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Abstract—The combination of the Metaverse and intelligent 
transportation systems (ITS) holds significant developmental 
promise, especially for visual perception tasks. However, the 
acquisition of high-quality scene data poses a challenging and 
expensive endeavor. Meanwhile, the visual disparity between the 
Metaverse and the physical world poses an impact on the practical 
applicability of the visual perception tasks. In this paper, a 
Metaverse Intelligent Traffic Visual Framework, MITVF, is 
developed to guide the implementation of visual perception tasks 
in the physical world. Firstly, a two-stage metadata optimization 
strategy is proposed that can efficiently provide diverse and high-
quality scene data for traffic perception models. Specifically, an 
element reconfigurability strategy is proposed to flexibly combine 
dynamic and static traffic elements to enrich the data with a low 
cost. A diffusion model-based metadata optimization acceleration 
strategy is proposed to achieve efficient improvement of image 
resolution. Secondly, a Meta-Physical adaptive learning method is 
proposed, and further applied to visual perception tasks to 
compensate for the visual disparity between the Metaverse and the 
physical world. Experimental results show that MITVF achieves a 
10× acceleration in optimization speed, ensuring the image quality 
and reconstructing diverse. Further, MITVF is applied to the 
traffic object detection task to verify the effectiveness and validity. 
The performance of the model trained with 5k real data exceeded 
that of the model trained with 200k real data, with AP50 reaching 
67.7%. 
Index Terms—adaptive learning method, metadata optimization 
strategy, MITVF, Metaverse. 

I. INTRODUCTION

HE ITS is a typical complex system that integrates 
various visual perception tasks, including object 
detection [1, 2], object tracking [3, 4], and object 
segmentation [5]. Deep learning-based visual 

perception models are extensively applied in ITS, playing a 
pivotal role in ensuring its safe and stable development. 

The efficient and secure execution of perception tasks within 
extant ITS confronts significant challenges. Firstly, deep 
learning-based perception models necessitate extensive data for 
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LIST OF ABBREVIATIONS 

Abbreviation Definition 
MITVF Metaverse Intelligent Traffic Vision Framework 
ITS Intelligent Transportation System 
SAR Society of Automotive Engineers 

MAdiff Diffusion Model-based Metadata Optimization 
Acceleration Strategy 

DAdet Domain Adaptive-based Traffic Object Detector 
RPN Region Proposal Network 
RoI Region of Interest 
EMA Exponential Moving Average 
GRL Gradient Reversal Layer 
GAN Generate Adversarial Network 
mAP Mean Average Precision 
FID Frechet Inception Distance 
PSNR Peak Signal-to-Noise Ratio 
SSIM Structural Similarity 
IS Inception Score 

training and testing, incurring substantial costs associated with 
the creation of high-quality datasets. Secondly, rich and diverse 
data are needed to cope with complex traffic scenarios in 
practical applications. Furthermore, the availability of high-
fidelity simulation scenarios is constrained, impeding targeted 
testing for specific issues or conditions and diminishing overall 
testing efficiency. 

The emergence of the Metaverse [6, 7] offers a promising 
solution to the visual perception of ITS. The six levels of 
autonomous driving, as defined by the SAR, range from Level 
0 (no automation) to Level 5 (full automation) [8]. Metaverse 
can exert certain advantages at every level, such as providing 
rich data and a safe testing environment. By constructing the 
Metaverse visual perception framework, it can provide massive 
and diverse traffic scene data, improve the generalization of the 
model, and reduce the cost of model research and development. 
However, directly combining the Metaverse and ITS will bring 
certain challenges: a) Efficiently optimizing data for the 
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A Metaverse Intelligent Traffic Visual Framework 
(i.e., MITVF) is proposed, enabling efficient 
implementation of visual perception tasks in ITS. 
As our best knowledge, it is the first framework 
capable of combining the Metaverse and traffic 
visual tasks.

A two-stage metadata optimization strategy is 
proposed, comprising an element reconfigurability 
strategy and a diffusion model-based metadata 
optimization acceleration strategy, with the aim of 
expeditiously generating comprehensive and high-
quality metadata.

Challenges faced by combining Metaverse and visual perception in ITS

[10-15]

[16-19]

The image quality of the virtual traffic scenes generated by the 
Metaverse cannot be compared with the quality captured by 
real cameras, which will affect the training performance of the 
model. And simply applying Metaverse virtual data cannot 
meet the targeted training needs of the model.

A domain adaptive learning method is proposed to 
reduce the visual disparity between the Metaverse 
and the physical world. It improves the 
generalization ability of the perception model and 
can be reliably applied to the physical world

[9, 20-22]

There are certain visual differences between custom-built data 
in the Metaverse and real data, which will cause the 
performance of models trained with Metaverse data to degrade 
in actual scenarios.

1 .  Perception models based on deep learning require large 
amounts of data for training and testing. Creating a complete 
high-quality dataset is time- and labor-intensive, and collection 
involves certain risks.
2. The visual perception model in the intelligent transportation 
system  ( I T S )  requires targeted training for certain weather, 
emergencies, special scenes, etc. during the development and
testing process. It is difficult for existing datasets to meet this
training task flexibly and efficiently;
3 . The safety of I T S  requires high-fidelity testing of visual
perception models. The actual test site is limited and it is
impossible to simulate some harsh special scenarios, and the
test process is dangerous.

The Metaverse can create an artificial 
dimensional space parallel to the real 
world, customize and construct highly 
realistic simulation scenes, and provide 
rich data for the physical world.  
automotive companies have already 
harnessed the Metaverse for the design 
and verification processes of complete 
vehicles. By integrating visual perception 
models developed within the Metaverse 
with  ITS, we can effectively address 
existing challenges related to data 
availability and quality.

The image optimization method 
optimizes the low-resolution images 
generated by the Metaverse and weighs 
the relationship between optimization 
speed and image quality.

Domain adaptation methods can reduce 
the feature gap between metaverse data 
and real data and improve model 
performance.
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Fig. 1. Based on the researches [9-22], the research gaps in environmental perception of ITS is summarized and corresponding 
contributions is proposed.  

generation a comprehensive and high-quality metadata (virtual 
data from Metaverse) is a critical challenge [19, 23]. Low-
resolution virtual images struggle to fulfill the long-distance 
sensing requirements in practical applications, and the 
optimization of extensive metadata incurs significant costs. 
Moreover, the metadata optimizing needs to be flexible to cover 
complex and diverse traffic scenarios. b) Exploring the 
nonlinear mapping relationship between the virtual and real-
world domains is essential. Visual disparity [24, 25] between 
the Metaverse and the physical reality inevitably introduce 
feature deviations during the training process, thereby 
impacting the applicability in the physical world.  

In this paper, the MITVF is proposed to guide the efficient 
performance of visual perception tasks in the physical world.  

A two-stage metadata optimization strategy is proposed for 
the challenges of low metadata quality and limited scene 
diversity. At the first stage, through the traffic element 
reconfigurability strategy, the physical world is divided into 
dynamic and static elements to efficiently customize and 
reconfigure a variety of complex traffic scenarios and improve 
the generalization of the training model. At the second step, an 
optimization acceleration strategy is proposed to simplify the 
backward reasoning in the diffusion model [18] by designing a 
non-Markov process, improve the processing speed and ensure 
the quality of metadata. 

To deal with the inherent visual disparity, a domain adaptive 
learning method is proposed. The adversarial training is applied 
between the Metaverse and physical domains to improve model 
performance. The image-level self-attention feature alignment 
module and the instance-level feature aggregation mechanism 
are designed to reduce the feature space distance between the 
Metaverse domain and the physical domain, enabling the 
perception model in Metaverse to be applied to the real world 

without distinction. 
On the whole, the main contributions of our work and the 

research gaps as shown in Fig. 1. The remainder of this paper is 
structured as follows: Section II summarizes the existing 
Metaverse applications and related technologies. Section III 
provides an overview of the MITVF framework. In Section IV 
and Section V, the two-stage metadata optimization strategy 
and domain adaptive learning method are introduced in detail. 
The experimental results and conclusion are respectively shown 
in Section VI and Section VII.  

II. RELATIVE WORK

In this section, we provide an overview of the current 
applications and pertinent technologies within the Metaverse, 
and analyze the shortcomings of existing Metaverse 
applications in various fields 

In terms of combining the Metaverse with ITS, [26-29] 
combined the Metaverse with vehicles to optimize existing 
systems such as smart cockpits, traffic flow management 
analysis and road maintenance system. [30] provides an 
evaluation solution for metaverse and autonomous driving 
algorithm testing. Wang et al. [21] proposed a video analysis 
system in the metaverse environment, combining virtual reality 
with artificial intelligence to build fully intelligent video 
analysis to improve system detection performance. Gilles et al. 
[15] used virtual data provided by the Metaverse to improve
existing training data.

Lee et al. [31] used an exploratory approach to analyze 
current qualitative data characterizing the state of the business 
of meta-boundary services for healthcare and to learn from the 
current business trends in meta-boundary services to derive 
applicable strategies. In other fields, Contreras et al. [32] 
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Fig. 2. Theoretical framework of the MITVF: Metadata Optimization, Meta-Physical Adaptive Learning, and Downstream tasks. 

suggested that by utilizing the metaverse, educational 
institutions can provide students and staff with a 360° 
experience that offers greater flexibility and adaptability to 
unforeseen events. Li et al. [33] explore the changes and 
development of smart home entertainment scene experience 
design in the metaverse perspective. Jeong et al. [34] proposed 
a new e-commerce platform innovative business model, which 
utilizes the metaverse technology to combine live commerce 
with meta-virtual, and overcomes the limitations of the existing 
online shopping. 

The above researches provide participants with an immersive 
experience by constructing corresponding virtual worlds. 
However, they ignore the importance of data optimization 
during the construction process. Immersive experience has high 
requirements for the resolution and realism of scene data. 
Secondly, there is a certain degree of visual disparity between 
the virtual world and the physical world, and the knowledge 
learned in the Metaverse is difficult to applied to the physical 
world. For example, in the medical field, metaverse technology 
is used for medical research and simulation. However, due to 
the difference in images between the virtual and real worlds, it 
is difficult to fully apply the research results to the real world. 
And, using the Metaverse to provide students with virtual 
laboratories also have certain safety risks due to the visual 
disparity. 

Data quality and visual disparity issues also exist in the 
integration of ITS with the Metaverse. The proposed MITVF 
provides solutions for the efficient performance of visual 
perception tasks in the Metaverse through data optimization 
strategies and domain adaptive learning. 

III. METAVERSE INTELLIGENT TRAFFIC VISION FRAMEWORK

The visual perception model based on MITVF not only relies on

the training and testing with high-definition massive metadata but 
also requires the ability to apply the learned knowledge to real-
world scenarios. Fig. 2 shows the applications of the Metaverse in 
multiple fields. At present, its technical application in 
transportation is insufficient. MITVF combines the Metaverse and 
visual perception technology to promote the safe and efficient 
development of ITS. The MITVF contains three parts: Metadata 
Optimization, Meta-Physical Adaptive Learning and Downstream 
Tasks. 

Part 1. Metadata Optimization in Fig. 2 includes two stages: 
metadata reconstruction and metadata optimization 
acceleration strategies. In the metadata reconstruction, virtual 
sensors simulate the physical parameters to generate different 
virtual data sequences. The entire phase automatically ensures 
the automatic generation of virtual data that is not only 
accurately annotated but also versatile enough to be applied to 
a wide array of visual perception tasks. Furthermore, the 
metadata reconstruction process is designed to enhance the 
diversity of metadata, allowing for customized scene 
construction through the free combination of elements. This 
flexibility facilitates the creation of tailored virtual 
environments for specific research or application needs. 
However, the low resolution of the virtual sensor acquisition 
frame has an impact on the detection and training of visual 
perception models, and the simulator requires extremely high 
cost to render high-quality images. To address these challenges, 
the metadata optimization acceleration strategy emerges as a 
crucial solution. This strategy is centered around the 
enhancement of image quality with minimal computational and 
time costs. By employing a non-Markov process, the strategy 
significantly boosts the image optimization efficiency of the 
diffusion model. This innovative approach ensures the 
provision of high-quality data for visual tasks, thereby 
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Fig. 3. Two-stage Metadata optimization strategy. 

overcoming the constraints imposed by low-resolution virtual 
sensor data and high rendering costs. 

Part 2. Meta-Physical Adaptive Learning in Fig. 2 provides a 
powerful method for adapting Metaverse visual perception to 
the real world. There are certain distribution differences 
between virtual and physical data, which may be caused by 
various factors, such as variations in lighting conditions, object 
appearance, camera view, etc. These differences may lead to 
degraded performance of the completed models trained under 
the metaverse when tested in the physical world. In our 
approach, varying proportions of metadata from the Metaverse 
and real-world data are concurrently fed into a domain 
adaptation model, which primarily comprises an encoder (E), a 
decoder (D), and a self-attention feature alignment module (A). 
This domain adaptation model is founded on a knowledge 
distillation architecture, wherein both the metaverse model and 
the physical model adhere to an identical network structure. 
Through the process of feature alignment, the physical model is 
able to utilize the features learned by the metaverse model. This 
enables the virtual-to-real transfer of model performance, 
ensuring that the knowledge acquired in the virtual domain of 
the metaverse is effectively applied to enhance the accuracy and 
robustness of the model in real-world scenarios. 

Part 3 of Fig. 2 illustrates the diverse range of downstream 
tasks supported by our proposed MITVF. As a comprehensive 
framework that merges the Metaverse with visual perception 
tasks in ITS, MITVF offers a versatile platform for various 
applications, including traffic object detection, lane line 
detection, and semantic segmentation. The integration of ITS 
with the Metaverse not only enriches the available data for 
model training but also provides a safe and controlled 
environment for testing and refining visual perception 
algorithms, making MITVF a powerful tool in advancing ITS 
capabilities and promoting safer and more efficient 
transportation systems. 

IV. TWO-STAGE METAVERSE OPTIMIZATION STRATEGY

This section proposes a two-stage Metadata optimization 
strategy (as shown in Fig. 3), including an element 
reconfigurability strategy and a diffusion model-based 
metadata optimization acceleration strategy. The specific 
optimization strategy description is provided below. 

Fig. 4. Element reconfigurability strategy for metadata. 

A. Element reconfigurability strategy
Metaverse can be used to generate rich data to simulate different 

driving scenarios, which is faster and more flexible than data 
collection in real-world. According to the composition of the 
physical world, all the components can be roughly divided into two 
parts: the static and dynamic elements. Static elements include 
environmental elements (buildings, vegetation, roads, etc.) and 
traffic elements (traffic signs, traffic lights, etc.); dynamic elements 
include object elements (pedestrians, vehicles, etc.) and scene 
elements (light, weather, accidents, etc.). According to these 
elements, on the basis of digital restoration of real traffic scenes, 
the construction of customized traffic scenes can be realized, such 
as bad weather (rain, snow, haze, etc.), unexpected accidents 
(collision, congestion, fire, etc.), and extreme scenes (wilderness, 
mountainous areas, etc.).  

Customized reconstruction of metadata can be achieved through 
the above element division. Real scenes are often the result of the 
joint action of multiple factors, and it is difficult to train a visual 
perception model individually for a certain scene or problem. 
Through customized reconstruction of metadata, the efficiency of 
visual perception model development and testing can be improved, 
facilitating efficient perception under diverse conditions. 

To improve training and testing efficiency, metadata can be 
optimized based on test results in the physical world. The 
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metadata-trained model is tested on physical driving scenarios, and 
the metadata is updated by re-simulating underperforming 
scenarios. Through this feedback loop mechanism, metadata is in 
a continuous process of updating and optimization to improve the 
robustness and generalization of visual model learning. The above 
process is shown in Fig. 4.  

B. Diffusion model-based metadata optimization acceleration
strategy

In this paper, the MAdiff is proposed, which combines the 
conditional probability diffusion model to achieves fast 
optimization of quality images, named. 

In the training phase, the model input includes low-resolution 
image x, noisy image yt, and high-resolution image y0. yt is 
generated by y0 through the diffusion and noise process. In the 
inference stage, the input is the low-resolution image x, and the 
output is a high-resolution generation image. 

Taking x as the conditional input of the generative model, a 
high-resolution image is obtained by performing reverse 
denoising on yt and repeating iteratively T times. The objective 
function of this process is as follows: 

( ) ( ) ( ) 2

0, 0,
2

, 1t tx y z IE E f x y z zθ γ γ+ − −
   (1) 

where (x,y) is sampled from the training dataset, z denotes 
Gaussian distribution sampling noise, I represents the identity 
matrix,  (0, I) represents the standard normal distribution, and 
fθ denotes the noise prediction model, here is U-Net. γt=∏t 

i=1αi 
and αi /α1:T are both hyper-parameters, subject to 0<αi<1, 
determining the variance of the noise added at each iteration. 
The objective function minimizes the loss of the constrained 
model by computing the square of the 2-norm between fθ and z. 
And E represents the Expect.  

In general, the inference process is trained by finding an 
inverse Markov transformation that maximizes the likelihood 
of the training data. 

( ) ( )( )2
1 1| , , ,|,t t t t tp y y x y x y Iθ θµ γ σ− −=   (2) 

where pθ represents the probability distribution predicted by the 
diffusion model, μθ represents the mean value of the prediction 
noise, and σ2 

t  represents the variance value of the prediction 
noise. The mean value of pθ can be obtained by parametric 
solution. 

( ) ( )11, , , ,
1

t
t t t t t

t t

x y y f x yθ θ
α

µ γ γ
α γ

 −
= −  − 

  (3) 

( )1
11 , , 1
1

t
t t t t t t

t t

y y f x y zθ
α

γ α
α γ−

 −
= − + −  − 

  (4) 

A non-Markovian inference process is used to increase the 
inference speed of the diffusion model, enabling rapid 
optimization of metadata. Considering the non-Markovian 
inference cannot directly calculates pθ(yt-1|yt,y0), we assume it 
conforms to a special distribution, which is no longer restricted 
by the Markov chain but it needs to ensure 

0 1t t ty y zγ γ= + − . Only in this way can the optimization goal 
of the diffusion model remain unchanged during the forward 
propagation process. Therefore, we can solve it through the 
undetermined coefficient method: 

( ) ( )

( )

2
1 0

2
1

1 0 02

| , ,

1

t t t t

t
t t t t

t

q y y y I

y y y

σ µ σ

σ
µ α α

σ

−

−
−

=

= + − ⋅ −



(5) 

where the μt represents the expectation of the normal 
distribution. The size of σ controls the randomness of the 
forward process. When σ tends to 0, the sampling process will 
no longer be random. 

We make a preliminary prediction of x0 through a 
straightforward denoising process. 

( ) ( )( ): 1 , /t t
t t t t tg y y f x yθ θα α= − − ⋅   (6) 

where tfθ represents the noise prediction result. Taking 
p(xT)=(0,I) as a priori condition, the process of predicting yt-1 
through yt is as follows: 

( ) ( )
( )( )

( )( )

1 2
1 1

1

1

, , if 1,
|

| , , otherwise,
t
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According to (7), the sample yt-1 is generated by yt and x: 

( ) 21
1

2 2 21
1

,t t
t t t t t

t

t
t t t t

t

y f x y zθ
α

ψ σ
α

α
ψ σ σ σ

α

−
−

−
−

= ⋅ + ⋅

= − − ⋅

(8) 

where zt~(0, I) is the standard Gaussian distribution noise. 
Different σ will lead to different generation processes. When 

( ) ( )1 11 / 1 1 /t t t tσ α α α α− −= − − − , this forward process will
become a primitive Markov process. 

This paper obtains latent variables {xτ1,…, xτs} by setting a 
subsequence τ, which is an increasing subsequence of length S 
from {1, ..., T}. Executing (8) on these latent variables in the 
reverse inference stage, when the length of the subsequence is 
much smaller than T, we can achieve a significant improvement 
in computational efficiency due to the iterative nature of the 
sampling process. 

V. DOMAIN ADAPTIVE LEARNING-VIRTUAL TO REALITY

To intuitively reflect the effectiveness of the domain adaptive 
learning method in solving the visual disparity between 
Metaverse and physical world, the domain adaptive learning 
method is applied to the traffic object detection task. In this 
section, the DAdet is designed, which consists of three main 
components: physical-metaverse feedback optimization 
strategy, image-level self-attention feature alignment, and 
instance-level feature aggregation mechanism. The source 
domain (labeled metadata NS) and the target domain (unlabeled 
real images Nt) are defined correspondingly. Within the labeled 
metadata, each image is represented as DS={(XS, BS, CS)}, 
whereas the unlabeled real images are denoted as Dt={Xt}. 

According to the knowledge distillation, the training process 
of DAdet comprises the metaverse model and the physical 
model, as shown Fig. 5. Both models share identical structures. 
The feature encoder and detector are initialized through the 
source domain data and used as the initial models of the 
metaverse and the physical world. To generate accurate pseudo-
labels for real traffic images, a strong-weak enhancement 
mechanism [35] is introduced. The unlabeled images with weak 
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Fig. 5. Domain adaptive-based traffic object detector. 

augmentation are the input to the metaverse model, and labeled 
and unlabeled images with strong augmentation are jointly used 
as the input to the physical model. The weak augmentation only 
processes the image through Horizontal Flip operation [36]. For 
strong augmentation, operations such as GaussianBlur and 
Cutout are used to increase the diversity of images to better 
improve the generalization ability of the training model [1]. The 
physical model minimizes the difference between its pseudo-
label outputs and outputs of the metaverse model through a loss 
function, aiming to improve its performance in the real-world. 
The total loss of the DAdet is as follows: 

L=Lsup+λunsup‧Lunsup+λdis‧Ldis+λSA‧LSA (9) 
where λ is used to control the corresponding loss weighting. 

A. Physical-metaverse feedback optimization
The initialized model is trained supervised by the labeled data

with the following loss function expressions: 
( ), ,   rpn roi rpn roi

sup S S S cls cls reg regX B C = + + +     (9) 
This loss function includes classification loss and regression 

loss in both RPN and RoI. The cross-entropy loss is used for 
classification and the L1 loss is used for regression. 

The physical world model is trained based on the real data 
with pseudo-labels provided by the metaverse model after 
initialization operation, with the following losses: 

( ) ( ) ( )unsup
ˆ ˆ ˆ, , ,rpn roi

S S cls S S cls S SX C X C X C= +   (10) 

where ˆ
SC denotes the pseudo-label of the real image generated

under the metaverse. Since the metaverse model only generates 
the confidence of the object class, instead of the location of the 
bounding box, the regression loss calculation is skipped here. 

EMA [37] is used to implement the feedback optimization of 
the physical-metaverse model. The physical model feeds the 
parameters back to the metaverse model by adversarial training 
of source domain and target domain, resulting in better 
detection performance of the metaverse model for unlabeled 
real images. Here the feedback optimization of the weights can 

be defined as: 
( )+ 1-T S TW W Wε ε⋅ ⋅ → (11) 

where W{T,S} denotes parameters in the teacher (metaverse) 
/student (physical world) model, the parameter ε represents the 
EMA degree. 

B. Self-attention feature alignment
The self-attention feature alignment module implements

feature alignment of focal regions by means of adversarial 
learning and self-attention mechanism. The feature map f1 is 
combined with a domain classifier and a self-attention module 
to generate a new domain-invariant feature map. The domain 
classifier is trained in an adversarial learning manner using L1 
loss, with the expression as in (13). 

( )( ) ( )( )2 2

1 1 1
1 1

log log 1
S TN N

S T
i i

i i
L D F D F

= =

= + −∑ ∑ (12)

where F S 
i  and F T 

i denote the features extracted from the 
metaverse image and the real image, respectively. D1 serves as 
the pixel-wise probability for the domain classifier to generate 
the source and target domains, NS and NT represent the 
metaverse and physics features number of a batch respectively. 
The GRL allows the gradient of the domain classification loss 
to be automatically inverted during backpropagation, which in 
turn enables an adversarial loss similar to that of GAN. 

The f processed by the domain classifier Dcls1 and the self-
attention mechanism are merged and calculated as follows: 

( ) ( )1 1softmax T
clsF QK V D f = ⋅ ⋅  (13) 

where the generated feature F is again merged with f1 to obtain 
f2=F2(F∙ f1). As the feature extractors are stacked, the features 
are mined from shallow to deep. The shallow features focus on 
the color and texture of the object, and the deeper features have 
richer semantic information. The self-attention feature 
alignment module is applied in two stages to achieve multi-
level feature alignment. The loss of this process is represented 
by the LSA. 
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C. Feature aggregation mechanism 
The imaginary and real-world images in Backbone are 

aligned at the attention level and the final output feature map f3 
is fed to the RPN used in the Faster-RCNN. Several proposals 
and their fixed feature vectors N m

Rf
×∈  are generated in the 

RPN and then hierarchical aggregation clustering is used to 
cluster the main features in fR to obtain main feature group. 
Each proposal is treated as a cluster, and the two closest clusters 
are merged together using cosine distance as the merging 
metric. When the intra-cluster dissimilarity exceeds the cluster 
radius parameter, the merging stops. The above process is 
specified as follows: 

,( , ) 1 a bdist a b
a b

= − (14) 

( ) ( ){ }, max , : ,MaxLink A B dist a b a A b B= ∈ ∈   (15)
where A and B denote the features of two groups in two clusters, 
a and b denote the feature embedding of a single proposal. 
dist( ) denotes the cosine distance, and MaxLink( ) denotes the 
merging process. 

When the clustering is completed, the instances assigned to 
each cluster are pooled to construct a representative embedding: 

0
ci

i
i

N
ii

c
c

e
E

N
==

∑ (16) 

where ci denotes the i-th cluster and Ncidenotes the number of 
assigned instances. Finally, Eci  is fed to the discriminator to 
execute the instance-level alignment: 

log( ( )) (1 ) log(1 ( ))i idis c cL d D E d D E= − − − −   (17) 
where d={0, 1} denotes the metaverse image and the real image 
respectively. 

VI. EXPERIMENT AND ANALYSIS

Vehicles and traffic signs are important detection objects for 
visual perception tasks in ITS. Vehicle is characterized by large 
size, fast movement and large number, which requires fast 
detection of all targets in the screen; traffic signs are small in 
size and their variety is rich with certain similarities. Therefore, 
this section takes the detection of vehicles and traffic signs as 
an example to verify the effectiveness of MITVF for vision 
tasks. 

A. Datasets
There have been researches related to exploring virtual

datasets as metadata and reviewed publicly available driving 
datasets and virtual test environments. Based on the above, 
several typical traffic datasets are selected for experimental 
verification, as follows: 

CURE-TSD [14]: The video sequences in the CURE-TSD are 
divided into two categories: real data and metadata synthesized 
by the simulator. The real sequences are processed using 12 
different types of effects and 5 different challenge levels. The 
virtual sequences are processed using 11 different types of 
effects and 5 different challenge levels. With the virtual/real 
data and the synthesized harsh/extreme scenarios, CURE-TSD 
can be used to study the robustness of traffic sign recognition 
algorithms in challenging environments.  

51world Synthetic Dataset [38]: The dataset camera and 
LIDAR related data generated by the autonomous driving 
simulation test platform 51Sim-One. In this paper, images from 
the dataset and annotation information are processed as one of 
the source domains for the experiment, containing a total of 
8888 images. 

BDD100K [39]: The dataset consists of 100k videos captured 
in the US, covering different weather conditions (sunny, cloudy, 
rainy, etc.) and different times of the day (day, night) with 
diverse traffic scenarios. Some of the multi-scene all-weather 
data from BDD100K is taken as one of the target domains for 
the experiment, containing a total of 1000 images. The same 
traffic element categories in 51world synthetic dataset and 
BDD100K were selected, with a total of 10 categories. 

KITTI [40]and VKITTI [41]: VKITTI contains 50 high-
resolution monocular videos (21,260 frames). This dataset is a 
virtual video dataset synthesized from simulated images, with 
videos generated from 5 different virtual worlds in an urban 
environment under different imaging and weather conditions. 
The virtual world is created using the Unity game engine and a 
novel real-to-virtual cloning method. This virtual scene has a 
corresponding physical world scene in the KITTI dataset. 

B. Experiments Details
Metrics. Nine metrics are selected in this paper to evaluate the

performance of the model in terms of detection accuracy. The 
details are as follows: 

mAP=∑C 
i=1APi/C (18) 

where C is the total number of categories detected and AP is the 
detection accuracy of individual categories. 

FID: A measure used to calculate the distance between the 
real image and the feature vector of the generated image. The 
smaller the FID value, the higher the similarity. 

PSNR: The mean square error between the original image and 
the processed image. The larger the value, the better the image 
quality. 

SSIM: Measure the structural similarity of two images, the 
larger the similarity, the higher the degree of similarity. 

IS: Measure the quality and variety of images 
AP50: AP at IoU=0.5 
APS: AP for small objects: area<322 
APM: AP for medium objects: 322<area<962 
APL: AP for large objects: area>962

Implementation details. The training and test environment is 
as follows: Linux4.15.0-142-generic Ubuntu 18.04, with 
Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GH, 8×32GB 
DDR4 and 8×TITAN Xp, 12GB video memory, the batch size 
is set to 32. 

C. Two-Stage Metadata Optimization Strategy
In this section, we verify the two-stage metadata optimization

strategy. Firstly, five common weather elements are selected to 
verify the effectiveness of the element reconfigurability 
strategy. Fig. 6 illustrates the capability of our framework to 
reconstruct customized traffic scenes with varying weather 
conditions. In this demonstration, we have selected five weather 
elements, namely Snowy Landscape, Clouds, Fog, Snowflakes, 
and Rain, along with four scene elements to represent different  

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works (see:  https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-
policies/).



1 This article has been accepted for publication in a future issue of this journal,  but has not been fully edited. Content may change prior to final publication. Citation 
information: DOI10.1109/JBHI.2024.3392648, IEEE Transactions on Intelligent Transportation Systems

Snowy 
Landscape

Clouds
Fog

Snowflakes
Rain

Snowy Landscape Snowy Landscape Clouds Clouds

Fog Fog Snowflakes Snowflakes

Rain Rain Snowy Landscape, 
Snowflakes

Snowy Landscape, 
Clouds

Fog, Rain Fog, Rain, CloudsFog, Snowflakes Snowy Landscape, 
Clouds, Rain

Weather Elements

...

Original Images

Fig. 6. Samples of customized traffic scene reconstruction 

TABLE I 
VALIDATION OF ELEMENT RECONFIGURABLE STRATEGIES

BASED ON CURE-TSD DATASET 

CURE-TSD (Ours) 
Meta data (%) Reco. Ratio δ mAP Clean data Reco. data* 

80 0 - 0.515 
60 20 0.25 0.520 
40 40 0.50 0.534 
20 60 0.75 0.551 
12 68 0.85 0.568 
8 72 0.90 0.553 
4 76 0.95 0.547 
0 80 1.00 0.491 

* Reco. data means reconstruction data.

TABLE II 
THE ACCURACY OF THE MODEL UNDER DIFFERENT SR IMAGE 

RECONSTRUCTION ALGORITHMS 

Method Dataset mAP 
Bicubic Data-B 32.8% 
SRGAN Data-S 45.5% (+12.7%) 

ESRGAN Data-E 50.7% (+17.9%) 
MAdiff Data-M 51.2% (+18.4%) 

TABLE III 
RESULTS OF IMAGE QUALITY UNDER DIFFERENT 𝜙𝜙 

𝜙𝜙 Lτ FID↓ IS↑ PSNR↑ SSIM↑ Time ∆t 
0.01 10 24.48 115.6 10.27 0.28 0.367s 36.5s 
0.02 20 10.48 164.4 16.86 0.66 0.734s 36.1s 
0.05 50 7.39 173.9 22.10 0.65 1.847s 35.0s 
0.10 100 6.62 184.2 23.32 0.72 3.653s 33.2s 
0.50 500 6.48 185.1 26.12 0.74 18.33s 18.5s 
1.00 1000 6.35 186.5 27.36 0.78 36.82s 0.0s 

aspects of the traffic environment. By strategically combining 
these elements, we can generate a diverse array of traffic scenes 
under different weather conditions. For instance, the right part 

of Fig. 6 showcases examples of road scenes in rainy, snowy, 
and foggy weather, respectively. The flexibility of our 
framework allows for the superimposition of multiple elements, 
thereby enriching the complexity and realism of the traffic 
scenes. This ability to customize and reconstruct traffic scenes 
is crucial for the development and testing of vision-based 
detection models. By providing a controlled environment with 
various weather conditions, our framework enables the 
evaluation of model robustness and performance in scenarios 
that closely mimic real-world conditions. This, in turn, 
facilitates the development of more resilient and accurate 
detection systems for traffic scene analysis. Customized traffic 
scenarios build rich traffic scenario data and provide conditions 
for targeted training and testing. Table I shows the impact of the 
reconfigurability strategy on detection accuracy. The training 
data consists of 20% real data and 80% metadata. The metadata 
in the training data is divided into reconstructed data (Reco. 
data) and unreconstructed data (Clean data), and the ratio of the 
two (Reco. Ratio δ) is adjusted to verify the detection accuracy 
of the detection model in complex scenarios. As the proportion 
of reconstructed data increases, the ability to cope with complex 
environments (generalization) continues to improve. When 
δ=0.85, the optimal mAP=56.8% under complex working 
conditions. 

Secondly, for the diffusion model-based optimization 
acceleration strategy, the optimize the performance is verified 
at first. Fig. 7 shows the optimized results of the MAdiff, 
ESRGAN [42] and SRGAN [43] for low-resolution images. In 
this experiment, the Bicubic interpolation method is employed 
to generate low-resolution versions of the original images, 
which serves as a baseline for our comparisons. The low-
resolution images processed by Bicubic interpolation exhibit a 
significant loss of detail, making it challenging to distinguish 
specific features. Both SRGAN and ESRGAN are capable of 
enhancing the resolution of the images, resulting in improved 
clarity and detail. However, our proposed MAdiff strategy 
demonstrates a superior ability to restore image quality. The 
comparative analysis of clarity changes in the figure indicates 
that MAdiff yields images with higher clarity than both 
SRGAN and ESRGAN. 

51world Synthetic Dataset is used as training data, which uses 
Bicubic [44] to generate low-resolution images (480×270), and 
the original images are used as high-resolution images 
(1920×1080). From the figure, our method has a better ability 
to optimize the backlit vehicles and road traffic information in 
the distance. MAdiff generates images with different levels of 
detail during the diffusion process, which helps to remove noise 
and preserve fine details and textures in high-resolution images. 
And GAN-based method has a limited receptive field and 
cannot capture the long-range dependencies in the image, which 
may cause the generated image to appear blurred or artifacts. 

The image quality will affect the subsequent detection results. 
Table II shows the detection accuracy after different 
optimization processes. Bicubic is used to generate the low-
resolution dataset Data-B as a baseline. SRGAN, ESRGAN, 
and MAdiff process the Data-B to generate datasets Data-M, 
Data-E, and Data-M of the same number and size, respectively. 
It can be seen that MAdiff has the highest detection accuracy, 
which is 18.4% higher than that without optimization. 

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works (see:  https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-
policies/).



1 This article has been accepted for publication in a future issue of this journal,  but has not been fully edited. Content may change prior to final publication. Citation 
information: DOI10.1109/JBHI.2024.3392648, IEEE Transactions on Intelligent Transportation Systems

Fig. 7. Super-resolution reconstruction results of different methods on the 51world dataset, where Low-quality represents the result 
of 4 times bicubic interpolation down-sampling. 

Further, the optimization speed is verified. Table III shows 
the relationship between image quality and optimization speed. 
𝜙𝜙=τ / T is used to control the sampling interval length of our 
method, thereby controlling the optimization speed. Lτ 
represents the length of the sampling iteration interval. FID, 
PSNR, SSIM and IS are used to measure image quality. Time 
represents the optimization time. ∆t represents the time reduced 
after adopting the acceleration strategy. The inference speed of 
the diffusion model has a linear relationship with the number 
of denoising iterations. When the number of denoising 
iterations is less, the inference speed of the model is faster; and 
vice versa. When 𝜙𝜙 decreases, Lτ decreases accordingly, and 
the speed of MAdiff decreases linearly. 𝜙𝜙=1 means that no 
acceleration strategy is adopted, and sampling is not performed 
at this time, and the sampling speed is 36.82 seconds per image. 

Since different optimization speeds have different image 
qualities, and the image quality will affect the detection 
performance, we need to strike a balance between optimization 
speed, image quality and detection results. Generally, 
optimization speed is inversely proportional to image quality 
and detection accuracy, and image quality is directly 
proportional to detection accuracy. When the image is 
optimized to a certain extent, the detection accuracy has little 
effect on the quality improvement. To better illustrate this 
relationship, Fig. 8 plots the image quality (as evaluated by 
PNSR) and optimization time on the horizontal and vertical 
coordinates, respectively. The size of the circle represents the 
mAP. When Time=3.682s, mAP=46.11%, and the balance 
between the two reaches the best, at this time 𝜙𝜙=0.15. 

Fig. 8. The relationship between image quality (PSNR), 
optimization time and detection accuracy. 

D. MITVF for Detection
The experiments were conducted on two pairs of datasets: 1)

51world as metadata and the BDD100K as real data; 2) the 
synthetic and real data in CURE-TSD. The effectiveness of the 
domain adaptive learning method in the object detection task in 
this section is verified. It can overcome the visual disparity 
between the Metaverse and the physical world, and facilitate the 
application of visual perception tasks to the physical world 
without distinction.  

The comparison methods as follows: Object detection 
methods: DETR [45], M2Det [46], YOLOv5 [1], YOLOX [47], 
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Fig. 9. Vehicle detection sample with or without MITVF on the BDD100K dataset: Baseline is a general object detection method 
that does not use MITVF, here is Faster-RCNN, which uses different amounts of real data for training, and the number of real 
datasets in parentheses in the figure; MITVF is trained with a large amount of metadata, and uses 1,000 real images in the adaptive 
learning stage to complete the performance migration between the virtual and real worlds. 

Fig. 10. The detection results of MITVF and other competitors on the traffic sign task on the CURE-TSD dataset. 

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works (see:  https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/).



1 This article has been accepted for publication in a future issue of this journal,  but has not been fully edited. Content may change prior to final publication. Citation 
information: DOI10.1109/JBHI.2024.3392648, IEEE Transactions on Intelligent Transportation Systems

TABLE IV 
RESULTS (AP50) OF 51WORLD SYNTHETIC DATASET→BDD100K. 

51world Synthetic Dataset → BDD100k 

Method Number of physical world images provided for training 
100 500 1k 2k 5k 10k 20k 

DETR 0.078 0.187 0.214 0.287 0.365 0.445 0.534 
M2det 0.097 0.148 0.198 0.304 0.358 0.425 0.458 

EfficientDet 0.141 0.204 0.245 0.341 0.394 0.491 0.525 
YOLOX 0.112 0.225 0.268 0.357 0.401 0.487 0.497 
YOLOv7 0.104 0.169 0.204 0.334 0.378 0.454 0.484 
YOLOv5 0.139 0.178 0.220 0.273 0.333 0.416 0.468 
VATSD 0.160 0.240 0.279 0.341 0.403 0.541 0.580 

CenterNet 0.158 0.234 0.251 0.324 0.386 0.532 0.564 
Cascade R-CNN 0.155 0.237 0.268 0.338 0.394 0.543 0.572 

BANet 0.112 0.189 0.241 0.305 0.376 0.492 0.533 
Fast-Det 0.102 0.164 0.218 0.292 0.352 0.487 0.550 
CSIM 0.137 0.179 0.239 0.309 0.371 0.432 0.527 

MTSDet 0.161 0.207 0.261 0.313 0.382 0.501 0.536 
Baseline 0.157 0.232 0.262 0.340 0.388 0.534 0.552 

DA-Detect 0.263 0.387 0.470 0.511 0.512 / / 
FUDA 0.229 0.359 0.452 0.498 0.513 0.515 / 
MITVF 0.481 0.531 0.536 0.582 / / / 

EfficientDet [48], YOLOv7 [49], VATSD [50], Faster R-CNN 
[51], CenterNet [52], Cascade R-CNN [53], BANet [54], Fast-
Det [55], CSIM [56], MTSDet [57]. Domain adaptive learning 
method: DA-Detect [22] and FUDA [58]. The selected 
comparison method has a high number of citations and is the 
latest popular method in the relevant field. Faster-RCNN is 
used as the baseline, and achieves performance-
indistinguishable detection in the physical world by feature 
alignment between the two domains. The above methods have 
relatively reliable detection performance, high citations, and 
have been widely used in traffic object detection tasks. 

Fig. 9 illustrates the experimental results of our proposed 
MITVF framework on the vehicle detection task. Baseline 
represents the common detection model without domain 
adaptive learning. The numbers in parentheses indicate the 
training data utilized for each model, here is the real scene data. 
MITVF employs domain adaptive learning, leveraging both 
metadata and a subset of 1,000 real-world images (denoted as 
'1,000 real data') for training. The comparative results in Fig. 9 
clearly demonstrate that MITVF significantly outperforms the 
Baseline model in terms of detection accuracy. This 
enhancement is particularly noteworthy given that the training 
dataset for MITVF is relatively small, comprising only 1,000 
real-world images. The superior performance of MITVF can be 
attributed to its effective utilization of domain adaptive learning, 
which enables the model to generalize better to real-world 
scenarios. By integrating metadata and leveraging a limited 
amount of real scene data, MITVF achieves a more robust and 
discriminative detection capability.  

Fig. 10 presents the comparative results of our MITVF 
framework on the traffic sign detection task. Notably, MITVF 
achieves comparable performance to other state-of-the-art 
methods, such as YOLOv5 and DETR, with only 5,000 real-
world images (denoted as '5,000 real data') for training, whereas 
the other methods require a substantially larger dataset of 
200,000 real-world images (denoted as '200,000 real data'). 

This demonstrates the efficiency and effectiveness of MITVF 
in leveraging a smaller dataset to achieve competitive results. 
Traffic signs, compared to vehicles, are smaller and more 
homogeneous in appearance, which poses additional challenges 
for detection algorithms. Despite this, other methods like 
YOLOv5 and DETR, even when trained on the extensive 
200,000 real dataset, still exhibit certain limitations, including 
missed detections and false positives, as indicated by the red 
circles in Fig. 10. In contrast, MITVF incorporates domain 
adaptive learning, demonstrates superior detection performance 
on traffic signs. By leveraging the features learned in the 
Metaverse and applying them to the physical world, MITVF 
shows a remarkable reduction in both missed detections and 
false positives. This enhanced performance underscores the 
potential of domain adaptive learning in bridging the gap 
between virtual and real-world data. Furthermore, the ability of 
MITVF to achieve competitive performance with significantly 
less real-world data highlights the potential benefits of using 
virtual data from the Metaverse for training. This approach can 
substantially reduce the costs associated with data collection 
and annotation in the real world, while also increasing the 
diversity and variability of the training dataset. Overall, the 
results presented in Fig. 10 emphasize the advantages of our 
MITVF framework in terms of efficiency, effectiveness, and 
cost reduction for traffic sign detection tasks. 

Further, a quantitative analysis is conducted of the proposed 
methods to quantify the accuracy of each method on the 
detection task. Table IV and Table V show the performance 
migration changes of the model trained through metadata on the 
BDD100K and the CURE-TSD. Based on the domain adaptive 
learning method, the detection model can achieve better 
detection performance with a small amount of real data. Table 
VI shows the accuracy evaluation on the CURE-TSD dataset. 
The comparative methods are trained on 200,000 real data, and 
MITVF is trained on 5,000 real data and sufficient metadata. It 
can be seen that MITVF has better performance in all metrics 
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TABLE V 
RESULTS (AP50) OF CURE-TSD-VIRTUAL→CURE-TSD-REAL. 

CURE-TSD-Virtual → CURE-TSD-Real 

Method Number of physical world images provided for training 
1k 2k 5k 10k 20k 50k 200k 

DETR 0.221 0.297 0.387 0.487 0.524 0.535 0.621 
M2det 0.199 0.301 0.364 0.429 0.471 0.514 0.543 

EfficientDet 0.247 0.354 0.412 0.487 0.498 0.524 0.564 
YOLOX 0.271 0.364 0.421 0.517 0.524 0.574 0.591 
YOLOv7 0.207 0.344 0.387 0.480 0.497 0.541 0.583 
YOLOv5 0.218 0.297 0.314 0.425 0.469 0.524 0.554 
VATSD 0.267 0.387 0.471 0.524 0.564 0.635 0.669 

CenterNet 0.214 0.309 0.378 0.478 0.522 0.568 0.632 
Cascade R-CNN 0.269 0.362 0.442 0.538 0.559 0.634 0.658 

BANet 0.201 0.329 0.398 0.499 0.531 0.628 0.632 
Fast-Det 0.211 0.327 0.392 0.502 0.538 0.601 0.626 

CSIM 0.247 0.358 0.426 0.525 0.569 0.622 0.630 
MTSDet 0.228 0.336 0.399 0.489 0.513 0.593 0.603 
Baseline 0.272 0.367 0.431 0.541 0.561 0.621 0.651 

DA-Detect 0.603 0.631 0.645 0.647 0.648 / / 
FUDA 0.626 0.642 0.651 0.655 0.654 / / 
MITVF 0.667 0.671 0.677 / / / / 

Real Virtual

R
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Fig. 11. Detection results on generated virtual scenes and real scenes. The selected datasets are KITTI and VKITTI. “Real” 
represents the results on KITTI dataset. “Virtual” represents the results on VKITTI dataset. 

and outperforms other methods in APL, AP50, Recall and other 
metrics. The above results prove that MITVF has a good 
prospect and potential for the development of ITS. 

E. Virtual and Real Scene Matching
The models trained through the BDD100K and 51world were

tested on the KITTI and VKITTI datasets, which proves the 
matching relationship between the generated metadata and the 
real scene. VKITTI is the virtual data in KITTI corresponding 

to the real scene. The detection results are shown in Fig. 11. The 
vehicle detection results AP@50 were 64.27% (KITTI) and 
66.22% (VKITTI) respectively. It can be seen that the accuracy 
difference between MITVF on the real data and the virtual data 
is very small, and both can achieve better detection 
performance. Moreover, this reflects the authenticity of the 
generated data, and shows that MITVF has good detection 
performance in both metadata and real scenes. 
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Fig. 12. Visualization process of MITVF robustness experiments for challenging traffic scenarios 

TABLE VI 
OBJECT DETECTION ACCURACY COMPARISON ON THE CURE-

TSD DATASET 

Method mAP AP50 APS APM APL 
DETR 0.563 0.621 0.387 0.524 0.708 
M2det 0.501 0.543 0.364 0.471 0.659 

Efficientdet 0.547 0.564 0.412 0.498 0.692 
YOLOX 0.631 0.591 0.421 0.521 0.712 
YOLOv7 0.577 0.583 0.387 0.497 0.681 
YOLOv5 0.498 0.554 0.314 0.469 0.661 
VATSD 0.662 0.672 0.462 0.509 0.730 

CenterNet 0.643 0.651 0.440 0.486 0.693 
Cascade R-CNN 0.598 0.660 0.456 0.526 0.738 

Baseline 0.594 0.651 0.431 0.501 0.708 
MITVF 0.687 0.677 0.471 0.566 0.739 

TABLE VII 
COMPARES THE COMPUTATIONAL COMPLEXITY AND RUNTIME 

OF THE ALGORITHM. 

Model Model size Params. FLOPs FPSb1 
DETR 159M 41M 225G 20 

EfficientDet 15.15M 3.752M 55.0G 26 
YOLOX 69.0M 9.010M 26.8G 59 
YOLOv7 74.8M 37.34M 120G 87 
YOLOv5 14.6M 7.193M 16.7G 125 
VATSD 15.1M 7.86M 17.2G 100 

CenterNet 730M 32.164M 44.496G 45 
Cascade R-CNN 338M 69.395M 85.258G 12 

Baseline 159M 41.753M 57.62G 23 
MITVF 165.2M 42.263M 59.754G 22 

*Params. represents the number of parameters of the model, and FPSb1
represents the inference speed of the model when batch-size=1. (On a
TITAN Xp graphics card).

TABLE VIII 
ROBUSTNESS ANALYSIS OF NOISE EFFECT 

Model Noise mAP AP50 APS APM APL 

MITVF 

Gaussian 
noise 0.575 0.580 0.351 0.522 0.652 

Pepper 
noise 0.571 0.576 0.334 0.526 0.661 

Speckle 
noise 0.556 0.568 0.349 0.509 0.649 

Baseline 

Gaussian 
noise 0.501 0.522 0.319 0.487 0.562 

Pepper 
noise 0.492 0.518 0.302 0.428 0.545 

Speckle 
noise 0.479 0.503 0.327 0.430 0.535 

F. Computational Complexity Analysis
Computational complexity is an important metric in model

evaluation. In order to illustrate the computational complexity 
and running time of the proposed method, we evaluate MITVF 
from five perspectives: Model size, parameter amount 
(Params.), FLOPs, inference speed (FPSb1) and O(h). Table VII 
shows the comparison results between MITVF and other 
methods. From the table, MITVF has a certain gap compared 
with existing lightweight networks in terms of Model size and 
Params. Most of these are caused by the Baseline used, which 
is to ensure the detection accuracy of various types of traffic 
objects. Despite this, MITVF still ensures the real-time 
requirements needed for traffic object detection, and FPSb1 
reaches 22. 
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Meanwhile, the overall computational complexity of the 
model is measured by analysing the O(h) of each module of 
MITVF. Its main components are as follows: The feature 
extraction network, the region proposal network, classification 
and regression layers and the self-attention module. The overall 
computational complexity of MITVF can be roughly expressed 

as 2
2

HWO HW ND n d
s

 + + + 
 

. The H and W represent the 

height and width of the input image, respectively. s is the 
downsampling rate of the feature extraction network. N 
represents the number of candidate regions, and the feature 
dimension of each region is D. n represents the sequence length, 
and d represents the vector dimension. 

G. Robustness Analysis
In this section, Gaussian noise, Pepper noise and Speckle

noise are used to simulate the device noise interference during 
image acquisition. The robustness of MITVF was validated and 
analyzed on the CURE-TSD dataset, as shown in Table VIII. 
Among them, Physical-Model represents the general detection 
model under the non-metaverse, the training data is 200,000 
real images, and MITVF is trained through 350,000 metadata 
and 5,000 real images. It can be seen that Metaverse improves 
the anti-interference ability and robustness of the model by 
providing a variety of rich training data, and has a good 
performance in various indicators. 

In addition, to further illustrate that MITVF can adapt to 
challenging traffic scenarios with low cost and high efficiency, 
we conduct experiments with challenging scenarios and data 
volume as variables. Fig. 12 illustrates the results of five control 
experiments conducted to evaluate the performance of our 
MITVF framework on the traffic sign detection task using the 
CURE-TSD dataset. The experiments are designed as follows: 

Group 1-3: These groups are trained exclusively on varying 
proportions of real datasets from CURE-TSD, with an 
increasing proportion of challenging scenes in the training data 
for each successive group. 

Group 4: This group is trained on virtual data from CURE-
TSD that encompasses rich and challenging environments, 
supplemented by a small subset of real data to facilitate cross-
domain detection. 

Group 5: Similar to Group 4, this group is trained on virtual 
data with challenging environments and a small subset of real 
data. However, Group 5 employs a feedback loop mechanism, 
where the test results are used to optimize the training dataset. 

All groups are evaluated on real data from challenging 
scenarios within CURE-TSD. The right side of Fig. 12 presents 
the accuracy change curves during the training process for each 
group. 

The results indicate that MITVF significantly enhances visual 
perception in challenging scenarios through metadata training. 
Specifically, Group 5 incorporates the feedback loop 
mechanism, achieves a detection accuracy of 58.1%. This is 
notably higher than Group 3, which is trained with a sufficient 
amount of real data containing challenging scenes, yet only 
reaches an accuracy of 42.2%. 

Moreover, the comparison highlights the advantages of using 
virtual data for training. Acquiring diverse and challenging real-
world data can be expensive and risky. In contrast, creating 

virtual data in the Metaverse is more convenient and cost-
effective, while still providing the necessary diversity and 
complexity for training robust detection models. This 
underscores the potential of virtual data and metadata training 
in improving the performance of detection models in real-world 
scenarios  

VII. CONCLUSION

In view of the challenges of insufficient data quantity, poor 
scene diversity, and low testing efficiency in existing ITS visual 
perception tasks, the MITVF is proposed to provide a promising 
solution to the above challenges. Firstly, a two-stage metadata 
optimization strategy is proposed to efficiently construct 
diverse and high-quality metadata. Implement custom 
construction of metadata through reconfigurable elements to 
increase data diversity. And the diffusion model-based 
metadata acceleration optimization strategy expeditiously 
improves the resolution of low-quality images and provides 
high-fidelity scenes for visual perception tasks. Secondly, a 
domain adaptive learning method is proposed to overcome the 
problem of visual disparity between the Metaverse and the 
physical world, allowing visual perception tasks under the 
Metaverse to be efficiently performed in the physical world. In 
the future, our objective is to augment the capacity of Metaverse 
for simulating environmental conditions, enhancing its realism 
in mirroring real-world scenarios. Furthermore, we aim to 
refine the proposed domain adaptation algorithm to bolster the 
robustness and generalization of our model by extracting 
features that remain invariant across different domains 

REFERENCES

[1] J. Wang, Y. Chen, Z. Dong, and M. Gao, "Improved YOLOv5 Network
for Real-time Multi-scale Traffic Sign Detection," Neural Computing and 
Applications, vol. 35, pp. 7853–7865, 2022, doi: 10.1007/s00521-022-
08077-5. 

[2] R. Bi, J. Xiong, Y. Tian, Q. Li, and X. Liu, "Edge-Cooperative Privacy-
Preserving Object Detection Over Random Point Cloud Shares for
Connected Autonomous Vehicles," IEEE Trans. Intell. Transp. Syst., vol.
23, no. 12, pp. 24979-24990, 2022, doi: 10.1109/TITS.2022.3213548. 

[3] B. Yan et al., "Towards Grand Unification of Object Tracking," in
Computer Vision – ECCV 2022, Tel Aviv, Israel, 2022, pp. 733-751. 

[4] Z. Cao, J. Li, D. Zhang, M. Zhou, and A. Abusorrah, "A Multi-Object
Tracking Algorithm With Center-Based Feature Extraction and Occlusion
Handling," IEEE Trans. Intell. Transp. Syst., vol. 24, no. 4, pp. 4464-4473, 
2023, doi: 10.1109/TITS.2022.3229978. 

[5] Y. Liu, Y. Tian, Y. Chen, F. Liu, V. Belagiannis, and G. Carneiro,
"Perturbed and Strict Mean Teachers for Semi-supervised Semantic
Segmentation," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit, 
New Orleans, Louisiana, 2022, pp. 4248-4257. 

[6] A. M. Al-Ghaili et al., "A Review of Metaverse’s Definitions,
Architecture, Applications, Challenges, Issues, Solutions, and Future
Trends," Ieee Access, vol. 10, pp. 125835-125866, 2022, doi:
10.1109/ACCESS.2022.3225638. 

[7] F. Zhu, Y. Lv, Y. Chen, X. Wang, G. Xiong, and F. Y. Wang, "Parallel
Transportation Systems: Toward IoT-Enabled Smart Urban Traffic
Control and Management," IEEE Trans. Intell. Transp. Syst., vol. 21, no.
10, pp. 4063-4071, 2020, doi: 10.1109/TITS.2019.2934991. 

[8] Y. Wiseman, "Autonomous Vehicles," in Research Anthology on Cross-
Disciplinary Designs and Applications of Automation, vol. 2, I. R. M.
Association, Ed., 2022, pp. 878-889. 

[9] D. Kumar and N. Muhammad, "Object Detection in Adverse Weather for
Autonomous Driving through Data Merging and YOLOv8," Sensors-
Basel, vol. 23, no. 20. doi: 10.3390/s23208471

[10] H. Zhang, G. Luo, Y. Li, and F. Y. Wang, "Parallel Vision for Intelligent
Transportation Systems in Metaverse: Challenges, Solutions, and

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works (see:  https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-
policies/).



1 This article has been accepted for publication in a future issue of this journal,  but has not been fully edited. Content may change prior to final publication. Citation 
information: DOI10.1109/JBHI.2024.3392648, IEEE Transactions on Intelligent Transportation Systems

Potential Applications," Trans. Syst., Man, Cybern. A, Syst., Humans, pp. 
1-14, 2022, doi: 10.1109/TSMC.2022.3228314. 

[11] K. Wang, C. Gou, N. Zheng, J. M. Rehg, and F.-Y. Wang, "Parallel vision 
for perception and understanding of complex scenes: methods, framework,
and perspectives," Artificial Intelligence Review, vol. 48, no. 3, pp. 299-
329, 2017/10/01, 2017, doi: 10.1007/s10462-017-9569-z.

[12] P. Zhou et al., "Vetaverse: A survey on the intersection of Metaverse,
vehicles, and transportation systems," arXiv preprint arXiv:2210.15109,
2022 

[13] J. N. Njoku, C. I. Nwakanma, G. C. Amaizu, and D.-S. Kim, "Prospects
and challenges of Metaverse application in data-driven intelligent
transportation systems," IET Intelligent Transport Systems, vol. 17, no. 1,
pp. 1-21, 2023, doi: 10.1049/itr2.12252. 

[14] D. Temel, M. H. Chen, and G. AlRegib, "Traffic Sign Detection Under
Challenging Conditions: A Deeper Look into Performance Variations and
Spectral Characteristics," IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9,
pp. 3663-3673, 2020, doi: 10.1109/TITS.2019.2931429. 

[15] M. Gilles et al., "MetaGraspNetV2: All-in-One Dataset Enabling Fast and 
Reliable Robotic Bin Picking via Object Relationship Reasoning and
Dexterous Grasping," IEEE Transactions on Automation Science and
Engineering, pp. 1-19, 2023, doi: 10.1109/TASE.2023.3328964. 

[16] T. Huynh-The, Q.-V. Pham, X.-Q. Pham, T. T. Nguyen, Z. Han, and D.-
S. Kim, "Artificial intelligence for the metaverse: A survey," Engineering
Applications of Artificial Intelligence, vol. 117, p. 105581, 2023/01/01/,
2023, doi: 10.1016/j.engappai.2022.105581. 

[17] M. Xu et al., "A Full Dive Into Realizing the Edge-Enabled Metaverse:
Visions, Enabling Technologies, and Challenges," IEEE Communications
Surveys & Tutorials, vol. 25, no. 1, pp. 656-700, 2023, doi:
10.1109/COMST.2022.3221119. 

[18] F. A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, "Diffusion Models
in Vision: A Survey," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 45, no. 9, pp. 10850-10869, 2023, doi:
10.1109/TPAMI.2023.3261988. 

[19] A. Cortés, C. Rodríguez, G. Vélez, J. Barandiarán, and M. Nieto,
"Analysis of Classifier Training on Synthetic Data for Cross-Domain
Datasets," IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1, pp. 190-199, 
2022, doi: 10.1109/TITS.2020.3009186. 

[20] W. Li, X. Liu, and Y. Yuan, "SIGMA++: Improved Semantic-Complete
Graph Matching for Domain Adaptive Object Detection," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no.
7, pp. 9022-9040, 2023, doi: 10.1109/TPAMI.2023.3235367. 

[21] D. Wang and T. Zhang, "Establishment and Optimization of Video
Analysis System in Metaverse Environment," International Journal of
Advanced Computer Science and Applications(IJACSA), vol. 14, no. 10,
2023, doi: 10.14569/IJACSA.2023.0141006. 

[22] J. Li, R. Xu, J. Ma, Q. Zou, J. Ma, and H. Yu, "Domain Adaptive Object
Detection for Autonomous Driving under Foggy Weather," in 2023 
IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), 2023, pp. 612-622. 

[23] J. Y. Kim and J. M. Oh, "Opportunities and Challenges of Metaverse for
Automotive and Mobility Industries," in Int. Conf. ICT Convergence, Jeju 
Island, Korea, Republic of, 2022, pp. 113-117. 

[24] M. Ragab et al., "Adversarial Multiple-Target Domain Adaptation for
Fault Classification," IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1-11, 2021, doi: 10.1109/TIM.2020.3009341. 

[25] J. Song, Y. Chen, J. Ye, and M. Song, "Spot-Adaptive Knowledge
Distillation," IEEE Transactions on Image Processing, vol. 31, pp. 3359-
3370, 2022, doi: 10.1109/TIP.2022.3170728. 

[26] L. U. Khan, A. Elhagry, M. Guizani, and A. E. Saddik, "Edge Intelligence
Empowered Vehicular Metaverse: Key Design Aspects and Future
Directions," IEEE Internet of Things Magazine, vol. 7, no. 1, pp. 120-126, 
2024, doi: 10.1109/IOTM.001.2300078. 

[27] W. Li et al., "Intelligent Cockpit for Intelligent Vehicle in Metaverse: A
Case Study of Empathetic Auditory Regulation of Human Emotion,"
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53,
no. 4, pp. 2173-2187, 2023, doi: 10.1109/TSMC.2022.3229021. 

[28] L. Fan, D. Cao, C. Zeng, B. Li, Y. Li, and F. Y. Wang, "Cognitive-Based
Crack Detection for Road Maintenance: An Integrated System in Cyber-
Physical-Social Systems," IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 53, no. 6, pp. 3485-3500, 2023, doi:
10.1109/TSMC.2022.3227209. 

[29] A. Danylec, K. Shahabadkar, H. Dia, and A. Kulkarni, "Cognitive
Implementation of Metaverse Embedded Learning and Training

Framework for Drivers in Rolling Stock," Machines, vol. 10, no. 10. doi: 
10.3390/machines10100926  

[30] D. Pamucar, M. Deveci, I. Gokasar, M. Tavana, and M. Köppen, "A
Metaverse Assessment Model for Sustainable Transportation Using
Ordinal Priority Approach and Aczel-Alsina Norms," Technological 
Forecasting and Social Change, vol. 182, p. 121778, 2022/09/01/, 2022,
doi: 10.1016/j.techfore.2022.121778. 

[31] C. W. Lee, "Application of Metaverse Service to Healthcare Industry: A
Strategic Perspective," International Journal of Environmental Research
and Public Health, vol. 19, no. 20. doi: 10.3390/ijerph192013038

[32] G. S. Contreras, A. H. González, M. I. S. Fernández, C. B. Martínez, J.
Cepa, and Z. Escobar, "The importance of the application of the metaverse
in education," Modern Applied Science, vol. 16, no. 3, pp. 1-34, 2022, doi:
10.5539/mas.v16n3p34. 

[33] Y. Li and X. Song, "Toward a Metaverse Era: A Study on the Design of
Smart Home Entertainment Scene Experience for Empty-Nest Youth," in
Proceedings of the Tenth International Symposium of Chinese CHI,
Guangzhou, China, 2024, pp. 62–71. 

[34] H. Jeong, Y. Yi, and D. Kim, "An innovative e-commerce platform
incorporating metaverse to live commerce," International Journal of
Innovative Computing, Information and Control, vol. 18, no. 1, pp. 221-
229, 2022, doi: 10.24507/ijicic.18.01.221. 

[35] J. Yu et al., "MTTrans: Cross-domain Object Detection with Mean
Teacher Transformer," in Computer Vision–ECCV 2022, Tel Aviv, Israel,
2022, pp. 629-645. 

[36] K. Zhang, Z. Cao, and J. Wu, "Circular Shift: An Effective Data
Augmentation Method For Convolutional Neural Network On Image
Classification," in 2020 IEEE International Conference on Image
Processing (ICIP), 2020, pp. 1676-1680. 

[37] Y. J. Li et al., "Cross-Domain Adaptive Teacher for Object Detection," in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit, New Orleans, LA,
USA, 2022, pp. 7571-7580. 

[38] 51Sim-One. (2022). 51WORLD Synthetic Dataset  [Online]. Available:
https://github.com/51WORLD/SyntheticDataset.

[39] F. Yu et al., "BDD100K: A Diverse Driving Dataset for Heterogeneous
Multitask Learning," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit, Seattle, WA, USA, 2020, pp. 2633-2642. 

[40] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, "VirtualWorlds as Proxy for
Multi-object Tracking Analysis," in 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), 2016, pp. 4340-4349. 

[41] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The 
KITTI dataset," International Journal of Robotics Research, vol. 32, no.
11, pp. 1231-1237, 2013 

[42] X. Wang et al., "Esrgan: Enhanced super-resolution generative adversarial
networks," in Computer Vision – ECCV 2018 Workshops, Munich,
Germany, 2018. 

[43] C. Ledig et al., "Photo-Realistic Single Image Super-Resolution Using a
Generative Adversarial Network," in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit,, Honolulu, HI, USA, 2017, pp. 105-114. 

[44] Z. Huang and L. Cao, "Bicubic interpolation and extrapolation iteration
method for high resolution digital holographic reconstruction," Optics and
Lasers in Engineering, vol. 130, p. 106090, 2020, doi:
10.1016/j.optlaseng.2020.106090. 

[45] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S.
Zagoruyko, "End-to-end object detection with transformers," in Computer
Vision – ECCV 2020, Glasgow, UK, 2020, pp. 213-229. 

[46] T. S. Q. Zhang, Y. Wang, Z. Tang, Y. Chen, L. Cai, H. Ling, "M2Det A
Single-Shot Object Detector based on Multi-Level Feature Pyramid
Network," in AAAI Conf. Artif. Intell., Hawaii, USA, vol. 33, 2019, pp.
9259-9266. 

[47] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, "YOLOX: Exceeding YOLO
Series in 2021," 2021, arXiv:2107.08430. 

[48] R. P. M. Tan, Q.V. Le, "EfficientDet: Scalable and Efficient Object
Detection," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit,
Seattle, WA, USA, 2020, pp. 10781-10790. 

[49] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,"
2022, arXiv:2207.02696. 

[50] J. Wang, Y. Chen, X. Ji, Z. Dong, M. Gao, and C. S. Lai, "Vehicle-
Mounted Adaptive Traffic Sign Detector for Small-Sized Signs in
Multiple Working Conditions," IEEE Trans. Intell. Transp. Syst., early
access, 2023, doi: 10.1109/TITS.2023.3309644. 

[51] K. H. Shaoqing Ren, Ross Girshick, Jian Sun, "Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks," IEEE

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works (see:  https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-
policies/).

https://github.com/51WORLD/SyntheticDataset


1 
>

> Trans. Pattern Anal. Machine Intell., vol. 39, pp. 1137-1149, 2017, doi:
10.1109/TPAMI.2016.2577031. 

[52] X. Zhou, V. Koltun, and P. Krähenbühl, "Probabilistic Two-stage
Detection," 2021, arXiv:2103.07461. 

[53] Z. Cai and N. Vasconcelos, "Cascade R-CNN: Delving Into High Quality
Object Detection," in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 6154-6162. 

[54] S.-y. Wang, Z. Qu, C.-j. Li, and L.-y. Gao, "BANet: Small and multi-
object detection with a bidirectional attention network for traffic scenes,"
Engineering Applications of Artificial Intelligence, vol. 117, p. 105504,
2023/01/01/, 2023, doi: 10.1016/j.engappai.2022.105504. 

[55] Y. Chen, Y. Shi, C. Xie, C. Lin, Q. Hu, and Z. Chen, "Fast object detector 
with center localization confidence based on FCOS for environment
perception in urban traffic scene," Proceedings of the Institution of
Mechanical Engineers, Part D: Journal of Automobile Engineering, p.
09544070231153199, 2023, doi: 10.1177/09544070231153199. 

[56] Y. F. Lu, J. W. Gao, Q. Yu, Y. Li, Y. S. Lv, and H. Qiao, "A Cross-Scale
and Illumination Invariance-Based Model for Robust Object Detection in
Traffic Surveillance Scenarios," IEEE Trans. Intell. Transp. Syst., vol. 24,
no. 7, pp. 6989-6999, 2023, doi: 10.1109/TITS.2023.3264573. 

[57] H. Wei, Q. Zhang, Y. Qian, Z. Xu, and J. Han, "MTSDet: multi-scale
traffic sign detection with attention and path aggregation," Applied
Intelligence, vol. 53, no. 1, pp. 238-250, 2023/01/01, 2023, doi:
10.1007/s10489-022-03459-7. 

[58] Y. Zhu, R. Xu, C. Tao, H. An, Z. Sun, and K. Lu, "An Object Detection
Method Based on Feature Uncertainty Domain Adaptation for
Autonomous Driving," Applied Sciences, vol. 13, no. 11. doi:
10.3390/app13116448

This article has been accepted for publication in a future issue of this journal,  but has not been fully edited. Content may change prior to final publication. Citation information: 
DOI10.1109/JBHI.2024.3392648, IEEE Transactions on Intelligent Transportation Systems

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works (see:  https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-
policies/).

https://www.researchgate.net/publication/380402262



