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Abstract: As subsidies for renewable energy are progressively reduced worldwide, electric vehicle
charging stations (EVCSs) powered by renewable energy must adopt market-driven approaches to
stay competitive. The unpredictable nature of renewable energy production poses major challenges
for strategic planning. To tackle the uncertainties stemming from forecast inaccuracies of renewable
energy, this study introduces a peer-to-peer (P2P) energy trading strategy based on game theory
for solar-hydrogen-battery storage electric vehicle charging stations (SHS-EVCSs). Firstly, the incor-
poration of prediction errors in renewable energy forecasts within four SHS-EVCSs enhances the
resilience and efficiency of energy management. Secondly, employing game theory’s optimization
principles, this work presents a day-ahead P2P interactive energy trading model specifically designed
for mitigating the variability issues associated with renewable energy sources. Thirdly, the model is
converted into a mixed integer linear programming (MILP) problem through dual theory, allowing
for resolution via CPLEX optimization techniques. Case study results demonstrate that the method
not only increases SHS-EVCS revenue by up to 24.6% through P2P transactions but also helps manage
operational and maintenance expenses, contributing to the growth of the renewable energy sector.

Keywords: electric vehicle charging station; photovoltaic; hydrogen storage system; battery storage;
peer-to-peer energy trading; game theory

1. Introduction

Electric vehicles (EVs) are at the forefront of the global shift towards sustainable
transportation, offering a cleaner, more energy-efficient alternative to traditional engine
vehicles [1–3]. EVs leverage advances in battery technology, electric motors, and power
electronics to provide a driving experience that is not only environmentally friendly but
increasingly competitive in terms of performance, range, and cost. As governments world-
wide implement policies to reduce carbon emissions and consumers become more eco-
conscious, the adoption of EVs is accelerating, supported by expanding infrastructure
for charging and a growing recognition of their role in mitigating climate change [4,5].
Embracing the future of mobility, EVs represent a key component in the transition to a
low-carbon economy, promising a greener, more sustainable future for transportation.

Amid the swiftly advancing energy transition, multi-energy electric vehicle charging
stations (EVCSs) are emerging as crucial infrastructure components for promoting sustain-
able transportation. These EVCSs, which harness various renewable energy technologies,
including solar, wind, hydrogen, and battery storage, provide versatile charging solutions
that help stabilize grid loads and optimize energy utilization. Equipped with advanced
management systems, multi-energy EVCSs can dynamically adjust charging power and
methods in response to real-time variations in energy supply and demand. This capability
not only boosts energy efficiency and cuts operational costs but also significantly supports
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the ecological transformation of the power grid [6]. As trailblazers in the new era of mo-
bility, EVs play a key role in the shift towards a low-carbon economy, heralding a more
sustainable and greener future for transportation.

The shift toward sustainable energy systems is gaining momentum, and in this evolv-
ing situation, EVCSs equipped with diverse energy options—such as solar energy, hydrogen
storage systems, and battery storage—are becoming increasingly critical. The integration
of these varied energy sources necessitates the development of innovative management
strategies to ensure efficient operation, economic viability, and reliability of the power sup-
ply. Within this framework, game theory and mixed-integer linear programming (MILP)
are being effectively utilized to design and analyze peer-to-peer (P2P) energy exchange
systems. These analytical approaches help optimize the distribution and utilization of
resources, ensuring that EVCSs can meet demand flexibly and sustainably.

Figure 1 shows a solar-hydrogen-storage-integrated electric vehicle charging station
(SHS-EVCS), which utilizes the combined capabilities of photovoltaic panels, a hydrogen
storage system, and battery storage to charge electric vehicles. This station features a solar
array that captures sunlight and transforms it into electrical energy. This energy can either
be used directly to charge EVs or be fed into the grid and stored in battery reserves for
later use. For hydrogen energy storage, the system incorporates an electrolyzer that splits
water molecules into hydrogen and oxygen. The hydrogen is then compressed and stored,
ready to be used when needed. During peak demand periods, this hydrogen is converted
back into electricity through a fuel cell to power EVs. Additionally, a battery storage unit
captures any excess energy from the solar array or the fuel cell, ensuring a consistent energy
supply to charge EVs even when the primary renewable sources are inactive.
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This paper mainly addresses the integration of renewable energy sources, energy man-
agement and optimization, and economic feasibility via game-theory-based P2P energy
trading. The research focuses on the optimal sizing and integration of multiple renewable
energy sources, including solar, hydrogen, and battery storage, within EV charging stations.
This is crucial to maximize the utilization of renewable energy sources, minimize depen-
dency on the grid, and ensure a sustainable and resilient energy supply. The combination
of solar, hydrogen, and battery storage aims to leverage the complementary nature of these
resources. Solar energy provides daytime power, hydrogen storage offers long-term energy
storage, and batteries manage short-term fluctuations. This hybrid approach addresses the
intermittent nature of renewable energy sources and improves the reliability and efficiency
of the charging stations. This paper also develops advanced energy management strategies
to optimize the operation of the SHS-EVCS. This includes the efficient allocation of energy
resources, minimizing operational costs, and ensuring the reliability of the energy supply to
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EVs. By focusing on the economic aspects, the research aims to make SHS-EVCSs financially
viable, which involves exploring energy trading opportunities among charging stations.

2. Literature Review

Over the past few decades, policy-driven and technology-driven changes have played
a significant role, which is also reflected in the development of charging infrastructure
and electric vehicles. The concept of electric vehicles, which dates back to the early 20th
century, was first introduced alongside internal combustion engines. However, electric
vehicles struggled to compete due to scarce charging options and limited range [7,8].
Electric vehicles did not have a high degree of popularity, and by the end of the 20th
century, people’s interest in electric mobility was stimulated by advances in electric battery
technology and environmental issues [9]. Judging from the development in recent years,
the progress made by electric locomotives is very significant in terms of electric vehicle
charging infrastructure, especially in the integration process of online personnel. The role
played by wind and solar charging stations is becoming more common, and sustainable
alternatives can be provided by conventional electricity.

MILP, on the other hand, offers a method for optimizing the power distribution
in this P2P network, enabling the charging stations to make decisions that collectively
enhance the system’s performance. This mathematical approach helps determine the
most efficient allocation of resources, minimizing costs and maximizing the utilization of
renewable energy.

P2P energy trading is a revolutionary approach in the energy sector that allows indi-
viduals or businesses to buy and sell electricity directly with each other, typically without
the involvement of traditional energy suppliers. This model leverages technology like
blockchain and smart grids to facilitate these transactions. P2P energy trading can lead
to more efficient use of renewable energy, lower energy costs, and reduced dependence
on large-scale utility companies. It empowers consumers to become ‘prosumers’—energy
producers and consumers—and can contribute to a more sustainable energy system. Zhou’s
study [10] explores P2P energy sharing in smart communities, focusing on its role in ad-
vancing renewable energy adoption. It reviews P2P systems, addresses challenges, and
examines artificial intelligence- and blockchain-based strategies for efficient energy trading,
highlighting the potential economic and operational benefits [10]. The study emphasizes
the need for further research to enhance P2P system effectiveness in renewable energy mar-
kets, particularly focusing on the dynamics of P2P energy trading in community microgrids.
The research develops a game-theory-based decentralized trading scheme that focuses
on the impact of distributed energy resource (DER) ownership [11]. P2P trading benefits
participants economically but can lead to losses in communities with high photovoltaic
penetration. It underscores the need for strategic DER management to optimize economic
outcomes in P2P energy trading [8]. In [12], the authors employ fuzzy optimization tech-
niques to balance economic and environmental objectives in energy trading and propose a
multi-period P2P trading model that simultaneously minimizes electricity costs and carbon
emissions. Another paper uses a distributionally robust optimization approach, utilizing a
fuzzy set based on Wasserstein distance for renewable energy prediction error, and pro-
poses a day-ahead microgrid P2P transactive energy trading model, employing a linear and
convex programming approach to address the nonlinear aspects of the model [13]. A novel
model for optimizing P2P energy trading in multi-microgrid systems uses Nash bargaining
theory and data-driven chance constraints to manage uncertainties in renewable energy
and load forecasting [14]. In [15], the authors provide a comprehensive analysis of 50 global
peer-to-peer distributed renewable energy trading projects.

Game theory, a mathematical framework for analyzing strategic interactions among
rational decision-makers, can be applied effectively in renewable energy trading. This
application is particularly relevant in markets like P2P energy trading, where multiple
participants (consumers, prosumers, utility companies) interact [16–18]. Game theory
provides a framework for understanding the strategic interactions between independent
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charging stations, each acting as rational players seeking to optimize their outcomes by
modeling the decision-making processes of these entities, which can predict their behavior
in response to varying energy supply, demand, and pricing conditions. In P2P energy
trading, game theory can optimize energy distribution among participants. This involves
strategies for energy distribution that are efficient, cost-effective, and fair, considering
the varying production capacities and needs of different participants. In [16], the authors
aimed to achieve higher economic income and maintain multi-agent income equilibrium.
By employing the finite improvement property and a variable-step iterative convergence
method, the study ensures efficient and accurate convergence of the model [16]. The model’s
simulation application demonstrates improved energy utilization rates and increased
economic profits. The article [17] proposes a novel transactive energy market model
using blockchain technology and game theory. The study introduces a proof-of-reserve
consensus mechanism for prosumer–consumer transactions, enhancing energy trading
efficiency and privacy, and uses game-theoretic market rules to establish a sustainable
energy generation and consumption balance while ensuring economic agent privacy [17].
Another study [18] introduces a game-theory-based demand response program (DRP),
integrating both incentive- and price-based DRP concepts, targeting residential, commercial,
and industrial sectors; it evaluates three pricing strategies: fixed pricing, time-of-use pricing,
and real-time pricing, along with their combinations. This approach leads to increased
utility profits, reduced customer costs, and a more balanced load curve.

The fusion of game theory and MILP for designing and analyzing a P2P energy
exchange system between multi-storage EV charging stations presents a novel solution
that could revolutionize energy management in smart grids. This integrated approach
addresses the economic aspects and contributes to the robustness and sustainability of
energy systems in the era of decarbonization. This paper delves into such a system’s
complexities, exploring its potential to create a cooperative network that ensures energy
security, fosters renewable integration, and paves the way for a greener future. It introduces
a novel mixed-integer linear two-stage approach for analyzing the resiliency of power
distribution systems. The study emphasizes the importance of considering both topological
and electrical characteristics of distribution systems in resiliency analysis [19]. Study [20]
introduces a MILP model optimized through a two-stage framework. This framework
integrates system design with control problems of EV charging stations, using a design
and analysis of a computer-experiments-based method [20]. Another study employs an
iterative integer linear programming-based heuristic that efficiently tackles the multiple-
choice knapsack problem with setup constraints [21]. This heuristic outperforms existing
algorithms in solution quality and computation time, achieving optimal or near-optimal
solutions for all tested instances. Linear programming and bi-objective optimization
are particularly effective in long- and medium-term forecasts, reducing maximum errors
significantly [22]. In Teng’s paper [23], a distributed dual decomposition MILP-based
energy management strategy for port-integrated energy systems is proposed to ensure
reliable seaport operations.

Table 1 summarizes the model development and P2P using game theory. The pa-
per [20] uses the CPLEX tool to solve the control problem of EVCSs. The study [24] uses
several electricity sources to increase efficiency through game theory and P2P. Based on the
previous studies, incorporating game theory into P2P systems involves using mathematical
models to analyze and optimize interactions among participants with potentially conflicting
interests. This approach is efficient in P2P networks, where decentralized entities negotiate,
share resources, or trade without a central authority. Game theory provides a structured
framework to model these interactions as strategic games, where each participant (player)
seeks to maximize their utility through their actions [25–27].
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Table 1. Literature review and benchmarking of relevant work.

Reference Electricity
Sources

Energy
Exchange
Applied

P2P or Game
Theory Applied

Uses CPLEX
Solver Results

[20] N/A No Yes Yes

This approach utilizes a CPLEX
solver tool to merge system
design with control issues at EV
charging stations, applying a
method based on the design and
analysis of
computer experiments.

[28] PV, grid No Yes No

Using the suggested algorithm,
prosumers enjoy increased
earnings, while consumers
experience reduced
electricity expenses.

[29] Grid, PV, wind Yes Yes No

The suggested vehicle-to-vehicle
market strategy enables EV
owners to engage in peer-to-peer
transactions, effectively lowering
the cost of charging for
individuals and evening out the
demand on the power grid.

[30] Grid No Yes No

The proposed EV charging
strategy optimally serves the
individual interests of each EV,
while also considering the
demands of other EVs in the
market for the next day.

[31] Battery, PV Yes Yes No

The method that this article
proposed can significantly bolster
resilience by up to 80% and
extend battery lifespan
by 32–37%.

[24] Battery storage,
PV, grid Yes Yes No

The outcomes of the proposed
strategy demonstrate an
enhancement in energy utilization
efficiency by considering the
effects of the power system
within peer-to-peer energy
trading scenarios.

[32]
PV, wind, energy
storage system,
grid

No Yes No

This research demonstrates that
the suggested control strategy
provides a viable and practical
method for managing an
autonomous distributed system
as miniature microgrids within
the context of the electricity
market, considering the
competitive, non-cooperative
relationships among microgrids.
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Table 1. Cont.

Reference Electricity
Sources

Energy
Exchange
Applied

P2P or Game
Theory Applied

Uses CPLEX
Solver Results

[33]

PV, storage
system (heating,
cooling, and
battery), grid

Yes Yes No

The model offers a pragmatic and
effective means for assisting in
the determination of equitable
trading prices, while also
furnishing valuable perspectives
on the optimal design of energy
infrastructures.

[34] PV, wind, energy
storage system No Yes No

The market simulation employs a
non-model-based, game theory
approach, wherein participants
adjust their strategies based on
the expected returns measured
from the market.

[35]

PV, battery
energy storage,
hydrogen
storage, grid

Yes No No

This holistic strategy for energy
optimization allows the station to
accommodate the variable energy
needs for charging electric
vehicles, thereby reducing costs,
and enhancing sustainability.

This work

PV, battery
energy storage,
hydrogen
storage, grid

Yes Yes Yes

The method not only boosts
SHS-EVCS revenue through P2P
transactions but also helps
manage operational and
maintenance expenses,
contributing to the growth of the
renewable energy sector.

The specific contributions of this work are as follows:

• Proposal of a P2P optimal dispatch strategy rooted in game theory for SHS-EVCS,
aimed at achieving greater economic returns by ensuring income equilibrium across
multiple SHS-EVCSs.

• Design and implementation of a CPLEX solver specifically to solve the linear-based
simulation, predominantly employed for addressing locational queries. This solver
is resolved and subsequently integrated with an SHS-EVCHs model to enhance its
applicability.

• This study examines the synergistic collaborations and operational dynamics among
diverse stakeholders to elucidate the shared economic benefits, with a particular
emphasis on methodologies reliant on SHS-EVSC for the facilitation of energy sharing
and the optimization of economic dispatch.

3. Problem Formulation
3.1. Objective Function

To reduce anticipated costs, the objective function F of SHS-EVCS includes the cost of
hydrogen energy storage, gas turbine costs, solar energy costs, grid costs, battery storage
costs, and P2P costs, minus the revenue from selling electricity (1).

F = min∑1
n∈N Fn = min∑N

n ∑T
t (C

EH
n,t + CFC

n,t + Cgrid
n,t + CPv

n,t + Cp2p
n,t + CBes

t − Csell
n,t

)
(1)

where

CEH
n,t is hydrogen cost;
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CFC
n,t is fuel cell generator cost;

Cgrid
n,t is grid cost;

CPv
n,t is solar cost;

Cp2p
n,t is p2p trading cost;

CBes
t is battery energy storage;

Csell
n,t is sale revenue.

3.2. Hydrogen System Model
3.2.1. Electrolyzer Model

The water electrolysis hydrogen production process uses water as raw material, and
its composition mainly includes devices such as the electrolyzer, hydrogen (oxygen) gas–
liquid–solid separators, hydrogen (oxygen) gas coolers, and hydrogen (oxygen) gas puri-
fiers [36]. Using water decomposition to produce hydrogen is an efficient, environmentally
friendly, and convenient new method for hydrogen production. The mathematical model
of the electrolyzer for hydrogen production adopted in this paper is shown in Equation (2):

EAE,t =
v
a

PAE.t (2)

PAE.t and EAE,t represent the electrical power consumed and the quantity of hydrogen
produced by the electrolyzer, respectively. ν denotes the conversion efficiency, which is
75%, and a represents the conversion coefficient for electric energy to the equivalent energy
in hydrogen, valued at 39.65 kWh/kg [37].

3.2.2. Fuel Cell Generator Model

Hydrogen fuel cells, as an energy conversion device within the system, are an im-
portant part of hydrogen energy applications. Hydrogen fuel cells differ from dry cells
and batteries, which are types of energy storage devices that store energy and release it
where needed [38]. Strictly speaking, hydrogen fuel cells are not energy storage devices but
rather devices that can generate electricity through the chemical properties of hydrogen
and oxygen. Their basic principle is the reversible reaction of water electrolysis. This paper
focuses on the process of the battery generating electrical energy by consuming hydrogen.
Therefore, the mathematical expression for the hydrogen fuel cell adopted in this article is
shown as Equation (3):

PFC = ηFCaEFC (3)

PFC and EFC represent the output power and the quantity of hydrogen consumed by
the fuel cell, respectively. ηFC is the energy conversion efficiency, which is 70% [37].

3.2.3. Hydrogen Storage Tank Model

Hydrogen storage tanks [39], as devices for storing hydrogen, come in different types
based on various hydrogen storage technologies. The technology currently used most is
high-pressure gaseous hydrogen storage. The storage tanks used in this technology are
mainly made of conventional stainless acid-resistant steel plates and aluminum alloys. The
process technology for their design and production is relatively mature, with low cost, a
rapid rate of gas charging and discharging, and the capability to store hydrogen at normal
temperatures. The mathematical model for the high-pressure hydrogen storage tanks used
in this paper can be represented by Equation (4):

Ehs(t) = (1 − δhs)Ehs(t − 1) +

[
Ein

hs(t)η
in
hs −

Eout
hs (t)
ηout

hs

]
∆t (4)

Ehs(t − 1) and Ehs(t) represent the total quantity of hydrogen stored in the hydrogen
tank at time t − 1 and t, respectively; δ denotes the energy storage decay rate of the
hydrogen tank, which is 0.05; Pin

hs (t) represents the input quantity of hydrogen into the
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hydrogen tank; Pout
hs (t) represents the output quantity of hydrogen from the hydrogen

tank; ηin
hs is the input efficiency of the hydrogen tank, which is 0.98; and ηout

hs is the output
efficiency of the hydrogen tank, also 0.98 [35].

3.3. Photovoltaic Model

Based on the photovoltaic effect, the PV cells in a PV power generation system can
utilize sunlight to produce electrical energy. The power generation efficiency model is
given as Equation (5):

Ppv = PSTCGAC
[1 + k(Tc − Tr)]

GSTC
(5)

k is the power temperature coefficient, valued at −0.45; different photovoltaic compo-
nents will have different values, generally taken as −0.3%/◦C; and PSTC is the rated output
power of the PV components under standard test conditions. GAC is the real-time solar irra-
diance intensity where the photovoltaic cell operates; Tc is the real-time temperature of the
photovoltaic component surface; GSTC is the illumination under standard test conditions,
valued at 1000 W/m2; and Tr is 25 ◦C.

TC = Ta +
GC
800

(TN − 20) (6)

Ta is the ambient temperature, and TN is the rated temperature at which the photovoltaic
cell operates.

3.4. Battery Energy Storage Model

Batteries can effectively smooth out fluctuations caused by sudden changes in load
demand within a microgrid. When the output power of photovoltaics exceeds the load
demand power, the battery is in a charging state; conversely, when the output power is less
than the load demand power, the battery is in a discharging state. Its characteristics are
shown in (7) and (8).

Discharging model:

EBSS(c) = EBSS(c − 1) + [Egen(c)−
(

Eload(c)
einv

)
]ηdch

b (7)

Charging model:

EBSS(c) = EBSS(c − 1)− [Egen(c)−
(

Eload(c)
einv

)
]/ηch

b (8)

where EBSS(c) is the energy of the battery at the c-th time, Egen(c) is the energy generated
by the generator at the c-th time, Eload(c) is the energy of the load at the c-th time, einv is
the efficiency of the inverter, valued at 95%, and ηch

b and ηdch
b represent the charging and

discharging efficiency of the battery, both valued at 80% [40].

3.5. P2P Trading Model
3.5.1. P2P Internal Trading Revenue [13]

Csell
n,t = ρinter

n,t Pload
n,t (9)

ρinter
n,t is the price of number n SHS-EVCSs selling electricity to other SHS-EVCSs using

internal load.

3.5.2. P2G Trading with Grid

Cgrid
n,t = ρB

n,tP
B
n,t − ρ

g
n,tP

g
n,t (10)
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ρB
n,tand PB

n,t are the price and electricity purchased by SHS-EVCS n from shared battery

energy storage at time t. ρ
g
n,t and Pg

n,t are the price and power sold to the grid. Usually, ρ
g
n,t

is much lower than ρB
n,t, which can increase the profits or reduce costs through P2P trading.

3.5.3. P2P Transaction Energy Trading Cost

Cp2p
n,t = ∑1

i∈N\n ρi
n,tP

i
n,t (11)

where N is the set of charging stations participating in P2P trading. ρi
n,t is the transaction

price between SHS-EVCS n and SHS-EVCS N at time t.

3.5.4. P2P Transactive Energy Trading Constraints

For any time, the electricity sold and purchased should be balanced.

Pi
n,t = −Pn

i,t, ∀t ∈ T, ∀n ∈ N, i ∈ N\n (12)

3.6. Game Theory Model

Cooperative game theory [41] is a branch of game theory that focuses on understanding
the behavior and strategies of groups of players who can form coalitions and collaborate
to achieve better outcomes than they might individually. Unlike non-cooperative game
theory, where the emphasis is on individual players’ strategies and equilibria, cooperative
game theory examines how groups of players can work together and how the collective
benefits can be distributed among them. Key elements include the characteristic function,
which defines the potential payoff for any coalition, and solution concepts like the Core,
the Shapley Value, and the Nash Bargaining Solution, which help determine fair ways to
distribute the collective payoff among the members.

Gamer: N(SHS-EVCS1(1), SHS-EVCS2, SHS-EVCS3. . . SHS-EVCSN)
Strategy: electricity prices (ρ); power transaction value set (P)
Matrix:

ρ =
[
ρcs

1,1 . . . ρcs
N,t . . . ρcs

n,t . . . ρcs
N,t . . . ρcs

N,T

]
All gamers’ pricing at different times.

P =
[

Pcs
1,1 . . . Pcs

N,t . . . Pcs
n,t . . . Pcs

N,t . . . Pcs
N,T

]
All gamers’ transaction value.

Benefits: U =
[
Ucs

1,1 . . . Ucs
N,1 . . . Ucs

n,t . . . Ucs
N,t . . . Ucs

N,T

]
Benefit set matrix consisting

of the benefits of purchasing and selling electricity at different times for all players in
the game.

Buyer: if there is energy exchange between charging stations, and the upper limit is
Eg

n,t (electricity buying from grid), then
∣∣Ecs

n,t
∣∣ ≤ Eg

n,t; the SHS-EVCS is called a buyer at
time t.

Seller: if there is energy exchange between charging stations, and the upper limit is
Eg∗

n,t (electricity selling to grid), then Ecs
n,t ≤ Eg∗

n,t; the SHS-EVCS is called a seller at time t.
When SHS − EVCSn ∈ Sellers, the benefits at time t are

Ucs
n,t = ρcs

n,tP
cs
n,t∆t + ρ

g
n,t

(
Eg∗

n,t − Ecs
n,t

)
∆t = ∑i∈buyers ρcs

n,tE
cs
ni,t∆t + ρ

g
n,t

(
Eg∗

n,t − ∑i∈buyers Ecs
ni,t

)
∆t (13)

When SHS − EVCSn ∈ Buyers, the benefits at time t is:

Ucs
i,t = ∑n∈sellers ρcs

n,tE
cs
in,t∆t + ρ

g∗
n,t

(
Eg

n,t − ∑n∈sellers

∣∣Ecs
in,t

∣∣)∆t (14)

where Pcs
in,t means SHS-EVCS i follows the SHS-EVCS n pricing rule ρcs

n,t to buy the power
at time t, Ecs

in,t < 0



Electronics 2024, 13, 2392 10 of 25

3.7. Model Constraints
3.7.1. Hydrogen Constraints

• Electrolyzer Constraint:

uhs(t)Eo
hs,min ≤ Eo

ae(t) ≤ uhs(t)Eo
hs,max (15)

where Eo
hs,min is the lower output limit of the electrolyzer, Eo

hs,max is the upper output
limit of the electrolyzer, and uhs(t) is the state variable of the electrolyzer.

• Hydrogen tank constraints:
uin

hs(t)Ein
hs,min ≤ Ein

hs(t) ≤ uin
hs(t)Ein

hs,max
uout

hs (t)Eout
hs,min ≤ Eout

hs (t) ≤ uout
hs (t)Eout

hs,max
Ehs,min ≤ Ehs(t) ≤ Ehs,max

uin
hs(t) + uout

hs (t) ≤ 1

(16)

where Ein
hs,min is the lower intput limit of the electrolyzer, Ein

hs,max is the upper input
limit of the electrolyzer, uin

hs is the hydrogen tank storage state variable, and uout
hs is the

hydrogen tank release state variable.
• Fuel cell generator constraint:

0 ≤ Pout
FC (t) ≤ Pout

FC,max (17)

where Pout
FC,max is the maximum power output for the fuel cell generator.

3.7.2. Photovoltaic Constraint

Ppv, min < PPV(t) < Ppv, max (18)

where Ppv,min and Ppv,max are the minimum and maximum PV power output.

3.7.3. Battery Storage Constraint

Emin
BSS ≤ EBSS,j(k) ≤ Emax

BSS (19){
Emin

BSS = (1 − DOD)Emax
BSS

Emax
BSS = NBSSErate_BSS

(20)

where Erate_BSS is the self-discharge rate of the battery, and DOD is the depth of discharge,
valued at 90%.

4. Case Study

Figure 2 provides a detailed schematic representation of four SHS-EVCSs engaged in
energy exchange. The illustration uses a yellow line to denote the process of EV charging.
The light blue bidirectional arrows symbolize the dynamic transactions of buying and
selling electricity between the EVCSs, shared storage facilities, and the grid. Green dashed
lines within the hydrogen storage system delineate the conversion of electrical power
into gas via the electrolyzer, while the dark yellow dashed lines indicate the reconversion
of gas back into electricity through the fuel cell generator. Additionally, pink dashed
lines associated with the solar arrays illustrate photovoltaic power generation. A notable
feature of this system is represented by the blue double-arrow line, which indicates the
comprehensive energy exchanges occurring among the four SHS-EVCSs.
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Figure 2. Topology of multi-SHS-EVCSs.

In the methodology simulation, Tables 2 and 3 detail the technical and economic
parameters for four SHS-EVCSs, providing a comprehensive overview of each station’s
operational capabilities and financial aspects. These parameters include, but are not limited
to, energy production capacities, operational efficiencies, maintenance and operational
costs, and potential revenue streams. Table 4 presents a set of design variables crucial for
the simulation process. These variables are instrumental in modeling the performance
and economic viability of the stations under different scenarios, including energy demand
fluctuations, market price variations, and changes in operational conditions.

Table 2. Technical parameters of SHS-EVCSs in four Dali boroughs [27,34,39].

Parameters Longzu 1 (EVCS1) Longzu 2 (EVCS2) Qiliqiao
(EVCS3)

Fuyuan
(EVCS4)

Charger capacity (kW) 360 360 360 360
Number of chargers per station 10 10 12 8
PV installed capacity(kW) 1500 1500 2000 1000
Shared battery capacity (kWh) 10,000 10,000 10,000 10,000
Hydrogen tank capacity (m3) 2000 2000 3000 1500
Fuel cell generator capacity (kW) 800 800 1000 600
Battery initial state of charge (%) 40 40 40 40
Minimum battery state of charge (%) 25 25 25 25
Maximum battery state of charge (%) 100 100 100 100
Battery charge and discharge efficiency (%) 80 80 80 80
Initial capacity of gas tank (%) 30 30 30 30
Tank storage efficiency (%) 98 98 98 98
Energy-to-gas efficiency (%) 70 70 70 70
Electricity-to-gas coefficient (kWh/m3) 0.2 0.2 0.2 0.2
Hydrogen conversion efficiency (%) 75 75 75 75
Gas-to-electricity coefficient (m3/kWh) 0.295 0.295 0.295 0.295
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Table 3. Economic parameters of SHS-EVCSs in four Dali boroughs [42–44].

Parameters Longzu 1 Longzu 2 Qiliqiao Fuyuan

PV capital cost (GBP/kW) 286 286 286 286
Battery capital cost (GBP/kWh) 39.6 39.6 39.6 39.6
Hydrogen tank cost (GBP/m3) 7.5 7.5 7.5 7.5

Table 4. Design variables for SHS-EVCSs [35,36,40].

Input Technical Specification

PV output power [kW] PSTCGAC
[1+k(Tc−Tr)]

GSTC

Hydrogen output power [kW] Et−1
H2,i

−
(

Pt
H−FC,i + Pt

SH,i + Pt
H2,i

)
∆t

Battery output power [kW] PBat,e,t1(1 − σBat,e) +

(
Pcha

Bat,e,t ∗ ηcha
Bat,e +

Pdis
Bat,e,t

ηdis
Bat,e

)

Dali, located in Yunnan Province, China, was chosen as the case study primarily
due to its geographic features and the prosperity of its tourism sector. Surrounded by
mountains and lakes, Figure 3 shows that Dali’s transportation is heavily dependent on
two main north–south highways, and the constant tourism demand throughout the year
further exacerbates transportation needs. Therefore, constructing charging stations has
become a key measure to optimize the transportation infrastructure and support sustainable
development. This not only helps alleviate traffic pressure but also encourages the use of
eco-friendly transportation methods, such as electric vehicles, thereby enhancing Dali’s
tourism experience and environmental protection levels. There are numerous charging
points in the parking area, but most require both parking and charging fees, which can be
inconvenient for users. SHS-EVCSs offer a more cost-effective solution for electric vehicle
owners. Additionally, SHS-EVCSs prioritize providing a safer and more secure charging
environment, ensuring peace of mind for all EV drivers.
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In the cooperative game model within the SHS-EVCS P2P trading framework, each
EVCS functions as both a producer and a consumer, indicating that multiple entities reach
a consensus. Therefore, the game-theory-based P2P process, as depicted in Figures 5–15,
follows these steps and Figure 4 shows the game-theory-based P2P flow chart:

(a) Initiate trading.
(b) All SHS-EVCSs request energy exchanges.
(c) Aim to maximize the coalition’s profits. Analyze each EVCS’s energy trading needs to

determine if they meet the model’s constraints during the specified time (ensuring
optimal profit for the coalition at time t), and then calculate the energy trading plan.

(d) Confirm the energy trading flow and calculate profits.
(e) If the profit maximizes the coalition’s benefits, proceed to step (f); if not, return to step

(c) and recalculate the energy exchange quantities.
(f) Allocate profits based on the constraints.
(g) Conclude the energy trading.
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5. Results and Discussion

Figure 5 provides a detailed depiction of the variation in grid electricity prices and
internal electricity trading prices over time. Grid electricity price remains essentially
stable at 0.018 GBP/kWh until after 8 a.m., where it rises slightly to 0.05 GBP/kWh. This
reflects the base price of the grid or time-specific tariff adjustments. The internal electricity
purchase price briefly rises to 0.048 GBP/kWh around 7 a.m., then rises again around
0.075 GBP/kWh at 11, maintaining this level until 1 p.m. After 6 p.m., the purchase price
rises once again to 0.075 GBP/kWh and continues until it starts to decline after 8 p.m. The
internal electricity sale price rises to about 0.47 GBP/kWh around 7 a.m., then rises around
11 a.m., and drops again at 2 p.m., inversely mirroring the purchase price movements. After
6 p.m., the sale price sharply rises to 0.75 GBP/kWh, remaining at this level until it starts to
decline after 8 p.m. These price fluctuations reflect changes in supply and demand within
the internal market or adjustments in electricity trading strategies. Price increases represent
an increase in demand or a decrease in supply, while decreases indicate a reduction in
demand or an increase in supply. The disparity between the internal purchase and sale
prices represents the margin for trading profits or opportunities for cost recovery.
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Figure 5. Electricity price optimization.

Figure 6 shows the number of electric vehicles for each charging station after opti-
mization on different days. During the weekend, SHS-EVCS 1 shows an initial decrease
after 2 a.m., followed by a slight drop after 6 a.m. A significant decrease is observed after
1 p.m., when the number of charges drops sharply. SHS-EVCS 2 exhibits that at 1 p.m., the
first 25 cars charge in this station. At 8 p.m., 11 p.m., and 12 a.m., there are only 25 cars
at each time. For SHS-EVCS 3, there are only 26 drivers who charge their cars at 6 p.m.
SHS-EVCS 4, which has the most equal charging number for 24 h, only increased the
charging number at 11 p.m. During weekdays, all EVCSs particularly show significant
activity peaks around 9 a.m. and 10, correlating with typical commuting times. EVCS2
is the most utilized, suggesting higher demand or more frequent use compared to the
others. All stations exhibit minimal activity during the early morning, which is before
6 a.m. This figure displays the traffic flow optimization results for four SHS-EVCSs. When
designing this simulation model, multiple factors were considered, including geographical
constraints, traffic control measures, and energy exchange. Through the analysis of these
factors, the simulation model provided an optimal traffic flow management strategy. The
increase and decrease indicated in the figure refer to the traffic flow adjustments at each
charging station under specific conditions based on the optimal solutions derived from
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the simulation outputs. By adjusting traffic flows, we can more effectively distribute and
utilize charging resources, thus addressing potential congestion issues during the electric
vehicle charging process. Overall, this figure provides a comprehensive plan on how to
optimally manage and schedule vehicle access to charging stations, ensuring charging
efficiency while also enhancing the user’s charging experience. Overall, this information is
valuable for future research to optimize operations, perhaps by reducing power supply or
staffing during low-demand hours.
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Figure 6. Optimization of the number of electric vehicle charging stations: (a) weekend; (b) weekday.

Figures 7–10 delineate the energy utilization and electricity load profiles of four distinct
SHS-EVCSs. During the daytime, photovoltaic generation emerges as the predominant
source of electricity, harnessing solar irradiance. Figures 9 and 10 show similar trends in
energy consumption and electrical load, attributable to their analogous locational contexts,
predominantly residential in nature. After sunset, the reliance transitions to hydrogen
fuel cells for electricity generation, supplemented by acquisitions of electricity from a
communal battery storage system. This shift underscores the versatility of the integrated
energy systems within the SHS-EVCS framework.
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Figure 7. SHS-EVCS1 renewable energy usage and electricity load curve.
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Figure 8. SHS-EVCS2 renewable energy usage and electricity load curve.
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Figure 9. SHS-EVCS3 renewable energy usage and electricity load curve.
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Additionally, these infrastructures engage in inter-station power trading, exemplifying
the benefits of a decentralized energy network. Optimizing the energy management
strategies shown in these figures can lead to the best possible economic benefits while also
reducing infrastructure costs. This optimization improves how efficiently each SHS-EVCS
operates and makes the power grid more sustainable by using different types of energy
storage and generation. Managing energy in this strategic way is key to developing robust,
smart power grids and moving toward being able to produce energy independently.

Figure 11 presents a composite graph combining a bar figure and a line graph, il-
lustrating the operational dynamics of an energy storage system over a 24 h period. For
the bar figure, positive values represent charging power, indicating the periods when the
energy storage system is actively storing energy. Negative values represent discharging
power, showing when the system is delivering energy back to four SHS-EVCSs. No-
tably, during weekends, the charging activities peak around 1 a.m., 6 a.m., 9 a.m., 10 a.m.,
1 p.m., 2 p.m., 8 p.m.–10 p.m., possibly correlating with off-peak hours or periods of surplus
energy production when travel is less constrained. Discharge events are more sporadic,
with significant outputs observed around 7 a.m., 8 a.m., 11 a.m., 12 p.m., 3 p.m.–5 p.m., and
12 a.m., likely aligning with peak demand periods or the operational needs for grid stability.
During weekdays, the energy storage undergoes intense charging activities, notably at
4 a.m., 5 a.m., 11 a.m., 12 p.m., 6 p.m., and 7 p.m. The graph highlights these occurrences
with blue bars, which correspond to peaks in the battery’s state of charge, depicted as
red circles on the line graph. This pattern corroborates the anticipated behavior of the
battery storage system within the SHS-EVCS framework, efficiently aligning charging and
discharging activities with the fluctuations in energy demand and supply dynamics.
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Figure 11. Battery storage power flow and State of Charge (SOC): (a) weekends; (b) weekdays.

In the observed data, the state of charge (SOC) of the energy storage system exhibits
a cyclic behavior characterized by declines during periods of positive bar representation
and increases when the bars are negative. This pattern indicates the regular charging and
discharging cycles that the system undergoes. The SOC reaches peak levels at various
intervals over a 24 h cycle, aligning with the strategic operational practice of charging
during periods of low energy demand and discharging during peak demand periods or
when the energy generation is insufficient. Additionally, discharging is implemented when
purchasing electricity from the grid or shared battery systems is economically disadvanta-
geous due to higher prices. This cyclical pattern of SOC fluctuations is demonstrative of an
effectively managed energy storage system that is dynamically adjusting its charge and
discharge cycles. Such management is crucial for leveraging fluctuations in energy prices,
enhancing the utilization of generated renewable energy, and thereby increasing the overall
stability and efficiency of the SHS-EVCSs. This active modulation not only supports the
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economic operation within the energy market but also plays a significant role in stabilizing
the grid and ensuring a reliable supply of green energy.

Figure 12 shows the diurnal consumption patterns of hydrogen across four SHS-
EVCSs. An examination of the hourly data reveals distinct temporal variations in hydrogen
utilization. In the early morning hours, from midnight to 10 a.m., CS 1 demonstrates
a consistent level of usage, while CS 2 experiences a modest uptick. Conversely, CS 3
and 4 show a decline in usage, with CS 3 encountering a notably sharper fall. After
10 a.m., a significant rise in hydrogen use at CS 3 indicates an increase in operational
activities or demand. The remaining charging stations—CS 1, CS 2, and CS 4—also see
minor rises in their usage. Until 5 p.m., there’s a pronounced increase across all SHS-
EVCSs, signaling elevated demand or heightened charging activities. CS 1 registers the
largest increase, succeeded by CS 2, CS 4, and CS 3. In the late evening hours, from
10 p.m. to midnight, all stations’ activities level off, reaching a steady state of demand. The
consumption pattern appears to mirror conventional daily usage trends, characterized by
a trough in the early dawn hours and a crest during the evening. These fluctuations are
likely reflective of habitual consumer charging behaviors or inherent operational cycles of
the SHS-EVCS network.
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Figure 12. Four SHS-EVCSs’ hydrogen usage.

Figure 13 shows an optimization of charging over a 24 h period and how electricity
is used throughout the day at four different SHS-EVCSs. The differentiated color within
the stacked bar graph distinctly demarcates the electricity usage attributable to each SHS-
EVCS, with the proportional segment heights within each hourly bar representing the
specific electricity consumption metrics. Upon comparative analysis with Figure 6, which
presumably delineates the EV charging quantities at corresponding intervals, a correlative
trend emerges. The electricity usage profile depicted in the current figure exhibits parallel
fluctuations to the charging activities recorded in Figure 6, suggesting a direct relationship
between the electricity consumed by the SHS-EVCSs and the operational charging volume.
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Figure 13. Four SHS-EVCSs’ EV charging optimization over 24 h: (a) weekends; (b) weekdays.

Each figure in Figure 14 indicates the buyer and seller (for example, “EVCS1 purchases
from EVCS2” suggests that source EVCS1 is buying from source EVCS2) with time repre-
sented in 24 h. The data points are connected by lines to indicate the change in purchasing
activity over time:

(a) EVCS1 purchases from EVCS2: This figure shows the variation in purchases made
by source EVCS1 from source EVCS2 over time. There are several distinct peaks in
purchasing activity, especially around 3 a.m. and 6 a.m.

(b) EVCS1 purchases from EVCS3: In this figure, purchasing activity by source EVCS1
from source EVCS3 also shows several peaks, particularly at 2 a.m., 4 a.m., 6 a.m.,
and 9 a.m.

(c) EVCS1 purchases from EVCS4: This figure shows peaks in purchases by source EVCS1
from source EVCS4 at 1 a.m., 5 a.m., 8 a.m., and 12 p.m.

(d) EVCS2 purchases from EVCS1: EVCS2’s purchases from source EVCS1 show peaks
from 2 a.m. to 12 p.m.

(e) EVCS2 purchases from EVCS3: This figure displays several peaks in purchases by
source EVCS2 from source EVCS3, especially at 6 a.m.

(f) EVCS2 purchases from EVCS4: In this figure, source EVCS2’s purchases from source
EVCS4 peak at 5 a.m.

(g) EVCS3 purchases from EVCS1: Purchases by source EVCS3 from source EVCS1 are
higher between 2 a.m. and 12 p.m.

(h) EVCS3 purchases from EVCS2: In this figure, source EVCS3’s purchases from source
EVCS2 show notable peaks at 2 a.m. and 5 a.m.

(i) EVCS3 purchases from EVCS4: This figure indicates that source EVCS3’s purchases
from source EVCS4 peak before 12 p.m.

(j) EVCS4 purchases from EVCS1: Source EVCS4’s purchases from source EVCS1 show
peaks at 12 p.m.

(k) EVCS4 purchases from EVCS2: In this figure, source EVCS4’s purchases from source
EVCS2 peak at 10 a.m. and 12 a.m.

(l) EVCS4 purchases from EVCS3: Source EVCS4’s purchases from source EVCS3 have
peaks at 4 a.m., 10 a.m. and 11 a.m.
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Figure 15 shows the cost comparison between internal electricity purchasing and grid 
procurement for SHS-EVCSs. The figure demonstrates that the price of internal energy 
trading daily is more economical than solely relying on electricity purchased from the 
grid. This comparison highlights the financial advantages of internal trading within SHS-
EVCSs, underlining the potential for significant cost savings by optimizing internal elec-
tricity transactions over external grid procurement. It provides a clear visual representa-
tion of the cost-effectiveness of leveraging internal energy resources, encouraging the 
adoption of such strategies to enhance economic efficiency in SHS-EVCS operations. 

Figure 14. P2P trading strategy between 4 SHS-EVCSs. (a) EVCS1 purchases from EVCS2,
(b) EVCS1 purchases from EVCS3, (c) EVCS1 purchases from EVCS4, (d) EVCS2 purchases from
EVCS1, (e) EVCS2 purchases from EVCS3, (f) EVCS2 purchases from EVCS4, (g) EVCS3 purchases
from EVCS1, (h) EVCS3 purchases from EVCS2, (i) EVCS3 purchases from EVCS4, (j) EVCS4 pur-
chases from EVCS1, (k) EVCS4 purchases from EVCS2, and (l) EVCS4 purchases from EVCS3.

These figures represent the fluctuation of transaction volumes between different
suppliers or products over time. Peaks can indicate high demand or bulk transactions at
specific points in time. Analyzing these figures could provide insights into the patterns and
trends of trade activity between different sources, which may be valuable for optimizing
inventory management, forecasting future demands, or adjusting supply chain strategies.

Figure 15 shows the cost comparison between internal electricity purchasing and grid
procurement for SHS-EVCSs. The figure demonstrates that the price of internal energy
trading daily is more economical than solely relying on electricity purchased from the grid.
This comparison highlights the financial advantages of internal trading within SHS-EVCSs,
underlining the potential for significant cost savings by optimizing internal electricity
transactions over external grid procurement. It provides a clear visual representation of
the cost-effectiveness of leveraging internal energy resources, encouraging the adoption of
such strategies to enhance economic efficiency in SHS-EVCS operations.

The economic analysis presented here is critical not only for understanding the eco-
nomic feasibility of SHS-EVCS configurations but also for decision-making related to the
scaling and expansion of such systems. The notable disparity between the total daily
costs and revenues highlights the potential for considerable profit generation, which can
be instrumental in driving investment decisions and fostering the broader adoption of
renewable energy technologies within the electric vehicle charging infrastructure.
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6. Conclusions

This paper introduces a P2P transactive energy trading strategy tailored for multi-
SHS-EVCSs, with a particular focus on addressing the challenges posed by the inherent
intermittency and volatility of RE generation. This innovative strategy is designed to
mitigate the uncertainties arising from inaccurate renewable energy forecasts, which can
significantly impact the operational efficiency and economic viability of SHS-EVCSs. A
notable advancement presented in this paper is the P2P based cooperative game-theoretical
approaches. This agreement acts as a mechanism to resolve conflicts of interest, ensuring
that all participating SHS-EVCSs collaborate towards mutual benefit. Such collaboration is
crucial for stabilizing the system and preventing any single SHS-EVCS from altering its
game strategy—such as electricity pricing strategies—in a manner that could destabilize the
system. Overall, the proposed energy trading strategy not only enhances the operational
efficiency of SHS-EVCSs but also fosters a cooperative environment that ensures the long-
term sustainability and economic efficiency of renewable energy utilization in electric
vehicle charging infrastructures.

This study has several limitations that warrant further exploration. Primarily, it does
not incorporate demand-side management strategies, notably demand response, into its
framework. Moreover, the research overlooks critical distinctions between cooperative and
non-cooperative game-theoretical approaches, which could influence the outcomes. Addi-
tionally, aspects of social welfare, such as EV driver’s welfare, have not been adequately
considered. Consequently, future research will need to address these gaps to refine the
robustness and applicability of the findings in a broader context.
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Nomenclature

EAE,t Hydrogen produced by the electrolyzer, kWh
PAE.t Electrical power consumed by the electrolyzer, kW
ν Hydrogen conversion efficiency, 75%
a Conversion coefficient for electric energy to the equivalent energy in hydrogen,

39.65 kWh/kg
PFC Output power of the fuel cell, kW
EFC Hydrogen consumed by the fuel cell, kWh
ηFCs Energy conversion coefficient for fuel cell, 70%
Ehs(t) Total quantity of hydrogen stored in the hydrogen tank at time t, kWh
Ehs(t − 1) Total quantity of hydrogen stored in the hydrogen tank at time t − 1, kWh
δhs Energy storage decay rate of the hydrogen tank, 5%
Ein

hs(t) Input quantity of hydrogen into the hydrogen tank, kWh
Eout

hs (t) Output quantity of hydrogen from the hydrogen tank, kWh
ηin

hs Input efficiency of the hydrogen tank, 98%
ηout

hs Output efficiency of the hydrogen tank, 98%
PSTC Rated output power of the PV components under standard test conditions
GAC Real-time solar irradiance intensity
Tc Real-time temperature of the photovoltaic component surface
GSTC Illumination under standard test conditions, 1000 W/m2

Tr 25 °C
Ta Ambient temperature
TN PV cell operating temperature
EBSS(c) Energy of the battery at the c-th time, kWh
Egen(c) Energy generated by the generator at the c-th time
Eload(c) Energy of the load at the c-th time
einv Efficiency of the inverter, 95%
ηch

b Charging efficiency of the battery, 80%
ηdch

b Discharging efficiency of the battery, 80%
CEH

n,t Hydrogen cost, GBP
CFC

n,t Fuel cell generator cost, GBP

Cgrid
n,t Grid cost, GBP

CPv
n,t Solar cost, GBP

Cp2p
n,t P2P trading cost, GBP

CBes
t Battery energy storage cost, GBP

Csell
n,t Sale revenue, GBP

ρB
n,t P2P trading price by SHS-EVCS n from grid at time t, GBP/kWh

EB
n,t P2P trading power by SHS-EVCS n from grid at time t, kWh

ρ
g
n,t P2P trading price by grid from SHS-EVCS at time t, GBP/kWh

Eg
n,t P2P trading power by grid from SHS-EVCS at time t, kWh

ρinter
n,t The price of number n SHS-EVCS selling electricity to other SHS-EVCS using

internal load, GBP/kWh
Eg

n,t SHS-EVCSs buying electricity from grid, GBP/kWh
Eg∗

n,t SHS-EVCSs selling electricity to grid, GBP/kWh
Ecs

in,t SHS-EVCS i follow the SHS-EVCS n pricing rule to buying power at time t, kWh
ρcs

n,t Pricing rule, GBP/kWh
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Eload
n,t Internal load demand of SHS-EVCS, kWh

Ei
n,t P2P trading power between SHS-EVCS n and I, kWh

En
i,t P2P trading power between SHS-EVCS i and n, kWh

uhs(t) State variable of the electrolyzer
Eo

hs,min Lower output limit of the electrolyzer, kWh
Eo

hs,max Upper output limit of the electrolyzer, kWh
Ein

hs,min,
Ein

hs,max

Lower and upper input limit of the electrolyzer, kWh

Eout
hs,min, Eout

hs,max Lower and upper output limit of the electrolyzer, kWh
uin

hs Hydrogen tank storage state variable
uout

hs Hydrogen tank release state variable.
Pout

FC,max Maximum power output for fuel cell generator, kW
Ppv, min,
Ppv, max

Minimum and maximum PV power output, kW

Erate_BSS Self-discharge rate of the battery
DOD Depth of discharge, 0.9
Abbreviations
EV Electric vehicle
CSs Charging stations
SHS-EVCSs Solar-Hydrogen-Battery Storage Electric Vehicle Charging Stations
P2P Peer to peer
PV Photovoltaic
RE Renewable energy
SoC State of charge
DER Distributed energy resource
DRP Demand response program
MILP Mixed integer linear programming.
DOD Depth of discharge
P2G Power to gas
G2P Gas to power
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