) as 

ϕ′(u) = b′
0 + 

n∑
j=1 

b′
juj, (23) 

where the parameters b′
j’s are estimated as bj’s in ( 9) and (10) but are estimated by replacing ϕ with ϕ′

for all 0 ≤ j ≤ n. 
We can estimate the parameters of b′

j’s in (23) using a third-order Taylor series approximation of ϕ′
of uj’s about 0 given by 

ϕ′(u) = ϕ′(0) + 
n∑

j=1 

∂ϕ′

∂uj

∣∣∣∣∣ uj=0uj + 
1 
2 

n∑
j=1 

n∑
k=1 

∂2ϕ′

∂ujuk

∣∣∣∣∣ uj=uk=0ujuk 

+ 
1 
6 

n∑
j=1 

n∑
k=1 

n∑
l=1 

∂3ϕ′

∂ujukul

∣∣∣∣∣ uj=uk=ul=0ujukul. (24) 

Thus, the coefficients of the parameters of Φ ′ are 

b′
0 = ln γ − 

1 
2 

T 
ρ2 

n∑
j=1 

n∑
i=1 

n∑
k=1 

σijσkj, (25) 

= ln γ − 
1 
2 

T 
ρ2 

n∑
k=1 

n∑
i=1 

Aik, (26) 

where A is the volatility matrix, ρ = γ + √
T 

n∑
i=1 

n∑
j=1 

σijuj and 

b′
j = 

√
T 

γ 

n∑
i=1 

σij +
(√

T 
γ

)3 n∑
i=1 

n∑
l=1 

n∑
m=1 

σijσljσmj +
(√

T 
γ

)3 n∑
k=1 

n∑
i=1 

n∑
l=1 

n∑
m=1 

σijσmkσljδjk, (27) 

for all 1 ≤ j ≤ n. 
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8 K. JIPREZE AND P. DATE

We denote the price at time 0 of an option on the logarithm of the product of weighted assets in the 
basket with a strike ln K, maturing at time T as C′(0, T , ln K) is given by 

C′(0, T , ln K) = e−rTEQ

[(
ln

(
n∏

i=1 
S(T)

)
− ln K

)+]
. (28) 

Using the lognormal approximation for ln
(∏n 

i=1 S(T)
)

in ( 23), we can obtain the option price 
C′(0, T , ln K) in a lognormal framework. Thus, the option price C′(0, T , ln K) is given by 

C′(0, T , ln K) = e−rT

[
exp

(
1 
2

(
V̄ + 2b′

0

))
Φ

(
b′

0 + V − ln K̄√
V̄

)
− K̄Φ

(
b′

0 − ln K̄√
V̄

)]
, (29) 

where K̄ = ln K and V̄ = ∑n 
j=1 b

′
j 
2 . 

Given that we have the price of the option C′(0, T , ln K) in closed-form, we have all the essential 
ingredients necessary to use this method for pricing basket options, using the first-order Hermite 
polynomial as a control variate for a large number of underlying assets. 

2.2 . Direct upper bound 

As a second control variate, we look at an upper bound on the option price. As mentioned earlier, a 
lot of analytical work was done in estimating bounds on its price (Rogers & Shi (1995), Xu & Zheng 
(2010)). However, we can obtain an easy and direct upper bound on the price of a basket option by a 
direct application of the Jensen’s inequality due to the convexity of the payoff function of the basket. To 
our knowledge, this bound has not been used in the published literature and can be explained as follows. 

E (S(T) − K)+ = E

(
n∑

i=1 
ωiSi(T) − K

)+ 

≤ 
n∑

i=1 
ωiE

(
Si(T) − K

)+ 
. (30) 

So that, 

e−rTE (S(T) − K)+ ≤ e−rT 
n∑

i=1 
ωiE

(
Si(T) − K

)+ 
=: UB. (31) 

The upper bound UB on the price of a basket option can be seen as the same as holding n options of 
different assets with the same strike K. The price UB of such a fictitious portfolio is given by 

UB = e−rT 
n∑

i=1

[
Si(0)erTΦ(h+ 

i ) − KΦ(h− 
i )
]

, (32) 

where hi± =  
ln
(

Si(0)erT 

K

)
± 1 

2σ 2 
i T 

σi 
√

T 
. 
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NEW CONTROL VARIATES FOR PRICING BASKET OPTIONS 9

While an upper bound similar to the one presented in this paper has also been discussed in Yu et al. 
(2022), there is a conceptual difference in how the bound is arrived at: we average over individual options 
with the same strike, whereas Yu et al. (2022) average over the geometric mean of the basket. 

2.3 . Distributional bounds 

Some of the research into finding suitable bounds on the price of a basket option involve using the 
properties of its payoff function such as in the Rogers–Shi lower bound (Rogers & Shi, 1995). In this 
section, we derive new upper and lower bounds on a basket of assets and their corresponding option price 
using the distributional properties of Brownian motions. 

2.3.1 . Lower and upper distributional bounds of a basket option. We can obtain an upper bound on 
the basket of assets in ( 3) and the price of a basket option in (4) by replacing the independent Wiener 
processes with their joint maximum. Similarly, we can also obtain lower bounds on the basket and its 
corresponding option price by replacing the independent Wiener processes with their joint minimum. 

PROPOSITION 2. The value S(t) of the basket of assets at any time t is bounded above by 

Su(t) = 
n∑

i=1 
ωiSi(0) exp

(
(r − 

1 
2 
σ 2 

i )t
)

exp
(

Mn(t) 
n∑

j=1 
σij

)
, (33) 

and bounded below by 

Sl(t) = 
n∑

i=1 
ωiSi(0) exp

(
(r − 

1 
2 
σ 2 

i )t
)

exp
(

mn(t) 
n∑

j=1 
σij

)
, (34) 

where Mn(t) = max 
1≤j≤n 

Wj(t), mn(t) = min 
1≤j≤n 

Wj(t) and provided 
n∑

j=1 
σij is non-negative for 1 ≤ i ≤ n. 

Proof. Given that the assets in the basket follow a GBM model, we set up the following inequalities: 

mn(t) 
n∑

j=1 
σij ≤ 

n∑
j=1 

σijWj(t) ≤ Mn(t) 
n∑

j=1 
σij, (35) 

where Mn(t) = max 
1≤j≤n 

Wj(t)) and mn(t) = min 
1≤j≤n 

Wj(t), 

so that the price of the basket at time t is bounded by 

Sl(t) = 
n∑

i=1 
Yi exp

(
m(t)σ ∗

i

)
≤ S(t) ≤ 

n∑
i=1 

Yi exp
(

M(t)σ ∗
i

)
= Su(t), (36) 

where σ ∗
i = ∑n 

j=1 σij, σ 2 
i = ∑n 

j=1 σ
2 
ij and Yi = ωiSi(0) exp

[(
r − 

1 
2 
σ 2 

i

)
T

]
. �

These bounds on the value of the basket given by Su(t) and Sl(t) are analytically intractible and are 
of a similar problem-type as the the basket of assets. To this end, we can estimate options on Su(t) and
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10 K. JIPREZE AND P. DATE

Sl(t) using their respective geometric means as suggested by Gentle (1993). Given the representations of 
the distributional upper and lower bound on the value of a basket of n assets at a time T given by Su(T) 
and Sl(T), respectively, in proposition 2. Let  Gu(T) denote the geometric mean of (33), which has the 
following representation: 

Gu(T) = 
n∏

i=1 

⎡⎣Si(0) exp

[(
r − 

1 
2 
σ 2 

i

)
T

]
exp

(
Mn(T) 

n∑
j=1 

σij

)⎤⎦ 

1 
n 

. (37) 

Given this representation of Gu(T), we can use it to estimate the price of an option on Su(T), which is 
an the upper bound on the basket option price with the same strike. 

PROPOSITION 3. The price CGu (0, T) at time 0 of an option on the geometric mean Gu(T), maturing at 
time T with non-negative strike K, is given by 

CGu (0, T) = α1β1e−rT
∫ ∞ 

K̃ 
eγ1y n√

T 
φ

(
y√
T

)(
Φ

(
y√
T

))n−1 
dy − Ke−rT

[
1 −

(
Φ

(
K̃√
T

))n]
, 

where α1 = ∏n 
i=1 Si(0) 

1 
n , β1 = exp

[(
r − 

1 
2

∑n 
i=1 

σ 2 
i 
n

)
T

]
, γ1 = 

1 
n

∑n 
i=1

∑n 
j=1 σij and K̃ = 

1 
γ1 

ln

(
K 

α1β1

)
. 

Proof. We can simplify the expression for Gu(T) in (37) to become 

Gu(T) =
(

n∏
i=1

(
Si(0)

) 1 
n
)

exp

[(
r − 

1 
2 

n∑
i=1 

σ 2 
i 
n

)
T

]
exp 

⎛⎝Mn(T) 
1 
n 

n∑
i=1 

n∑
j=1 

σij 

⎞⎠. (38) 

The price CGu (0, T) of the option on Gu(T) at a time 0 is given by 

CGu (0, T) = e−rTE

[(
Gu(T) − K

)+] , (39) 

= e−rT
∫ ∞ 

K̃

(
α1β1eγ1y − K

) n√
T 

φ

(
y√
T

)(
Φ

(
y√
T

))n−1 
dy, (40) 

= α1β1e−rT
∫ ∞ 

K̃ 
eγ1y n√

T 
φ

(
y√
T

)(
Φ

(
y√
T

))n−1 
dy 

− Ke−rT

[
1 −

(
Φ

(
K̃√
T

))n]
. (41) 

This completes the proof. �
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NEW CONTROL VARIATES FOR PRICING BASKET OPTIONS 11

Similarly, given the geometric mean of Sl(T) in (34), we can also derive the price of an option on it 
with the same strike K. We can define the geometric mean Gl(T) of Sl(T) as 

Gl(T) = 
n∏

i=1 

⎡⎣Si(0) exp

[(
r − 

1 
2 
σ 2 

i

)
T

]
exp

(
mn(T) 

n∑
j=1 

σij

)⎤⎦ 

1 
n 

. (42) 

PROPOSITION 4. The price CGl (0, T) of an option on Gl(T), maturing at T at a time 0 with non-negative 
strike K, is given by 

CGl (0, T) = e−rT
∫ ∞ 

K̃ 
eγ1y n√

T 
φ

(
y√
T

)(
Φ

(
− 

y√
T

))n−1 
dy + Ke−rT

(
Φ

(
− K̃ 

T

))n 

, 

where α1 = ∏n 
i=1 Si(0) 

1 
n , β1 = exp

[(
r − 

1 
2

∑n 
i=1 

σ 2 
i 
n

)
T

]
, γ1 = 

1 
n

∑n 
i=1

∑n 
j=1 σij and K̃ = 

1 
γ1 

ln

(
K 

α1β1

)
. 

Hence, we are able to use the bounds (33) and (34) on the value of the basket to obtain closed-
form bounds on the price of a basket option using their respective geometric means. Alternatively, we 
can obtain more accurate distributional bounds on the price of a basket option. This can be achieved 
by conditioning the option price of the distributional bounds on the value of the basket with the same 
strike K on its geometric mean as suggested by Curran (1994). We demonstrate this in the next two 
propositions. 

PROPOSITION 5. The estimated option price Cu 
B(0, T) on Su(T) with strike K, at a time 0 prior to its maturity 

T using Curran’s conditioning arguments, is given by 

Cu 
B(0, T) = e−rTE

[
Su(T)1{Gu(T) ≥ K}]+ Ke−rT

[(
Φ

(
1 
γ1 

ln

(
K 

α1β1

)))n 
− 1

]
, (43) 

where Su(T) is as defined is ( 33), α1 = ∏n 
i=1 Si(0) 

1 
n , β1 = exp

[(
r − 

1 
2

∑n 
i=1 

σ 2 
i 
n

)
T

]
, γ1 = 

1 
n

∑n 
i=1

∑n 
j=1 σij.
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12 K. JIPREZE AND P. DATE

Proof. The price at time 0 an option on Su(T) prior to the maturity T is given by 

Cu 
B(0, T) = e−rTE

[(
Su(T) − K

)+], (44) 

= e−rTE

[
E

[(
Su(T) − K

)+ ∣∣∣Gu(T) = y
]]

, (45) 

= e−rT
∫ K 

0 
E

[(
Su(T) − K

)+ ∣∣∣Gu(T) = y
]
Q
(
Gu(T) ∈ dy

)
, 

+ e−rT
∫ ∞ 

K 
E

[(
Su(T) − K

)+ ∣∣∣Gu(T) = y
]
Q
(
Gu(T) ∈ dy

)
. (46) 

We use the fact that ∫ K 

0 
E

[(
Su(T) − K

)+ ∣∣∣Gu(T) = y
]
Q
(
Gu(T) ∈ dy

) ≈ 0. (47) 

Substituting ( 47) in (46) to obtain 

Cu 
B(0, T) = e−rT

∫ ∞ 

K 
E

[(
Su(T) − K

)+ ∣∣∣Gu(T) = y
]
Q
(
Gu(T) ∈ dy

)
, (48) 

= e−rT
∫ ∞ 

K 
E

[
Su(T) − K

∣∣∣Gu(T) = y
]
Q
(
Gu(T) ∈ dy

)
, (49) 

= e−rTE
[
Su(T)1{Gu(T) ≥ K}]− Ke−rTQ

(
Gu(T) ≥ K

)
, (50) 

= e−rTE
[
Su(T)1{Gu(T) ≥ K}]− Ke−rT

[
1 −

(
Φ

(
1 
γ1 

ln

(
K 

α1β1

))n)]
. (51) 

Thus, we are able to obtain the required results. �
The option price given by Cu 

B(0, T) is an upper bound on the basket option price in (4). Next, we shall 
proceed to work out the lower bound on the basket option price using similar conditioning arguments. 

PROPOSITION 6. The estimated option price Cl 
B(0, T) on Sl(T), with strike K at a time 0 prior to its maturity 

T using Curran’s conditioning arguments, is given by 

Cl 
B(0, T) = e−rTE

[
Sl(T)1{Gl(T) ≥ K}]+ Ke−rT

[(
Φ

(
− 

1 
γ1 

ln

(
K 

α1β1

)))n]
, (52) 

where Sl(T) is as defined is ( 34), α1 = ∏n 
i=1 Si(0) 

1 
n , β1 = exp

[(
r − 

1 
2

∑n 
i=1 

σ 2 
i 
n

)
T

]
, γ1 = 

1 
n

∑n 
i=1

∑n 
j=1 σij.
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NEW CONTROL VARIATES FOR PRICING BASKET OPTIONS 13

Proof. The price at time 0 an option on Sl(T) prior to the maturity T is given by 

Cl 
B(0, T) = e−rTE

[(
Sl(T) − K

)+] , (53) 

= e−rTE

[
E

[(
Sl(T) − K

)+ ∣∣∣Gl(T) = y
]]

, (54) 

= e−rT
∫ K 

0 
E

[(
Sl(T) − K

)+ ∣∣∣Gl(T) = y
]
Q
(
Gl(T) ∈ dy

)
, 

+ e−rT
∫ ∞ 

K 
E

[(
Sl(T) − K

)+ ∣∣∣Gl(T) = y
]
Q
(
Gl(T) ∈ dy

)
. (55) 

We use the fact that ∫ K 

0 
E

[(
Sl(T) − K

)+ ∣∣∣Gl(T) = y
]
Q
(
Gl(T) ∈ dy

) ≈ 0. (56) 

Substituting ( 56) in (55) to obtain 

Cl 
B(0, T) = e−rT

∫ ∞ 

K 
E

[(
Sl(T) − K

)+ ∣∣∣Gl(T) = y
]
Q
(
Gl(T) ∈ dy

)
, (57) 

= e−rT
∫ ∞ 

K 
E

[
Sl(T) − K

∣∣∣Gl(T) = y
]
Q
(
Gl(T) ∈ dy

)
, (58) 

= e−rTE
[
Sl(T)1{Gl(T) ≥ K}]− Ke−rTQ

(
Gl(T) ≥ K

)
, (59) 

= e−rTE
[
Sl(T)1{Gl(T) ≥ K}]+ Ke−rT

[(
Φ

(
− 

1 
γ1 

ln

(
K 

α1β1

)))n]
. (60) 

Thus, we are able to obtain the required results. �
Given the analytic intractibility of the bounds Sl(t) and Su(t) on the value of the basket at any time 

t, we can impose integrability conditions on the the volatility parameters, allowing for closed-form 
evaluation of options on these bounds. These integrability conditions lead to bounds on the value of 
the basket given by 

S̄l(t) = 
n∑

i=1 
Yi exp

(
mn(t)σm

)
≤ S(t) ≤ 

n∑
i=1 

Yi exp
(

Mn(t)σM

)
= S̄u(t), (61) 

where σ 2 
i = ∑n 

j=1 σ
2 
ij , σM = max 

1≤i≤n 
σ ∗

i and σm = min 
1≤i≤n 

σ ∗
i and Yi = ωiSi(0) exp

[(
r − 

1 
2 
σ 2 

i

)
T

]
. 

PROPOSITION 7. Given the lower bound S̄l(t) on the value of a basket S(t) at a time t, its density and 
distribution 

Q
(
S̄l(t) ∈ dy

) = 
1 
y 

1 
σm 

√
T 

nφ

(
1 

σm 
√

T 
ln

(
y 
ϑ

))[
1 − Φ

(
1 

σm 
√

T 
ln

(
y 
ϑ

))]n−1 

dy, (62)
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14 K. JIPREZE AND P. DATE

are given by the following and 

Q
(
S̄l(t) ≤ y

) = 1 −
[

1 − Φ

(
1 

σm 
√

T 
ln

(
y 
ϑ

))]n 
, (63) 

respectively, where ϑ = ∑n 
i=1 ωiSi(0) exp

[
(r − 

1 
2 
σ 2 

i )T
]
. 

PROPOSITION 8. Given the upper bound S̄u(t) on the value of a basket Su(t), its density and distribution 

Q
(
S̄u(t) ∈ dy

) = 
1 
y 

1 
σM 

√
T 

nφ

(
1 

σM 
√

T 
ln

(
y 
ϑ

))(
Φ

(
1 

σM 
√

T 
ln

(
y 
α

)))n−1 

dy, (64) 

are given by the following and 

Q
(
S̄u(t) ≤ y

) =
(

Φ

(
1 

σM 
√

T 
ln

(
y 
ϑ

)))n 

, (65) 

respectively, where ϑ = ∑n 
i=1 ωiSi(0) exp

[
(r − 

1 
2 
σ 2 

i )T
]
. 

PROPOSITION 9. Given a basket of assets, which has the lower and upper bounds S̄l(t) and S̄u(t), 
respectively, as specified in (61), such a basket has the following bounds on the price of the basket 
option with maturity T and strike K at a time 0 given by 

UBn 
1 = ne−rT 

n∑
i=1 

Yi 
√

T

∫ ∞ 

ξ 
eσMyφ

(
y√
T

)(
Φ

(
y√
T

))n−1 
dy − Ke−rT

[
1 −

(
Φ

(
ξ√
T

))n]
, (66) 

and 

LBn 
1 = ne−rT 

n∑
i=1 

Yi 
√

T

∫ ∞ 

τ 
eσmyφ

(
y√
T

)(
1 − Φ

(
y√
T

))n−1 
dy + Ke−rT

[
1 − Φ

(
τ√
T

)]n 
, (67) 

where Yi = ωiSi(0) exp

[(
r − 

1 
2 
σ 2 

i

)
T

]
, ξ = 

1 
σM 

ln 
K∑n 

i=1 Yi 
and τ = 

1 
σm 

ln 
K∑n 

i=1 Yi 
. UBn 

1 and LBn 
1 

denote the respective option price of Su(t) and Sl(t). 

The integral expressions for UBn 
1 and LBn 

1 are difficult to solve analytically and can be simplified 
using suitable approximations.
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NEW CONTROL VARIATES FOR PRICING BASKET OPTIONS 15

PROPOSITION 10. The upper bound UBn 
1 on the basket option price of, as defined in equation (66), can be 

bounded from above and below as follows: 

UBn 
1 ∈ (LUBn 

1, UUBn 
1), where 

LUBn 
1 = ne−rT

[
αe 

1 
2 σ

2 
MTΦ (η) − KΦ

(
− 

ξ√
T

)]
(68) 

and 

UUBn 
1 = nαe−rTe 

1 
2 σ

2 
MT

∫ ∞ 

ξ 
φ

(
y − σMT√

T

)
Φ

(
y√
T

)
dy − 

nKe−rT 

2

[
1 − Φ2

(
ξ√
T

)]
. (69) 

where, σM = max 
1≤i≤n

∑n 
j=1 σij as before, α = ∑n 

i=1 ωiSi(0) exp

[(
r − 

1 
2 
σ 2 

i

)
T

]
, ξ = 

1 
σM 

ln

(
K 
α

)
, 

φ(z) = 
1√
2π 

e− 1 
2 z2 

and η = 
ξ − σMT√

T 
. 

Proof. The proof is available as online-only material and omitted from the text for brevity. �

PROPOSITION 11. The lower bound LBn 
1 on the basket option price of n assets, as defined in (67), can be 

bounded from above and below as follows: 

LBn 
1 ∈ (LLBn 

1, ULBn 
1) where 

LLBn 
1 = ne−rT

(
Φ

(
−| ζ |√

T

))n−1 [
αe 

1 
2 σ

2 
mTΦ (−μ) − KΦ

(
− 

ζ√
T

)]
, (70) 

and ULBn 
1 = ne−rT

[
αe 

1 
2 σ

2 
mTΦ

(
σmT − ζ√

T

)
− KΦ

(
− 

ζ√
T

)]
, (71) 

where ζm = 
1 
σm 

ln

(
K 
α

)
, σm = min 

1≤i≤n

∑n 
j=1 σij and μ = 

ζ − σmT√
T 

. α and φ(z) are as defined in 

proposition 10. 

Proof. The proof is available as online-only material and omitted from the text for brevity. �
In the discussion on control variates in subsequent sections, we will use a numerical approximation 

of UBn 
1 and LBn 

1 as control variates. Furthermore, the bounds derived and the analysis presented in this 
section are new and may have wider applications beyond the ones in this paper. 

2.4 . Control variates 

The control variate approach is a method of variance reduction for Monte Carlo estimates. While this 
method is standard, we outline it here for completeness and to establish the notation which we will 
use. Consider a random variable Y which is a function h(X) whose distribution is not known, but the 
distribution of X is known. We can estimate the value of Y using a random variable Z = h∗(X) whose
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16 K. JIPREZE AND P. DATE

distribution is known using the random variable Ψ such that 

Ψ = Y − λ(Z − E(Z)), (72) 

where the optimal value of the parameter λ which minimizes the variance of Ψ is given by 

λ = 
Cov(Y , Z) 

Var(Z) 
. (73) 

This shows that Ψ is an estimator of Y . The algorithm (1) in the appendix shows the implementation of 
the control variate methodology. 

For the purpose of this research we have used λ = 1 for the direct upper bound and geometric lower 
bound control variates, because their empirical values for λ are close to one, which was also observed 
by Dingeç & Hörmann (2013). 

3 . Numerical implementation and findings 

To conduct the numerical experiments for the control variate analysis, we estimated the sample 
covariance matrix using 522 observations of daily prices from 1 January 2018 to 31 December 2019, for 
five market indices namely FTSE 100, FTSE 250, S&P 500, NIKKEI 225 and IMOEX (from Thomson 
Reuters Datastream), using log return of the prices.1 The prices of two-asset and five-asset baskets 
were simulated using these covariance estimates. The control variates used for this experiment are the 
geometric lower bound of the basket option price, the modified geometric lower bound, the direct upper 
bound, the distributional upper and lower bound on the basket option price. For the distributional upper 
and lower bounds we use (69) and (70), respectively, as the closed-form estimates for the respective 
control variates. The modified geometric lower bound is simply using an option on the geometric lower 
bound on the final value of the basket with a modified strike K̂. This strike K̂ is obtained by equating the 
expected differences of the final value of the basket from the strike K, and that of the geometric estimate 
of the basket’s final value from the modified strike K̂ as suggested by Gentle (1993). This relation can 
be simplified to obtain 

K̂ = K + E[G(0, T)] − F(0, T), (74) 

where F(0, T) = S(0)erT and G(0, T) is the geometric average of the final value of the basket. We will 
use the geometric lower bound as well as the modified geometric lower bound as benchmark control 
variates in our numerical experiments. 

3.1 . Control variate analysis of basket option price 

In this section, we simulate the price of two- and five-asset basket option using 106 simulations, with 
initial value of the assets in the basket being Si(0) = 80 and weightings ωi = 1 

n , for  i = 1, 2, ...n. 
Also, the simulations are carried out for a variety of strikes K = 60, 80, 100 and for different maturities, 
T = 0.5, 1, 2. We assume a constant risk-free rate r of 1%. For the two-asset case, the simulation are 

1Data availability: the results described in this paper are fully reproducible based on the covariance matrix presented and do not 
need any external data. The data were used simply to produce a realistic enough covariance matrix. 
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NEW CONTROL VARIATES FOR PRICING BASKET OPTIONS 17

TABLE 1 Daily covariance estimates of market indices (×10−5) 

FTSE 100 FTSE 250 S&P 500 NIKKEI 
225 

IMOEX 

FTSE 100 7.18 6.90 3.48 1.86 4.40 
FTSE 250 6.90 9.29 3.67 2.58 3.75 
S&P 500 3.48 3.67 8.60 7.00 3.89 
NIKKEI 
225 

1.86 2.58 7.00 9.57 1.57 

IMOEX 4.40 3.75 3.89 1.57 16.31 

TABLE 2 Hermite polynomial approximation for a two-asset basket option 

T K Price Error 
0.5 60 22.285 1.927 

80 7.534 2.901 
100 1.560 1.243 

1 60 21.743 0.742 
80 7.230 0.533 
100 1.4681 0.209 

2 60 20.685 -1.795 
80 6.652 -2.954 
100 1.298 -1.987 

carried out using only the volatility estimates from FTSE 100 and FTSE 250, while for the five-asset 
case we use volatility estimates from FTSE 100, FTSE 250, S&P 500, NIKKEI 225 AND IMOEX. 
Table 2 shows the estimated prices of a two-asset basket option using first-order Hermite polynomial 
approximation and the corresponding error (E), which is given by 

E = HPPrice − MCPrice, (75) 

where HPPrice is the first-order Hermite polynomial approximation of basket option price calculated in 
( 15) and MCPrice is the standard Monte Carlo price of the basket option. 

The results show a good approximation for the two-asset basket option price, when the strike price 
K of the basket is 60 and 80, but is significantly different when the basket is out-of-the money. This 
observation is consistent with findings in Milevsky & Posner (1998): that lognormal models tend to 
over-value out-of-the-money call option prices. 

For control variate analysis, we simulate Monte Carlo option price with control variates using 106 

simulations, for the two-asset and five-asset basket, for different maturities and a variety of strikes2. 
We use a 95% confidence interval for our results and the general idea is that, for the same number of 

2The implementation of these control variates is reproducible using the control variate algorithm and implementation chart given 
in the appendix. 
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18 K. JIPREZE AND P. DATE

TABLE 3 Basket option prices for a two-asset basket, T = 0.5 

K Method Price Variance CI Lower CI Upper Time 
60 MC 20.3633 1.0000 20.3415 20.3850 0.0567 

LB 20.3615 0.0001 20.3612 20.3617 0.2320 
MLB 20.3616 0.0001 20.3613 20.3618 0.1548 
UB 20.3618 0.0002 20.3614 20.3620 0.0733 
HP 20.3609 0.0225 20.3586 20.3631 0.0068 
UBM 20.3581 0.4601 20.3435 20.3626 0.4486 
LBM 20.3094 0.0596 20.3042 20.3147 0.0469 

80 MC 4.6431 1.0000 4.6285 4.6567 0.0152 
LB 4.6387 0.0001 4.6385 4.6389 0.2362 
MLB 4.6387 0.0002 4.6381 4.6396 0.1497 
UB 4.6392 0.0047 4.6382 4.6402 0.0769 
HP 4.6392 0.0285 4.6373 4.6409 0.0869 
UBM 4.6374 0.4327 4.6289 4.6403 0.2613 
LBM 4.6464 0.0784 4.6424 4.6504 0.0865 

100 MC 0.3122 1.0000 0.3085 0.3159 0.0541 
LB 0.3145 0.0004 0.3144 0.3146 0.2355 
MLB 0.3142 0.0007 0.3139 0.3149 0.1889 
UB 0.3147 0.0454 0.3139 0.3155 0.0782 
HP 0.3144 0.1912 0.3127 0.3161 0.0875 
UBM 0.3138 0.5194 0.3111 0.3154 0.2853 
LBM 0.3127 0.1781 0.3112 0.3142 0.0867 

simulations, we can obtain tighter confidence intervals with faster times (given that standard Monte Carlo 
needs significantly more simulations to obtain better confidence intervals). 

In Tables 3– 8, we compare the price, (normalized) variance and confidence intervals of our Monte 
Carlo estimates for a two- and five-asset basket option with those obtained using different control 
variates, for different maturities and strikes. The normalized variances are simply the estimated variances, 
normalized with respect to the Monte Carlo variance for a fixed maturity and strike. The Monte Carlo, 
first-order Hermite polynomial, geometric lower bound, modified geometric lower bound, direct upper 
bound, distributional upper bound and distributional lower bounds are abbreviated as MC, HP, LB, 
MLB, UB, UBM and LBM, respectively, in all of the tables. Furthermore, CI Lower and CI Upper 
are the respective lower and upper confidence intervals of our estimates. Our numerical experiments 
show that for the same number of simulations, we obtain significant variance reduction, and tighter 
confidence intervals compared with standard Monte Carlo results for both the two-asset and five-
asset case. In Tables 3– 5, we find that our control variates (with the exception of the UBM) for 
the two-asset basket option have over 80% variance reduction, but were on average outperformed 
by the reference control variate. In terms of computation times, we find that LBM and HP control 
variate outperforms other control variates, while the UBM recorded the slowest computation times. 
The results for the five-asset basket option are presented in Tables 6– 8. The results show signif-
icant variance reduction for all control variates, with the UB and LB having the highest variance 
reduction. The computation times are found to be largely similar for all the control variates besides 
the LBM.
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TABLE 4 Basket option prices for a two-asset basket, T = 1 

K Method Price Variance CI Lower CI Upper Time 
60 MC 20.9871 1.0000 20.9569 21.0179 0.0335 

LB 20.9849 0.0002 20.9845 20.9853 0.2036 
MLB 20.9845 0.0002 20.9840 20.9852 0.1505 
UB 20.9844 0.0005 20.9837 20.9852 0.0341 
HP 20.9847 0.0194 20.9813 20.9881 0.0435 
UBM 20.9844 0.4363 20.9701 20.9997 0.2325 
LBM 20.9791 0.0607 20.9716 20.9865 0.0495 

80 MC 6.6758 1.0000 6.6549 6.6966 0.0501 
LB 6.6595 0.0003 6.6592 6.6599 0.2364 
MLB 6.6595 0.0003 6.6580 6.6612 0.1511 
UB 6.6599 0.0007 6.6585 6.6613 0.0751 
HP 6.6609 0.0185 6.6581 6.6637 0.0857 
UBM 6.6631 0.4791 6.6501 6.6771 0.2541 
LBM 6.6174 0.0771 6.6115 6.6233 0.0872 

100 MC 1.2449 1.0000 1.2356 1.2542 0.0500 
LB 1.2487 0.0006 1.2484 1.2489 0.2356 
MLB 1.2487 0.0007 1.2484 1.2497 0.1505 
UB 1.2483 0.0221 1.2469 1.2497 0.0771 
HP 1.2486 0.0361 1.2469 1.2500 0.0868 
UBM 1.2322 0.5101 1.2256 1.2338 0.2620 
LBM 1.2359 0.1186 1.2325 1.2391 0.0869 

TABLE 5 Basket option prices for a two-asset basket, T = 2 

K Method Price Variance CI Lower CI Upper Time 
60 MC 22.4924 1.0000 22.4509 22.5238 0.0545 

LB 22.4834 0.0004 20.4819 22.4845 0.2401 
MLB 22.4836 0.0004 20.4816 22.4850 0.1555 
UB 22.4832 0.0009 22.4819 22.4845 0.0810 
HP 22.4839 0.0311 22.4770 22.4883 0.0906 
UBM 22.2479 0.5278 22.2210 22.2747 0.3034 
LBM 22.2396 0.0645 22.2291 22.2502 0.0965 

80 MC 9.5914 1.0000 9.5601 9.6226 0.0574 
LB 9.6002 0.0006 9.5994 9.6009 0.2423 
MLB 9.6002 0.0009 9.5974 9.6003 0.1582 
UB 9.6019 0.0037 9.5596 9.6039 0.0814 
HP 9.5974 0.0421 9.5930 9.6017 0.0928 
UBM 9.4249 0.4424 9.4044 9.4374 0.1918 
LBM 9.4150 0.0777 9.4062 9.4238 0.0566 

100 MC 3.3437 1.0000 3.3242 3.3632 0.0375 
LB 3.3377 0.0008 3.3371 3.3383 0.2108 
MLB 3.3479 0.0011 3.3456 3.3493 0.1564 
UB 3.3467 0.0119 3.3445 3.3488 0.0396 
HP 3.3531 0.0718 3.3479 3.3583 0.0525 
UBM 3.3406 0.4914 3.3374 3.3563 0.2172 
LBM 3.2906 0.1152 3.2841 3.2971 0.0601 
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TABLE 6 Basket option prices for a five-asset basket, T = 0.5 

K Method Price Variance CI Lower CI Upper Time 
60 MC 20.3111 1.0000 20.2937 20.3285 0.1401 

LB 20.3107 0.0021 20.3099 20.3107 0.3675 
MLB 20.3108 0.0023 20.3101 20.3108 0.3674 
UB 20.3082 0.0035 20.3072 20.3092 0.2131 
HP 20.3109 0.3406 20.3007 20.3186 0.2016 
UBM 20.3027 0.5521 20.2897 20.3157 0.4189 
LBM 20.3107 0.2322 20.3024 20.3190 1.6879 

80 MC 3.7339 1.0000 3.7228 3.7451 0.1352 
LB 3.7341 0.0051 3.7334 3.7342 0.3754 
MLB 3.7340 0.0051 20.3097 3.7341 0.3672 
UB 3.7237 0.0635 3.7208 3.7265 0.2188 
HP 3.7371 0.3438 3.7284 3.7404 0.2018 
UBM 3.7371 0.5701 3.7297 3.7414 0.3795 
LBM 3.7371 0.2844 3.7312 3.7431 1.6751 

100 MC 0.0931 1.0000 0.0914 0.0948 0.1446 
LB 0.0941 0.0227 0.0939 0.0941 0.3624 
MLB 0.0940 0.0227 0.0938 0.0941 0.3625 
UB 0.0909 1.4135 0.0892 0.0917 0.2145 
HP 0.0945 0.3987 0.0929 0.0948 0.1972 
UBM 0.0945 0.6239 0.0931 0.0949 0.3864 
LBM 0.0946 0.3917 0.0934 0.0948 1.6667 

TABLE 7 Basket option prices for five-asset basket, T = 1 

K Method Price Variance CI Lower CI Upper Time 
60 MC 20.7163 1.0000 20.6920 20.7407 0.1546 

LB 20.7216 0.0047 20.7199 20.7216 0.3869 
MLB 20.7219 0.0047 20.7202 20.7219 0.3871 
UB 20.7114 0.0086 20.7096 20.7136 0.2363 
HP 20.7188 0.3712 20.7051 20.7291 0.2222 
UBM 20.7141 0.5647 20.7057 20.7221 0.4474 
LBM 20.7217 0.2357 20.7101 20.7291 1.7071 

80 MC 5.3851 1.0000 5.3688 5.4015 0.1434 
LB 5.3925 0.0103 5.3908 5.3925 0.3682 
MLB 5.3920 0.0104 5.3902 5.3921 0.3681 
UB 5.3764 0.0585 5.3724 5.3804 0.2163 
HP 5.3941 0.3191 5.3834 5.3991 0.2019 
UBM 5.3853 0.5441 5.3734 5.3911 0.3795 
LBM 5.3902 0.2764 5.3814 5.3963 1.7035 

100 MC 0.5749 1.0000 0.5694 0.5893 0.1673 
LB 0.5698 0.0309 0.5689 0.5699 0.3891 
MLB 0.5695 0.0306 0.5686 0.5696 0.3893 
UB 0.5612 0.5094 0.5572 0.5651 0.6194 
HP 0.5656 0.4133 0.5609 0.5704 0.2286 
UBM 0.5654 0.7069 5609 0.5698 0.6194 
LBM 0.5669 0.3771 0.5635 0.5701 1.7383 
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TABLE 8 Basket option price for a five-asset basket, T = 2 

K Method Price Variance CI Lower CI Upper Time 
60 MC 22.7791 1.0000 21.7453 21.8128 0.1579 

LB 21.7702 0.0103 21.7667 21.7702 0.3845 
MLB 21.7707 0.0103 21.7673 21.7708 0.3845 
UB 21.7462 0.0126 21.7424 21.7501 0.2341 
HP 21.7692 0.2846 21.7505 21.7723 0.2189 
UBM 21.7814 0.5704 21.7907 22.0133 0.2948 
LBM 21.7698 0.2427 21.7532 21.7764 1.7223 

80 MC 7.8575 1.0000 7.8320 7.8879 0.1574 
LB 7.8367 0.0212 7.8333 7.8367 0.3814 
MLB 7.8385 0.0215 7.8316 7.8351 0.3814 
UB 7.8232 0.0529 7.8177 7.8288 0.2303 
HP 7.8402 0.3803 7.8296 7.8504 0.2166 
UBM 7.8424 0.5132 7.8269 7.8593 0.3953 
LBM 7.8402 0.2925 7.8338 7.8596 1.7361 

100 MC 1.9530 1.0000 1.9659 1.9560 0.0129 
LB 1.9419 0.0428 1.9393 1.9419 0.3791 
MLB 1.9421 0.0429 1.9398 1.9422 0.3793 
UB 1.9294 0.3107 1.9231 1.9357 0.2309 
HP 1.9454 0.4719 1.9351 1.9508 0.2153 
UBM 1.9394 0.6037 1.9293 1.9421 0.4001 
LBM 1.9454 0.3255 1.9351 1.9511 1.7026 

All the computations in this paper have been carried out using an Apple M1 Pro MacBook Pro 2021 
with 16GB of unified memory and 8-core CPU (with six performance cores and two efficiency cores). 
The matlab version used is MatlabR2022a. 

4 . Conclusion 

In this paper, we have proposed several new control variate for efficient simulation-based pricing of 
basket options. The first method is a lognormal approximation of the basket (or logarithm of the product 
of weighted assets in the basket) using first-order Hermite polynomials. 

The second control variate is a direct upper bound on the payoff of the basket option obtained by a 
direct application of the Jensen’s inequality. 

The third and fourth control variates are the distributional upper and lower bounds, which involve 
obtaining bounds on the price of a basket option, whose randomness is driven by the maximum or 
minimum of independent Brownian motions. 

Our numerical results show that all our control variates achieve significant variance reduction 
compared with standard Monte Carlo. Also, the variance reductions obtained from the use of the 
distributional lower bound and first-order Hermite polynomial approximation control variates are 
comparable with the benchmark control variates (geometric lower bound without and with modified 
strike), but have significantly faster computation times. 

Since basket options are commonly used by financial institutions for cost-effective hedging of multi-
ple underlying positions, new methods to price them efficiently and accurately is a useful contribution in
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22 K. JIPREZE AND P. DATE

risk management. Further, the lower distributional bound derived in this paper is believed to be new, as is 
the derivation of Hermite polynomial-based approximation. Both these approaches will have applications 
beyond basket option pricing and beyond GBM set-up. Adaptation of these control variates to the pricing 
of Asian options and basket options under stochastic volatility are topics of current research. 
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A . Appendix 

A.1 . Control Variate Algorithm 

Algorithm 1 Algorithm for control variates 
1. Pick a large number N for number of simulations. 

2. Set k = 1. 

3. For each k, generate Y(k) and Z(k) and evaluate the mean of Z in closed-form. 

4. Calculate Ψ (k) given in (72) such that 

Ψ (k) = Y(k) − λ(Z(k) − E(Z)), 

where λ is of the form given in (73). 

5. Set k = k+1. 

6. If k < N, go to step 3. Else, compute

Ψ̂ = 
1 
N 

N∑
k=1 

Ψ (k). 

A.2 . Algorithm Implementation Table 

Table 9 gives pointers to computation of Zk and E(Z) in the algorithm above, for each control variate. 

TABLE 9 Algorithm implementation chart for control variates 

Method Eqn for E(Z) Z(k) 

UB (32) e−rT ∑n 
i=1 ωi

(
Si(T) − K

)+ 

HP (15) e−rT
(
eΦ(u) − K

)+ 

UBM (69) e−rT
(
S̄u(T) − K

)+ 

LBM (70) erT
(
S̄l(T) − K

)+
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