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 Abstract—With the rapid adoption of Internet of things (IoT) and 

artificial intelligence (AI), lithium-ion battery state-of-health 

(SOH) estimation plays an important role in guaranteeing the 

secure and stable functioning of various domains. However, the 

majority of the existing methods are constrained by factors such 

as transmission latency, computational energy, and computing 

speed. To address these challenges, we develop a time-frequency 

hybrid neuromorphic computing architecture for battery SOH 

estimation. Specifically, an eco-friendly, biodegradable memristor 

crossbar array is designed, enabling high energy efficiency and 

high-performance density in the proposed system. To improve the 

understanding of the designed time-frequency hybrid 

neuromorphic computing system, a local information extraction 

module, a time-frequency feature fusion module, and a global 

information perception module are proposed. Furthermore, the 

proposed system is validated on two publicly available battery 

ageing datasets (i.e., the CALCE-CS2 dataset and the NASA 

dataset). The experimental results show that the system exhibits 

superior performance to that of the state-of-the-art (SOTA) 

methods in terms of estimation accuracy (highest estimation 

accuracy), time consumption (approximately 8~12 times faster), 

and transmission latency (approximately 10 times faster). This 

study is expected to promote the advancement and evolution of 

next-generation computing systems, enabling the realization of 

low power consumption and high-density information processing 

in IoT scenarios. 

Index Terms—Neuromorphic computing, circuit design, 

memristor, lithium-ion battery, state-of-health estimation 
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I. INTRODUCTION

ithium-ion batteries, which serve as crucial energy storage

devices, have been widely used across various domains, 

from Internet of Things (IoT)-embedded devices and portable 

electronics in daily life to renewable energy equipment in 

intelligent transportation scenarios and smart cities [1]. 

Regardless of the application, lithium-ion batteries degrade 

over time, and this degradation process is influenced by 

complex operating conditions, charging/discharging rates, and 

other influencing factors [2]. Accurately estimating battery 

degradation irrespective of the degradation path and various 

failure mechanisms is an urgent need for battery management 

systems [3]. Therefore, state-of-health (SOH) estimation, 

which can reflect battery degradation trends and reliability, has 

been extensively studied in recent years [4]. 

In general, SOH estimation approaches can be roughly 

divided into the following three categories: electrochemical 

methods, equivalent circuit methods, and data-driven methods 

[5, 6]. Electrochemical methods rely on accurately modelling 

the electrochemical processes occurring inside a battery, 

resulting in substantial computational cost and computing 

memory requirements [7-8]. Compared to electrochemical 

methods, equivalent circuit methods, which require fewer 

inputs, greatly reduce the incurred computational cost but have 

certain limitations in terms of estimation accuracy and 

robustness [9-11]. With the rapid development of big data and 

artificial intelligence (AI), data-driven methods have achieved 

high estimation accuracy without complex electrochemical 

modelling processes [12-18]. However, data-driven methods 

are typically energy-intensive computing techniques and are 

implemented by the von Neumann computing architecture. The 

extensive shuffling of data between the processing unit and 

memory unit leads to significant energy consumption and 

constitutes the majority of the latency in power-limited IoT 

scenarios. 

A promising alternative is memristor-based neuromorphic 

computing, which circumvents extensive data movements 

through its integrated memory processing architectures, 

providing a potential solution to the bottleneck that is inherent 

in von Neumann architectures [21]. Memristor-based 

neuromorphic computing systems that integrate 

complementary metal-oxide semiconductor (CMOS) circuits 

and memristor crossbar arrays can execute neural network 

inference process with high energy efficiency [22]. Several 
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approaches have demonstrated that performing on-chip 

inference using memristor crossbar arrays achieves low energy 

consumption, low transmission latency, and high computing 

speeds [23-26]. However, realizing software-comparable 

computing accuracy with high energy efficiency and low 

latency remains challenging. 

First, the existing neuromorphic computing systems almost 

based on metal-oxide memristors [21], highly stable and 

eco-friendly memristors and memristor crossbar arrays should 

be developed. Second, recent studies have focused on 

time-domain information processing, while frequency-domain 

information processing has rarely been considered. Third, 

research gaps exist regarding the development of 

time-frequency fusion strategies and local-global multiview 

learning mechanisms for neuromorphic computing 

architectures. 

To leverage the potential of memristor-based neuromorphic 

computing in IoT scenarios, this work aims to investigate a 

time-frequency hybrid neuromorphic computing architecture 

for battery SOH estimation. For clarity, a systemic comparison 

with the existing battery SOH estimation methods is provided 

in Fig. 1. The primary contributions of this research are 

summarized as follows. 

1) An emerging computing device, i.e., an eco-friendly,

biodegradable memristor crossbar array, is constructed after the 

fabrication of a high-stability modified silk fibroin protein 

(MSFP)-based memristor, enabling high energy efficiency and 

high-performance density in the proposed system. 

2) A circuit design is developed for the time-frequency

feature fusion module, which can effectively fuse the 

time-frequency-domain information and provide 

comprehensive representations of perceptual information. 

3) In contrast to the existing neuromorphic computing

architectures, a time-frequency hybrid neuromorphic 

computing architecture is designed; this architecture can be 

perceived and processed from a local-global multiview 

perspective and demonstrates satisfactory performance (i.e., 

estimation accuracy, computing speed, and transmission 

latency) in battery SOH estimation tasks. 

The remainder of this paper is organized as follows. Section 

II details the architecture of the proposed time-frequency 

hybrid neuromorphic computing system. Section III describes 

the process of preparing the MSFP-based memristor and the 

memristor crossbar array. Section IV elaborates on the detailed 

circuit design of the entire system, focusing on the local 

information extraction module, the time-frequency feature 

fusion module, and the global information perception module. 

Section V applies the proposed system to battery SOH 

estimation. Section VI concludes the paper with a summary of 

the research findings. Section VII discusses the future direction 

of this work. 

II. DEVELOPMENT OF A TIME-FREQUENCY HYBRID 

NEUROMORPHIC COMPUTING ARCHITECTURE

In this paper, we propose a time-frequency hybrid 

neuromorphic computing system that can efficiently extract 

local-global information in the time-frequency domain and 

provide reliable SOH estimates for lithium-ion batteries. To 

manage the complexity of the proposed time-frequency hybrid 

neuromorphic computing system, three modules are employed, 

i.e., a local information extraction module, a time-frequency

feature fusion module, and a global information perception

module, as shown in Fig. 2.

Local information extraction module: Based on the 

convolutional attention mechanism [27], a novel local 

information extraction module is designed to enhance the 

feature representation ability of the proposed approach. The 

local information extraction module is mainly composed of a 

2-dimensional convolutional neural network (2D CNN) unit, a

parallel multiscale (PM) self-attention unit, and a 1D

convolution unit. Specifically, the electrical signals of

lithium-ion batteries are denoted as Vi, j= {[vi, j, ii, j, Ti, j, ti, j], i[1,

n], j[1, m]}. vi, j, ii, j, Ti, j, and ti, j denote the voltage, current,

temperature, and time, respectively. n is the number of

lithium-ion batteries, and m is the number of discharge cycles.
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Fig. 1. Systemic comparison with the existing battery SOH estimation methods. 
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First, the 2D CNN unit is employed to capture detailed 

information from the electrical signals of lithium-ion batteries: 

Vc=2D-conv (Vi, j). Then, the PM self-attention unit is used to 

extract features with temporal dependencies, which can pay 

more attention to the useful information contained in electrical 

signals and suppress abrupt noise. The output of the PM 

self-attention unit is presented as Vm=PM self-attention (Vc). 

Furthermore, the obtained feature information Vm is delivered 

to the 1D convolution unit, which can smoothly filter the 

features and incorporate temporal dependencies. Thus, the local 

information representation can be represented by 

VLocal=1D-conv (Vm). 

Time-frequency feature fusion module: The combination of 

time-domain information and frequency-domain information 

can provide more comprehensive representations of battery 

signals [28]. A time-frequency feature fusion module is 

designed in this work. First, the 1D convolution unit is used to 

process the time-domain information that can prevent 

overfitting problems and leave more space in the frequency 

domain: Vt=1D-conv (VLocal). Second, the fast discrete Fourier 

transform (DFT) operation is applied to extract the 

frequency-domain information from the input features Vk=DFT 

(VLocal). Third, parallel convolutional operations are performed 

on the amplitude Vka and the phase Vkp of Vk. After the parallel 

convolutional operations, the fast inverse DFT (IDFT) 

operation is performed on the input signal, which can facilitate 

feature fusion from the time domain and frequency domain. 

The output of the fast IDFT operation can be represented as Vf= 

IDFT [1D-conv (Vka)+ 1D-conv (Vkp)]. Furthermore, the 

cross-modal attention mechanism is employed, taking the 

frequency-domain features Vf as queries and the time-domain 

features Vt as keys and values, and the output of the 

time-frequency feature fusion module can be expressed as 

Vtf=cross-modal attention (Vt + Vf). 

Global information perception module: Considering that the 

transformer network has advantages in terms of processing 

global information with long-range dependencies [29], we 

propose a global information perception module based on the 

transformer architecture. The output feature Vtf derived from 

the time-frequency feature fusion module is injected into the 

multi-head self-attention unit to generate global perception 

information: Vmself= multi-head self-attention (Vtf). Then, the 

output Vout of the global information perception module is 

obtained via residual connection, layer normalization, and 

linear operations. 

To further improve the understanding of system design, the 

corresponding pseudocode is provided in Table I. 
TABLE I 

THE ALGORITHMIC PSEUDOCODE OF THE TIME-FREQUENCY HYBRID 

NEUROMORPHIC COMPUTING SYSTEM 

Algorithm 1 Time-frequency hybrid neuromorphic computing system 

Input: Electrical signals Vi, j= {[vi, j, ii, j, Ti, j, ti, j], i[1, n], j[1, m]} 

Output: Vout representing the predicted capacity 
1: procedure TFHNCS _ architecture (Vi, j) 

2: Local information extraction module  

3: for i[1, n], j[1, m] do  

4:   Vc2D-conv (Vi, j) 

5:   VmPM self-attention (Vc) 

6:   VLocal1D-conv (Vm) 
7: end for  

8: Time-frequency feature fusion module 

9: Vt1D-conv (VLocal) 
10: VkDFT (VLocal) 

11: VfIDFT [1D-conv (Vka)+ 1D-conv (Vkp)] 

12: // Vka, Vkp are amplitude and phase of Vk 
13: Vtfcross-modal attention (Vt + Vf) 

14: Global information perception module 

15: Vmselfmulti-head self-attention (Vtf) 
16: VLNlayer normalization (Vmself, Vtf) 

17: VFeedlayer normalization (VLN, ReLU (Wa·VLN)·Wb) 

18: // Wa, Wb are two linear transformation matrices 
19: Voutlinear (VFeed) 

20: end procedure 

III. MEMRISTOR TECHNOLOGY

To better understand the circuit design of the proposed 

time-frequency hybrid neuromorphic computing system, 

memristor technology is introduced in this part. 

A. Memristor Fabrication and Characteristics

Silk fibroin protein (SFP), an excellent biomaterial that is

environmentally sustainable and biodegradable, has shown 

great potential for use in brain-inspired computing [30]. In this 

work, an MSFP-based memristor is fabricated using the radio 

frequency (RF) magnetron sputtering method and the spin 

coating method. The former method is utilized to fabricate Au 

electrodes. The latter method is used to synthesize the MSFP 
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Fig. 2. Schematic of time-frequency hybrid neuromorphic computing system. 
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functional layer. The specific fabrication process (as shown in 

Fig. 3) is described below. 

Fig. 3. Flow chart for preparing the Au/MSFP/Au memristor. 

Step 1: 28 mg of freeze-dried SFP, 2.5 mg of polyglycerol-3 

(Pg-3), and 2.5 mg of 5,6-dihydroxyindole (5,6-DHI) are 

dissolved in 2 mL of deionized water to prepare solution A. 

Step 2: Solution A is continuously stirred using ultrasonic 

mixing for 30 seconds, and then an MSFP precursor solution 

with a black colour is obtained after performing statistical 

processing for 45 minutes. 

Step 3: The MSFP precursor solution is transferred to an 

oven and then thermally processed at 97°C for 3 hours to 

fabricate the MSFP substrate. 

Step 4: The RF magnetron sputtering method is used to 

fabricate the bottom Au electrode on the MSFP substrate under 

0.8-Pa Ar and 15-W conditions for 35 seconds. Notably, a 5-nm 

Pt adhesion layer is prepared between the bottom Au electrode 

and the MSFP substrate. 

Step 5: The MSFP precursor solution is spin coated on the 

bottom Au electrode using plasma treatment for 60 seconds to 

form the MSFP functional layer. 

Step 6: The top Au electrode is synthesized on the MSFP 

functional layer using the RF magnetron sputtering method 

under 0.8-Pa Ar and 15-W conditions for 20 seconds. In this 

manner, the Au/MSFP/Au memristor is fabricated. 

The electrical characterization of the fabricated 

Au/MSFP/Au memristor is carried out by using an 

electrochemical workstation (CHI-660D), as shown in Fig. 4. 

Fig. 4. (a) I-V curve of the Au/MSFP/Au memristor; (b) C2C stability of the 

Au/MSFP/Au memristor; (c) D2D stability of the Au/MSFP/Au memristor; (d) 

Normalized conductance. 

The Au/MSFP/Au memristor exhibits typical analogue 

resistive switching behaviour under a continuous scanning 

voltage, and the scanning aptitude and scanning rate are set to 

1V and 0.05V/s, respectively, as shown in Fig. 4(a). To study 

the cycle-to-cycle (C2C) stability of the Au/MSFP/Au 

memristor, more than 1000 I-V curves are measured on the 

same memristor. The typical analogue resistive switching 

behaviour can be effective maintained when the scanning 

voltage is increased to 1.5V, as shown in Fig. 4(b). Fig. 4(c) 

exhibits the extensive overlap I–V curves measured by the 120 

randomly chosen memristors, and the Au/MSFP/Au memristor 

has good device-to-device (D2D) stability. The conductance of 

the Au/MSFP/Au memristor is measured under the voltage of 

100 pulses, and the pulse aptitude and pulse width are fixed at 

0.7V and 50μs, respectively, as shown in Fig. 4(d). Specifically, 

the conductance of the Au/MSFP/Au memristor increases when 

the voltage of 50 positive pulses is applied, exhibiting 

long-term potentiation (LTP) behaviour. When the voltage of 

50 negative pulses voltage is applied, the conductance of the 

memristor gradually decreases, indicating long-term depression 

(LTD) behaviour. 

B. Memristor-Based Crossbar Array

In this paper, a memristor-based crossbar array with a

two-transistor-two-memristor (2T2M) configuration is 

designed, which can effectively realize negative and positive 

weights and parallel in-memory computing. The circuit 

architecture of the 2T2M crossbar array is shown in Fig. 5. 
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Fig. 5. Circuit architecture of the 2T2M crossbar array. 

Compared with traditional memristor crossbar arrays with 

one-transistor-one-memristor (1T1M) configuration, each cell 

in the 2T2M crossbar array is connected to the same source 

lines (SLs), and subtraction can be performed directly in the 

current domain. The circuit design of the 2T2M crossbar array 

can greatly reduce the current passed through to the SL, which 

provides a potential remedy for avoiding IR issues. The 

Au/MSFP/Au memristors in the same row are controlled by 

word line (WL) signals and modulated depending on the SL 
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signals. The input voltages are applied to the bit lines (BLs), 

and the corresponding output voltage is read through the SLs. 

To explore the conductance programming ability of the 

proposed method, a 24×24 2T2M crossbar array with 28-nm 

technology is selected. Fig. 6 shows the conductance response 

of the selected 2T2M crossbar array. First, the conductance of 

each memristor is randomly programmed to an intermediate 

value between the minimum conductance Gon and the 

maximum conductance Goff, as shown in Fig. 6(a). Then, the 

conductance of the selected memristors is programmed to the 

maximum conductance Goff using a pulse voltage with a pulse 

potential of 0.7V and a pulse width of 50μs, as shown in Fig. 

6(b). Furthermore, the conductance of the 2T2M crossbar array 

with columns 5, 6, 11, 12, 16, and 17 selected is modulated to 

the minimum conductance Gon 50 after 50 voltage pulses, as 

shown in Fig. 6(c). 

IV. CIRCUIT DESIGN OF THE TIME‒FREQUENCY HYBRID 

NEUROMORPHIC COMPUTING SYSTEM 

Neuromorphic computing has given rise to next-generation 

computing diagrams for the implementation of energy-efficient 

hardware [31]. Our motivation is to construct a time-frequency 

hybrid neuromorphic computing system for battery SOH 

estimation, aiming at realizing low-power and high-density 

information processing in IoT scenarios. 

A. Circuit Design of the Local Information Extraction Module

In this work, we propose a local information extraction

module to increase the perception ability of the developed 

architecture and capture time-domain features VLocal(t) with 

neighbourhood dependencies from electrical signals Vi, j(t)= 

{[vi, j, ii, j, Ti, j, ti, j], i[1, n], j[1, m]}. The specific circuit 

design of the local information extraction module is shown in 

Fig. 7. 

First, each input derived from electrical signals Vi, j(t) is 

converted to a k-channel feature voltage Vc(t) by the 2D CNN 

unit. Here, 2D CNN mainly consists of a convolution unit and a 

flattening circuit. Second, the feature voltage Vc(t) is injected 

into the PM self-attention unit, which is mainly composed of a 

pointwise transformation circuit, a convolution unit, and a 

self-attention circuit. Specifically, the pointwise transformation 

circuit is employed to capture the token feature Vpp(t) from the 

input voltage Vc(t) with linear operations. The convolution unit 

and the self-attention unit are used together, which enables the 

PM self-attention unit to be sensitive to both short-term and 

long-term structures. The output voltages of the convolution 

unit and the self-attention unit are denoted as Vcc(t) and Vss(t), 

respectively. The output voltage Vm(t) of the PM self-attention 

unit is the summation of the voltages of these three parallel 

units, which can be mathematically expressed as: 

( ) ( ) ( ) ( )m pp cc ssV t V t V t V t= + +     (1) 

( ) ( )( )max 0,pp c A BV t V t W W=       (2) 

( ) ( )( )cc cV t Conv V t=     (3) 

( ) ( )( )ss cV t Attention V t=     (4) 

where WA and WB represent the weight matrices implemented 

by 2T2M crossbar arrays. Conv(·) and Attention(·) denote the 

convolution and self-attention operations, respectively. 
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Furthermore, the voltage Vm(t) is delivered to the 

convolution unit that can fuse time-domain dependencies and 

generate the final output VLocal(t). The architectures of the 

flattening circuit and the rectified linear unit (ReLU) circuit 

were designed in previous work [32]. This work mainly focuses 

on the circuit designs of the convolution and self-attention 

units. 
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Fig. 6. Conductance programming ability of the proposed method. (a) Randomly programming; (b) Selected programming; (c) Column programming. 
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1) Circuit design of the convolution unit

 The circuit design of the convolution unit, which consists of

a 2T2M crossbar array, a current-to-voltage conversion circuit, 

and a ReLU circuit, is proposed and shown in Fig. 8. 
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In the convolution unit, the input signals Vi, j(t) controlled by 

the BLs are injected into the 2T2M crossbar array in a 

row-by-row manner. To achieve high-efficiency convolution 

operations, the weights of the convolutional kernels are mapped 

to the conductance differences of the 2T2M crossbar arrays in 

this work. The convolution current Ik,j(t) of the one-column 

2T2M crossbar array is delivered to the current-to-voltage 

conversion circuit and ReLU circuit. Thus, the input and output 

of the convolution unit can be mathematically expressed by: 

( ) ( ) ( ), , , ,

1

N

k j i j i j i j

i

I t G G V t+ −

=

= −      (5) 

( ) ( )( )( ), ,Rec j k jV t LU convertor I t=   (6) 

where Vc,j(t) is the convolution voltage of the one-column 

2T2M crossbar array and j denotes the dimensionality of the 

output voltage. G+
i,j and G-

i,j are the conductance levels of the 

top memristor and the bottom memristor, respectively. i and j 

denote the ith row and jth column of the 2T2M crossbar array, 

respectively. N and M represent the numbers of rows and 

columns in the 2T2M crossbar array, respectively. ReLU(·) and 

convertor(·) denote the ReLU and current-to-voltage 

conversion operations, respectively. 

2) Circuit design of the self-attention unit

The self-attention unit is designed to enhance the ability to

study key features and filter irrelevant information from the 

input signals. The self-attention unit is mainly composed of the 

2T2M crossbar array, the current-to-voltage conversion circuit, 

the Hadamard product circuit, and the softmax circuit, as shown 

in Fig. 9. 

In Fig. 9, the self-attention unit receives the input voltage 

Vc(t) generated by the convolution unit. W (WK, WQ, WV) are the 

weight matrixes to be learned, which are implemented by the 

2T2M crossbar arrays. Following the learnable weight matrixes 

W (WK, WQ, WV), the input voltages Vc(t) can be converted to 

current vectors, denoting the attention key IK, the attention 

query IQ, and the attention value IV, respectively. The output 

voltages Vss(t) of the self-attention unit can be obtained by 

applying the Hadamard product operation and softmax 

operation, which can be mathematically described as: 

( ) ( )
max

TT

K c Q c

s

ss

convertor W V convertor W V
V soft

d

   
 =
 
 

(8) 

( )
T

ss s V cV V convertor W V=       (9) 

where dss and T represent the dimensionality of the 

self-attention unit and the transposition operation, respectively. 
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Softmax(·) denotes the softmax operation, and Vs(t) denotes the 

output voltage of the softmax circuit. 

B. Circuit Design of the Time-Frequency Feature Fusion

Module

In this work, we propose a time-frequency feature fusion

module for capturing context information in the time domain 

and periodic information in the frequency domain, which can 

provide more comprehensive representations for the SOH 

estimation task. The specific circuit design of the 

time-frequency feature fusion module is shown in Fig. 10. 

According to Fig. 10, the time-frequency feature fusion 

module includes two processing paths in the time domain and 

frequency domain. Along the time-domain path, the input 

signal VLocal(t) is injected into the convolution unit, which can 

further extract time-domain features Vt(t) and effectively avoid 

overfitting problems. Along the frequency-domain path, the 

Fourier transform unit is first applied to capture the 

corresponding frequency features (including the amplitude 

representation Vka(t) and the phase representation Vkp(t)) from 

the input signal VLocal(t). Then, the amplitude representation 

Vka(t) and the phase representation Vkp(t) are delivered to two 

convolution units. Furthermore, the inverse Fourier transform 

unit is employed to transfer the frequency-domain information 

to the time domain, which facilitates the subsequent 

time-frequency fusion process. Finally, a cross-modal attention 

unit receives the time-domain voltage Vt(t) and the 

frequency-domain voltage Vf(t). The 2T2M crossbar arrays are 

used to learn and calculate the weight matrices Wc (WCK, WCQ, 

WCV) in the cross-modal attention unit. Following the weight 

matrices (WCK, WCV), the time-domain voltage Vt(t) can be 

converted to current vectors, representing the attention key ICK 

and the attention value ICV, respectively. Following the weight 

matrix WCQ, the frequency-domain voltage Vf(t) can be 

transformed into an attention query ICQ. After the Hadamard 

product operation and softmax operation are applied, the output 

voltages Vtf(t) of the cross-modal attention unit can be obtained. 

The corresponding expression can be described as: 

( )
T

tf sc CV tV V convertor W V=       (10) 

( ) ( )
max

TT

CK t CQ f

sc

sc

convertor W V convertor W V
V soft

d

   
 =
 
 

(11) 

where Vsc(t) is the output voltage of the softmax circuit, and dsc 

is the dimensionality of the cross-modal attention unit. 

Notably, the circuit designs of the Fourier and inverse 

Fourier transform units are provided below. 

According to [28], a complex sequence xi can be converted 

into another complex sequence xj with the same length via the 

DFT operation, which can be mathematically expressed as 

follows: 

1
j DFT ix W x

P
=     (12) 

where P is the number of points contained in the complex

sequence xi. WDFT denotes the DFT matrix, it can be defined as: 

( )( )

1

2 /

1 11

1 1 ... 1

1 ...
,

... ... ... ...

1 ...

P

i P

DFT

P PP

W e 
 



 

−

−

− −−

 
 
 = =
 
 
  

    (13) 

 

 

 

 

    

B
L

/W
L

 d
ri

v
er

s

B
L

/W
L

 r
eg

is
te

rs

In
p
u
t 

v
o
lt

ag
es

 V
t(

t)

SL drivers

SL registers

Vt
+(0)

Vt
-(0)

Vt
+(N)

Vt
-(N)

VWL
+(0)

VWL
-(0)

VWL
+(N)

VWL
-(N)

ICK(0) ICK(1) ICK(2) ICK(M)

WCK

Current-to-voltage conversion circuit

 

 

 

 

    

B
L

/W
L

 d
ri

v
er

s

B
L

/W
L

 r
eg

is
te

rs

In
p
u
t 

v
o
lt

ag
es

 V
f(

t)

SL drivers

SL registers

Vf
+(0)

Vf
-(0)

Vf
+(N)

Vf
-(N)

VWL
+(0)

VWL
-(0)

VWL
+(N)

VWL
-(N)

ICQ(0) ICQ(1) ICQ(2) ICQ(M)

WCQ

Current-to-voltage conversion circuit

 

 

 

 
    

B
L

/W
L

 d
ri

v
er

s

B
L

/W
L

 r
eg

is
te

rs

In
p

u
t 

v
o

lt
ag

es
 V

t(
t)

SL drivers

SL registers

Vt
+(0)

Vt
-(0)

Vt
+(N)

Vt
-(N)

VWL
+(0)

VWL
-(0)

VWL
+(N)

VWL
-(N)

ICV(0) ICV(1) ICV(2) ICV(M)

WCV

Current-to-voltage conversion circuit

Hadamard product circuit

Softmax circuit

Hadamard product circuitOutput Voltages Vtf(t)

Input voltages VLocal(t)

Convolution unit

Input voltages VLocal(t)

Fourier transform unit

Inverse Fourier transform unit

Input voltages Vt(t) Input voltages Vf(t)

Convolution unit Convolution unit

Output voltage Vka(t) Output voltage Vkp(t)

Time-frequency feature 

fusion module

Time-domain path Frequency-domain path

Fig. 10. Circuit design of the time-frequency feature fusion module. 

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works (see: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publicationpolicies/).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI10.1109/JIOT.2024.3448350, 



IEEE INTERNET OF THINGS JOURNAL 8 

In this paper, the Fourier and inverse Fourier transform units 

are designed by combining four same-size 2T2M crossbar 

arrays into integrated DFT and IDFT matrices, which can 

directly produce the real and imaginary parts of the DFT and 

IDFT outputs in a single operation. The Fourier and inverse 

Fourier transform units mainly consist of the 2T2M crossbar 

array, the current-to-voltage converter, and the 

analogue-to-digital converter (ADC), as illustrated in Fig. 11. 
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According to Fig. 11, the DFT matrix WDFT is mapped on the 

2T2M crossbar array as conductance information, and the input 

complex sequence xi is denoted as the input voltage: 

1 reRE RE IM

imIM IM RE

VV W W
convertor

VV W WP

 −      
=      

       

(14) 

where WRE and WIM are the real and imaginary parts of the DFT 

matrix WDFT, respectively, which are implemented by a 2T2M 

crossbar array. Similarly, the input/output voltages of the 

Fourier transform unit can be decomposed into real parts Vre(t) 

and VRE(t) and imaginary parts Vim(t) and VIM(t). 

The IDFT operation can be implemented on the same circuit 

architecture as shown in Fig. 11. The input/output voltages of 

the inverse Fourier transform unit can be denoted as: 

re RE IM RE

im IM RE IM

V W W V
convertor p

V W W V

       
=       

−       

    (15) 

C. Circuit Design of the Global Information Perception

Module

In this work, a global information perception module based

on a transformer mechanism is designed to learn global 

information with long-range dependencies regardless their 

time-domain distances. The specific circuit design of the global 

information perception module is shown in Fig. 12. 

According to Fig. 12, the global information perception 

module mainly consists of a multi-head self-attention unit, a 

feedforward unit, and a linear circuit. First, the multi-head 

self-attention unit is fed the input voltage Vtf(t) generated by the 

time-frequency feature fusion module. Then, the input voltage 

Vtf(t) is projected and processed by three trainable weight 

matrices Wn (Wn
K, Wn

Q, Wn
V) that are implemented by 2T2M 

crossbar arrays. Subsequently, the input voltages Vtf(t) can be 

transferred to current vectors, which denote as the multi-head 

attention key In
K, the multi-head attention query In

Q, and the 

multi-head attention value In
V, respectively. By implementing 

the Hadamard product and softmax operations, the voltage 

vectors, representing the learnable attention scores, can be 

obtained and described as follows: 

( ) ( )
g

g

max
K

T T
n n

tf Q tf

s

s

convertor W V convertor W V
V soft

d

   
 =
  
 

(16) 

( )
V

T
n

mself sg tfV V convertor W V=       (17) 

where Vsg(t) and Vmself(t) are the output voltages of the softmax 

circuit and multi-head self-attention unit, respectively. dsg is the 

dimensionality of the multi-head self-attention unit. 

Then, the feedforward circuit is used to process the output 

voltage Vmself(t) of the multi-head attention unit, which is 

composed of two linear transformation matrices (Wa, Wb) 

implemented by 2T2M crossbar arrays, a ReLU circuit, and a 

layer normalization circuit. The output voltage VFeed(t) of the 

feedforward circuit is represented by: 

( ),LN mself tfV LN V V=  (18) 

( )( ),ReFeed LN a LN bV LN V LU W V W=    (19) 

where VLN(t) is the output voltage of the first layer 

normalization circuit. LN(·) denotes the layer normalization 

operation. 

In the end, the final output of the global information 

perception module is obtained from the linear circuit, which is 

represented by: 

( )out FeedV Linear V=  (20) 

where Linear(·) represents a linear operation. 
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V. BATTERY SOH ESTIMATION APPLICATION

To validate the effectiveness and advantages of the proposed 

time-frequency hybrid neuromorphic computing system in 

battery SOH estimation, a series of experiments are conducted 

by using the necessary parameters (including circuit parameters 

and neural network parameters), as illustrated in Table II. 

TABLE II 
LIST OF THE PARAMETERS USED FOR THE TIME-FREQUENCY HYBRID 

NEUROMORPHIC COMPUTING SYSTEM 

Device Parameter 

Circuit parameters 

2T2M memristor 

crossbar array 

Ron 1kΩ 

Roff 10kΩ 

Vread 0.7V 

Vscan 0.05V/s 

VWL 1.0V 

VBL 1.0V 

Vmin 0V 

Vmax 2.0V 

Transistor 
VGate 1.1V 

Raccess 15KΩ 

ADC Precision 6bits 

Neural network parameters 

Learning rate 1.5×10-4 

Batch size 10 

Momentum 0 

Decay 0.9 

Maximum error 10-4

A. Dataset Description and Evaluation Metrics

Two publicly available battery ageing datasets are employed

in this paper: the CS2 dataset collected by the computer-aided 

life cycle engineering center (CALCE) [33] and the NASA 

dataset released by the National Aeronautics and Space 

Administration (NASA) [34]. 

From the CALCE-CS2 dataset, four LiCoO2 batteries 

(CS2_35, CS2_36, CS2_37, and CS2_38), each with an initial 

capacity of 1100 mAh, are used. The batteries are charged at a 

constant current (CC) of 0.5 C until the cut-off voltage reaches 

4.2 V, and then the batteries are charged at a constant voltage 

(CV) of 4.2 V until the charging current decreases to 50 mA.

After fully charging, the batteries are discharged at a constant

current of 1 C until the cut-off voltage decreases to 2.7 V.

Notably, the CALCE-CS2 dataset was obtained by a battery

experimental test system (ArbinBT2000) under ambient

conditions (25℃~30℃).

From the NASA dataset, four groups of LiCoO2 lithium-ion 

batteries with initial capacities of 2000 mAh are selected: B05, 

B06, B07, and B18. The NASA dataset was obtained under 

charging and discharging conditions and measured by 

electrochemical impedance spectroscopy (EIS) at room 

temperature (24°C). Under charging conditions, a constant 
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current of 0.75 C is employed to charge the batteries until the 

cut-off voltage reaches 4.2 V, and then the batteries are charged 

at a constant voltage of 4.2 V until the current drops to 20 mA. 

Under discharging conditions, a constant current of 1 C is 

employed to discharge the batteries until the cut-off voltages of 

B05, B06, B07, and B18 decrease to 2.7 V, 2.5 V, 2.2 V, and 

2.5 V, respectively. More detailed information about the two 

publicly available battery ageing datasets is shown in Table III. 
TABLE III 

DETAILED INFORMATION ABOUT THE TWO PUBLICLY AVAILABLE BATTERY 

AGEING DATASETS 

Dataset CALCE-CS2 NASA 

Manufacturer Unknown LG Chem 
Form factor Prismatic 18650 

Cell node Graphite Graphite 

Cell cathode LiCoO2 LiCoO2 
Charging condition CC-CV CC-CV 

Discharging condition 1 C 1 C

Nominal capacity  1100 mAh 2000 mAh 
Upper cut-off voltage 4.2 V 4.2 V 

Lower cut-off voltage 2.7 V 2.7 V, 2.5 V, 2.2 V, 2.5 V 

Number of cells 4 4 

To objectively evaluate the performance of the proposed 

time-frequency hybrid neuromorphic computing system, two 

evaluation metrics, namely, the mean absolute error (MAE) and 

root mean square error (RMSE), are used [35]. Notably, smaller 

MAE and RMSE values indicate higher estimation accuracy. 

The abovementioned evaluation metrics can be mathematically 

expressed as follows: 

1

1 n
real predicted

i i

i

MAE C C
n =

= − (21)

( )
2

1

1 n
real predicted

i i

i

RMSE C C
n =

= − (22)

where Ci
real and Ci

predicted denote the real battery capacity and 

the predicted battery capacity, respectively. 

B. Neural Network Training and Inference Processes

The proposed time-frequency hybrid neuromorphic

computing system is trained to perform the battery SOH 

estimation task, which mainly consists of an off-chip training 

stage, a weight transfer stage, and an on-chip inference stage, as 

illustrated in Fig. 13. 

Off-chip training stage: The off-chip training process is 

implemented in Python with the PyTorch library and validated 

on a Linux operating system (Intel® Xeon(R) Gold 6242R 

CPU @ 3.10GHz CPU, Nvidia RTX 3090 GPU). Notably, the 

electrical signals in the CACLE-CS2 dataset are divided into a 

training dataset and a testing dataset based on a three-to-one 

ratio. For example, when the electrical signals in the CS2_35 

cell are selected as the testing dataset, the remaining battery 

data for the other three cells are used as the training dataset. For 

the NASA dataset, the first 70% of the discharge cycles are 

distributed to the training dataset, and the remaining cycles are 

selected as the testing dataset. Gaussian random noise is 

injected during the off-chip training process to enhance the 

resilience of the proposed system against nonidealities in the 

SOH estimation task. The desired weights can be achieved 

when the off-chip training procedure is completed. 

Weight transfer stage: The desired weights of the 

well-trained model are transferred to the proposed 

time-frequency hybrid neuromorphic computing system as the 

conductance levels using the cycle-parallel conductance tuning 

method [36]. Specifically, if the weight update direction is 

negative (∆w<0), a SET pulse is applied to the negative 

memristor cell (G-) to decrease its weight; if the weight update 

direction is positive (∆w>0), a SET pulse is applied to the 

positive memristor cell (G+) to increase its weight. In the 

RESET operation, a RESET pulse is applied to the 

corresponding memristor cell via the same procedure as that 

used by the SET operation. Notably, the RESET and SET 

operations are employed alternately for 2T2M crossbar array 

programming. 

On-chip learning stage: The on-chip inference process is 

implemented in the NeuroSim V3.0 framework [37]. After the 

desired weights are transferred to the 2T2M crossbar array, the 

proposed time-frequency hybrid neuromorphic computing 

system is validated on the testing dataset using on-chip 

inference. When the electrical signals in the testing set are 

injected into the BLs of each crossbar array, the output of the 

global information perception module (representing the 

predicted battery capacity) can be obtained. 

C. Results and Analysis

In this paper, a well-trained time-frequency hybrid

neuromorphic computing system is employed to perform SOH 

estimation. The circuit results of the proposed time-frequency 

hybrid neuromorphic computing system are illustrated in Fig. 

14 and Fig. 15.  
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Fig. 13. Flow chart of neural network and inference processes. 
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Fig. 14. Circuit results obtained by the proposed system on the CS2_35 cell. (a) 
Input signals; (b) The output voltage of the local information extraction module; 

(c) The output voltage of the time-frequency feature fusion module; (d) The

output voltage of the feedforward circuit; (e) The output voltage of the global
information perception module. 
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Fig. 15. Circuit results obtained by the proposed system on the B05 cell. (a) 

Input signals; (b) The output voltage of the local information extraction module; 

(c) The output voltage of the time-frequency feature fusion module; (d) The

output voltage of the feedforward circuit; (e) The output voltage of the global

information perception module. 
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Specifically, the electrical signals (including voltage, current, 

temperature, and time signals) derived from two publicly 

available battery ageing datasets can be converted and reshaped 

to voltage maps Vi, j(t) within the range of [0V, 1V]. These 

voltage maps are enrolled and injected into the proposed 

time-frequency hybrid neuromorphic computing system. The 

inputs and outputs of three modules, i.e., the local information 

extraction module, time-frequency feature fusion module, and 

global information perception module, are illustrated in Fig. 14 

and Fig. 15. The final output voltage Vout(t) represents the 

predicted capacity of the tested lithium-ion batteries, which can 

be used to calculate the SOH (the ratio of the remaining 

lithium-ion battery capacity to the original capacity) and is 

mathematically expressed by: 

current

original

C
SOH

C
=    (23) 

where Ccurrent and Coriginal denote the current battery capacity 

and the original battery capacity, respectively. 

To measure the estimation performance of the proposed 

time-frequency hybrid neuromorphic computing system, an 

experiment is conducted for 750 discharge cycles on 

CACLE-CS2 dataset. Meanwhile, another experiment is 

conducted for 50 discharge cycles on NASA dataset. To 

observe the performance of the proposed system, the SOH 

estimation results, errors, and training loss obtained on the 

CALCE-CS2 dataset and the NASA dataset are shown in Fig. 

16 and Fig. 17, respectively. From Fig. 16 and Fig. 17, slight 

divergences are observed between the predicted SOHs and the 

real SOHs for the CALCE-CS2 dataset and the NASA dataset, 

demonstrating that the proposed system is capable of 

estimating battery SOH trends. 

To verify the superiority of the proposed time-frequency 

hybrid neuromorphic computing system, experiments 

comparing it with the state-of-the-art (SOTA) estimation 

methods [12-20] are further conducted on the CALCE-CS2 

dataset and the NASA dataset, as shown in Table IV and 

Table V, respectively. The proposed time-frequency hybrid 

neuromorphic computing system achieves the best estimation 

accuracy across four LiCoO2 batteries (CS2_35, CS2_36, 

CS2_37, and CS2_38) on the CALCE-CS2 dataset. The 

proposed system exhibits a 0.15% average MAE decrease and a 

0.19% average RMSE decline over the other methods. In the 

case of the NASA dataset, the proposed system still obtains the 

best accuracy for the SOH estimation task across the four 

groups of LiCoO2 lithium-ion batteries (B05, B06, B07, and 

B18). The average values are greater than those of the SOTA 

methods, where the average MAE is decreased by 0.15% and 

the average RMSE is declined by 0.22%. 

To investigate the effectiveness of each module in the 

proposed time-frequency hybrid neuromorphic computing 

system, a series of ablation experiments are conducted on the 

two publicly available battery ageing datasets. Two evaluation 

metrics, i.e., the MAE and RMSE, are collected in Table VI and 

Table VII, respectively. 

From Table VI and Table VII, the results of the ablation 

experiments can be summarized as follows. 1) By comparing 

the estimation results, a discernible decline in estimation 

performance (CALCE-CS2 dataset: −0.21% MAE and −0.23% 

RMSE; NASA dataset: −0.17% MAE and −0.20%) can be 

TABLE IV 

COMPARISON OF DIFFERENT STATE-OF-THE-ART METHODS FOR SOH ESTIMATION ON CALCE-CS2 DATASET 

Method 

CALCE-CS2 dataset 

CS2_35 CS2_36 CS2_37 CS2_38 Average 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

[12] 1.55% 2.46% 1.16% 2.10% 1.16% 2.08% 1.74% 3.08% 1.40% 2.47% 

[13] 0.68% 0.79% 0.81% 0.89% 0.75% 0.84% 0.68% 0.78% 0.73% 0.82% 

[14] 0.77% 1.58% 1.56% 3.99% 0.93% 1.71% 0.78% 1.64% 1.01% 2.45% 

[15] 0.25% 0.35% 0.47% 0.55% 0.37% 0.48% 0.39% 0.50% 0.37% 0.47% 

[16] 0.43% / 0.48% / 0.42% / 0.43% / 0.44% / 

[17] 0.51% 0.65% 0.47% 0.64% 0.50% 0.69% 0.51% 0.66% 0.50% 0.66% 

[18] 0.35% 0.45% 0.38% 0.48% 0.32% 0.42% 0.35% 0.43% 0.35% 0.45% 

[19] 0.47% 1.32% 0.68% 2.01% 0.46% 1.10% 0.55% 1.34% 0.54% 1.48% 

This work 0.18% 0.24% 0.22% 0.27% 0.17% 0.23% 0.23% 0.28% 0.20% 0.26% 

Note: Best results are highlighted as first and second. 

TABLE V 

COMPARISON OF DIFFERENT STATE-OF-THE-ART METHODS FOR SOH ESTIMATION ON NASA DATASET 

Method 

NASA dataset 

B05 B06 B07 B18 Average 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

[12] 1.78% 2.15% 1.82% 2.10% 0.54% 0.67% 1.90% 2.08% 1.51% 1.75% 

[13] 2.53% 2.71% 0.74% 0.88% 0.74% 0.97% 0.56% 0.71% 1.18% 1.58% 

[14] 1.89% 1.52% 1.74% 1.78% 1.77% 1.63% 1.88% 1.92% 1.82% 1.71% 

[15] 0.31% 0.42% 0.40% 0.51% 0.39% 0.40% 0.43% 0.54% 0.36% 0.46% 

[16] 0.62% / 1.05% / 0.59% / 1.02% / 0.82% / 

[17] 0.27% 0.32% 0.74% 1.11% 0.17% 0.23% 0.25% 0.35% 0.36% 0.50% 

[18] 0.53% 0.60% 0.49% 0.60% 0.41% 0.50% 0.41% 0.45% 0.46% 0.54% 

[20] 0.28% 0.37% 0.44% 0.56% 0.37% 0.44% 0.42% 0.53% 0.36% 0.45% 

This work 0.22% 0.24% 0.25% 0.33% 0.15% 0.18 % 0.15% 0.18% 0.19% 0.23% 

Note: Best results are highlighted as first and second. 
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observed when the PM self-attention unit is removed from the 

local information extraction module. The main reason for this 

finding may be that the PM self-attention unit is able to guide 

the proposed system to capture features with temporal 

dependencies, effectively suppressing abrupt noise. 2) 

Compared with the frequency domain, the removal of the time 

domain from the time-frequency feature fusion module has a 

greater impact on the resulting estimation performance. 

Meanwhile, when the time domain features are used together 

with the frequency domain features, the estimation 

performance is slightly better than using a single domain 

feature. The main reasons can be concluded that the 

time-domain features play an important role in battery 

estimation, and the frequency-domain features can provide 

additional representations for the time domain. 3) There is a 

significant drop in estimation performance on the these two 

datasets (i.e., the CALCE-CS2 dataset and the NASA dataset), 

when the global information perception module is removed. 

The experimental results demonstrated that the global 

information perception module based on a transformer 

mechanism play the critical role in learning global information 

with long-range dependencies. 

D. Computational Efficiency Analysis

Almost all the neuromorphic computing systems perform

the on-chip inference with high energy efficiency using 

memristor crossbar arrays although using software operating 

system to implement the off-chip training. Realizing a complete 

fully integrated neuromorphic computing system with low 

energy consumption and strong learning ability is still in its 

infancy stage [23-26]. Considering the off-chip training of all 

the competitors [12-20] is based on software implementation, 

we mainly compare the computational efficiency of on-chip 

inference phase. To measure the computational efficiency of 

the proposed system, a combination of hardware experiments 

and software simulations is employed in this paper. 

1) Hardware experiments

First, we measure the energy efficacy and performance

density of the core computing element (i.e., the 2T2M crossbar 

array implemented by the Au/MSFP/Au memristor), as shown 

in Table VIII. 
TABLE VIII 

BENCHMARK METRICS OF THE CORE COMPUTING ELEMENT WITH A 1-BIT INPUT 

Metrics Quantitative value 

Area 2.474 μm2 

Power 7.60 pJ/25 ns=0.304 mW 

Performance (24×24×2) ops/(1×25 ns)=46.08 GOPs-1 
Energy efficiency 46.08 GOPs-1/0.304 mW=151.579 TOPs-1W-1 

Performance density 46.08 GOPs-1/2.474 μm2=18.625 TOPs-1mm-2 

In this paper, a 24×24 2T2M crossbar array with 28-nm 

technology is used. The calculation is performed according to 

the necessary peripheral circuits with 28-nm technology. From 

Table VIII, we achieve an energy efficiency level of 151.579 

TOPs-1W-1 and a performance density of 18.625 TOPs-1mm-2. 

The implementation of existing SOH estimation methods 

TABLE VI 

ABLATION EXPERIMENTS ON CALCE-CS2 DATASET 

Local information extraction 

module 
Time-frequency feature fusion module Global information 

perception module 

Metrics 

PM-self-attention Time-domain Frequency domain Fusion MAE RMSE 

     0.41% 0.49% 

     0.33% 0.40% 

     0.28% 0.37% 

     0.34% 0.42% 

     0.27% 0.36% 

     0.20% 0.26% 

TABLE VII 

ABLATION EXPERIMENTS ON NASA DATASET 

Local information extraction 

module 
Time-frequency feature fusion module Global information 

perception module 

Metrics 

PM-self-attention Time-domain Frequency domain Fusion MAE RMSE 

     0.36% 0.43% 

     0.36% 0.47% 

     0.30% 0.41% 

     0.31% 0.40% 

     0.25% 0.34% 

     0.19% 0.23% 

TABLE IX 

HARDWARE COMPARISON AMONG THE SOTA CORE COMPUTING ELEMENTS 

Ref. [23] Ref. [24] Ref. [25] Ref. [26] This work 

Technology 40nm 130nm 130nm 14nm 28nm 

Memory 1T1M RRAM 1T1M RRAM 1T1M RRAM 2T2M PCM 2T2M ERRAM 

Device stability Unknown High High Unknown High 

Switching type Analogue Digital Digital Digital Analogue 

Time-frequency domain No No No No Yes 

Energy efficiency (TOPs-1W-1) 75.17 11.01 40.00 10.5 151.58 

Performance density (TOP s-1mm-2) 7.01  1.16 12.80 1.59 18.63 

Applications Unknown Recognition Recognition Recognition Estimation 
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[12-20] usually built on the complementary metal oxide 

semiconductors (CMOS) devices, leading to low energy 

efficiency and low performance density. For fairness of 

hardware comparison, a hardware comparison among the 

neuromorphic computing elements [23-26] is demonstrated in 

Table IX. Notably, the hardware metrics of the neuromorphic 

computing elements are excerpted from previous papers 

[23-26]. Compared with the best metrics of the neuromorphic 

computing elements (that is, an energy efficiency level of 75.17 

TOPs-1W-1 and a performance density of 12.80 TOPs-1mm-2 

with a 1-bit input), the proposed 2T2M crossbar array exhibits 

an approximately 2.02 times greater energy efficiency level and 

a 1.46 times greater performance density. 

2) Software simulations

Then, the proposed system is simulated in the NeuroSim

V3.0 framework [37]. The size of 2T2M array is 128×128. In 

terms of the device characteristics, the parameters (including 

the circuit and neural network parameters) used for the 

proposed time-frequency hybrid neuromorphic computing 

system are provided in Table II. The time consumption, latency, 

and power consumption of the proposed system are measured 

in the NeuroSim V3.0 framework [37]. We analyse the time 

consumption levels of the on-chip inference process and those 

of the SOTA methods [12-20] on the two publicly available 

battery ageing datasets, as shown in Fig. 18. 
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Fig. 18. Time consumption of on-chip inference. (a) CALCE-CS2 dataset; (b) 

NASA dataset. 

According to Fig. 18, the proposed time-frequency hybrid 

neuromorphic computing system has a significant advantage in 

terms of time consumption and is approximately 8~12 times 

faster than the other competitors, satisfying the real-time 

requirement of the IoT scenario. 

Fig. 19 shows the latency breakdown and energy breakdown 

of the proposed time-frequency hybrid neuromorphic 

computing system. The energy consumption of the proposed 

system is measured to be approximately 3606 pJ for 1-bit 

computing with a 0.7-V, 25-ns read voltage. Among all 

peripheral circuits, the energy consumption of the ADCs 

reaches 84.2%, far exceeding that of the core computing 

elements (i.e., 2T2M crossbar arrays). During the on-chip 

inference process, the latency of the proposed system is 

recorded by capturing the duration of the flag signal in the 

NeuroSim V3.0 framework. The total latency of the proposed 

time-frequency hybrid neuromorphic computing system is 

approximately 1.40 ms. Most of the latency is generated by the 

interconnections among all peripheral circuits. Comparing the 

metrics attained with an RTX 3090 GPU (that is, a latency of 

10.2 ms), the proposed system achieves approximately 10 times 

faster latency. 

(a) (b)

Fig. 19. The breakdown of the time-frequency hybrid neuromorphic computing 
system by main component (a) Energy breakdown; (b) Latency breakdown. 

E. Robustness Analysis

To assess the robustness of the proposed system, a

noise-resilient analysis and a device failure analysis are 

conducted, as illustrated in Fig. 20. 

Initially, random noise is introduced to the given electrical 

signals, comprising voltage, current, temperature, and time data, 

to verify the robustness of the proposed time-frequency hybrid 

neuromorphic computing system. The MAEs and RMSEs 

produced by the proposed system on the CALCE-CS2 dataset 

and the NASA dataset are depicted in Fig. 20(a). When the 

level of the random noise is greater than 0.2, a slight reduction 

is observed in the estimation performance (CALCE-CS2 

dataset: −0.11% MAE and −0.10% RMSE; NASA dataset: 

−0.07% MAE and −0.04% RMSE). The experimental results

demonstrate that the impact of random noise on the proposed

system can be negligible within a certain range (noise

level≤0.2).

Then, to examine the effect of device failure, we set the 

failure ratio of the memristors in Roff/Ron from 0% to 30%, and 

the estimation performances achieved on the CALCE-CS2 

dataset and the NASA dataset are illustrated in Fig. 20(b). 

When the device failure percentage reaches approximately 20%, 

the estimation performance can be maintained at an acceptable 

level (CALCE-CS2 dataset: ≤0.25% MAE and ≤0.29% RMSE; 

NASA dataset: ≤0.26% MAE and ≤0.28% RMSE). Once the 
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device failure percentage exceeds 25%, the estimation 

performance significantly decreases on both publicly available 

experimental battery ageing datasets. The experimental results 

demonstrate that the proposed time-frequency hybrid 

neuromorphic computing system exhibits commendable 

tolerance to device failures. 
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Fig. 20. The robustness analysis of the time-frequency hybrid neuromorphic 

computing system. (a) Noise-resilient analysis; (b) Device failure analysis. 

VI. CONCLUSION

This paper investigates a time-frequency hybrid 

neuromorphic computing system for battery SOH estimation. 

First, an eco-friendly, biodegradable memristor crossbar array 

is constructed using MSFP-based memristors, which can 

realize high energy efficiency and high-performance density in 

the proposed system. Then, the proposed system mainly 

consists of a local information extraction module, a 

time-frequency feature fusion module, and a global information 

perception module. Through the local information extraction 

module, time-domain features with neighbourhood 

dependencies can be adequately captured from battery 

electrical signals. Through the time-frequency feature fusion 

module, the context information contained in the time domain 

and the periodic information contained in the frequency domain 

can be sufficiently exchanged, providing more comprehensive 

representations for the SOH estimation task. In the global 

information perception module, global information with 

long-range dependencies can be extracted, and a reliable output 

can be effectively obtained. For verification purposes, the 

proposed system is applied to perform battery SOH estimation 

tasks on two publicly available battery ageing datasets. 

Compared with the SOTA methods, the proposed system 

achieves the best estimation performance and consumes 8~12 

times less time. Additionally, a comprehensive computational 

efficiency analysis and a robustness analysis are conducted, 

indicating the high computational efficiency and reliability of 

the proposed system in the IoT scenario. 

VII. DISCUSSION

Although the proposed time-frequency hybrid neuromorphic 

computing system has a capability to process complex 

electrical signals for battery SOH estimation task, which 

balances computational efficiency and computing accuracy to 

promote versatility. The scalability of the proposed system for 

real-world large-scale applications is still challengeable. 

Firstly, almost all the neuromorphic computing systems 

perform the on-chip inference with high energy efficiency 
using memristor crossbar arrays although using software 

operating system to implement the off-chip training. Realizing 

a complete fully integrated neuromorphic computing system 

with low energy consumption and strong learning ability is still 

in its infancy stage. Thus, the hardware implementation of 

adaptive learning algorithm needs to be further developed in 

future, which is expected to promote the integration of 

neuromorphic computing and battery management systems. 

Secondly, the development of existing neuromorphic 

computing systems is limited to specific scenario, and the 

adaptability requirements of different battery technologies are 

hard to achieve. Considering the requirements of real-world 

large-scale application have become more diversified, 

reconfigurable functional circuits need to be further developed 

in the future.  

Thirdly, the biological interpretability of the proposed 

time-frequency hybrid neuromorphic computing system is 

limited. With better understanding of the structure and function 

of human brain, general learning algorithms for real-time 

battery SOX estimation including the state of health, state of 

charge, state of energy, etc. should be studied to promote the 

development of neuromorphic computing systems for 

real-world large-scale applications. 
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