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Abstract—With the rapid evolution of electric vehicles (EVs), 
assuring the security and dependability of battery packs has 
acquired paramount significance. Internal short circuit (ISC) 
within EV battery packs poses a threat to the safety and 
reliability of EVs. Most of existing ISC detection methods still 
suffer from two limitations, i.e., the dataset incompleteness and 
poor feature representation. To address these challenges, we 
develop a periodic segmentation Transformer-based ISC 
detection method for battery packs. Firstly, considering three 
different operating conditions, a comprehensive dataset 
encompassing three distinct ISC severity levels is constructed. 
Secondly, to facilitate understanding of the proposed model 
design, a discrete wavelet transform-based periodicity analysis 
module and a time-oriented segmenting module are developed. 
This dual-module design empowers the model to adjust the 
length of sliding windows adaptively, and enables the joint 
capture of temporal-spatial and periodic information, 
significantly enhancing the feature representation ability. Thirdly, 
experimental results show that our method outperforms the best 
state-of-the-art in terms of accuracy (average F1 score improved 
by 24.2%). Finally, robustness analysis and generalization 
analysis are conducted. The former one demonstrates robustness 
in terms of parameters within the adaptive aggregation module 
and input data length; the latter one demonstrates generality of 
feature extraction method. 

Index Terms—Internal short circuit, fault detection, battery 
packs, transformer-based neural network 
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I. INTRODUCTION

A. Background
The electric vehicle (EV) industry is flourishing on a global

scale, driven by the imperative to reduce environmental 
pollution as fossil fuel consumption escalates and carbon 
neutralization targets loom [1]. EVs have emerged as an 
important solution for consumers seeking to align with these 
objectives. To meet the voltage and capacity requirements of 
EVs, numerous individual batteries are configured through 
series and parallel connections, forming battery packs [2]. 
Thermal runaway caused by internal short circuit (ISC) in 
batteries always lead to serious damage to the entire systems 
and even threaten people's lives [3, 4]. Accurate and timely 
ISC detection can be achieved through the monitoring of 
abnormal voltage signals, which is of utmost significance to 
prevent thermal runaway [5]. 

B. Literature review
Numerous ISC detection methods have been introduced in

existing literature, falling into three primary categories [3]: 
parameter inconsistency-based method, model-based method, 
and data-driven-based method. 

Parameter inconsistency-based methods mainly considering 
a natural phenomenon that parameters (e.g., voltage and 
capacity) will deviate from consistency once fault occurs [6]. 
Based on this, many scholars [6-9] proposed parameter 
inconsistency-based ISC detection methods. However, these 
methods need a robust cell balancing scheme within battery 
packs and tend to exhibit low sensitivity to minor ISC 
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occurrences, thereby being susceptible to the influences of 
sensor accuracy and signal noise. Model-based method is to 
transform the ISC detection into model parameter/state 
estimation [10-12]. These kinds of methods encounter 
difficulties in maintaining high accuracy across varying 
temperatures. Meanwhile, they exhibit heightened sensitivity 
to model errors, leading to substantial noise and diminished 
precision [13]. In addition, model parameters need to be 
continuously updated to ensure accuracy in the presence of 
intricate operating conditions and battery aging. 

With the rapid development of machining learning and deep 
learning technologies, data-driven-based methods have shown 
tremendous potential in the field of ISC detection. Compared 
to conventional machine learning technologies [14-17], deep 
learning technologies have the capacity to capture more 
profound relationships within data and exhibits enhanced 
generalization capabilities. A long-sequence voltage series 
forecasting method for ISC detection was proposed in [18], 
achieving early detection and warning. Cao et al. proposed an 
ISC diagnosis algorithm for battery packs by combining 
mean-difference model and bi-directional long short-term 
memory (Bi-LSTM) neural network [19]. Cui et al. developed 
a deep neural network using the electrochemical impedance 
spectroscopy spectrum as the input feature to predict the 
occurrence probability of ISC [20]. Wang et al. designed a 
LSTM hybrid neural network that can generate residual 
signals to detect ISC [21]. However, these models introduce 
internal memory states to maintain and update information, 
which may struggle to capture distant feature relationships in 
long time sequences. Transformer with self-attention 
mechanism is a potential remedy to address this problem [22-
26]. Applying the Transformer into ISC detection may face 
two following challenges: 

1) Incomplete datasets: Transformer-based methods need
substantial data, and the use of incomplete datasets may lead 
to disparities between experimental outcomes and real-world 
scenarios.  

2) Hyperparameter sensitivity: Transformer-based methods
are always sensitive to hyperparameters, especially to the 
length of sliding windows, which can influence the efficiency 
of feature extraction and impact results. 

Based on these, developing a comprehensive and publicly 
accessible dataset, enhancing feature extraction capabilities, 
and adaptively adjusting hyperparameters are crucial for 
improving accuracy and reliability of ISC detection model in 
real-world applications.  

C. Contribution of our study
To fully exploit the potential of Transformer in ISC

detection, the main contributions of this paper can be 
summarized as follows: 
·To address the incomplete dataset issue, a comprehensive

dataset based on series-parallel batteries is constructed. 
Dataset includes three distinct operating conditions and three 
varying severity levels of ISC.  
· In order to reduce the impact of hyperparameter

sensitivity on model performance, an adaptive adjustment of 
the length of sliding windows based on periodicity analysis 
module and time-oriented segmentation module is proposed.  

· A novel periodic segmentation Transformer model
capable of extracting temporal-spatial and periodic 
information simultaneously for ISC detection within battery 
packs is proposed. The model is demonstrated to have 
generalized feature extraction and robustness to input data 
length. Compare to the state-of-the-art (SOTA) models, this 
method demonstrates an average F1 score improvement of 
24.2%. 

D. Organization of this paper
Section II describes a complete dataset construction process

including data acquisition and the preprocessing steps. Section 
III describes the ISC detection process, model construction, 
training, and testing procedure. To verify the effectiveness and 
robustness of the proposed method, a series of comparative 
experiments and analysis are conducted in Section IV.  Finally, 
conclusions are drawn in Section V. 

II. DATASET

Considering the incompleteness and non-public nature of 
the datasets utilized in almost all existing works, a 
comprehensive ISC dataset is constructed. This dataset 
encompasses voltage time-series data across three distinct ISC 
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TABLE I
PARAMETERS OF EXPERIMENT PLATFORM

Parameters Value Parameters Value
Number of batteries 60 Number of battery groups 20
Nominal voltage Weight
Normal capacity Internal resistance ≤60mΩ2600mAh

48g3.7V

Equivalent circuit

Digital Acquisition 
Device (back side)

Diameter Height 65mm18.40mm

Fig. 1. Experimental platform and battery parameters 
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severity levels under three distinct operating conditions. The 
specific data acquisition and preprocessing are described 
below. 

A. Data acquisition
The specific experimental platform and battery parameters

are provided in Fig. 1. Specifically, the ISC experimental 
platform (as shown in the right of Fig. 1) includes two battery 
packs, each pack consists of 60 series-parallel Li-ion batteries, 
a bi-directional DC source (ITECH IT6012-500-80), a high-
precision digital acquisition device (KEYSIGHT 34980A), 
and a server (Advantech IPC-610). The voltage and current 
measurements exhibit a precision of 0.1%, with each voltage 
sensor possessing a maximum range of 5 V. The sampling 
frequency is set as 10 Hz. This configuration comprises 60 
lithium-ion batteries (corresponding battery parameters are 
collected in Table I) divided into 20 groups, with parallel 
connections within each group and series connections between 
the groups, forming a battery pack. The initial charging entails 
reaching 4.2 V through a constant current of 1 C. All batteries 
underwent pre-experiment testing and exhibited normal 
performance. Prior to the discharge test, a one-hour resting 
period was observed before conducting the failure experiments, 
to minimize voltage variations between battery cells. In 
practical scenarios, the scope of battery system 
troubleshooting is typically confined to time-series signals 
such as voltage, temperature, and current [27]. In ISC 
detection, the time-series signal is always selected as voltage. 

The connection diagram of the battery pack and ISC 
generator is shown in the left of Fig. 1. Celln_i is the number of 
the battery in battery pack, Vocv is the open circuit voltage, Risc 
and Ri are the ISC resistant and internal resistant, respectively. 
Iisc is the ISC current, and I is the total current of one cell. 
When the switch is turned off, the battery is in the normal state, 
and the equivalent equation can be written by: 

(1) 
When the switch is turned on, the battery is in a faulty state, 

the equivalent equation can be rewritten by: 
(2) 

To ensure the completeness of the dataset and validate the 
generalization of the model, a series of tests are conducted 
under three operating conditions at room temperature, Federal 
Urban Driving Service (FUDS), Urban Dynamometer Driving 
Scheme (UDDS), and US06 Supplemental Federal Test 
Procedure (US06). For each condition, three power resistors 
are employed with values of 1 Ω, 3 Ω, and 5 Ω to simulate 
high, medium and low ISC severity respectively, these values 
are demonstrated [6, 7] to be closer to severity in real-world 
scenarios. The training set comprises voltage data from 60 
cells in their normal state, while the testing set consisting of 
voltage data from another set of 60 cells are randomly chosen 
under the same operating condition to mimic ISC. For each 
operating condition, 120000 sample points are collected as 
training sets and 120000 sample points are collected as testing 
sets for each severity level of ISC. Faulty battery groups are 
randomly generated, with the total number of selected groups 
ranging from 3 to 5. The specific faulty battery groups are 

listed in the Table II. The model is trained separately for each 
operating condition.  

TABLE II 
FAULTY BATTERY GROUPS 

Operation condition Severity level Faulty battery groups 

FUDS 
Low 4, 7, 9, 16 

Medium 1, 9, 15, 19 
High 7, 9, 10, 14, 15 

UDDS 
Low 3, 6, 9, 18, 10 

Medium 3, 10, 16, 19 
High 3, 7, 16 

US06 
Low 5, 6, 11, 14 

Medium 8, 9, 19, 20 
High 1, 6, 17 

A comparison of different datasets is collected in Table III. 
TABLE III 

COMPARISON OF DIFFERENT DATASET 

Dataset Number of 
ISC Severity 

Number of 
Operating 
Conditions 

Battery connection 
method 

Ours 3 3 Series-parallel 
Moeini dataset [6] 3  Single battery
Ma dataset [7] 2 1 Single battery 
Lai dataset [8] 3 1 Series 
Meng dataset [9] 3 1 Single battery 
Feng dataset [10] 1 1 Single battery 
Hu dataset [11] 2 1 Single battery 
Kong dataset [12] 3  Single battery
Naha dataset [14] 2  Single battery
Kriston dataset [15] 2  Single battery
Chen dataset [16] 1 1 Single battery 
Cui dataset [18] 4 1 Single battery 
Cui dataset [20] 3  Single battery
Wang dataset [21] 5  Series
Note: “” represents the operating condition is not considered. 

To better simulate the real-world scenarios, two initiatives 
are implemented: 1) Compared with the battery connection 
method (single battery or series connection) in existing 
datasets [6-12, 14-16, 18, 20, 21], the series-parallel 
connection of batteries are used in our dataset to meet voltage 
and capacity requirements in EVs. 2) Our dataset considers 
three operating conditions with three severity levels of ISC 
fault. Both of these, our dataset is a more comprehensive one 
compared to existing datasets. 

B. Data preprocess
The voltage data from each individual group within the

battery pack is selected as the input. The acquired battery 
voltage data can be represented using a matrix format: X∈

ℝT×M, T represents the length of the battery voltage data, and 
M represents the number of groups within the battery pack. In 
the collected dataset, labels of the same dimensions (0 and 1) 
are provided, where ‘0’ denoting the battery is at normal 
condition, and ‘1’ denoting the presence of ISC. To enhance 
the robustness of the entire system, the data normalization is 
applied across the training, validation, and testing sets. The 
normalization process can be mathematically expressed by: 

(3)
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where min(𝛤𝛤) and max(𝛤𝛤) represent the maximum and 
minimum vectors for each cell within the training set 
respectively. To prevent division by zero, a small constant 𝜀𝜀 is 
added. Through normalization, the data is confined within the 
interval of [0,1). 

III. METHODOLOGY

The process for ISC detection of EV battery packs is 
outlined as follows: 

1) Feature extraction: The original data from the training
set is injected to the periodic segmentation Transformer model. 
The model extracts latent periodic information from the time-
series data. 

2) Training phase: During the training phase, preprocessed
training and validation sets are input into the model separately. 
The model with the lowest validation set error is retained. 

3) Testing phase: During the testing phase, the preprocessed
test set is fed into the model, generating a reconstructed output. 

4) ISC detection: Threshold values are determined using the
reconstruction results and the actual values. These threshold 
values are obtained through peak over threshold (POT) theory 
[3]. This procedure facilitates the localization of faults, 
subsequently enabling the computation of precision, recall, 
and F1 scores. 

A. Periodic segmentation Transformer
Transformer is a neural network model designed for

sequence-to-sequence tasks, and it has achieved remarkable 
performance in both natural language processing and 
computer vision [22]. The Transformer model relies entirely 
on a self-attention mechanism for sequence modeling. This 
self-attention mechanism enables the model to dynamically 
calculate weights based on relationships between different 
positions within the input sequence, facilitating the capture of 
long-range information and the effective processing of lengthy 
sequences. Furthermore, the Transformer introduces positional 
encoding, which injects positional information into the input 
sequence feature vectors, allowing the model to differentiate 
vectors from different positions. In contrast to other sequence-

to-sequence neural network models (like RNNs and LSTMs), 
the Transformer boasts parallel computation capabilities that 
enhance computational efficiency and reduce runtime [28]. In 
this paper, the periodic segmentation Transformer model is 
proposed. The specific structure (as shown in Fig. 2), the 
corresponding pseudocode (as illustrated in Table IV), and the 
detailed description are provided below: 

TABLE IV 
THE ALGORITHMIC PSEUDOCODE OF THE PROPOSED ISC DETECTION METHOD 
Algorithm 1: Description of periodic segmentation Transformer model 
Input: Raw battery voltage data X∈ℝT×M, Topk value K, Transformer 

encoder E, Iteration limit P 
Output: Reconstructed result XM 
1: Analyze X in the frequency domain, average the amplitude across M 

dimensions: A = Avg{Amp[DWT(X)]} 
2: Select top K amplitude values and their corresponding frequencies: 

{f1,…,fk} = Topk(A) 
3: Calculate the sliding window lengths using the selected frequencies: 

p_ i = T / fi , i∈{1,…,K} 
4: Partition X into M univariate time series: X(i)∈ℝ1×T, i∈{1,…,M} 
5: For each X (i), create K distinct segmented time windows along the 

temporal dimension:
for i from 1 to M do 

for k from 1 to K do 
Extract sliding windows of length p_ k from X(i): X(i) 

seg_ k∈ℝp_k×N 
6: Training the model: 

for k from 1 to K do 
n = 0 
do 

for i from 1 to M do 

Update weights of E using L 

while n < P 
Reconstructed result of each K value: 

7: Calculate weights to each period: 

8: Output reconstructed result: 

Step 1: The raw battery voltage data X∈ℝT×M  is used as 
input of the periodicity analysis module to extract the periodic 
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Fig. 2. Structure of periodic segmentation Transformer model. 
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information. The output is then utilized as prior knowledge in 
the time-oriented segmentation module. 

Step 2: The raw battery voltage data X∈ℝT×M is then split 
into X(i)∈ℝ1×T (i = 1, …, M) that needs to be further cut 
according to the periodic characteristics. The split periods 
server as tokens of the Transformer encoder. 

Step 3: When battery voltage data have more than one 
potential period, the reconstruction process will begin. The 
reconstructed results are compared with the target results in 
terms of residuals. The compared results are used to guide the 
weight updating.  

Step 4: Repeat Steps 2 ~ 3 to obtain the best reconstruction 
result. 

Step 5: The multiple reconstructed results are aggregated 
into a single reconstruction result through the adaptive 
aggregation module. 

For clarity, the specific description of different modules in 
the periodic segmentation Transformer are provided below. 
1. Periodicity analysis module

The Fourier transform is a widely used signal processing
method that can convert time-domain signals into frequency-
domain signals [29]. Nevertheless, the Fourier transform is 
deficient analyzing non-stationary signals, as it does not take 
into account the amplitude and temporal localization of the 
signal, thus lacking temporal information during time-
frequency conversions [30]. To accurately capture 
characteristic features of non-stationary signals, the discrete 
wavelet transform (DWT) in introduced in this work. The 
discrete wavelet transform is defined as follows: 

(4) 

where ψ(t) represents the mother wavelet, while X(t) 
represents the original signal. j and h represent scale 
parameters denoting dilation and translation, respectively. j 
captures the oscillation frequency and wavelength, and h 
reflects the translation distance of the wavelet. The 
mathematical expression of time series in the frequency 
domain via the periodicity analysis module is provided below: 

(5) 

where DWT(·) and Amp(·) represent the DWT and the 
computation of frequency-domain amplitudes, respectively. A
∈ℝT represents the amplitude of each frequency, and can be 
obtained by calculating the arithmetic mean of M feature 
parameters using Avg(·). {f1, …, fk} represent frequencies 
corresponding to the Topk(·) amplitude in A. pi denotes period 
of corresponding frequencies. The approximate coefficients of 
the wavelet transform depict the low-frequency component of 
the signal, while the detail coefficients portray the high-
frequency portion. The absolute value of the approximate 
coefficients reflects the amplitude of the low-frequency 
components of the signal, encompassing both the overall trend 
and information about longer periods.  

Through the periodicity analysis module, the periodic 
information of the time series is extracted, along with the 
corresponding frequencies and amplitudes. The entire module 
can be rewritten by: 

(6) 
In prior works, the majority of research efforts have 

predominantly focused either on temporal characteristics 
between adjacent timestamps [23-25] or on temporal features 
across various dimensions [31]. Given the pervasive existence 
of periodicity in time-series data, the extraction of periodic 
features assumes particular significance. Even for time series 
with less evident periodic features, this module can still 
provide latent periodicities for the network. For extracting 
periodic information, this module also provides the basis for 
time-oriented segmentation module.  
2. Time-oriented segmentation module

After data preprocessing, the raw data X ∈ ℝT×M is
partitioned. This partitioning transforms the multivariate time 
series into M individual univariate time series. The i-th 
univariate time series can be represented as X(i) 

 ∈ℝ1×T. The 
resulting univariate time series, are individually input into 
separate instances of the model, as shown in Fig. 2. These 
instances share weights within a common backbone module, 
but their forward computations are independent of each other. 
For each individual univariate time series X(i) 

1:T = (X(i) 
1 ,…,X(i) 

T ), 
sliding windows are extracted along the temporal dimension. 
These sliding windows can be either overlapping or non-
overlapping. The length of each sliding window is defined as 
the length of the top K period pk. The non-overlapping length 
between two consecutive windows is defined as S. The 
number of time windows is denoted as N. The univariate time 
series can be represented by X(i) 

seg∈ℝp_k×N after segmentation 
along the temporal dimension, where N = (T - pk) / S + 2 
denoting the number of tokens fed into the network. 
Conventional practice makes each timestamp input 
individually as a token, which means the token count in 
previous approaches is approximately S times greater than that 
used in this study. 

This approach enables an adaptive adjustment of sliding 
window lengths. This effectively addresses the fluctuation in 
performance caused by manually setting time window 
parameters in prior works. Also, by significantly reducing the 
number of input tokens, both the computational complexity 
and processing time experience substantial reduction. This 
allows the model to capture extended historical sequences. 
Moreover, with the sliding window length aligned to the latent 
periodicity of the time series, the model becomes adapt at 
capturing the underlying relationships within and between 
periods. This proficiency results in enhanced fitting 
capabilities and improved performance in ISC detection. 
Notably, the combination of periodicity analysis module and 
time-oriented segmentation module makes the joint extraction 
of temporal-spatial and periodic information available. 
3. Transformer encoder

In the periodic segmentation Transformer architecture, a
foundational Transformer encoder is employed to map the 
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original input signals to a latent representation space. After 
segmenting the input along the temporal dimension, the matrix 
X(i) 

seg∈ℝp_k×N is endowed with positional encoding to preserve 
the temporal information of the input tokens. Through a 
trainable linear projection W(i) 

seg∈ℝD×p_k, a learnable positional 
encoding W(i) 

pos∈ℝD×N, X(i) 
d  = WsegX(i) 

seg + Wpos maps the input 
data to the Transformer latent space of dimension D. The 
resulting positional encoding X(i) 

d ∈ℝD×N will serve as input to 
the fundamental Transformer encoder. The Transformer 
encoder introduces multi-head attention, where each head h = 
1, …, H transforms the input into three matrices: Q (query), K 
(key), and V (value). Their computation are as follows: 

(7) 

where WQ 
h , Wk 

h∈ℝD×d_k, WV 
h ∈ℝd_k×D. The scaled dot-product 

operation is employed to obtain the attention outputs. 

(8) 

where O (i) 
h ∈ℝD×N, Softmax function allocates a learnable 

convex combination weight to each element in matrix V (i) 
h , 

compressing matrix V(i) 
h  into a more compact representative 

embedding. This simplifies inference during downstream 
neural network operations. Unlike conventional attention 
operation, the scaled dot-product operation scales weights by 
the square root of dk, reducing their variance and promoting 
stable training. 

The multi-head attention module encompasses a batch 
normalization layer and a feedforward network with residual 
connections. Finally, a flattening layer with a linear output 
layer is applied to obtain the reconstruction result Ẋ(i) 

  = Ẋ
(i) 
1 , …, Ẋ(i) 

T . 
Then, the loss function that can calculate the error between 

the reconstruction result and the ground truth is 
mathematically expressed by: 

(9) 

4. Adaptive aggregation
Within the periodicity analysis module, the amplitude

values of frequencies are sorted in descending order. The top 
K amplitude values, denoted as {Af_1, …, Af_k}, correspond to 
the top K most significant frequencies {f1, …, fk} and capture 
the latent periodic features of the time series. Due to the 
presence of K distinct segmented time windows for different 
univariate time series, the model produces K distinct 
reconstruction outcomes for each univariate time series. 
Consequently, these diverse reconstruction outcomes require 
aggregation into a final unified reconstruction result. 

Given that each amplitude value A reflects the importance 
of the corresponding frequency and period, it also determines 
the significance of the associated reconstruction outcome. 
Hence, an amplitude-based adaptive aggregation method is 
proposed: 

(10) 

where Â  
f_k  denotes the weights obtained from the softmax 

equation. These weights are multiplied with the corresponding 
reconstructed results Ẋ M,i 

  from different periods within a 
specific dimension. The summation of these weighted results 
yields the final reconstruction output.  

This approach allocates weights to the corresponding 
reconstruction outcomes based on the magnitude of their 
amplitude values. Based on the experiment conducted in 
Section IV, the impact of variations in the added 
hyperparameter K on experimental results can be safely 
disregarded. This technique not only aggregates different 
latent periodic features but also mitigates the impact of less 
pronounced latent periodic features, thus preventing 
substantial deviations between the final reconstruction result 
and the ground truth. 

B. Fault detection and evaluation metrics
During the testing phase, the test set Ẋ is the input of the

trained model, Ẋ’ is the output. The criterion can be written by: 

(11) 
As the model segments the test set into M individual 

univariate time series, si represents the criterion of each 
dimension. For a fair comparison, same approach is utilized by 
employing the POT method for threshold selection. Notably, 
the POT method is a statistical approach that employs extreme 
value theory to fit data distributions using the generalized 
pareto distribution (GPD) [32]. It dynamically determines 
thresholds by identifying appropriate values at risk. When the 
criterion surpasses the threshold, the corresponding timestamp 
is labeled as a faulty state (label 1), otherwise, the timestamps 
are assigned the label 0. 

Precision, recall, and F1 score are employed to assess the 
ISC detection performance of all models as: 

(12) 

where TP denotes true positives, FP stands for false positives, 
and FN represents false negatives. Notably, precision, recall, 
and F1 are all used as the evaluation indexes for model 
performance, higher indexes indicate better performance on 
ISC detection. 

IV. EXPERIMENT

This section presents a comprehensive evaluation of the 
proposed model through a series of experiments. Specifically, 
the experimental environment and parameter settings are 
described, followed by a detailed analysis of the detection 
results. Then, an ablation study is conducted to highlight the 
importance of key modules in the proposed method. 
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Furthermore, the parameter sensitivity analysis, robustness 
analysis, and effectiveness analysis are conducted, respectively. 

A. Experimental environment and parameter settings
The series of experiments carried out by the proposed

model are performed on a desktop computer (I7-10700K, RTX 
3080, Windows 10 OS, Python 3.8, PyTorch 1.12). Inspired 
by the parameter setting in [23-27], the specific parameter 
settings are shown in Table V. In order to balance training 
time and model performance, a sliding window length of 100 
and 10 epochs are set, consistent with [23-27]. In this paper, 
the K value has minimal impact on the detection results and is 
set to 3. To accommodate computer resources, a batch size of 
128 is chosen. Theoretically, variations in batch size have little 
effect on model performance. Based on the default parameters 
in traditional Transformer model, d_model, d_feedforword, 
and n_layers are set to 512, 1024, and 6, respectively. 

TABLE V 
PARAMETER SETTING 

parameter Value 
Our model Other models 

sliding window length adaptive 100 (fixed) 
K 3 - 

batch size 128 128 
epoch 10 10 

d_model 512 512 
d_feedforward 1024 1024 

n_layers 6 6 

B. Detection result
To verify the generalization capability of ISC detection

model, all models were tested on a simulated ISC dataset 
encompassing fault severities under different operating 
conditions (FUDS, UDDS, and US06), as well as a publicly 
available anomaly detection dataset, i.e., the server machine 
dataset (SMD) [33]. SMD is a five-week long multivariate 
dataset collected from a large Internet company. The proposed 

model is compared with LSVSF [18], Bi-LSTM [19], DNN 
[20], LSTM hybrid network [21], Nonstationary Transformer 
[24], TimesNet [25], and PatchTST [26]. Notably, the 
selection criterion is that all these competitors are SOTA 
methods published in TOP journals or conferences within 
three years.   

To simulate real-world scenarios, all models were trained 
using the same parameter set and subsequently employed for 
ISC detection across varying severity levels. The test results 
are depicted in Fig. 3 and Table VI.  

FUDS Medium UDDS Medium US06 Medium

FUDS High UDDS High US06 High

Ours
TimesNet

[25]
PatchTST

[26]
Non-stationary

[24]
LSTM hybrid

[21] 
DNN 
[20]

Bi-LSTM 
[19]

LSVSF 
[18]

FUDS Low UDDS Low US06 Low

Fig. 3. F1 score of each model on three different operating conditions. 

TABLE VI 
RESULTS OF EACH MODEL ON THE FUDS, UDDS, US06, SMD DATASETS 

Evaluation 
indicators 

FUDS UDDS US06 SMD Low Medium High Low Medium High Low Medium High 

Ours 
Prec. 0.7712 0.8994 0.8514 0.6201 0.9027 0.8967 0.4953 0.9115 0.8540 0.8984 
Rec. 0.7089 0.7506 0.8077 0.6110 0.7971 1.0 0.7874 0.7649 1.0 0.8799 
F1 0.7387 0.8183 0.8292 0.6155 0.8466 0.9455 0.6081 0.8318 0.9212 0.8890 

PatchTST 
[26] 

Prec. 0.6989 0.7245 0.7114 0.6873 0.8978 0.8934 0.4934 0.8153 0.8319 0.8752 
Rec. 0.7089 0.7506 0.7871 0.4073 0.7971 1.0 0.7874 0.7649 1.0 0.8092 
F1 0.7039 0.7373 0.7473 0.5115 0.8445 0.9437 0.6067 0.7893 0.9082 0.8409 

TimesNet 
[25] 

Prec. 0.7664 0.7924 0.8328 0.3808 0.8456 0.8804 0.4647 0.8489 0.8502 0.8790 
Rec. 0.7089 0.7506 0.7871 0.4073 0.7971 1.0 0.7874 0.7649 1.0 0.8145 
F1 0.7365 0.7709 0.8093 0.3936 0.8206 0.9364 0.5844 0.8047 0.9190 0.8455 

Non- 
Stationary 

[24] 

Prec. 0.5616 0.5511 0.5520 0.3208 0.8267 0.8617 0.4647 0.7482 0.7814 0.8848 
Rec. 0.7089 0.7506 0.7871 0.4073 0.7971 1.0 0.7874 0.7649 1.0 0.8063 
F1 0.6268 0.6355 0.6489 0.3589 0.8117 0.9257 0.5844 0.7654 0.8773 0.8437 

LSTM 
Hybrid 

[21] 

Prec. 0.6406 0.6849 0.7262 0.4280 0.8186 0.8741 0.4431 0.5874 0.5455 0.8875 
Rec. 0.7089 0.7506 0.7871 0.4257 0.7971 1.0 0.4551 0.5332 0.6839 0.8105 
F1 0.6731 0.7162 0.7554 0.4269 0.8077 0.9328 0.4490 0.5584 0.6069 0.8473 

DNN 
[20] 

Prec. 0.4795 0.5065 0.5169 0.4265 0.6704 0.8073 0.4638 0.5701 0.5039 0.8141 
Rec. 0.7089 0.7506 0.7871 0.4257 0.5680 1.0 0.7874 0.7649 1.0 0.7183 
F1 0.5721 0.6048 0.6240 0.4261 0.6150 0.8934 0.5838 0.6533 0.6701 0.7632 

Bi-LSTM 
[19] 

Prec. 0.3306 0.4106 0.7135 0.3077 0.7604 0.8294 0.3304 0.3427 0.3308 0.8672 
Rec. 0.7089 0.5396 0.3935 0.4257 0.5680 1.0 0.4551 0.5050 0.6839 0.8030 
F1 0.4510 0.4663 0.5073 0.3572 0.6503 0.9067 0.3829 0.4083 0.4459 0.8339 

LSVSF 
[18] 

Prec. 0.4564 0.4976 0.4909 0.3171 0.6648 0.8408 0.4431 0.5787 0.5376 0.8745 
Rec. 0.7089 0.7506 0.7871 0.6110 0.5680 1.0 0.4551 0.7649 1.0 0.7749 
F1 0.5553 0.5985 0.6047 0.4176 0.6126 0.9135 0.4490 0.6588 0.6993 0.8217 
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Specifically, experimental results indicate that the proposed
model achieves the best performance across all datasets, with 
its F1 score surpassing other models by approximately 24.2%. 
When detecting high severity ISC, all models exhibited high 
recall and precision, suggesting their capacity for terminal ISC 
diagnosis solely based on battery pack voltage data. However, 
as impedance increases and severity diminishes, the impact on 
the battery lessens, leading to a corresponding decrease in 
model detection performance. For medium and low severity, 
other methods witness varying degrees of decline, around 10.5% 
and 29.8% lower compared to high severity, respectively. 
Notably, the proposed method demonstrates relatively stable 
performance despite variations in ISC severity, with a decline 
of around 7.1% and 26.6%, outperforming the other 
competitors. For different ISC severities, the lower the severity, 
the greater the improvement in F1 scores. For high, medium 
and low severity, the proposed model's F1 scores are enhanced 
by 20.8%, 26.2%, and 31.3%, respectively. 

Fig. 4. Detection results under UDDS operational condition using our method. 

Fig. 4 shows the detection results under UDDS operational 
condition using our method. Notably, the 'Criterion' line 
(colored solid line) shows the detection output of different 
battery groups, the 'Threshold' line (red dash line) indicates a 
boundary above which the detection is considered positive, the 
color shaded areas represent the detected ISC, different colors 

Fig. 5. Detection results under UDDS operational condition for various models: (a1) ~ (a3) LSVSF, (b1) ~ (b3) Bi-LSTM, (c1) ~ (c3) DNN, (d1) ~ (d3) LSTM 
Hybrid, (e1) ~ (e3) Non-stationary Transformer, (f1) ~ (f3) TimesNet, (g1) ~ (g3) PatchTST, (h1) ~ (h3) Our method. 
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represent different battery groups. Under normal conditions, 
the criterion is predominantly below the threshold, while in 
the case of a ISC fault, criterion lies above the threshold. 

Fig. 5 shows the detection results under UDDS operational 
condition for various models. The visualized results 
demonstrate that our model has fewer instances of false 
positives and captures more true positives. The most 
consistent alignment with the ISC periods of our model 
indicates higher detection accuracy for all severity levels. 
Namely, our model exhibits the best performance, and the 
main reasons may be that our method significantly improves 
the extraction of features from time-series data, the temporal-
spatial and periodic information can be captured 
simultaneously. Similarly, TimesNet is the closest competitor. 
It utilizes 2D convolution to extract spatial and periodic 
information from time-series data. But its feature extraction 
ability is inferior to Transformer-based models, resulting in 
notable deviations between reconstruction results and ground 
truth. Among these competitors, Bi-LSTM and LSVSF show 
worse performance, the main reasons can be concluded that 
Bi-LSTM network has difficulty in preserving sufficient long-
term memory for distant historical data, which may lead to 
inadequate feature extraction, particularly in capturing 
periodic information. LSVSF extracts temporal-spatial 
information with non-adaptive time window, which captures 
periodic information insufficiently, resulting in poor 
performance. Overall, our approach is more sensitive to 
detecting ISC fault for all severity levels compared to other 
models. These results underscore the strong generalization 
ability and robustness of the proposed model, making it 
suitable for real-world engineering applications. 

C. Ablation study
To assess the significance of each module, a series of

ablation experiments are conducted by progressively 
excluding key modules and observing their impact on the F1 
score.  

Specifically, the periodicity analysis module is excluded, 
setting the sliding time window for segmenting time series to 
100 (following prior work). Then, the time-oriented 
segmentation module is excluded, alternatively using the 
latent period computed within the periodicity analysis module 
as the sliding window length. The time-series data is input into 
the model, following the previous methodology. The 
experimental results collected in Table VII can be summarized 
below: 
·Removing the periodic feature extraction module will lead
to a 15.4% decrease of average F1 score. This is attributed to
the fixed time window length of 100, which fails to capture
latent periodic patterns, thereby hindering the model's ability
to learn inter-period features. Based on this, extracting feature
information between time-series periods is proved crucial.
·Omitting the time dimension segmentation module results
in a 10.7% decrease of average F1 score. After removing this
module, the model receives singular timestamps as tokens
instead of the required time-series segments. This restricts the
model to learn features within the periods, neglecting inter-
period features. The time dimension segmentation module
enables long time-series input lengths, thus facilitating more
comprehensive feature extraction from the time-series data.

D. Sensitivity to K value
The choice of K can affect model performance. Specifically,

when the K value is higher, more frequencies are included and 

TABLE VII 
RESULTS OF ABLATION STUDY 

Method Adaptive sliding 
window 

FUDS UDDS US06 
SMD 

Low Medium High Low Medium High Low Medium High 
Periodic segmentation Yes 0.7387 0.8183 0.8292 0.6155 0.8466 0.9455 0.6081 0.8318 0.9212 0.8890 

w/o time-oriented 
segmentation No 0.7009 0.7364 0.7485 0.4563 0.7657 0.9382 0.4588 0.6038 0.7437 0.8642 

w/o periodicity 
analysis No 0.7029 0.7103 0.7237 0.4327 0.7816 0.9380 0.4026 0.5913 0.7564 0.8463 

TABLE VIII 
THE EXPERIMENTAL RESULTS WITH DIFFERENT K VALUES 

Evaluation indicators 
K Value 

1 2 3 4 5 
F1 Times (s) F1 Times (s) F1 Times (s) F1 Times (s) F1 Times (s) 

FUDS 
Low 0.7354 21.84 0.7343 34.18 0.7365 48.52 0.7387 57.95 0.7100 70.32 

Medium 0.7934 21.80 0.8046 34.03 0.8183 48.25 0.8147 57.62 0.8169 69.87 
High 0.8133 21.73 0.7462 34.37 0.8292 48.79 0.7450 57.77 0.7709 70.33 

UDDS 
Low 0.6155 21.60 0.5828 34.01 0.6150 48.46 0.5879 57.68 0.5893 69.98 

Medium 0.8257 21.62 0.8369 34.02 0.8466 48.48 0.8457 57.60 0.8493 70.18 
High 0.9187 21.56 0.9419 34.22 0.9455 48.34 0.9382 57.96 0.9437 69.71 

US06 
Low 0.5590 21.83 0.5362 34.25 0.6081 48.30 0.5819 58.28 0.5356 69.90 

Medium 0.8106 21.67 0.8215 33.79 0.8318 48.58 0.8314 57.79 0.8367 69.93 
High 0.9147 21.60 0.9212 34.28 0.9190 48.43 0.9169 58.11 0.9061 70.32 

SMD 0.8589 35.16 0.8890 63.20 0.8696 91.24 0.8629 125.26 0.8655 160.35 
Note: F1 and Time denote the F1 score and the total time consumption (including training time and testing time), respectively. 
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more comprehensive periodic information can be obtained. 
However, including too many frequencies might also 
introduce noise and irrelevant information, potentially leading 
to overfitting. To explore the sensitivity of model performance 
to the value of K, experiments with different values of K 
ranging from 1 to 5 for each dataset are conducted, the 
corresponding results are shown in Fig. 6 and Table VIII. 

The experimental results indicate that the K value has 
limited impact on the performance of ISC detection. It is noted 
that the model performs optimally when the K value is set to 3. 
At this setting, the model not only achieves better performance 
but also exerts a minimal impact on time consumption. 
Consequently, the K value is set as 3 to achieve the tradeoff 
between efficiency and accuracy. 

1 2 3 4 5
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co
re
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  UDDS High   US06 Medium   US06 Low   US06 High   SMD

Fig. 6. F1 score with different K values. 

E. Data length robustness test
In real-world scenarios, it is challenging to obtain complete

voltage curves to meet the requirement of high detection 
efficiency. Test data of varying lengths exhibit different 
maximum and minimum voltage values, and the shape of the 
curve can change after normalization operation. 40% of the 
training data is used and this incomplete discharge curve is 
employed to test the model. The experimental results are 
summarized in Table IX. From Table IX, the performance of 
the model varies in response to different severity levels of ISC. 
When the severity level is low, the average F1 score decreases 
by approximately 21.0%; For a medium-level severity of ISC, 
the average F1 score decreases by around 6.7%; For a high-
level severity of ISC, the average F1 score decreases by about 
5.8%. It can be observed that as the severity of ISC increases, 

the robustness becomes stronger. Namely, even in scenarios 
with limited data, the detection performance can maintain a 
high level. This indicates that the proposed method is capable 
of effectively conducting ISC detection under conditions of 
incomplete data, displaying good applicability and resilience. 

TABLE IX 
TEST RESULTS USING 40% OF THE DATA 

Evaluation indicators F1score 
Whole dataset 40% dataset 

FUDS 
Low 0.7387 0.6572 

Medium 0.8183 0.7738 
High 0.8066 0.7462 

UDDS 
Low 0.6150 0.4563 

Medium 0.8466 0.7643 
High 0.9455 0.9437 

US06 
Low 0.6081 0.4490 

Medium 0.8318 0.7903 
High 0.9212 0.8301 

SMD 0.8890 0.8566 

F. Effectiveness of feature extraction
In this subsection, we mainly focus on the effectiveness

analysis of the extracting periodic features from time-series 
data by performing time dimension segmentation.  

To validate the effectiveness of the feature extraction, the 
proposed periodic feature extraction method is integrated into 
two existing models: PatchTST and Non-stationary 
Transformer. The results are depicted in Table X. The 
proposed feature extraction method enhances the performance 
on both two datasets. Specifically, it can improve the 
performance of PatchTST (F1 score increased by 4.7%) and 
Non-stationary Transformer (F1 score increased by 10.2%). 
Meanwhile, for high-, medium- and low-severity levels of ISC, 
F1 scores are improved by 5.3%, 6.3%, and 12.9%, 
respectively. This demonstrates that the proposed feature 
extraction method effectively enhances performance of the 
proposed model, enabling better identification of anomalies 
caused by subtle ISC issues. 

V. CONCLUSION 

This paper proposes a periodic segmentation Transformer to 
perform ISC detection. Specifically, a comprehensive dataset 
encompassing three ISC severity levels under varying 
operating conditions is collected. Then, a dual-module design 

TABLE X 
RESULTS OF FEATURE EXTRACTION EFFECTIVENESS 

Dataset FUDS UDDS US06 
SMD 

model High Medium Low High Medium Low High Medium Low 

PatchTST [26] 0.7473 0.7373 0.7039 0.9437 0.8445 0.5115 0.9082 0.7893 0.6067 0.8409 

+ours 0.8133 0.7934 0.7354 0.9455 0.8457 0.6150 0.9147 0.8106 0.6081 0.8589 

promotion 8.12% 7.61% 4.28% 0.19% 0.14% 16.90% 0.71% 2.70% 0.23% 2.10% 

Non-stationary [24] 0.6489 0.6355 0.6268 0.9257 0.8117 0.3589 0.8773 0.7654 0.5844 0.8437 

+ours 0.7405 0.7373 0.7089 0.9437 0.8445 0.4944 0.9279 0.8229 0.5955 0.8458 

promotion 12.37% 16.02% 11.58% 1.91% 4.04% 27.41% 5.45% 7.51% 1.86% 0.25% 

Our model 0.8292 0.8183 0.7387 0.9455 0.8466 0.6155 0.9212 0.8318 0.6081 0.8890 
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comprising a periodicity analysis module and a time-oriented 
segmentation module enables the adaptive adjustment of the 
length of sliding windows. Meanwhile, the temporal-spatial 
and periodic information can be extracted simultaneously via 
Transformer encoder. Furthermore, a series of experiments 
and analysis (i.e., parameter sensitivity analysis, robustness 
analysis, and effectiveness analysis) are conducted. The 
experimental results demonstrate that the proposed model 
consistently achieved the highest F1 scores, exhibiting an 
average improvement of 24.2% over various SOTA methods. 
Considering the safety implications of ISC in batteries, our 
method shows promise for accurate ISC detection. With the 
rapid development in sensing technology and artificial 
intelligence, how to achieve accurate and fast ISC detection 
under connected vehicle environment is our future work. 
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