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Abstract—Despite neuromorphic computing (NC) technologies 

offer tremendous potential in executing computationally intensive 

tasks with high efficiency and low latency, most of existing 

methods are still difficult to achieve software-comparable 

accuracy. To address this challenge, we develop a multimodal 

local-global neuromorphic computing system (MLG-NCS) that 

can capture local characteristics and exchange global cross-modal 

information sufficiently. Specifically, a high-density memristor 

crossbar array is prepared to perform efficient parallel 

in-memory operations, serving as the fundamental component of 

the proposed MLG-NCS. To facilitate understanding of the 

proposed MLG-NCS design, the local feature representation 

module, the global cross-modal interaction module, and the 

output module are designed. The experimental results show that 

the proposed system has advantages in classification accuracy 

(ranked top three), time consumption (approximately10 times 

speed up), and latency (about 1.2~15.3 times faster), enabling good 

inter-related trade-offs between latency, efficiency, and accuracy. 

This study is expected to promote the revolution and development 

of next-generation computing system, which takes a firm step 

toward artificial general intelligence (AGI).  

Index Terms—Circuit design, multimodal learning, 

neuromorphic computing system, affective video content analysis. 

I. INTRODUCTION

he long-term goal for artificial intelligence (AI) is to mimic 

the human level cognitive activities when dealing with 
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complex multimodal information [1-3]. Emotion is an 

important aspect of human intelligence and is shown to play a 

significant role in the human learning, memory, 

decision-making, and communication [4-6]. Recently, with the 

rapid development of AI, various deep learning algorithms 

have achieved tremendous successes in affective video content 

analysis, which can recognize emotion accurately and 

automatically [7-20]. However, these von Neumann 

architecture-based deep learning algorithms are usually 

computationally intensive and suffer from a lack of real-time 

processing capability with relatively low computational 

efficiency. In addition, the physical separation of processing 

and memory units in the von Neumann computing system leads 

to large latency in data shuffling between different units. 

Recently, there has been an increasing number of researches 

involving neuromorphic computing systems (NCSs) with 

different applications [21-26], which are capable to perform 

parallel in-memory operations, enabling greatly improved 

energy efficiency and computing speed. Although existing 

NCSs show remarkable advantages in low latency and 

ultralow-power hardware implementation, the accuracy is 

inferior to von Neumann architecture-based deep learning 

algorithms. That is, the inter-related trade-offs between latency, 

efficiency, and accuracy are hard to balance. At the device level, 

the device variations may cause low precision in neuromorphic 

computing system because of the non-uniformity of the 

switching function layers and electrodes. At the system level, 

the lack of an efficient remedy for the robust hardware 

implementation of general feature representation and 

cross-modal interaction. Specifically, current studies always 

use different feature representation modules to capture the local 

characteristics of different modalities, while the intra-modal 

interactions within each modality are not considered. 

Meanwhile, almost existing NCSs focus on single-mode 

information processing and bi-modality information 

interactions, while global cross-modality information 

interactions are insufficient. At the algorithm level, the existing 

ex-situ training methods always suffer from various non-ideal 

circuit factors (e.g., noise influence), and the in-situ training 

methods are inevitably faced with the problem of hardware 

loss. 

To fully exploit the potential of NCSs in practical scenarios, 

this paper aims to investigate a multimodal local-global 

neuromorphic computing system (MLG-NCS). For clarity, we 
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systemic compare the existing computing architecture, as 

shown in Fig. 1. The main contributions of this paper are 

concluded as follows: 

1) Different from the existing NCSs, the MLG-NCS is

developed that can capture local characteristics and exchange 

global cross-modal information sufficiently. 

2) As the fundamental component, a high-density memristor

crossbar array is constructed after fabrication of a good 

endurance, long retention time, and high stability 

Au/Fe2O3/Fe2O3/FTO memristor, enabling high precision 

parallel computing in the proposed MLG-NCS.  

3) Combining the advantages of both in-situ training and

ex-situ training, a hybrid training strategy is applied in the 

proposed MLG-NCS, which achieves good inter-related 

trade-offs between latency, efficiency, and accuracy in 

affective video content analysis. 

The rest of this paper is organized as follows. Section II 

describes the overall architecture of the proposed MLG-NCS. 

Section III describes the fabrication of high-density memristor 

crossbar array. Section IV presents the specific circuit design of 

local feature representation module, global cross-modal 

interaction module, and output module. In Section V, the 

proposed MLG-NCS is applied to perform affective video 

content analysis. Finally, the entire work is summarized in 

Section VI. 

II. MULTIMODAL LOCAL-GLOBAL NEUROMORPHIC

COMPUTING SYSTEM ARCHITECTURE 

In this work, we propose a novel NCS for affective video 

content analysis, which can efficiently sense and process the 

multimodal information from complex environments, as shown 

in Fig. 2. To facilitate understanding of the MLG-NCS design, 

we describe it using the following three modules. 

Local Feature Representation Module: Inspired by [27], we 

propose a local feature representation module with cascade 

configuration to capture the unique local characteristics from 

multimodal information. The local feature representation 

module mainly consists of the convolution unit, the 

bidirectional gated recurrent (Bi-GRU) unit, and the 

self-attention unit. Specifically, the convolution unit is used to 

extract local information and unify the dimensions of 

multimodal information, which is presented as Xic=Conv(Xi) (Xi 

is the multimodal information, i=t, a, v is the index of the 

modality). Then, the feature information Xic generated from 

convolution unit is injected to the Bi-GRU unit, which can 

capture the high-level sequential feature information. The 

output of Bi-GRU unit is symbolized by XiH=Bi-GRU(Xic). 

Furthermore, the self-attention unit is utilized to capture 

abundant contextual information, which is presented as 

Xiself=Self-attention(XiH). Finally, the local feature 

representations Xm, m=α, β, γ can be obtained by feed-forward 

and element-wise additive operations. 

Global Cross-modal Interaction Module: The global 

cross-modal interaction module is designed to perform full 

multimodal information interaction. Firstly, the average 

pooling operation is performed on the local feature 

representations Xm to acquire the expected average feature 

representations X̅m. For a better understanding, we take audio 

average feature Xα̅̅̅  as an example. The cross-attention

mechanism [28] is used, taking audio feature representation Xα 

as values, audio average feature representation X̅α as keys and 

the cartesian product X̅β  X̅γ as queries. The attention scores 

and weights of audio modality Sα can be obtained directly. 

Similarly, the attention scores and weights of visual modality Sβ 

and text Sγ can be acquired by the same cross-attention 

operations, which is important for multimodal information 

fusion. Finally, the three parallel feed forward units are adopted 

to process the channel-wise information for different modalities, 

and the outputs of global cross-modal interaction module are 

present as Xm,out., m=α, β, γ. 

Output Module: In human brain, the most crucial 

characteristics in multimodal information are usually given 

priority attention. Inspired by this processing mechanism, the 

output module is proposed to extract the key features in the 

integrated multimodal representations ∑Xm,out, which mainly 

consists of the attention unit, the fully connected unit, and the 

softmax unit. The attention mechanism is employed to capture 

the weight distribution in the integrated multimodal 

representations ∑Xm,out, and generate the global representations 

of the multimodal information. Then, the global representations 

are entered into the fully connected layer and softmax layer to 

generate the final classification Xout. 

III. HIGH-DENSITY MEMRISTOR CROSSBAR ARRAY

Considering the proposed MLG-NCS needs to execute heavy 

storage and computing operations, a high-density memristor 
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Fig. 1. Comparison of the existing computing architecture. 
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crossbar array is fabricated to perform parallel 

multiply-accumulate (MAC) operations. 

A. High Performance Memristor Fabrication

In this work, the hydrothermal method and magnetron

sputtering method [29] are employed to fabricate a highly 

stable Fe2O3-based memristor. The hydrothermal method is 

used to generate the functional layer, and the magnetron 

sputtering method is employed to deposit Au top electrode. The 

specific fabrication process can be provided as follows (Fig. 3). 

Fig. 3. Flow chart for the fabrication of Au/Fe2O3/Fe2O3/FTO 

Step 1: The ethyl alcohol and deionized water are applied to 

clean possible contaminates on the F-doped-SnO2 (FTO) 

bottom electrode, and the FTO bottom electrode is placed to an 

oven and dried at 85℃. 

Step 2: The Fe2O3 film is deposited on the FTO bottom 

electrode to form Fe2O3/FTO sample in an ambient atmosphere 

by magnetron sputtering method. 

Step 3: 15 mg FeCl3·H2O is dissolved into 20 ml deionized 

water to prepare precursor solution.  

Step 4:  The Fe2O3/FTO sample is transferred into precursor 

solution, then heated in a muffle furnace at 200°C for 18 hours. 

Step 5:  The FeOx homojunction is generated from the heated 

solution by hydrothermal reaction. 

Step 6: The Au top electrode is deposited on the FeOx 

homojunction by magnetron sputtering method, further 

developing the Au/Fe2O3/Fe2O3/FTO memristor. 

The electrical characteristics of the Au/Fe2O3/Fe2O3/FTO 

memristor are measured within the scanning voltage range of 

[−2V, 2V], as shown in Fig. 4.  

Fig. 4. (a) I-V curve of Au/Fe2O3/Fe2O3/FTO memristor; (b) C2C analysis; (c) 

D2D analysis; (d) The stability of HRS and LRS of the prepared 

Au/Fe2O3/Fe2O3/FTO memristor. 

The current-voltage (I-V) curves demonstrate that the 

fabricated Au/Fe2O3/Fe2O3/FTO memristor exhibits obvious 

self-selective analogue resistance switching (RS) memory 

behavior, as shown in Fig. 4(a). Specifically, In the first phase, 

the current gradually increases during the scanning voltage 

from 0 V to 2 V. In the second phase, the current gradually 

decreases to a very low value during the scanning voltage from 

2 V to 0 V. In the third phase, the current gradually increases to 

a relatively high value during the scanning voltage sweeps from 

0 V to −2 V. In fourth phase, the reverse scanning voltage (−2 

V→0 V) is applied to memristor, the current naturally 

decreases to an ultralow value. It is noted that the fabricated 

memristor is in the high resistance state (HRS) within the 

scanning voltage range of [−0.5 V, 0 V] and [0 V, 0.5 V], and 

the memristor is in low resistance state (LRS) under a high 

scanning voltage region [−2 V, −0.5 V] and [0.5 V, 2 V]. In 

order to study the stability of the Au/Fe2O3/Fe2O3/FTO 

memristor, over 10000th I–V curves are measured on the same 

memristor, as shown in Fig. 4(b). The self-selective analogue 

RS memory behavior can be maintained well, which illustrates 

high cycle-to-cycle (C2C) stability of the fabricated 

Au/Fe2O3/Fe2O3/FTO memristor. Fig. 4(c) shows extensive 

overlap I–V curves measured by the 270 randomly chosen 

Output

Convolution

BiGRU

Self Attention

K V Q

Add&Norm

Feedforward

Add&Norm

Text

Xt

Audio

Xa

Image

Xv

 Global Cross-modal InteractionLocal Feature Representation

Xα 

Xβ

Xγ

A
v

era
g

e
 P

o
o

lin
g

 la
y

er

Xα 

Xγ

Xβ

Xα×Xγ

Self Attention

K V Q

Xα×Xβ

Self Attention

K V Q

Xγ Xγ Xβ×Xγ 

Self Attention

K V Q

Xβ Xβ Xα Xα 

Add&Norm

Xγ

Feedforward

Add&Norm

Add&Norm

Feedforward

Add&Norm

Xβ
Sβ 

Add&Norm

Feedforward

Add&Norm

Sα Xα 

Xα,out 

Xβ,out

Xγ,out

G
lo

b
a

l rep
re

se
n

ta
tio

n

F
u

lly
 co

n
n

e
cted

 la
y

e
r

S
o

ftm
a

x

Sγ

Fig. 2. Schematic of multimodal local-global neuromorphic computing system. 
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memristors. The results demonstrated that the fabricated 

Au/Fe2O3/Fe2O3/FTO memristors exhibit good 

device-to-device (D2D) stability. Furthermore, a stable 

resistance ratio (about 100) between the HRS and LRS is well 

maintained for 104 seconds at 0.8 V read voltage, as shown in 

Fig. 4(d).  

B. Memristor Crossbar Array

In this paper, a high-density memristor crossbar array is

mainly used to conduct fast MAC operation for neuromorphic 

computing (NC). As shown in Fig. 5, each 

1-transistor-1-memristor (1T1M) cell in high-density 

memristor crossbar array is implemented by the prepared 

Au/Fe2O3/Fe2O3/FTO memristor. The complementary metal 

oxide semiconductors (CMOS) peripheral circuits such as 

bit-line (BL), word-line (WL), and source-line (SL) drivers 

connect at one end of the memristor crossbar array. When the 

input voltages are applied to the BLs through the BL drivers, 

the weight can be expressed by the conductance of memristor. 

Meanwhile, the output currents achieved by Ohm’s and 

Kirchhoff’s laws is send to SL registers through corresponding 

SL switch. 
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We experimentally implemented the 32 × 32 memristor 

crossbar array, as shown in Fig. 6(a).  
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Fig. 6. (a) The optic image of the 32 × 32 memristor crossbar array; (b) The 

stable resistance ratio between the HRS and LRS of the selected region; (c) The 

resistances of the selected memristors are operated to the HRS; (d) The 

resistances of all the selected memristors except the four target memristors are 

modulated to the LRS. 

The selected 10 × 10 memristor crossbar array labeled by 

pink region, and the resistance of each memristor is operated to 

an intermediate value between LRS to HRS, as shown in Fig. 

6(b). Fig. 6(c) and Fig. 6(d) demonstrate the resistance response 

of the selected region during the crossbar array modulation 

operation. From Fig. 6(c), the resistances of the selected 

memristors are operated to the HRS after 50 cycles. After 50 

cycles, the resistances of all the selected memristors except the 

four target memristors are modulated to the LRS, as shown in 

Fig. 6(d). 

IV. CIRCUIT DESIGN OF MULTIMODAL LOCAL-GLOBAL

NEUROMORPHIC COMPUTING 

NC is the potential candidate to break von Neumann 

bottleneck and provide a new way towards AGI [30]. Our 

motivation is to design a novel NCS, aimed at realizing high 

computational accuracy with low computational overhead. 

A. Local Feature Representation Module

The local feature representation module is proposed to

capture unique characteristics capture features Vm (m=α, β, γ) 

from the text, audio, and visual modalities Vi (i=t, a, v). The 

specific circuit architecture of the proposed local feature 

representation module is shown in Fig. 7.  
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Fig. 7. The circuit architecture of the local feature representation module. 

Notably, considering the circuit design of the layer 

normalization and the ReLU circuits are proposed in our 

previous work [26], this paper mainly focuses on the following 

circuits design. 

1) Circuit design of convolution unit

The convolution unit is composed by several convolution

kernels, and the feature voltages with unified dimensions can 

be obtained by the convolution computing of kernels and input 

voltage (containing text, audio, and visual information). In this 

paper, the convolution unit is constructed using the prepared 

high-density memristor crossbar array and some peripheral 

circuits, as shown in Fig. 8.  

From, Fig. 8, Vi is the input voltage of the convolution unit (i 

is the index of the modality. i= t, a, v), Vic=Conv(Vi) is the 
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output voltage of the convolution unit. The prepared 1T1M 

crossbar array is used to perform highly efficient convolutional 

operation, in which the number of columns M and N are equal 

to the number of input and output channels, respectively. 
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2) Circuit design of Bi-GRU unit

Bi-GRU unit is employed to capture the high-level

sequential feature information from feature voltage generated 

from convolution unit. According to [27], the Bi-GRU unit is 

comprised by two opposite-direction GRU unit, and the 

specific circuit architecture of the proposed GRU unit is shown 

in Fig. 9. 
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Fig. 9. Circuit design of the GRU unit. 

From Fig. 9, the GRU unit mainly consists of the fabricated 

1T1M crossbar arrays, sigmoid circuit, subtraction circuit, add 

circuit, tanh circuit, current-to-voltage convertor, and 

Hadamard product circuit. Specifically, the difference in 

conductance between memristors represents the weight of the 

GRU unit. The 1T1M crossbar arrays are used to storage and 

compute the learnable parameters of the weight matrixes W 

(Wrx, Wzx, Wh, Wx). The output currents from the 1T1M crossbar 

arrays are injected into the sigmoid circuit and the tanh circuit, 

respectively. Then, the output voltages Vir(t), Viz(t) of the reset 

gate and update gate can be obtained. After several operations 

of activation, multiplication, and summation, the temporary 

output state voltage V’ih(t) and the output voltage Vih(t)can be 

produced. It is noted that the above-mentioned sub-circuit 

module have been proposed in [26]. The specific input and 

output of the GRU unit are mathematically expressed by: 
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( ) ( )( ) ( ) ( ) ( )'1 1ih z h h zV t V t V t V t V t= − − +    (4) 

where Vic
x(t) and Vic

h(t-1) are the input voltage and the hidden 

state voltage, respectively. Grx, Grh, Gzx, Gzh, Gx, Gh are the 

conductance of memristors in corresponding 1T1M crossbar 

array. N and M are the row of the 1T1M crossbar array. 

On this basis, the circuit design of Bi-GRU unit can be 

obtained, and the output voltage ViH of Bi-GRU unit is 

mathematically expressed by: 

( ) ( ),iH ih ihV V t V t =
 

      (5) 

where ( )ihV t and ( )ihV t are output voltages of forward GRU 

unit and backward GRU unit, respectively. 

3) Circuit design of self-attention unit

The more abundant characteristics from input voltages ViH

are extracted by the self-attention unit. The circuit design of the 

proposed self-attention unit is illustrated in Fig. 10. In Fig. 10, 

the prepared high-density memristor crossbar arrays are mainly 

used to store and compute the attention weight matrixes Wn
Q, 

Wn
K, and Wn

V. Following the attention weight matrixes, the 

input voltage ViH can be converted to corresponding current 

vectors representing the attention key Q, attention query K, and 

attention value V, respectively. The output current vectors are 

converted to the voltages via current-to-voltage convertor, and 

then injected to the Hadamard product circuit. The softmax 

circuit is used to convert the input voltages Visoft from 

Hadamard product circuit to a set of voltages expressing a 

probability distribution. 
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Fig. 10. Circuit design of the self-attention unit. 
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After multiplication operation, the output voltage Visoft of 

self-attention unit can be obtained. The output voltage Viself is 

mathematically described by: 

( ) ( )convertor convertor
max

T T
Q K

n iH n iH

isoft

W V W V
V soft

d

 
 =
 
 

 (6) 

( )convertor
T

V

iself isoft n iHV V W V=        (7) 

where T and d are the transpose operation and the dimension of 

the self-attention unit, respectively.  

B. Global Cross-modal Interaction Module

The captured features Vm (m=α, β, γ) are injected into the

proposed global cross-modal interaction module, which can 

sufficiently exchange information between different modalities. 

The structure of the proposed global cross-modal interaction 

module is illustrated in Fig. 11. 
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Specifically, the input feature signals Vm is fed to the average 

pooling circuit to generate the expected average feature signals 

mV . Then, the cross-attention mechanism is used to obtain the 

attention weights and scores. For better comprehending, the 

audio modality is taken as an example, the attention matrixes 

are firstly created as: 

= KK W V 
    (8) 

= VV W V 
             (9) 

( )=  QQ W V V  
   (10) 

where K, V, and Q are the attention key, value, and query 

respectively. The attention weight matrixes KW , VW , and QW  

are implemented by the prepared 1T1M memristor crossbar 

arrays.  denotes the Cartesian product operation. V  and  

are the audio feature signals and average audio feature signals, 

respectively.  V  and V  denote the average text and visual 

feature signals, respectively. Thus, the attention weights of 

audio modality VSα is symbolized by: 

( ) ( )
max

    
 =  
 
 
 

T
Q K

V

S

W V V W V
V soft W V

d

   

  
(11) 

    Similarly, the attention weights of text and audio modality 

VSβ and VSγ can be obtained by the same structure: 

( ) ( )
max

    
 =  
 
 
 

T
Q K

V

S

W V V W V
V soft W V

d

   

  
(12) 

( ) ( )
max
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T
Q K

V

S

W V V W V
V soft W V

d

   

  
(13) 

where KW , VW , QW , KW , VW , and QW are the attention 

weight matrixes implemented by the prepared 1T1M memristor 

crossbar arrays. 

Furthermore, the three feed forward units with the parallel 

configuration are employed to process multi-channel signals 

VSm (m=α, β, γ). Finally, the outputs Vm,out (m=α, β, γ) of global 

cross-modal interaction module are mathematically described 

by: 

( )1 = +L m SmV LN V V     (14) 

( )2 1max 0,=  L L A BV V W W     (15) 

( ), 1 2= +m out L LV LN V V  (16) 

where WA and WB are the weight matrixes implemented by 

1T1M crossbar array. VL1 and VL2 are the intermediate results.   

C. Output Module

The output module is proposed to extract the key information

in the cross-modal interaction signals, which stimulates the 

processing mechanism of multimodal fusion information in 

human brain. The specific circuit architecture of the proposed 

output module is shown in Fig. 12. 

From Fig. 12, the output module is mainly comprised by the 

global representation unit, fully connected circuit, and softmax 

circuit. The global representation unit is designed to emphasize 

the features that are crucial for predicting task, which is 

composed of the prepared 1T1M crossbar array, tanh circuit, 

Hadamard product circuit, and softmax circuit. The output of 

the global representation unit is applied to the fully connect 

circuit and softmax circuit in sequence for multimodal 

information processing. The specifically input/output of the 

output module is mathematically expressed by: 

, , ,= + +in out out outV V V V      (17) 

( )( )max tanh= + T

G l L in B inV soft w W V I V  (18) 

( )max= out GV soft V       (19) 

where Vin is the input voltage. WG  and wL denote the weigh 

matrix and the parameter vector of global representation unit, 

respectively. IB is bias current of the global representation unit. 

VG and Vout are the output voltages of global representation unit 

and output module, respectively.  

V 
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Fig. 12. Circuit design of the output module. 

V. APPLICATION IN AFFECTIVE VIDEO CONTENT ANALYSIS

The proposed MLG-NCS is further applied to realize 

affective video content analysis. The parameters (including 

circuit and neural network parameters) used for the proposed 

MLG-NCS are provided below: 
TABLE I 

LIST OF THE PARAMETERS USED FOR MLG-NCS 

Device Parameter 

Circuit 

parameters 

1T1M 
memristor 

crossbar 

array 

HRS ~103Ω 
LRS ~101Ω 

Read voltage 0.8V 

SET voltage 2.0V 
RESET voltage 1.5V 

Scan voltage 0.5V/s 

RESET gate voltage 5.0V 

Transistor 

Gate width/length ratio 4.3 

Gate voltage 1.1V 

Access resistance 15 KΩ 
ADC Precision 6 bits 

Neural network 

parameters 

Learning rate 10-2

Momentum 0 
Decay 0.9 

Maximum error 10-4

A. Datasets and Evaluation Metrics

Four benchmark datasets are employed to verify the

effectiveness and feasibility of the proposed MLG-NCS, i.e., 

the LIRIS-ACCEDE dataset, the mediaeval 2015 dataset, the 

mediaeval 2016 dataset, and the DEAP dataset [10]. 

The LIRIS-ACCEDE dataset, the largest dataset for affective 

video content analysis, contains 9800 video excerpts extracted 

from 160 short movies. All video excerpts in the 

LIRIS-ACCEDE dataset have discrete levels of valence and 

arousal. The valence represents the degree of pleasant and 

unpleasant, while the arousal represents the degree of 

excitement and calm. 

The mediaeval 2015 dataset is proposed for classification 

task on the LIRIS-ACCEDE dataset. The mediaeval 2015 

dataset is an extension of the LIRIS-ACCEDE dataset, which 

consists of 10900 video excerpts extracted from 199 short 

movies. In this dataset, 6144 elements are distributed in training 

dataset and the remaining 4756 elements are distributed in 

testing dataset.  

The mediaeval 2016 dataset is proposed for regression task 

on the LIRIS-ACCEDE dataset. The mediaeval 2016 consists 

of 11000 video excerpts extracted from short movies, in which 

9800 data elements are distributed in training dataset and the 

remaining 1200 data elements are distributed in testing dataset. 

Each video in the mediaeval 2015 and the mediaeval 2016 

datasets is labeled in three categories: negative (within the 

range of [-1, -0.15]), neutral (within the range of [-0.15, 0.15]), 

and positive (within the range of [0.15, 1]) for valence; clam 

(within the range of [-1, -0.15]), neutral (within the range of 

[-0.15, 0.15]), and excited (within the range of [0.15, 1]) for 

arousal. 

The DEAP dataset consists of 120 music video excerpts 

watched by 32 volunteers. In this work, only 68 music video 

excerpts are used in our classification task because the length of 

the remaining excerpts is not enough. We divide the DEAP 

dataset into two categories: negative (within the range of [-1, 0]) 

and positive (within the range of [0, 1]) for valence; clam 

(within the range of [-1, 0]) and excited (within the range of [0, 

1]) for arousal.  

In addition, the performance of the proposed MLG-NCS is 

also evaluated on the CMU-MOSI dataset that is composed by 

2198 utterances collected form the Internet [16]. In 

CMU-MOSI dataset, 1283 utterances are included in training 

dataset, 229 utterances are included in validation dataset, and 

the remaining utterances are included in testing dataset. Each 

utterance is uniformly transferred to a [-3, 3] range, indicating 

the strength of positive and negative emotions. 

Then, several performance metrics are used to evaluate the 

overall performance following the previous works. For the 

classification task, we report F1-score (F1) and classification 

accuracy (Acc) as measurements [31, 32].  For the regression 

task, we report mean absolute error (MAE) and Pearson 

correlation (Corr) as measurements [33]. 

B. Hybrid Training Method

The hybrid training method combines the advantages of both

in-situ training and ex-situ training, which can reduce hardware 

loss while ensuring system accuracy. The hybrid training 

method contains ex-situ training, weights mapping, forward 

calculation, and weights correction, as illustrated in Fig. 13. 

Firstly, the proposed multimodal local-global model is 

trained ex-situ in PyTorch platform on training datasets. The 

software performance metrics are taken as the baseline. Then, 

the well-trained weights are mapping to the 1T1M crossbar 

array using incremental-pulse write–verify method [22]. 

Specifically, the acceptance range [GtargetL, GtargetH] based on 
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target weight Gtarget is set, and the initial conductance of the 

memristor is measured. If the conductance is below the lower 

target weight GtargetL, a SET pulse is applied to the 

corresponding memristor by tuning the gate, aiming at 

increasing the conductance. After that, the conductance of this 

memristor is measured again. If the conductance is still below 

the lower target, a SET pulse with amplitude increased is 

applied. We repeat set-measure operations until the 

conductance of memristor is with an acceptance range or over 

to the higher target weight GtargetH. In other case, a reset pulse is 

applied to the memristor with the same procedure as set 

operation. When the target weights are transferred to the 1T1M 

crossbar array, the forward calculation is implemented by the 

proposed MLG-NCS. In next step, only the output module is 

trained in-situ to correct the conductance of memristor, which 

ensures a high performance (closed to the software baseline) on 

affective video content analysis task. 

C. Classification Results and Analysis

In this paper, the well-trained MLG-NCS is used to perform

affective video content analysis. The circuit results of the 

proposed MLG-NCS are illustrated in Fig. 14 to Fig. 17. 

Specifically, the multimodal information from the benchmark 

datasets (i.e., the mediaeval 2015 dataset, the mediaeval 2016 

dataset, the DEAP dataset, and the CMU-MOSI dataset) can be 

converted to the voltage signals within the range of [-2, 2] 

based on digital to analog converter. Notably, image and text 

information in the benchmark datasets is encoded as voltage 

maps based on pixel value. The voltage maps are enrolled and 

fed to the proposed MLG-NCS. The audio information is 

encoded as the voltage sequence based on amplitude. Fig. 14 ~ 

Fig. 17 exhibit the selected 10 × 10 image and 5 × 5 text voltage 

maps Vv and Vt in each period, respectively. The audio voltage 

signals Va are labeled as blue solid line in Fig. 14 ~ Fig. 17.  

Fig. 14. Circuit results obtained by MLG-NCS on mediaeval 2015 dataset. 

Fig. 15. Circuit results obtained by MLG-NCS on mediaeval 2016 dataset. 

Fig. 16. Circuit results obtained by MLG-NCS on DEAP dataset. 

Fig. 17. Circuit results obtained by MLG-NCS on CMU-MOSI dataset. 

Then, these input voltages are further injected to the 

proposed MLG-NCS. The output voltages Vvalence (red solid line) 

and Varousal (green solid line) in the two-dimensional emotion 

state space are obtained, representing corresponding emotional 

behaviors [10]. In the two-dimensional emotion state space, the 

X-axis and Y-axis denote valence and arousal, respectively.

The output voltages Vvalence and Varousal are consider as vector

with polarity. The Vvalence with positive or negative polarities

represents high- or low-level emotion pleasure. And the Varousal

with positive or negative polarities represents high- or

low-level mental alertness.
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The proposed MLG-NCS is compared with the 

state-of-the-art (SOTA) methods on the mediaeval 2015 dataset, 

the mediaeval 2016 dataset, the DEAP dataset, and the 

CMU-MOSI dataset, as shown in Table II and Table III. 
TABLE III 

COMPARISON OF DIFFERENT SOTA METHODS ON CMU-MOSI DATASET 

Method Acc-2 F1 Acc-7 MAE Corr 

[13] 82.5 82.3 51.8 0.583 0.70 

[14] 84.3 84.3 45.0 0.78 0.773 

[15] 80.7 79.8 47.9 0.64 0.66 

[16] 84.4 84.6 48.1 0.79 0.791 

[17] 85.62 85.52 45.5 0.77 0.773 

[18] 85.53 85.52 46.2 0.75 0.773 

[19] 84.7 84.7 51.9 0.583 0.70 

[20] 85.3 85.2 52.32 0.562 0.74 

MLG-S 86.61 86.41 53.51 0.511 0.782 

MLG-NCS-WM 82.1 81.9 50.7 0.75 0.65 

MLG-NCS 84.8 84.83 52.13 0.63 0.70 

From Table II, the proposed MLG-S achieves the highest 

classification accuracy of valence and the highest F1 of arousal 

on mediaeval 2015 dataset. Meanwhile, the F1 of valence and 

accuracy of arousal win the second place over SOTA methods 

on mediaeval 2015 dataset. For regression task, the proposed 

MLG-S achieves the highest Corr and ranks top two MAE on 

mediaeval 2016 dataset. For the DEAP dataset, the MLG-S 

slightly outperforms SOTA methods. It is noted that inevitable 

weights mapping errors exist in the proposed hardware system 

that performs weights mapping operation (i.e., 

MLG-NCS-WM). The proposed hardware system that 

performs weights correction operation (i.e., MLG-NCS) 

achieves high classification and regression performance on all 

benchmark datasets, closed to the MLG-S. For the 

above-mentioned benchmark datasets, the proposed MLG-NCS 

achieves the improvements over other competitors [7-9, 12]. 

Although [10, 11] is slightly superior to the proposed 

MLG-NCS, while inferior to running time. Similar conclusion 

can be observed from Table III. For CMU-MOSI dataset, the 

proposed MLG-S outperforms other competitors in terms of 

accuracy, F1, and MAE. The proposed MLG-NCS also 

achieves the improvements on F1 and Acc-7 over other 

competitors [13-20].  

Furthermore, to study the effectiveness and necessity of each 

module in the proposed MLG-NCS, the ablation experiments 

on CMU-MOSI dataset is carried out, as shown in Table IV. 

Two common metrics Acc-2 and Acc-7 are used to evaluate 

the influence of each module. The experiments results are 

concluded below: 1) Compared with the Convolution unit and 

Bi-GRU unit, the removal of self-attention unit in local feature 

TABLE IV 

ABLATION EXPERIMENTS ON CMU-MOSI DATASET 

Local feature representation Global cross-modal 

interaction 

Output Metrics 

Convolution Bi-GRU Self-attention Global representation Acc-2 Acc-7 

     84.2 51.3 
     84.0 50.7 
     83.5 50.1 
     72.8 44.6 
     79.5 47.4 
     84.8 52.1 

TABLE V 

COMPARISON OF DIFFERENT MODALITY INTERACTION S FOR AFFECTIVE VIDEO CONTENT ANALYSIS 

Method 

Mediaeval 2015 Mediaeval 2016 DEAP 

Valence Arousal Valence Arousal Valence Arousal 

Acc F1 Acc F1 MAE Corr MAE Corr Acc F1 Acc F1 

A 44.4 32.6 56.7 32.7 0.32 0.29 1.00 0.40 72.8 72.1 82.3 80.1 

V 46.4 40.9 56.2 30.2 0.26 0.38 1.02 0.29 66.3 65.9 74.6 72.6 

T 41.2 29.4 55.9 27.8 0.29 0.13 1.11 0.22 69.5 68.4 77.7 75.4 

A+V 47.5 43.3 57.1 34.8 0.25 0.40 0.93 0.48 76.0 75.2 79.2 77.5 

A+T 47.7 44.3 57.3 35.0 0.26 0.39 0.87 0.49 77.6 77.8 82.3 80.6 

V+T 47.7 45.2 57.4 35.8 0.24 0.40 0.88 0.48 77.5 77.2 81.7 80.2 

A+V+T 48.2 45.7 57.9 36.2 0.22 0.41 0.79 0.48 84.1 83.8 83.9 81.7 

TABLE II 

COMPARISON OF DIFFERENT SOTA METHODS FOR AFFECTIVE VIDEO CONTENT ANALYSIS 

Method 

Mediaeval 2015 Mediaeval 2016 DEAP 

Valence Arousal Valence Arousal Valence Arousal 

Acc F1 Acc F1 MAE Corr MAE Corr Acc F1 Acc F1 

[7] 46.2 / 57.4 / 0.20 0.40 1.17 0.45 / / / / 

[8] 48.62 / 58.23 / 0.193 0.473 0.543 0.522 / / / / 

[9] 46.6 45.6 57.5 34.6 0.193 0.45 1.08 0.493 76.5 76.4 79.4 79.4 

[10] 43.7 52.51 60.91 37.03 0.35 0.31 0.81 0.34 86.82 85.12 84.2 82.52 

[11] / / / / 0.101 / 0.161 / / / / / 

[12] 45.0 45.2 56.8 37.92 / / / / / / / / 

MLG-S 49.21 48.92 59.62 38.71 0.162 0.491 0.522 0.591 88.21 87.31 86.11 83.41 

MLG-NCS-WM 46.3 43.4 55.1 33.9 0.25 0.40 0.73 0.37 83.4 82.3 82.5 79.9 

MLG-NCS 48.23 45.73 57.9 36.2 0.193 0.462 0.67 0.48 85.13 84.83 83.9 81.73 

Note: MLG-S denotes the proposed multimodal local-global model trained in PyTorch platform; MLG-NCS denotes the proposed MLG-NSC with complete hybrid 

training method; MLG-NCS-WM denotes the proposed MLG-NCS without weights correction during the training process; the subscript 1, 2, 3 represent the 

corresponding ranking results. 
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representation module has a greater impact on the overall 

classification performance. The self-attention unit is necessary 

for local feature representation learning, which plays an 

important role for sequence modelling. 2) There is a significant 

drop in classification accuracy, when the global cross-modal 

interaction module is removed. The experiment result can be 

demonstrated that the cross-modal learning is essential to 

affective video content analysis. 3) The proposed MLG-NCS 

achieves the best classification performance, indicating that the 

global representation unit can capture the key information in 

the multimodal information better compared with the removal 

of this unit.  

To explore the effect among different modalities, we use 

different modalities combinations on the benchmark affective 

video datasets (i.e., the LIRIS-ACCEDE dataset, the mediaeval 

2015 dataset, the mediaeval 2016 dataset, and the DEAP 

dataset) and CMU-MOSI dataset, as shown in Table V and 

Table VI. 

TABLE VI 

COMPARISON OF DIFFERENT MODALITY INTERACTION ON CMU-MOSI 

DATASET 

Modality Acc-2 F1 Acc-7 MAE Corr 

A 68.0 68.0 30.8 0.79 0.48 

V 63.2 60.6 17.7 1.00 0.43 

T 73.6 73.6 36.1 0.72 0.59 

A+V 73.9 74.2 36.1 0.74 0.59 

A+T 77.9 77.1 44.3 0.67 0.66 

V+T 79.9 75.9 41.7 0.69 0.65 

A+V+T 84.8 84.8 52.1 0.63 0.70 

From Table V, the experimental results demonstrate that the 

visual modality achieves significantly better results than other 

two modalities in affective video content analysis task. When 

the text or audio modalities are used together with the visual 

modality, the system performance slightly outperforming using 

a single visual modality. From Table VI, compared with visual 

and audio modalities, the text modality achieves best 

performance in sentiment analysis task. When the visual or 

audio modalities are used together with the text modality, the 

system performance is slightly better than using a single text 

modality. When all modalities are used together, the proposed 

MLG-NCS achieves optimal performance in affective video 

content analysis and sentiment analysis tasks. Based on this, we 

can draw the following conclusions: Firstly, the importance of 

different modalities varies, depending on specific tasks. 

Secondly, the auxiliary modalities can provide additional 

information to the primary modality. 

D. Computational Efficiency Analysis

The computational efficiency analysis is carried out, which

concludes the time consumption analysis, area breakdown 

analysis, latency breakdown analysis, and energy breakdown 

analysis. To explore the time complexity of the proposed 

MLG-NCS and make a comparison with baselines, the time 

consumption of forward propagation is analyzed by comparing 

with other competitors on the four benchmark datasets, as 

shown in Fig. 18. 

From Fig. 18, the experiments results demonstrate that the 

proposed MLG-NCS has a significant advantage in terms of 

time consumption and is approximately 10 times faster than the 

MLG-S and other competitors but not in terms of space usage. 

The space complexity of proposed MLG-NCS is O(LM) where 

L is the sequential length and M is the number of modalities. 

The reasons maybe that the high-density memristor crossbar 

arrays are used in the proposed MLG-NCS, which can realize 

the dense connectivity between modules and perform parallel 

MAC operations.
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Fig. 18. Time consumption of forward propagation (a) Mediaeval 2015 

dataset; (b) Mediaeval 2016 dataset; (c) DEAP dataset; (d) CMU-MOSI 

dataset. 

Then, we measured the latency and power consumption of 

the proposed multimodal local-global neuromorphic computing 

system (MLG-NCS) in NeuroSim V3.0 framework [34]. Fig. 

19(a) ~ (c) illustrates the area breakdown, latency breakdown, 

and energy breakdown of the proposed MLG-NCS, 

respectively. 
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Fig. 19. The breakdown of the proposed MLG-NCS by main component (a) 
Area; (b) Latency; (c) Energy. 

The total area of the proposed MLG-NCS implemented 

using 28-nm COMS technology is about 185.77μm2. It is noted 

that most of the area is occupied by analog to digital converter 

(ADC) while the 1T1M array occupies 1.7% of the total area. 

The latency was recorded by capturing the duration of the flag 

signal on NeuroSim V3.0 framework for inference stage. The 

total latency of the proposed MLG-NCS is about 1.10μs, and 

most of the latency is accounted on the interconnect. The total 

energy consumption for inference mainly depends on the 

input/output size, the weight precision, the crossbar array size, 

and the design scheme. From the above measurements and 

calculations, we obtained that the energy consumption of the 

proposed MLG-NCS for 1-bit computing with 0.8V, 50ns read 

voltage is estimated about 3167pJ. Most of the energy 

consumption is costed by the ADC rather than the 1T1M array. 
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Table VII demonstrates the hardware comparison among the 

SOTA NCSs. Notably, the hardware metrics of the existing 

NCSs are excerpted from previous papers. 

From Table VII, the proposed MLG-NCS achieves the 

smallest total area, the lowest power consumption, and the 

lowest latency among the NCSs at 130-nm COMS technology 

[23, 24]. At the same 28-nm COMS technology, the proposed 

MLG-NCS outperforms other competitors [21, 22] in terms of 

total area, power consumption, and latency, while inferior to 

[25]. The main reason may be that: 1) At the network structure 

level: compared to [25] with simple structure (i.e., binary 

neural network), the proposed MLG-NCS with cascade 

configuration can capture local characteristics and exchange 

global cross-modal information sufficiently; 2) At the sensory 

modality level: the NCS proposed in [25] focuses on 

single-mode information processing for relatively simple task 

(i.e., handwritten recognition), and the proposed MLG-NCS 

has a capability to process multimodal information in the 

complex fine-grained task. These experiment results show that 

the proposed MLG-NCS has good performance in latency 

(about 1.2~15.3 times faster), which balances computational 

efficiency and computing accuracy to promote versatility.  

E. Noise-Resilient Analysis

The noise-resilient analysis is carried out in this section to

evaluate the robustness of the proposed MLG-NCS. We inject 

noise into the proposed MLG-NCS during the weight mapping 

stage and weight correction stage. We test the proposed 

MLG-NCS with different levels of noise injection from 0% to 

20% on the four benchmark datasets (i.e., the mediaeval 2015 

dataset, the mediaeval 2016 dataset, the DEAP dataset, and the 

CMU-MOSI dataset). The performance metrics (i.e., F1, Acc, 

MAE, and Corr are used to evaluate the noise influence on the 

proposed MLG-NCS, as shown in Fig. 20. 

The noise experiments show that the proposed MLG-NCS 

after weights correction operation achieves good robustness 

and mitigates the interference of noise on the four benchmark 

datasets. However, the system performance after weights 

mapping operation is affected as the noise level increases. The 

results demonstrate that the weights correction operation can 

help to improve the system noise tolerance capability. 

VI. CONCLUSION

This paper investigates a novel NCS for affective video 

content analysis. Specifically, a high-density memristor 

crossbar array is prepared using highly stable Fe2O3-based 

memristor, which achieves the dense connectivity between 

modules and performs parallel-in memory operations. Then, 

the proposed MLG-NCS mainly consisting of local feature 

representation module, global cross-modal interaction module, 

and output module is designed. Through the local feature 

representation module, the unique local characteristics from 

multimodal information can be adequately captured. Through 

the global cross-modal interaction module, the global 

TABLE VII 

COMPARISON OF DIFFERENT NEUROMORPHIC COMPUTING SYSTEMS 

[21] [22] [23] [24] [25] This work 

Technology 28nm 28nm 130nm 130nm 28nm 28nm 

Total area 14.44mm2 81.83mm2 0.0704mm2 159.00mm2 0.933μm2 185.77μm2 

Power 0.95W 1.42W 7.44mW 3.00W 224.7μW 62.34mW 

Latency 16.8μs 1.30μs 6.69ns 1.40μs / 1.10μs 

Sensing modal Single Single Single Single Single Multimodal 

Device stability High High High High High High 

Device size / / 0.025μm2 1.69μm2 / 0.025μm2 

Supply voltage  0.82~0.95V 0.82~0.95V 1.2~1.8V 1.8V 1.0~1.8V 1.0~2.0V 

HRS/LRS / / ~103 / ~10 102 
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Pattern 
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Fig. 20. The noise-resilient analysis of the proposed system (a) Mediaeval 2015 dataset; (b) Mediaeval 2016 dataset; (c) DEAP dataset; (d) CMU-MOSI dataset. 
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cross-modal information can exchange sufficiently. Through 

output module, the key features can be extracted and reliable 

output can be obtained effectively. Furthermore, the proposed 

MLG-NCS with hybrid training method is performed on 

benchmark datasets, and the experimental results demonstrate 

that the proposed MLG-NCS achieves high classification and 

regression performance, closed to the software baseline. In 

addition, the necessary computational efficiency analysis and 

noise-resilient analysis are carried out, indicating the high 

computational efficiency and reliability of proposed system. 
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