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Abstract—Human activity recognition has played a crucial role 

in healthcare information systems due to the fast adoption of 

artificial intelligence (AI) and the internet of thing (IoT). Most of 

the existing methods are still limited by computational energy, 

transmission latency, and computing speed. To address these 

challenges, we develop an efficient human activity recognition 

in-memory computing architecture for healthcare monitoring. 

Specifically, a mechanism-oriented model of Ag/a-Carbon/Ag 

memristor is designed, serving as the core circuit component of 

the proposed in-memory computing system. Then, 

one-transistor-two-memristor (1T2M) crossbar array is proposed 

to perform high-efficiency multiply-accumulate (MAC) operation 

and high-density memory in the proposed scheme. To facilitate 

understanding of the proposed efficient human activity 

recognition in-memory computing design, self-attention 

ConvLSTM module, multi-head convolutional attention module, 

and recognition module are proposed. Furthermore, the proposed 

system is applied to perform human activity recognition, which 

contains eleven different human activities, including five different 

postural falls, and six basic daily activities. The experimental 

results show that the proposed system has advantages in 

recognition performance (≥ 0.20% accuracy, ≥ 1.10% F1-score) 

and time consumption (approximately 8∼10 times speed up) 

compared to existing methods, indicating an advancement in 

smart healthcare applications. 

Index Terms—Human activity recognition, in-memory 

computing, memristor, healthcare monitoring 

I. INTRODUCTION

ith the rapid development of big data, artificial 

intelligence (AI), and the internet of thing (IoT), the 
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increasing number of wearable sensors integrated with 

intelligent processors are wildly used to health monitoring in 

home environment [1]. Human activity recognition can 

understand human interaction with the living environment and 

automatically discover behavioural patterns within multimodal 

information [2]. Human activity recognition has been an active 

research area in smart healthcare, which can effectively 

enhance the level of patient rehabilitation and medical decision 

systems [3]. Considering the privacy, comfort, and portability, 

some researchers used wearable sensors for human activity 

recognition [4-6]. However, wearable sensor can only capture 

the local movement information, which may lead to low 

precision for complex movements. To solve this problem, 

machine learning and deep learning techniques have achieved 

tremendous successes in human activity recognition in smart 

home applications, which can extract necessary features from 

multimodal information and perform fusion analysis [7-14]. To 

handle time-domain data, machine learning-based framework 

was proposed to perform human activity recognition [7]. 

Convolutional neural networks (CNNs) with different 

convolutional kernels were used to capture hidden patterns 

from visual data in [8-11], showing good performance in 

human activity recognition. Compared with single modal data, 

multimodal data fusion can provide more comprehensive 

information for human activity recognition. Based on this, 

multimodal information processing architectures were 

proposed in [12-14], which achieved competitive recognition 

accuracy and exceeded previous results in human activity 

recognition. However, the above-mentioned methods based on 

conventional computing architectures (e.g., CPU, GPU, etc.) 

have still suffered from computational energy, transmission 

latency, and computing speed issues. 

Consequently, some researchers are turning to a promising 

computing architecture to overcome these limitations, which is 

called ‘in-memory computing’ [15]. In-memory computing 

using non-volatile memory devices executes approximating 

matrix-vector multiplication computation in a fast, highly 

parallel, and energy-efficient manner [16]. A multimodal 

neuromorphic sensory-processing system using memristive 

circuit was designed in [17], which can realize indoor human 

behavior recognition with relative high accuracy (about 

90.37%). A heterogeneous tightly coupled clustered in-memory 

computing architecture was proposed in [18], which can 

perform end-to-end inference of a full mobile-grade DNN 

(MobileNetV2). In [19], researches used duplex 

two-dimensional material to construct an in-memory 
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computing system, achieving 99.86% accuracy in a nonlinear 

localization task. Based on human brain mechanisms, a 

hierarchical interactive in-memory computing system was 

proposed in [20], aiming to solve balancing problem between 

computing accuracy and energy consumption for conventional 

computing architecture. A memristor-based hardware 

implementation of generative complex networks was designed 

in [21], achieving good performance in speech recognition 

tasks. Although existing in-memory computing systems show 

remarkable advantages in computational energy, transmission 

latency, and computing speed, several fundamental challenges 

are still open.  

Firstly, limited by device performance issues, the existing 

in-memory computing systems are difficult to popularize and 

apply. An essential way is the computationally efficient and 

accurate modelling of the memristor device. secondly, current 

studies are always rarely considered the long-range spatial 

dependencies when they process single nature data (time-series) 

collected from wearable sensors and context-aware devices. 

Thirdly, the research gaps exist in developing multimodal 

fusion strategy for time-series data and visual data in smart 

home environment. 

To fully exploit the potential of in-memory computing 

system in home scenarios, this work aims to investigate an 

efficient human activity recognition in-memory computing 

architecture for healthcare monitoring. The main contributions 

of this work are concluded below: 

1) As the core circuit component, a mechanism-oriented

model of Ag/a-Carbon/Ag memristor is proposed, which 

provides the possibility to explore the dynamics of electronic 

resistive switching memory (ERSM) behavior and helps realize 

the parallel computing in the proposed system. 

2) The circuit design of self-attention convolutional long

short-term memory (ConvLSTM) module is developed, which 

can effectively handle time-series data and retrieve the 

high-level spatial and temporal features with local-global 

dependences. 

3) Compared with the existing in-memory computing

systems, the proposed human activity recognition in-memory 

computing architecture can fuse the multimodal information 

simultaneously, showing respectable performance (i.e., 

recognition accuracy and computational efficiency) in smart 

healthcare applications. 

The remainder of this work is structured as follows. Section 

II describes the overall architecture of the proposed system. In 

Section III, the memristor crossbar array is introduced based on 

the proposed mechanism-oriented model. Section IV describes 

the specific circuit design of the self-attention ConvLSTM 

module, the multi-head convolutional attention module, and the 

recognition module. In Section V, the proposed system is 

applied to perform human activity recognition. Finally, the 

entire work is summarized in Section VI. 

Image

Time-series

Head 1 Head 2 Head nMulti-head convolutional attention module

Self-attention ConvLSTM module

Xt

Ht-1 Mt-1

Ct

Sigmoid

Conv

Sigmoid

Conv

Sigmoid

Conv

Tanh

Conv

Tanh

Self-attention 

memory

Ht

H,
t

Mt

Ct-1

Self-attention memory
Ht

C
o

n
ta

c
t

Tanh

Sigmoid

Sigmoid

Mt

Mt-1

Kh

Qh

Km

Ht

Mt-1

Softmax

Softmax

Vm

Vh

C
o

n
ta

c
t

Recognition module

Contact

K Q

V Softmax

Add and norm

XMCA

Feed forward

Add and norm

Fully connected

Softmax

H,
t

H,
t

H,
t

XMCA

Chanel attention 

Spatial attention 

Convolution 

Max-pooling

Dropout

Chanel attention

Spatial attention

Convolution

Max-pooling

Dropout

Max-pooling

Dropout

Flatten

Spatial AttentionChannel Attention

In
p
u
t 

F
e
at

u
re

(X
c)

Max-Pooling

Avg-Pooling

· ~

·

Shared MLP

Channel

Attention Xac

C
h

a
n

n
el

-r
e
fi

n
e
d
 f

e
at

u
re

~

[Avg-Pooling, Max-Pooling]

Spatial

Attention Xas

O
u

tp
u

t 
fe

a
tu

reConvolutional 
layer

·
Xcs

-1

Fig. 1. Schematic diagram of the proposed human activity recognition in-memory computing system in smart healthcare applications. 
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II. AN EFFICIENT HUMAN ACTIVITY RECOGNITION 

IN-MEMORY COMPUTING ARCHITECTURE  

In this paper, we propose an efficient human activity 

recognition in-memory computing architecture for healthcare 

monitoring. Notably, the parameters of the proposed system are 

computed and stored in the crossbar array to facilitate smart 

healthcare applications. The proposed system consists of three 

modules to recognize human activities from the multimodal 

data, as shown in Fig. 1.  

Self-attention ConvLSTM module: The time-series data Xt 

collected from several wearable sensors are injected to the 

self-attention ConvLSTM module (SA-ConvLSTMM) to 

capture the high-level spatial and temporal features H’
t with 

local-global dependences. The SA-ConvLSTMM with 

cascaded configuration contains two units, i.e., the ConvLSTM 

unit and the self-attention memory unit. Specifically, the 

ConvLSTM unit is used to extract features with spatial and 

temporal dependencies form the time-series data [22]. Then, 

the self-attention memory unit constructed based on 

self-attention mechanism is utilized, which can realize features 

memory with long-range spatial and temporal dependencies 

through feature aggregation and memory updating [23]. Here, 

the input, hidden state and cell state of the ConvLSTM unit are 

denoted as Xt, Ht, and Ct, respectively. The input, memory, and 

output of self-attention memory unit are expressed by Ht, Mt, 

and H’
t, respectively. 

Multi-head convolutional attention module: The image data 

Xi collected from multiple cameras are sent to the multi-head 

convolutional attention module (MHCAM) to capture the 

relevant patterns Hi from the channel and spatial dimensions. In 

the MHCAM, each head contains two convolutional operations, 

three max-pooling operations, three dropout operations, and 

two channel-spatial attention operations. Firstly, the feature Xc 

is obtained by a serial operation (containing the convolutional, 

max-pooling, and dropout). Then, the channel-spatial attention 

unit captures channel and spatial features from the input feature 

Xc. Specifically, the channel attention unit allows the MHCAM 

pay more attention to the channel information Xac, while 

suppresses the unnecessary information. The spatial attention 

unit enables the MHCAM to focus on important spatial 

information Xsc by performing the feature filtering operation at 

different locations in the same spatial dimension. Notably, the 

channel attention unit and spatial attention unit are cascaded 

structure, and the output Xcs of these two units is entered into 

the next convolutional unit.  

Recognition module: The output features from 

SA-ConvLSTMM H’
t and MHCAM Hi are sent into the 

recognition module to recognize human activities through the 

cross-modal transformer unit. Specifically, the crossmodal 

transformer mechanism is employed [24], taking H’
t as queries 

and Hi as keys and values, and then followed by fully connected 

layer to prevent over-fitting. Furthermore, the softmax layer is 

utilized to calculate the probability distribution of each human 

activities, and the final output are determined by the highest 

probability score. 

III. MEMRISTOR TECHNOLOGY

Before the circuit design of the proposed efficient human 

activity recognition in-memory computing system, it is 

necessary to introduce memristor technology. 

A. Memristor Characteristics and Modelling

In this work, the Ag/a-Carbon/Ag memristor device is

fabricated on quartz plate and the schematic representation of 

Ag/a-Carbon/Ag memristor is shown in Fig. 2(a).  

Firstly, the quartz plate is cleaned in deionized water, ethyl 

alcohol, and acetone using ultrasonic cleaner. Secondly, the 

a-Carbon function layer is synthesized on the dried quartz plate

using flame method. Specifically, the quartz plate is transferred

on top of the alcohol burner, so that its surface temperature

reaches 800℃. Then, the quartz plate is annealed at 350℃ for

180 minutes and naturally cooled to room temperature.

Furthermore, the quartz plate is placed to plasma cleaner and

treated with air plasma. This leads to the formation of an

a-Carbon function layer with a thickness of 185nm. Finally, the

top/bottom Ag electrodes with a thickness of 20nm and 120nm

are deposited on the a-Carbon function layer using magnetron

sputtering method.

For electrical characterization, the voltage-current (V-I) 

curve is measured using an electrochemical workstation 

(CHI-600D). In the static measurement, scan rate and scan 

amplitude are fixed at 0.5V/s and ± 3V. The Ag/a-Carbon/Ag 

memristor exhibits typical electronic resistive switching 

memory (ERSM) behavior, as illustrated in Fig. 2(a). To 

demonstrate its stability, over 1000 cycles of I–V curves are 

measured on the same memristor, as depicted in Fig. 2(b). The 

ERMS behavior is well maintained, indicating high 

cycle-to-cycle (C2C) stability of the fabricated 

Ag/a-Carbon/Ag memristor. Extensive overlap of I–V curves 

measured by 160 randomly chosen memristors is shown in Fig. 

2(c), demonstrating good device-to-device (D2D) stability of 

the fabricated Ag/a-Carbon/Ag memristors. Furthermore, a 

stable resistance ratio (about 104) between the high resistance 

state (HRS) and low resistance state (LRS) is maintained for 60 

hours at 0.5 V read voltage, as depicted in Fig. 2(d). 

Fig. 2. Electrical characterization of Ag/a-Carbon/Ag memristor. (a) V-I curve; 

(b) C2C stability; (c) D2D stability; (d) The measurement of resistance. 
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To investigate the physical mechanism of Ag/a-Carbon/Ag 

memristor, the electrons trapping and de-trapping processes are 

further analysed in this paper, as shown in Fig. 3. 

At beginning, the Ag/a-Carbon/Ag memristor is in a 

high-resistance state (HRS). Ag atoms at top electrode have not 

been ionized, and unfilled traps randomly distribute in the 

a-Carbon function layer, as shown in Fig. 3(a). When the

scanning voltage gradually increases, some traps are filled with

electrons, resulting in the current builds steadily, as shown in

Fig. 3(b). When the traps are fully filled with electrons, the

conduction filament is formed, mean that the Ag/a-Carbon/Ag

memristor switching from the HRS to the low-resistance state

(LRS) and the “SET” process is completed, shown in Fig. 3(c).

When a reverse scanning voltage is applied, the trapped

electrons escape the traps, and the conduction filaments are

broken, mean that the Ag/a-Carbon/Ag memristor switching

from the LRS to the HRS and the “RESET” process is

completed, shown in Fig. 3(d). According to above analysis, the

ERSM behavior in Ag/a-Carbon/Ag memristor is governed by

the electrons trapping and de-trapping processes, satisfying

space-charge limited current (SCLC) mechanism in high

electric field [25] and the field-assisted Frenkel-Poole

mechanism in low electric field [26].
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Fig. 3. Physical mechanism of Ag/a-Carbon/Ag memristor. (a) Unfilled Traps; 

(b) Traps gradually filled; (c) the conduction filament is formed; (d) The

conduction filament is broken. 

Based on this, a mechanism-oriented model of 

Ag/a-Carbon/Ag memristor is proposed to explore the 

dynamics of the ERMS behavior in simulation. The V-I 

relationship can be mathematically expressed by: 

( ) ( )
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where i(t) is the current in the mechanism-oriented memristor 

model, v(t) is the applied voltage of the memristor model, λ, n, 

m, τ and γ are the fitting parameters, D is the thickness of the 

a-Carbon function layer, q0 denotes the electric charge in

vacuum, KB is the Boltzmann constant, T is the temperature. x(t)

denotes the state variable, which is expressed as follows:

( ) ( )sinh
dx

v t f x x
dt

= −         (2) 

where α, β, and η are the fitting parameters, f(x) is the window 

function [27]. Specifically, f(x) can be written as follows: 

( )
( )( ) ( )( )
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1 1 1
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   (3) 

The fitting results are illustrated in Fig. 4, where the solid 

spheres represent the experimental data obtained from the 

Ag/a-Carbon/Ag memristor, and the solid lines represent the 

V-I curves of the proposed model.
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Fig. 4. The fitting results of the proposed mechanism-based memristor model. 

To rigorously evaluate the accuracy of mechanism-oriented 

memristor model, both the human visual system (HVS) for 

subjective validation and the relative root mean squared error 

(RRMSE) as an objective metric are employed [28]. Notably, 

the optimal fitting parameters are obtained using the whale 

optimization algorithm (WOA) [29]. The specific parameters 

setting is provided as follows: λ=2.73×10-3, n=2.00, m=1.43, 

τ=2.52 × 10-5, γ=0.11, α=0.81, β=0.11, η=0.048, D=1.85×10-7, 

q0=1.60×10-7, KB=1.38×10-23, T=25.00. When the voltage scan 

rate increases from 0.5V/s to 2.0V/s, the preserved asymmetry 

of I–V curve and the continuity of current variation can be both 

well maintained, albeit with a marginal decrement in peak 

current from 0.37A to 0.30A, as depicted in Fig. 4. Based on 

HVS, the experimental results demonstrated that the fitting 

curves coincides exactly with the experimental data. From an 

objective perspective, the mechanism-oriented memristor 

model accuracy is further verified by RRMSE. The average 

RRMSE can be obtained with the value of 0.081%, indicating 

that the constructed mechanism-oriented memristor model is 

capable to characterize the performance of the Ag/a-Carbon/Ag 

memristor. 

B. Memristor-based Crossbar Array

Considering memristors have the unique characteristics,

such as low power, nonvolatility, high density, great scalability, 

and compatibility with complementary metal oxide 

semiconductor (CMOS), which provides a subversive way for 

in-memory computing system [16-21]. Thus, 

one-transistor-two-memristor (1T2M) crossbar array is 
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designed to realize the high-efficiency multiply-accumulate 

(MAC) operation and high-density memory while avoid sneak 

path issue, as shown in Fig. 5.  
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Compared with traditional one-transistor-one-memristor 

(1T1M) crossbar array, each 1T2M cell in crossbar array are 

connected to the same word line (WL) and source line (SL), and 

subtraction can be performed directly in the current domain. In 

Fig. 5, each 1T2M cell in the crossbar array can be 

implemented by two Ag/a-Carbon/Ag memristors with the 

reverse connection structure, which are connected to a common 

transistor. The word line (WL) and source line (SL) are 

connected to the transistor gate and transistor source, 

respectively. The right bit line (BL) and left BL are connected 

to the top electrode of the right memristor and the left 

memristor, respectively.  

The basic operations of the 1T2M crossbar array are 

consisted of the crossbar array programming and the MAC 

operation, as shown in Fig. 6. 

VSL

VWL

VWL

VWL

Vin

Vin

Vin

Selected

Crossbar array programming

VWL

VWL

VWL

Vin

Vin

Vin

MAC operation VSL

Fig. 6. The basic operations of the 1T2M crossbar array. (a) Crossbar array 

programming; (b) MAC operation. 

During the crossbar array programming, the 1T2M crossbar 

array is programmed column-by-column using one-shot blind 

update method [31], as shown in Fig. 6(a). When the selected 

column is programmed, all SLs are floating, except the selected 

SL. Each WL is assigned a different voltage based on the 

targeted conductance. All 1T2M cells have the same input 

voltage. During the MAC operation, the input voltage Vin,j is 

applied across the BLs, and the corresponding output voltage 

falling on the memristor is read out through the SLs, as shown 

in Fig. 6(b). According to the Kirchhoff’s law and Ohm’s law, 

the output voltage V can be mathematically expressed by: 

( )
,

, , ,

,

row col

f R i L i in j

i j

V R G G V= −   (4) 

where GR,i and GL,i are the conductance of the right memristor 

and the left memristor, respectively. Rf is the feedback resistor 

in the 1T2M crossbar array. col and row denote the number of 

columns and rows in the 1T2M crossbar array, respectively. 

The positive, zero, and negative weights can be achieved, as 

shown in Fig. 7. 
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Specifically, when the negative input voltage is applied, the 

conductance of the right memristor GR,i increases and the 

conductance of the right memristor GL,i decreases, the 

corresponding weight (GR,i- GL,i) changes from negative to 

positive. Conversely, when the positive input voltage is applied, 

the conductance of the right memristor GR,i decreases and the 

conductance of the right memristor GL,i increases, the 

corresponding weight (GR,i- GL,i) changes form positive to 

negative. Therefore, the desired weight can be effectively 

obtained through the weight modulation operation. 

IV. CIRCUIT DESIGN OF HUMAN ACTIVITY RECOGNITION 

IN-MEMORY COMPUTING SYSTEM 

In-memory computing is the potential candidate to break von 

Neumann bottleneck and provide a new way towards artificial 

general intelligence (AGI) [15]. Our motivation is to design a 

novel in-memory computing system for human activity 

recognition in smart healthcare applications.  

A. Circuit Design of Self-Attention ConvLSTM Module

In this work, the SA-ConvLSTMM is proposed to capture

high-level spatial and temporal feature V’
H(t) from the 

time-series inputs Vt(t), which consists of two units: the 

ConvLSTM unit and self-attention memory unit. 

(1) Circuit design of ConvLSTM unit

ConvLSTM network has been proposed in [22], through

replacing all linear multiplication operations in long short-term 

memory (LSTM) network [22] with convolution operation with 

parameter sharing and sparse connectivity. The circuit design 

of ConvLSTM unit is proposed in this work to capture spatial 

and temporal dependencies in the time-series inputs Vt(t), as 

shown in Fig. 8. 
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From Fig. 8, the proposed ConvLSTM unit is mainly 

composed of the 1T2M crossbar arrays, activation circuits (i.e., 

sigmoid circuit and tanh circuit), Hadamard product circuit, add 

circuit, and current-to-voltage conversion circuit. Specifically, 

the 1T2M crossbar array is used to perform convolutional 

operation, the convolutional kernel weight is encoded to the 

conductance difference between one pair of memristors. The 

output currents Iknernel1, Iknernel12, …, Iknerneln collected for kernels 

are injected into sigmoid circuit and tanh circuit, respectively. 

Then, the output voltages of input gate VI(t), forget gate VF(t), 

previous cell gate VP(t), and output gate VO(t) can be obtained. 

Finally, the output voltages of cell gate VC(t) and ConvLSTM 

unit VH(t) can be produced after several operations (i.e., 

Hadamard dot product, add, and activation). Notably, the 

above-mentioned sub-circuits have been designed in our 

previous work [17]. Thus, the input and output of the 

ConvLSTM unit can be mathematically expressed by: 
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          (8) 

( ) ( ) ( ) ( ) ( )1C F C I PV t V t V t V t V t=  − +   (9) 

( ) ( ) ( )( )tanhH O CV t V t V t=        (10) 

where symbol σ, tanh, *, and · denote the sigmoid activation, 

tanh activation, convolutional, and Hadamard dot product 

operations, respectively. N and M denote the row of the 1T2M 

crossbar arrays. Wxi, Whi, Wxf, Whf, Wxc, Whc, Wxo, and Who are the 

weight matrixes of the input gate, forget gate, previous cell gate, 

and output gate, respectively. Gxi, Ghi, Gxf, Ghf, Gxc, Ghc, Gxo, 

and Gho are the conductance of memristor in the 1T2M crossbar 

arrays. Ibi, Ibf, Ibc, and Ibo are the bias current of the input gate, 

forget gate, previous cell gate, and output gate, respectively.  

(2) Circuit design of self-attention memory unit

The self-attention memory unit is designed to capture 

long-range spatial and temporal dependencies from the feature 

voltage VH(t) generated by ConvLSTM unit. The proposed 

self-attention memory unit is mainly composed by the feature 

aggregation circuit and memory updating circuit. 

The self-attention mechanism is used to feature aggregation, 

and the specific circuit architecture of feature aggregation 

circuit is shown in Fig. 9 (a). 

In Fig. 9 (a), the feature aggregation circuit receives two 

input voltages, in which the feature voltage VH(t) belongs to 

time step t, and the memory voltage VM(t-1) belongs to time 

step t-1. The 1T2M crossbar arrays are employed to store and 

compute the weight matrixes W (WKH, WQH, WVH, WKM, and 

WVM) in the feature aggregation circuit. Following the weight 

matrixes WH (WKH, WQH, and WVH), the feature voltage VH(t) 
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Fig. 8. Circuit design of ConvLSTM unit. 
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can be transferred into current vectors, representing the 

attention key KH, the attention query QH, and the attention value 

VH, respectively. Following the weight matrixes WM (WKM, 

WVM), the memory voltage VM(t-1) can be converted to the 

attention key KM, and the attention value VM, respectively. The 

output voltages of feature aggregation circuit can be obtained 

by applying softmax operation, which can be described as: 

( ) ( )
( )max

TT

KH H QH H T

AH VH H

W V W V
V soft W V

d

   
 =  
 
 

(11) 
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Fig. 9. Circuit design of self-attention memory unit. (a) feature aggregation circuit; (b) memory updating circuit. 
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( ) ( )
( )max

TT

KM M QH H T

AM VM M

W V W V
V soft W V

d

   
 =  
 
 

(12) 

 ,Z z AH AMV W V V=  (13) 

where VAH is the output voltage aggregated by querying on the 

feature voltage VH(t) at time step t, VAM is the output voltage 

aggregated by querying on the memory voltage VM(t-1) at time  

step t-1. d and T are the dimension of the feature aggregation 

circuit and transpose operation, respectively. VZ is the output 

voltage of feature aggregation circuit, which is the fusion of 

VAH and VAM. Wz is the weight matrix realized by the 1T2M 

crossbar array.  

Then, the gating mechanism is employed to update the 

memory voltage VM, and generate the finial output. The specific 

circuit architecture of memory updating circuit is shown in Fig. 

9(b). From Fig. 9(b), the aggregated feature voltage VZ(t) and 

the input feature voltage VH(t) are utilized to generate the output 

voltages of input gate VMI(t), previous cell gate VMP(t), and 

output gate VMO(t). To reduce parameters, the output voltage of 

the forget gate is replaced as (1- VMI(t)). The specific memory 

updating progress and final output of the self-attention memory 

unit can be formulated as: 
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( ) ( )( ) ( ) ( ) ( )1 1M MI M MI MPV t V t V t V t V t= −  − +     (17) 

( ) ( ) ( )'H MO MV t V t V t=       (18) 

where W (WM,xi, WM,hi, WM,xp, WM,hp, WM,xo, and WM,ho) are the 

weight matrixes realized by the 1T2M crossbar array. GM,xi, 

GM,hi, GM,xp, GM,hp, GM,xo, and GM,ho are the conductance of 

memristor in the 1T2M crossbar arrays. IM,bi, IM,bp, and IM,bo are 

the bias current of the input gate, previous cell gate, and output 

gate, respectively. 

B. Circuit Design of Multi-Head Convolutional Attention

Module

In this work, the MHCAM is proposed to extract channel and

spatial feature VMC(t) from the image inputs Vi(t). The 

convolutional layer is used to produce the feature map VC(t) 

through convolutional operation, which is mainly consisted of 

convolutional filter, max-pooling operation, and dropout 

operation. In the MHCAM, each head consists two 

channel-spatial attention unit with the cascaded configuration 

that can enhance the channel and spatial features. Considering 

there are existing circuit design of the convolutional unit, 

max-pooling unit, and dropout unit, this work mainly focuses 

on the investigation of the circuit design of channel attention 

unit and spatial attention unit.  

(1) Circuit design of channel attention unit

The channel attention unit is employed to measure the

significance of each channel information, and the specific 

circuit architecture of channel attention unit is shown in Fig. 10. 

From Fig. 10, the proposed channel attention unit is mainly 

composed of the 1T2M crossbar arrays, average-pooling circuit, 

max-pooling circuit, ReLU circuit, sigmoid circuit, add circuit, 

and current-to-voltage conversion circuit. Specifically, the 

input voltage VC(t) generated by the convolutional unit is 

injected to the average-pooling circuit and max-pooling circuit, 

respectively, generating two different spatial context 

representations. Then, the output voltages of average-pooling 

circuit and max-pooling circuit are further entered to shared 

network. Notably, the shared network is mainly composed by 

two 1T2M crossbar arrays with a ReLU circuit in the between. 

The 1T2M crossbar array is mainly used to calculate and store 

the learnable parameters WA and WB. The output voltage VAC(t) 

of channel attention unit can be obtained by applying 

element-wise summation operation, which can be described as: 
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V t
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 =
  

 (19)

where AvgPool(·) and MaxPool(·) denote average-pooling and 

max-pooling operations, respectively. 
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Fig. 10. Circuit design of channel attention unit. 
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(2) Circuit design of spatial attention unit

The spatial attention unit is complementary the channel

attention unit, which focuses on the spatial information 

processing, as shown in Fig. 11. 

From Fig. 11, the proposed spatial attention unit is mainly 

composed by the 1T2M crossbar array, average-pooling circuit, 

max-pooling circuit, and sigmoid circuit. Firstly, the efficient 

features are generated by performing average-pooling and 

max-pooling operations on the input voltage (VAC·VC). Then, 

the efficient features are concatenated and convolved by the 

convolutional unit to generate the output voltage VAS(t) of 

spatial attention unit. Notably, the convolutional unit is 

implemented by the 1T2M crossbar array. Thus, the input and 

output of the spatial attention unit can be mathematically 

expressed by: 

( ) ( ) ( )( ),AS AC C AC CV t conv AvgPool V V MaxPool V V=     (20) 

where conv(·) denotes convolutional operation, [·] is 

concatenated operation. 

On this basis, the overall channel-spatial attention 

mechanism can be given as: 

( ) ( ) ( ) ( )( )CS AS AC CV t V t V t V t=    (21) 

where VCS(t) denotes the output voltage of the channel-spatial 

attention unit. 
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C. Circuit Design of Recognition Module

Considering the semantic gap between the temporal feature

V’
H(t) and image feature VMC(t), the crossmodal attention 

mechanism is employed in the recognition module to 

effectively capture cross-modal interaction and generate final 

output for human activity recognition. The specific circuit 

scheme of recognition module is shown in Fig. 12. 

From Fig. 12, the proposed recognition module consists of 

the 1T2M crossbar arrays, Hadamard product circuit, layer 

normalization circuit, ReLU circuit, softmax circuit, and fully 

connected circuit. The weight matrixes W (WK, WQ, WV, Wa, 

and Wb) are learnable parameters, which are implemented by 

the 1T2M crossbar arrays. Following weight matrixes W (WK, 

WQ, and WV), the attention key is defined as VK(t) = WK·VMCA(t), 

the attention query is defined as VQ(t) = WQ·VH’(t), and the 

attention value is defined as VV(t) = WV·VMCA(t). The output 

voltage VCMA(t) of crossmodal attention circuit can be obtained 

by applying softmax operation, which can be mathematically 

expressed by: 

( ) ( )
( )

'
max

TT

K MCA Q H T

CMA V MCA

W V W V
V soft W V

d

   
 =  
 
 

(22) 

Then, the feed-forward circuit is used to process the output 

voltage VCMA(t) of crossmodal attention circuit. The output 

voltage VF(t) of feed-forward circuit is symbolized by: 

( ) ( )( )( ), ,Re ,F MCA CMA a MCA CMA bV LN LN V V LU W LN V V W=   (23) 

where LN(·) and ReLU(·) denote the layer normalization and 

ReLU activation operations, respectively. 

Finally, the output voltage VF(t) of feed-forward circuit is 

applied to the fully connect circuit and softmax circuit in 

sequence for human activity recognition. The output Vout(t) of 

the recognition module is mathematically expressed by: 

( ) ( )( )maxout FV t soft V t=     (24) 

V. APPLICATION IN HUMAN ACTIVITY RECOGNITION

In this section, the effectiveness and validity of the proposed 

human activity recognition in-memory computing system are 

demonstrated by a series of experiments (including quantitative 

results and analysis, ablation study, computational efficiency 

analysis, and robustness analysis). The electrical parameters 

and neural network parameters used for the proposed human 

activity recognition in-memory computing system are provided 

in revised Table I. 
TABLE I 

LIST OF THE PARAMETERS USED FOR PROPOSED SYSTEM 

Device Parameter 

Electrical 

parameters 

1T2M 
memristor 

crossbar 

array 

Ron ~101Ω 
Roff ~1kΩ 

Vread 0.5V 

Vscan 0.5V/s 
VSET 2.0V 

VRESET 1.5V 

[Vmin,Vmax] [0V, 3V] 

Transistor 

Gate width/length ratio 4.3 

Gate voltage 1.1V 

Access resistance 15 KΩ 
ADC Precision 6 bits 

Neural network 

parameters 

Learning rate 10-2

Momentum 0 

Decay 0.9 

Maximum error 10-4

From Table I, the electrical parameters mainly rely on the 

fabricated Ag/a-Carbon/Ag memristor and selected devices. 

Inspired by [12-14], the neural network parameters can be 

roughly determined, which can greatly simplify the process of 

parameter setting. 

A. Dataset Description

The large-scale and publicly available UP-Fall dataset

collected by three types devices (i.e., cameras, wearable 

sensors, and context-aware devices) is employed for 

experimental evaluation. The data collected from those three 

types devices are in the shape of time-series and image 
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respectively. The UP-Fall dataset was published by Martinez et 

al. [12] in 2019, which contains eleven different human 

activities, including five different postural falls, and six basic 

daily activities. All activities are repeatedly performed three 

trials by seventeen healthy volunteers aging from 18 to 24, with 

a mean height and mean weight of 1.66m and 66.8kg, 

respectively. In this work, the data from trial 1 and trail 2 are 

used as training dataset, and the data from trail 3 is used as 

testing dataset. Specifically, the description and the time 

duration of each activity in the UP-Fall dataset is recorded in 

Table II. 
TABLE II 

STATISTICS FOR THE THREE PUBLIC STANDARD DATASETS 

Activity ID Description Duration (s) 

ID 1 Falling forward using hands 10 

ID 2 Falling forward using knees 10 

ID 3 Falling backward 10 

ID 4 Falling sideways 10 

ID 5 Falling sitting in empty chair 10 

ID 6 Walking 60 

ID 7 Standing 60 

ID 8 Sitting 60 

ID 9 Picking up an object 10 

ID 10 Jumping 30 

ID 11 Laying 60 

To evaluate the influence of multimodal data on human 

activity recognition, different data sources are used in the 

proposed system. Specifically, the data combinations can be 

divided into seven categories: 1) C1: camera 1 only; 2) C2: 

camera 2 only; 3) TS: time-series only; 4) C1+TS: fusion data 

of camera 1 and time-series; 5) C2+TS: fusion data of camera 2 

and time-series; 6) C1+C2: fusion data of camera 1 and camera 

2; 7) C1+C2+TS: fusion data of camera 1, camera 2 and 

time-series.  

B. Neural Network Training and Inference

We trained the proposed human activity recognition

in-memory computing system to recognize eleven different 

human activities, which includes ex-situ training, crossbar 

array programming, and in-situ inference.  

Ex-situ training: the ex-situ training is implemented in 

PyTorch platform (Intel® CoreTM i7-12700KF CPU, graphics 

card (Nvidia RTX 3070 Ti), and Windows 10 operating system, 

Python version 3.7). Specifically, the image data in the training 

dataset are down sampled from 640×480 pixels to 64×64 pixels 

and then fed to the MHCAM. The time-series data with the total 

number of 42 are collected from wearable sensors and 

context-aware devices, which are injected to SA-ConvLSTMM. 

The desired weights can be obtained when the ex-situ training 

is completed.  

Crossbar array programming: To modulate the weights, the 

weight difference is mapped to the conductance difference of 

1T2M cell. Then, the one-shot blind-update method [30] is used 

to update the conductance by tuning the gate of the 

corresponding 1T2M cell in each crossbar array. 

In-situ inference: when the 1T2M crossbar arrays have been 

programmed, the proposed human activity recognition 

in-memory computing system with the testing dataset is 

validated using in-situ inference. Specifically, the multimodal 

dates are converted to voltage inputs by digital-to-analog 

converter. Then, the input voltages are injected to the BLs of 

each crossbar arrays. Meanwhile, the recognition module will 

output a set of voltages with eleven states assigned to eleven 
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Fig. 12. Circuit design of classification module. 
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different human activities. The recognition results are 

determined by the largest output voltage in each period, and the 

specific in-situ inference results are illustrated in Fig. 13.  
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Fig. 13. The in-situ inference results. (a) MHCAM (C1); (b) MHCAM (C2); (c) 

SA-ConvLSTM (TS); (d) Fusion (C1+TS); (e) Fusion (C2+TS); (f) Fusion 

(C1+C2); (g) Fusion (C1+C2+TS) 

C. Quantitative Results and Analysis

To evaluate the overall performance of the proposed system,

the experiment for 100 epochs is conducted. The relationship 

between accuracy and the number of epochs during training 

phase is illustrated in Fig. 14(a). The experimental result 

demonstrates that the proposed system containing camera 1, 

camera 2 and time-series data sources achieves best 

performance on human activity recognition. The relationship 

between loss and the number of epochs during training phase is 

illustrated in Fig. 14(b). It is can be observed from experimental 

result that the SA-ConvLSTMM takes more time to generalize 

since it only contains time-series data. Similar results can also 

be observed in the accuracy and loss curves during testing 

phase, as shown in Fig. 14 (c) and Fig. 14 (d).  
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Fig. 14. Performance measures. (a) Accuracy during training process; (b) Loss 

during training process; (c) Accuracy during testing process; (b) Loss during 

testing process. 

Two widely used common metrics, i.e., accuracy, and 

F1-score [14] are record for each human activity on the UP-Fall 

dataset, as illustrated in Table III.  

Table III demonstrates that the proposed system achieves 

close to 100% recognition performance of the most human 

activities (i.e., ID 6 to ID 11) for fusing the camera 1, camera 2, 

and time-series data. The lowest recognition performance (53.6% 

Acc., 55.9 F1) is obtained for the activity ID 3 from 

SA-ConvLSTMM (TS). The results demonstrate that when 

fusion data of camera 1, camera 2 and time-series is used as 

input to the proposed system, the system performance 

outperform those of the single modality and the bi-modalities. 

Furthermore, the proposed human activity recognition 

in-memory computing system is compared with the 

state-of-the-art (SOTA) methods on the UP-Fall dataset, as 

shown in Table IV.  
TABLE IV 

COMPARISON OF DIFFERENT STATE-OF-THE-ART METHODS ON UP-FALL 

DATASET 

Ref. Data Data source Acc. F1 

[7] Time-series Wearable sensors / 67.0 

[8] Image Camera 1 95.1 71.2 

[9] Image Camera 1 96.0 93.0 

[10] Image Camera 2 96.7 97.4 

[11] Image Camera 1, 2 95.6 97.4 

[12] Time-series + Image Wearable sensors + Camera 1 96.4 82.3 

[13] Time-series + Image Wearable sensors + Camera 1, 2 99.8 98.9 

[14] Time-series + Image Wearable sensors + Camera 1, 2 97.9 97.9 

This work Time-series + Image Wearable sensors + Camera 1, 2 100.0 100.0 

From Table IV, the proposed system using fusion data of 

camera 1, camera 2 and time-series obtains the best accuracy 

and F1-score on the UP-Fall dataset. The experimental results 

TABLE III 

PERFORMANCE OF THE PROPOSED SYSTEM FOR EACH ACTIVITY RECOGNITION 

Activity 
MHCAM(C1) MHCAM(C2) SA-ConvLSTMM(TS) Fusion(C1+TS) Fusion(C2+TS) Fusion(C1+C2) Fusion(C1+C2+TS) 

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 

ID1 90.7 87.2 93.3 89.2 82.7 75.6 94.1 89.7 94.8 91.5 96.2 93.5 97.1 94.3 

ID2 76.2 79.2 77.3 81.1 69.3 68.9 78.8 82.5 80.4 83.9 82.3 85.2 84.2 87.5 

ID3 84.3 82.4 86.7 86.1 53.6 55.9 85.8 85.3 88.3 87.4 90.1 88.7 93.5 91.5 

ID4 80.6 81.6 83.5 85.1 76.0 72.2 84.2 84.0 85.8 85.9 86.3 86.5 90.2 88.7 

ID5 81.8 85.3 84.0 88.7 60.7 67.7 84.9 88.7 86.1 89.5 87.8 89.5 88.5 91.7 

ID6 98.7 96.1 100.0 97.4 98.2 90.1 100.0 96.8 100.0 95.5 100.0 95.5 100.0 98.7 

ID7 98.9 98.7 100.0 99.3 93.4 95.3 100.0 98.7 100.0 98.7 100.0 99.3 100.0 100.0 

ID8 99.4 98.0 100.0 98.7 96.3 90.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

ID9 94.7 94.6 97.3 97.8 69.3 78.8 99.4 99.3 98.7 99.3 100.0 100.0 100.0 100.0 

ID10 93.4 94.6 96.0 97.3 90.2 93.1 98.6 98.7 99.2 98.7 100.0 100.0 100.0 100.0 

ID11 98.6 95.8 100.0 96.6 97.1 92.5 100.0 97.9 100.0 97.9 100.0 97.9 100.0 100.0 
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are concluded below: 1) Compared to single modality 

approaches [7-11], the reliability and accuracy of the proposed 

system are improved by using multimodal information; 2) the 

SA-ConvLSTMM can capture high-level spatial and temporal 

feature form time-series more effectively compared with 

LSTM network used in [12], Gramian angular field (GAF) 

method used in [13], and ConvLSTM network used in [14]; 3) 

the MHCAM can extract the relevant patterns from the channel 

and spatial dimensions compared with CNN network used in 

[12, 13]; 4) Different from the direct fusion strategy used in 

[14], the cross-modal transformer unit is adopted in the 

proposed system, which can realize the cross-modal 

interactions more sufficiently. 

D. Computational Efficiency Analysis

In this work, the computational efficiency of the developed

system for human activity recognition in smart home 

environment are measured in terms of time consumption, 

energy consumption, and latency. 

Fig. 15 presents the time consumption of the proposed 

system by comparing with SOTA methods on the UP-Fall 

dataset. On average, the time consumption of the proposed 

system is about 1.08ms, which is approximately 8~10 times 

faster than other competitors, satisfying the real-time 

requirement of smart healthcare applications. 
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Fig. 15. The time consumption of in-situ inference. 

The energy consumption of the in-memory computing 

system mainly depends on the input/output size, the weight 

precision, the crossbar array size, and the design scheme. To 

estimate the inference energy consumption of the proposed 

system, we rely on numbers obtained by existing in-memory 

computing platform [31], as shown in Fig. 16(a).  
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Fig. 16. The breakdown of proposed system. (a) energy breakdown; (b) latency 

breakdown. 

We found the energy consumption is estimated about 2337pJ 

for 1-bit input/output, 1-bit weight with 0.5V, 50ns read voltage. 

The ADCs consume almost 76.5% of the total energy, which is 

the most of the energy consumption rather than the 1T2M array. 

Fig. 16(b) illustrates the latency breakdown of the proposed 

system. The latency of the proposed system is estimated about 

1.82μs, and the interconnect module account almost 84.3% of 

the total latency. 

E. Robustness Analysis

To evaluate the robustness of the proposed human activity

recognition in-memory computing system, the anti-noise 

analysis and device failure analysis are carried out, as shown in 

Fig. 17. Firstly, the random noises are added to the multimodal 

inputs (i.e., time-series input and image inputs), and the 

accuracy and the F1-score of the proposed system on the 

UP-fall dataset are demonstrated in Fig. 17(a). In Fig. 17(a), 

when the standard deviation of random noise is over 0.2, the 

recognition accuracy and the F1-score can remain higher than 

93% on the UP-fall dataset. The experimental results 

demonstrate that the impact of the random noise on the 

proposed system is negligible. Then, in order to examine the 

effect of the device failure, we set the failure ratio of the 

memristors in LRS/HRS with 0% to 30%, and the system 

performance on the UP-fall dataset is illustrated in Fig. 17(b). 

In Fig. 17(b), the accuracy loss and the F1-score loss of nearly 3% 

and 5% are observed in the proposed system, when the failure 

ratio of the memristors in LRS/HRS exceeds 20%. The 

experimental results demonstrate that the proposed system has 

a good tolerance to device failure. 
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Fig. 17 The robustness analysis of proposed system. (a) anti-noise analysis; (b) 

device failure analysis. 

VI. DISCUSSION

Although proposed human activity recognition in-memory 

computing system has a capability to process multimodal 

information in smart healthcare applications, which balances 

recognition performance and computational efficiency to 

promote versatility. The scalability of the proposed system for 

real-world large-scale applications is still complex and 

challengeable. 

At the device level: the perceptual information of different 

modalities can be simultaneously sensed and processed in 

human brain. An eco-friendly and intelligent in-sensor or 

near-sensor computing device should be developed for fusion 

of different perceptual information in a real-time manner, 

including tactile, auditory, olfactory, visual, and so on.  

At the circuit level: the development of existing in-memory 

computing systems is limited to specific scenarios, and the 

versatility requirements of real-world large-scale applications 

are hard to achieve. Considering the requirements of real-world 
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large-scale application have become more diversified, 

reconfigurable functional circuits need to be further developed 

in the future.  

At the algorithm level: the brain-inspired learning algorithms 

is still in its infancy stage. With better understanding of the 

structure and function of human brain, general online learning 

algorithms should be studied to promote the development of 

in-memory computing system for real-world large-scale 

applications. 

VII. CONCLUSION

This paper investigates an efficient human activity 

recognition in-memory computing architecture for healthcare 

monitoring. Firstly, a mechanism-oriented model is constructed 

after fabrication of Ag/a-Carbon/Ag memristor. Then, 1T2M 

crossbar array is designed, which can realize the high-density 

connection and perform parallel computing. Furthermore, an 

efficient human activity recognition in-memory computing 

mainly consisted of SA-ConvLSTMM, MHCAM, and 

recognition module is designed. Through SA-ConvLSTMM, 

the high-level spatial and temporal features with local-global 

dependences from time-series data can be adequately captured. 

Through MHCAM, relevant patterns from the channel and 

spatial dimensions in visual data can extract sufficiently. 

Through recognition module, the crossmodal interaction can be 

exchanged and the reliable output can be obtained effectively. 

For verification, the proposed system is applied to perform 

human activity recognition on UP-Fall dataset, and the 

experimental results demonstrate that the proposed system 

outperforms SOTA methods in terms in recognition 

performance and time consumption (approximately 8∼10 times 

speed up). In addition, the necessary computational efficiency 

analysis and robustness analysis are carried out, indicating the 

high computational efficiency and reliability of proposed 

system in smart healthcare applications. 
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