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Abstract: The reliable operation of a power system requires a real-time balance between supply and
demand. However, it is difficult to achieve this balance solely by relying on supply-side regulation.
Therefore, it is necessary to cooperate with effective demand-side management, which is a key
strategy within smart grid systems, encouraging end-users to actively engage and optimize their
electricity usage. This paper proposes a novel bi-level optimization model for integrating solar,
hydrogen, and battery storage systems with charging stations (SHS-EVCSs) to maximize social
welfare. The first level employs a non-cooperative game theory model for each individual EVCS
to minimize capital and operational costs. The second level uses a cooperative game framework
with an internal management system to optimize energy transactions among multiple EVCSs while
considering EV owners’ economic interests. A Markov decision process models uncertainties in
EV charging times, and Monte Carlo simulations predict charging demand. Real-time electricity
pricing based on the dual theory enables demand-side management strategies like peak shaving and
valley filling. Case studies demonstrate the model’s effectiveness in reducing peak loads, balancing
energy utilization, and enhancing overall system efficiency and sustainability through optimized
renewable integration, energy storage, EV charging coordination, social welfare maximization, and
cost minimization. The proposed approach offers a promising pathway toward sustainable energy
infrastructure by harmonizing renewable sources, storage technologies, EV charging demands, and
societal benefits.

Keywords: renewable energy; electric vehicle charging station; electric vehicle charging time
uncertainty; social welfare maximization

1. Introduction

The continued expansion of the world’s economies has resulted in escalating energy
shortages and worsening air quality. In response, low-carbon and renewable energy (RE)
sources have garnered substantial interest as potential avenues to help alleviate both energy
scarcity and environmental degradation. Numerous nations have enacted carbon emission
regulations with the goals of curbing energy usage, boosting the efficiency of electricity
production, minimizing greenhouse gas emissions, and fostering the advancement of clean
energy alternatives. While conventional fossil fuel-based power generation technologies
offer ample capacity and reliable operations, their overall energy utilization is inherently
inefficient and inflexible in meeting fluctuations in supply and demand. Clean energy
can be categorized as either renewable or non-renewable. Renewable sources encompass
wind, hydroelectric, solar, geothermal, tidal, and other types. Non-renewable clean energy
includes nuclear power and biomass. Renewable options provide competitively priced elec-
tricity with minimal carbon footprints; however, the intrinsic variability and intermittency
of these sources inject uncertainty and volatility into energy availability.
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The origins of Electric Vehicle (EV) development can be traced back to 1830 when
Robert Anderson created a prototype carriage powered by electricity. However, it was not
until 1884 that the first mass-produced EV was introduced by British inventor Thomas
Parker [1]. Subsequently, in 1897, an electric taxi company commenced operations in New
York City. Nonetheless, the EVs of that era were plagued by a multitude of issues that
hindered their widespread adoption in the automotive market. A notable challenge was
the inability to reliably recharge the car batteries, necessitating frequent replacement with
new ones. Even in instances where recharging was possible, the limited driving range and
scarcity of charging stations severely restricted the utility of EVs [2]. According to [1,2],
the development of electric ignition systems for combustion engines in 1834, coupled
with the availability of inexpensive fuel and gradual improvements in the reliability of
gasoline-powered cars, further impeded the advancement of EVs.

Since the early 2000s, there has been a growing sense of urgency to address the green-
house gas emissions and environmental pollution stemming from excessive reliance on
fossil fuels [3]. Consequently, RE sources have increasingly become a major focal point
and are now viewed as crucial alternatives in numerous countries worldwide. Notably,
the electricity generation and transportation sectors are significant contributors to carbon
dioxide (CO2) emissions, accounting for approximately 64% of total emissions [3]. This
situation has raised substantial public concerns regarding the potential irreversible environ-
mental damage caused by these emissions. According to sources [4], the adoption of RE is
essential for meeting carbon dioxide reduction targets in these sectors. EVs are recognized
as a promising solution to control CO2 emissions. Comprehensive research reviews [5,6]
on EVs indicate that their use not only mitigates environmental impacts but also offers
economic benefits to owners through lower operating costs. However, the expansion of
EV charging infrastructure presents a major obstacle to increasing EV adoption [7]. Slow
progress in developing charging facilities hinders potential buyers’ willingness to transition
to EVs [8]. Furthermore, high investment costs and uncertainties surrounding EV demand
further impede infrastructure development. In London, for example, projections suggest
that over 500,000 charging points will be needed by 2040, with nearly 50,000 required in
public areas [9].

Figure 1 shows the Solar–Hydrogen-Storage Integrated Electric Vehicle Charging
Station (SHS-EVCS), which harnesses PV, a hydrogen storage system, and battery storage
to charge EVs. The station includes a solar array that converts solar power into electrical
energy. This energy can be used immediately for charging EVs, fed into the grid, or stored
in batteries for later use. The hydrogen storage system employs an electrolyser to split
water into hydrogen and oxygen. The hydrogen is then compressed and stored for future
needs. During high-demand periods, the stored hydrogen is converted back into electricity
through a fuel cell to charge EVs. Additionally, a battery storage unit stores any excess
energy from the solar array or the fuel cell, ensuring a steady energy supply for EV charging
even when the primary renewable sources are not available.

In this paper, Section 2 provides a review of RE usage in EV charging stations (EVCSs)
and the application of demand-side management (DSM) in electricity trading. Section 3
presents the problem formulation for the SHS-EVCSs. Section 4 includes a case study
with forecasts for three different scenarios. Section 5 analyses the results, and Section 6
concludes by summarizing the significant findings of this paper.

The goal of this paper is to maximize social welfare, ensuring that both the SHS-
EVCS and EV drivers receive the maximum possible benefits. This involves optimizing
the interactions between the EVCS and EV users, aiming for a balanced and mutually
beneficial outcome. By achieving this, the study seeks to demonstrate how the management
of resources can lead to enhanced efficiency and satisfaction for all stakeholders involved.
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Figure 1. Single Solar–Hydrogen-Storage Integrated Electric Vehicle Charging Station topology.

2. Literature Review

To establish an efficient, resilient, and sustainable infrastructure, EVCSs can inte-
grate RE sources [10]. Incorporating hydrogen systems, battery storage, and solar energy
will play a critical role, presenting both opportunities and significant technological chal-
lenges [11]. This approach is particularly appealing for charging EVs, as battery storage
systems powered by solar energy can ensure reliable charging even on cloudy days, thus
improving the reliability of the charging capacity. Hydrogen tanks can store excess RE,
providing high-density energy for backup power and fuel cell vehicles, thus creating versa-
tile energy storage solutions [12]. However, integrating these diverse energy sources into
a cohesive charging infrastructure poses technical challenges, with energy management
being a primary concern. Ensuring efficient use, conversion, and storage of energy requires
complex systems. Balancing battery solutions involves data monitoring and analysis [13].
Despite the high costs, limited lifecycle, and high-capacity features of hydrogen systems,
optimizing infrastructural compatibility remains challenging, especially with the complex
needs of RE installations [14]. EVCSs must accommodate large battery packs, electrolysers
for clean energy production, and smart grid capabilities for dynamic energy manage-
ment [14]. Interoperability issues also arise, requiring standardized interfaces and protocols
to enable the seamless operation of different power generation and storage technologies.
Scalability is essential to meet the increasing demand for charging stations and EVs [15].
The performance and integration of RE systems can be enhanced through advanced EV
charging stations. Machine learning and artificial intelligence can improve energy man-
agement systems, optimizing the integration of supply and demand [16]. Innovations
in battery technology, including solid-state batteries, will enable fast charging times and
high energy densities, potentially transforming battery storage options at EV charging
stations [17,18]. Additionally, hydrogen production efficiency driven by RE through green
electrolysis can reduce costs, enhancing scalable energy storage solutions in EV charging
infrastructure [19]. Paper [20] proposes a strategy to optimize small-scale PV systems for
homes, reducing energy costs by up to 40% and allowing for extra loads without expanding
the network, while addressing EV charging and unsynchronized demand challenges. A
review [21] examined advancements in energy storage from 1850 to 2022, highlighting
their evolution, principles, and role in addressing renewable energy intermittencies to help
decarbonize the environment.
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Demand-Side Management (DSM) is a key strategy within smart grid systems, en-
couraging end-users to actively engage and optimize their electricity usage [22,23]. DSM
implements various measures to help consumers plan and use electricity more rationally
and efficiently, thereby improving the efficiency of terminal electricity consumption. Addi-
tionally, DSM is crucial in resource allocation by adapting to demand-side participation
in power market management, which helps prevent large-scale power outages due to
peak loads or the need for additional power generation infrastructure, ultimately reduc-
ing costs within the smart grid system [24]. In power market transactions, electricity’s
unique characteristics—being instantly consumable and hard to store—require rapid data
exchange, swift decision-making, and real-time adjustments from both supply and demand
sides. This level of responsiveness is difficult to achieve in traditional power grids. How-
ever, in smart grid systems, advanced technologies like smart meters, smart homes, and
cloud computing significantly enhance DSM capabilities [25,26].

As the energy Internet evolves, it enables the integration of multiple energy sources
and dynamic management practices. This transformation allows for more sustainable and
efficient energy consumption patterns, aligning with the shift towards comprehensive,
interconnected energy networks. Demand response (DR) is a vital mechanism where elec-
tricity consumers adjust their power usage in response to market signals or incentives from
power suppliers [27]. DR is a critical component of DSM, and studies have shown that it
significantly improves end-use electricity consumption efficiency, reduces resource waste
due to supply–demand imbalances, and contributes to overall grid stability [28,29]. The
rapid development of smart grids, incorporating technologies like smart homes and EVs,
provides substantial support for DR initiatives. Furthermore, DR benefits consumers by
reducing electricity bills through altering traditional consumption patterns and strategically
shifting usage away from peak periods, helping to prevent large-scale power outages [30].
As distributed energy resource integration progresses, the synergy between regional en-
ergy systems—including various forms of energy generation and storage—and power
grid systems has transitioned DR from a conventional approach to a holistic strategy of
managing diverse load types, such as wind, solar, electrical, and storage. This evolution
has normalized DR integration into power system dispatch strategies, highlighting its
growing importance in achieving a more resilient and efficient energy landscape [31,32].
Integrating DR into energy management enhances operational flexibility and optimizes the
economic operation of power systems by maximizing resource utilization. The increasing
presence of RE sources and their variability in the power grid further emphasize the need
for sophisticated DR strategies.

Maintaining stable power system operations necessitates a real-time balance between
supply and demand. However, achieving this balance solely through supply-side regula-
tion is challenging. Therefore, effective DSM measures are crucial [33]. Real-time pricing,
as the most direct and effective DSM method, employs electricity price signals to encourage
consumers to voluntarily shift their electricity usage to off-peak periods, thereby reduc-
ing peak loads and achieving the objectives of peak shaving and valley filling [33,34].
Study [35] pioneered the application of the social welfare maximization model to real-time
pricing in smart grids. The goal was to maximize user utility while minimizing the power
provider’s costs, with the objective function being the user’s utility minus the provider’s
cost. This study established a social welfare maximization model for smart grid real-time
pricing, subject to the constraint of power supply and demand balance. It utilized a dual
optimization method to determine supply, electricity consumption, and real-time electricity
prices [35].

Societal welfare has long been a fundamental preoccupation, and the interplay between
individual needs and collective interests forms the crux of modern social welfare discourse.
“Social welfare” emerges as the outcome of public choices regarding the distribution of
societal benefits within specific institutional frameworks, representing a collective or group
interest [36]. On the other hand, “utility” denotes the psychological satisfaction derived by
consumers during the consumption process. Economics employs these two fundamental
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notions of welfare and utility to elucidate and illustrate the potential balance between
personal motivations and social choices [34]. Table 1 shows the relevant work.

Table 1. Literature review and benchmarking of relevant work.

Reference Electricity Sources P2P and Game
Theory Applied

EV/RE
Uncertainty Prediction

Include Social
Welfare

Multi-EVCSs
Energy Exchange

[37] Wind, PV, battery energy
storage, grid No Yes No No

[38] Wind, PV, battery energy
storage, grid Yes Yes Yes No

[39] Grid Yes Yes No No
[40] PV, wind No Yes Yes No

[41] Energy management
system No Yes No No

[42] Battery storage system No Yes No No

[43] Wind, PV, battery energy
storage, grid No No No No

[44] Grid, PV, wind No Yes No No

[45]
PV, battery energy
storage, hydrogen
storage, grid

No No No Yes

[46]
PV, battery energy
storage, hydrogen
storage, grid

Yes No No Yes

This work
PV, battery energy
storage, hydrogen
storage, grid

Yes Yes Yes Yes

This paper examines the practical feasibility of EVCSs through two primary models.
The first is a non-cooperative game model for a single charging station aimed at minimizing
construction, operation, and maintenance costs. The second model is the internal EVCS
energy transaction cooperation model, expanded from [46], which integrates operational
load and an internal dispatch center for demand response. Additionally, a model focuses on
maximizing social welfare by considering the economic interests of EV owners, including
acceptable charging prices, essentially minimizing the cost of electricity supply. In the
general social welfare model, another significant factor is the capital cost of the electricity
provider (grid, RE, storage systems, etc.). However, in the SHS-EVCS model, this capital
cost is calculated in the non-cooperative game model for a single charging station and is,
therefore, excluded from the social welfare maximization model.

This paper makes three main contributions:

• Develops an EV charging time model using a Markov decision process to address
uncertainties in charging times and a Monte Carlo simulation to assess and predict
EV charging demand, which is expected to fluctuate based on probabilities associated
with different charging times.

• Creates a bi-level optimization model that combines non-cooperative and cooperative
game theory to minimize capital costs and maximize social welfare.

• Improves the social welfare maximization real-time pricing model based on the dual
theory, considering the benefits to drivers, the SHS-EVCS, and the grid side, according
to EV charging demand.

3. Problem Formulation

This paper organizes the multi-SHS-EVCS system into two distinct levels. The first
level focuses on an individual SHS-EVCS, employing a non-cooperative game theory model
to reschedule energy dispatch with the aim of minimizing capital costs. The second level,
similar to the approach in paper [46], but introduces an Internal Management System (IMS),
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also known as a demand response centre, into the SHS-EVCS coalition to manage the
sequencing of charging and discharging activities. At this level, the goal is to maximize the
coalition’s profit. The ultimate objective of this bi-level model is to maximize social welfare.

3.1. First-Level SHS Model

This section combines solar energy, hydrogen storage, battery storage (SHS), and the
grid into a non-cooperative game theory model for EVCS. In this model, hydrogen storage
provides long-term energy buffering, batteries offer quick responses to demand changes,
solar energy adds renewable generation, and the grid ensures a stable supply. The goal
is to minimize construction, operation, and maintenance costs while optimizing energy
distribution. Figure 2 illustrates the specific interaction model.
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The problem formulation of the first level’s objective function is given in reference [45]
in Equations (1) and (3)–(10).

3.1.1. Non-Cooperative Game Theory

The model discussed in this section is a multi-agent framework where each piece of
equipment aims to minimize costs independently. The strategic decisions of each participant
are made without considering others, creating a scenario of mutual interaction and fair
competition, typical of a non-cooperative game model. The interactions among all energy
sources can be described as follows:

G = {P; N; E} (1)

where P represents the game players, N is the strategy set, and E is the payoff function.

• Game player: In this context, each decision-making entity is referred to as a game
player. The participants in this study include solar energy (S), hydrogen energy
storage (H), battery energy storage (B), and the power grid (G). These participants are
collectively represented as

P = {S, H, B, G} (2)

• Strategy Set: Each participant selects a set of strategies during the game to maximize
their benefits, which in this context means minimizing costs. The strategies for each
energy source are solar energy (NS), hydrogen energy storage (NH), battery energy
storage (NB), and the power grid (NG). The strategy set is
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N = {NS; NH ; NB; NG} (3)

• Payoff: The payoff function assesses each participant’s cost and provides feedback for
strategy adjustments in subsequent rounds. The payoff for each participant depends
on their strategy and the strategies of others, represented as

ESHS(NS; NH ; NB; NG) (4)

where ESHS is the minimum cost for the SHS system.
Non-cooperative games aim to find a Nash equilibrium, achieving the optimal objec-

tive function. To meet the Nash equilibrium condition, minimizing the grid’s cost means
reducing power purchases from the grid. Therefore, the optimal solution for the grid Pt

g
requires fixing the power outputs of Pt

pv, Pt
hs, and Pt

es. Similarly, for the optimal solutions of
solar power Pt

pv, battery storage Pt
es, and hydrogen storage Pt

hs, the power outputs of the
other sources must be fixed.

Step to solve Nash Equilibrium:

(1) Initialization: set initial strategies NS, NH, NB, NG; replace by Pt
g, Pt

pv, Pt
hs, and Pt

es.
(2) Iterative optimization:

• Grid:

• Fix Pt
pv, Pt

hs, and Pt
es.

• Solve the optimal Pt
g.

• Solar power:

• Fix Pt
g, Pt

hs, and Pt
es.

• Solve the optimal Pt
pv.

• Battery storage:

• Fix Pt
g, Pt

hs, and Pt
pv.

• Solve the optimal Pt
es.

• Hydrogen storage system:

• Fix Pt
g, Pt

es, and Pt
pv

• Solve the optimal Pt
hs.

(3) Check convergence:

• Verify if all participants’ strategies converge to a fixed point. If not, return to
Step 2 for further iteration.

4. Verify Nash Equilibrium:

• Ensure all strategy combinations meet the Nash equilibrium condition, where
no participant can further reduce its cost by changing its strategy while others’
strategies remain unchanged.

3.1.2. EV Uncertainty Model

To capture the variability in EV charging times, this paper uses a Markov chain
probability model. This model is ideal for describing random processes with discrete time
intervals and states, where the future state depends solely on the current state, not on the
sequence of previous states. The use of transition probabilities between adjacent states
simplifies the complexity of the random process. Each battery power level of an EV can be
considered a discrete state, with the random fluctuations in battery power represented as
a non-stationary Markov chain. This chain effectively models the likelihood of an event
occurring based solely on the present state [47].

P
{

xdis
f

∣∣∣xdis
1 = sdis

1 , xdis
2 = sdis

2 , . . . , xdis
f−1 = sdis

f−1

}
= P

{
xdis

f

∣∣∣xdis
f−1 = sdis

f−1

}
(5)
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sdis
f ∈ Sdis, 1 ≤ f ≤ fmax

where xdis
f is the f ′th discrete variable; sdis

f is the f ′th discrete state; Sdis is the discrete state
space; fmax is the maximum number of discrete variables.

Based on (5), it is also needs to satisfy

P
{

xdis
f

∣∣∣xdis
f−1 = sdis

f−1

}
= P

{
xdis

f+1

∣∣∣xdis
f = sdis

f

}
(6)

To capture the randomness and reversibility of EV charging and driving power con-
sumption, the Markov sampling process incorporates the detailed balance condition. This
condition ensures that transitions between any two states are reversible:

pijP
{

xdis
f+1 = sdis

j

∣∣∣xdis
f = sdis

i

}
= pjiP

{
xdis

f+1 = sdis
i

∣∣∣xdis
f = sdis

j

}
(7)

where pij is the transition probability of state i to j; pji is the transition probability of state j
to i.

EVs can be classified into two operational states: charging and non-charging. These
correspond to two modes: charging mode and waiting mode [47–50]. In the charging mode,
the EV is connected to the SHS-EVCS and is actively charging. Conversely, in the waiting
mode, the EV is at the SHS-EVCS but not charging, meaning it is in a parked state. The
variable cf represents the charging probability, capturing the randomness of EV charging,
while df denotes the probability of interrupted charging, reflecting the variability within
the charging process.

The state transition probabilities are illustrated in Figure 3. In this context, EVCf
and EVDf represent the states of the charging mode and waiting mode, respectively. The
transition probabilities between these states are denoted by df and cf, while af signifies
the waiting probability. ∆T1 and ∆T2 correspond to the charging time and waiting time,
respectively. All the arrows represent the probability to change the charging or discharging
state.
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If the EV drivers are anxious of battery level, in this paper, the level is Barrive
min ≤ 35%,

which means if the EV battery’s SOC is less than or equal to 35%, the drivers will charge
their EV. When charging the car, if Bleave

min ≥ 95%, the EV drivers will choose to discharge
their cars. N is the full battery level which is 100. The probability for cf and df can be
demonstrated as [47–49]:

c f =


1

1+e( f−0.5(Barrive
min +N))

0.14 f ≥ Barrive
min

0 f < Barrive
min

(8)

d f =


1

1+e(0.5(Bleave
min +N)− f )

0.32 f ≥ Bleave
min

1 f < Bleave
min

(9)
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The state probability EVCf and EVDf of EV can be denoted as [45–47]

Ps

(
EVC f

)
=


(

1 − d f−1

)
Ps

(
EVC f−1

)
+ c f Ps

(
EVD f

)
1 ≤ f ≤ N

c0Ps(EVD0)
f = 0

(10)

Ps

(
EVD f

)
=


d f Ps

(
EVC f

)
+ a f Ps

(
EVD f

)
+

(
1 − c f+1 − a f+1

)
Ps

(
EVD f+1

)
0 ≤ f ≤ N − 1

dN Ps(EVCN) + aN Ps(EVDN)
f = N

(11)

where Ps(EVCf) is the state probability of EVCf, and Ps(EVDf) is the state probability of
EVDf.

These variables are subject to

∑100
f=0

{
Ps

(
EVC f

)
+ Ps

(
EVD f

)}
= 1 (12)

d0 = 0, c0 = 1, d100 = 1, c100 = 0 (13)

where (12) indicates that the total sum of all state probabilities of the EV at any given time
is equal to 1; (13) denotes that when the battery level is equal to 0, it must be in the EVCf
mode, and when the battery is in a full state, it must be in the EVDf mode.

∆T1 and ∆T2 are [47]

∆T1 = min
{

Bcap∆(+ f )
NηcPc

, Tleave − Tarrive (14)

{
∆T2 =

Bcap∆(− f )
NEkmv

1 ≤ ∆(− f ) ≤ N
(15)

where
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𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒 = 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡 −
𝐷𝐸𝑉𝐸𝑘𝑚

𝐵𝑐𝑎𝑝
  (18) 

where 𝐷𝐸𝑉 is the EV’s driving distance and subject to 

ηc is the EV battery efficiency, which is 95;
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ers, it is crucial to first establish a prediction model for the charging demand of a single 

EV. Following this, the overall electricity demand of EVs can be calculated by aggregating 

the individual EV charging demands using the Monte Carlo random simulation method. 

The total charging power demand at any specific time can be represented as follows: 

𝑃𝑐ℎ𝑎,𝑠𝑢𝑚 = ∑ 𝑃𝑐ℎ𝑎,𝑖
𝑁𝑒𝑣
𝑖   (16) 

where 𝑃𝑐ℎ𝑎,𝑠𝑢𝑚 is the total charging power; 𝑃𝑐ℎ𝑎,𝑖 is the 𝑖′th EV charging power; 𝑁𝑒𝑣 is 

the total EV number. 

For each EV’s SOC, it should follow 

𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡 =
1

𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡,𝑚𝑎𝑥−𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛
  (17) 

where 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡 is the initial SoC of the EV; 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡,𝑚𝑎𝑥 and 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛 are the maxi-

mum and minimum SoC of the EV. 

For the EV’s battery 𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒 when arriving at SHS-EVCS, it is denoted as 

𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒 = 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡 −
𝐷𝐸𝑉𝐸𝑘𝑚

𝐵𝑐𝑎𝑝
  (18) 

where 𝐷𝐸𝑉 is the EV’s driving distance and subject to 

∆(−f ) is the electricity loss when driving the EV;
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where 

 𝜂𝑐 is the EV battery efficiency, which is 95; 

 𝑃𝑐  is the fixed charging power, which is 7 kW; 

 𝐵𝑐𝑎𝑝 is the battery capacity, which is 60 kWh (Tesla model 6 battery capacity); 

 ∆(−𝑓) is the electricity loss when driving the EV; 

 𝐸𝑘𝑚 is energy consumption, which is 16.25 kWh/100 km; 

 𝑣 is the average driving speed, which is 32 km/h. 

To predict the electricity demand for all SHS-EVCSs catering to numerous EV driv-

ers, it is crucial to first establish a prediction model for the charging demand of a single 

EV. Following this, the overall electricity demand of EVs can be calculated by aggregating 

the individual EV charging demands using the Monte Carlo random simulation method. 

The total charging power demand at any specific time can be represented as follows: 

𝑃𝑐ℎ𝑎,𝑠𝑢𝑚 = ∑ 𝑃𝑐ℎ𝑎,𝑖
𝑁𝑒𝑣
𝑖   (16) 

where 𝑃𝑐ℎ𝑎,𝑠𝑢𝑚 is the total charging power; 𝑃𝑐ℎ𝑎,𝑖 is the 𝑖′th EV charging power; 𝑁𝑒𝑣 is 

the total EV number. 

For each EV’s SOC, it should follow 

𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡 =
1

𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡,𝑚𝑎𝑥−𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛
  (17) 

where 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡 is the initial SoC of the EV; 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡,𝑚𝑎𝑥 and 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛 are the maxi-

mum and minimum SoC of the EV. 

For the EV’s battery 𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒 when arriving at SHS-EVCS, it is denoted as 

𝑆𝑂𝐶𝑎𝑟𝑟𝑖𝑣𝑒 = 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡 −
𝐷𝐸𝑉𝐸𝑘𝑚

𝐵𝑐𝑎𝑝
  (18) 

where 𝐷𝐸𝑉 is the EV’s driving distance and subject to 

Ekm is energy consumption, which is 16.25 kWh/100 km;
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where 

 𝜂𝑐 is the EV battery efficiency, which is 95; 

 𝑃𝑐  is the fixed charging power, which is 7 kW; 

 𝐵𝑐𝑎𝑝 is the battery capacity, which is 60 kWh (Tesla model 6 battery capacity); 
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where 𝐷𝐸𝑉 is the EV’s driving distance and subject to 

v is the average driving speed, which is 32 km/h.

To predict the electricity demand for all SHS-EVCSs catering to numerous EV drivers,
it is crucial to first establish a prediction model for the charging demand of a single EV.
Following this, the overall electricity demand of EVs can be calculated by aggregating the
individual EV charging demands using the Monte Carlo random simulation method. The
total charging power demand at any specific time can be represented as follows:

Pcha,sum = ∑Nev
i Pcha,i (16)

where Pcha,sum is the total charging power; Pcha,i is the i′th EV charging power; Nev is the
total EV number.

For each EV’s SOC, it should follow

SOCstart =
1

SOCstart,max − SOCstart,min
(17)

where SoCstart is the initial SoC of the EV; SoCstart,max and SoCstart,min are the maximum and
minimum SoC of the EV.
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For the EV’s battery SoCarrive when arriving at SHS-EVCS, it is denoted as

SOCarrive = SOCstart −
DEV Ekm

Bcap
(18)

where DEV is the EV’s driving distance and subject to

0 ≤ DEV <
Bcap

Ekm
(19)

Meanwhile, for all the EV drivers, they have z times charging opportunities [51]:

1 ≤ z ≤ 3 (20)

While the Monte Carlo method is known for its high prediction accuracy, it requires an
understanding of the probability distribution of the input samples. Predicting EV charging
demand involves many uncertain factors that often do not adhere to a standard probability
distribution, making it challenging to determine the corresponding probability density
function [47]. For example, the probability of EV owners choosing a simple travel chain for
commuting and the likelihood of EVs charging from the grid usually fall under discrete
probability distributions [47–49]. Hence, it is necessary to first establish the probability
distribution of the uncertain factors before applying the Monte Carlo method to predict EV
charging demand. The algorithm for forecasting EV charging is as follows (Algorithm 1):

Algorithm 1: EV Charging Demand Forecast Algorithm

Input: the EV data: Bcap, ηc, Pc, Ekm, v, Nev. . .

(a) Repeat 1: calculate the EV’s charging demand
(b) Get initial EV data SoCstart, Pcha,sum through Monte Carlo random simulation method
(c) Repeat 2: calculate single EV charging demand
(d) Update the current battery level
(e) Calculate the charging and discharging probability cf, df

(f) Calculate the charging duration ∆T1
(g) Calculate the waiting duration ∆T2
(h) Obtain the charging frequency 1 ≤ z ≤ 3
(i) Repeat 2 to calculate the single EV charging demand
(j) End repeat 2
(k) Repeat 1 based on (17) to obtain the total EV charging demand
(l) End repeat 1

End: Output the total EV charging demand to obtain the SHS-EVCS charging load

3.2. Second-Level Social Welfare Model

The second level adopts a similar approach to [46], utilizing a game theory-based
P2P energy exchange process, while integrating aspects of information transfer and load
demand considerations. Figure 4 illustrates the operation of this level: the blue line depicts
internal P2P energy trading, demonstrating the exchange of energy among the SHS-EVCSs.
The pink line indicates the flow of information, outlining the communication pathways
between each EVCSs and the central information hub, as well as between the EVCSs and
individual EVs. The yellow line symbolizes the flow of EV charging information, with each
EVCS gathering data when EVs are either charging or waiting to charge. These data feed
into the Markov decision process to accurately forecast EV charging demand in a real-time
scenario.
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Within the SHS-EVCSs coalition, which includes four EVCSs, D users, and an IMS,
each SHS-EVCS produces electricity to satisfy the demand of EV drivers within its locale.
They are interconnected through a communication network that facilitates the exchange
of real-time data on electricity prices and power requirements. The power consumption
cycle is segmented into k time periods. At the start of each period, the IMS determines
an electricity price reflecting the current power market conditions. Both EV drivers and
SHS-EVCSs gauge their optimal power usage and generation based on this pricing and
communicate their data back to the IMS. The IMS then adjusts the electricity price in
response to the incoming data on consumption and supply. This cyclical adjustment
process persists, with both drivers and SHS-EVCSs tuning their power usage and output
to align with the updated pricing information. This exchange continues until equilibrium
is reached between supply and demand, thus setting the electricity price for that interval.
The established price then serves as the real-time electricity rate for that time.

The problem formulation of the game theory and P2P process is giving in paper [46];
this level considers social welfare maximization, and the formulation is as follows. A novel
price-based real-time electricity pricing model [35,52,53] is introduced to optimize the gap
between the total utility of the EV driver and the costs incurred by the electricity provider
(SHS-EVCS). This sets up the subsequent optimization challenge:

max ∑K
k=1 (∑

D
d=1 V1

(
xk

d, ωk
d

)
− Ck(Gk)) (21)

s.t. ∑d∈D xk
d ≤ Gk, k = 1, 2, . . . , K,

xk
d ≥ 0, k = 1, 2, . . . , K.

The social welfare maximization model (21) can be defined as:

max ∑K
k=1 (∑

D
d=1 Vd

(
xk

d, ωk
d

)
− Ck(Gk)) (22)
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s.t. ∑d∈D xk
d ≤ Gk, k = 1, 2, . . . , K

mk
d ≤ xk

d ≤ Mk
d, d = 1, 2, . . . , D; k = 1, 2, . . . , K

Gmin
k ≤ Gk ≤ Gmax

k , k = 1, 2, . . . , K

where xk
d is the electricity consumption of EV driver d at time k; mk

d and Mk
d are the

minimum and maximum electricity consumptions of EV driver d at time k, and they satisfy
mk

d ≤ xk
d ≤ Mk

d; Gk is SHS-EVCS’s electricity supply at time k; Gmin
k and Gmax

k are the
minimum and maximum electricity supplies of the SHS-EVCS, and Gmin

k ≤ Gk ≤ Gmax
k ;

generally, Gmin
k ≥ ∑D

d=1 mk
d and Gmax

k ≥ ∑D
d=1 Mk

d; Ck(Gk) means the cost for the SHS-EVCS
to provide electricity for Gk at time k, and it is the convex function of Gk; Ck is the capital
cost for SHS-EVCS from first-level output; Vd

(
xk

d, ωk
d

)
is the utility of EV driver d using xk

d

at time k, and it is the concave function of xk
d; ωk

d is driver d’s elasticity of charging his EV
at time k, for ωk

d ∈ [1, 3.5].
The objective function aimed at maximizing social welfare is concave, and the associ-

ated constraints form a convex set. Consequently, this constitutes a convex programming
issue that can be efficiently resolved using standard convex programming methods. In
Equation (22), the critical decision variables are the electricity consumption of the driver, xk

d,
and the power supply from SHS-EVCS, Gk. However, the real-time electricity price, a central
variable in the model, is absent, rendering a direct solution to Equation (22) unfeasible. In
convex optimization, the original problem can often be mirrored by a dual problem where
the dual decision variables, namely, the Lagrange multipliers from the Lagrange function
of the original problem, equate to the shadow prices in economic theory. These shadow
prices are deemed theoretically optimal for pricing. Consequently, this work applies the
dual theory to effectively determine the real-time electricity pricing [34,35,54–56].

Each interval in (22) is independent of each other, so a distributed algorithm can be
used to solve each interval separately. The optimization problem corresponding to the k-th
interval is

max ∑D
d=1 Vd

(
xk

d, ωk
d

)
− Ck(Gk) (23)

s.t. ∑D
d=1 xk

d ≤ Gk

mk
d ≤ xk

d ≤ Mk
d, d = 1, 2, . . . , D

Gmin
k ≤ Gk ≤ Gmax

k

The Lagrange function for (23) is denoted as

L
(

xk
d, Gk, λk

)
= ∑D

d=1 Vd

(
xk

d, ωk
d

)
− Ck(Gk) + λk(Gk − ∑D

d=1 xk
d) (24)

= ∑D
d=1(Vd

(
xk

d, ωk
d

)
− λkxk

d) + (λkGk − Ck(Gk)) (25)

where λk > 0 is the Lagrangian multiplier, and according to the dual theory, (23) can be
transform to

min max L
(

xk
d, Gk, λk

)
(26)

where λk > 0, xk
d ∈

[
mk

d, Mk
d

]
, Gk ∈

[
Gmin

k , Gmax
k

]
.

Remark:
xk∗

d = argmax
(
(Vd

(
xk

d, ωk
d

)
− λkxk

d

)
(27)

xk
d ∈

[
mk

d, Mk
d

]
G∗

k = argmax(λkGk − Ck(Gk)) (28)

Gk ∈
[

Gmin
k , Gmax

k

]



World Electr. Veh. J. 2024, 15, 337 13 of 28

A(λk) = max L
(

xk
d, Gk, λk

)
(29)

xk
d ∈

[
mk

d, Mk
d

]
Gk ∈

[
Gmin

k , Gmax
k

]
= ∑D

d=1(Vd

(
xk∗

d , ωk
d

)
− λkxk∗

d ) + (λkG∗
k − Ck(G∗

k )) (30)

If λk represents the Time of Use (TOU) or real-time electricity price for the k-th inter-
val, then Equation (27) defines the driver’s optimal electricity consumption for charging
that maximizes personal welfare (by balancing utility gain against the cost of electricity).
Equation (28) shows how the SHS-EVCS optimizes its welfare by maximizing the difference
between revenue from electricity sales and the cost of power supply to determine the
optimal electricity provision for charging. Therefore, it is logical to use the Lagrangian
multiplier λk as the real-time electricity price.

To address the dual problem, where the goal is to minimize A(λk), with λk > 0, the
following method can be employed [57,58]:

λh+1
k = λh

k + γh
k ah

k (31)

where h is the iteration time; γh
k is the distance and ≥0; ah

k is the downward direction
of function A(λk); let ah

k = ∑D
d=1 xk∗

d − G∗
k ; (31) proves that when ∑D

d=1 xk∗
d > G∗

k , ah
k > 0,

while λh+1
k > λh

k due to the demand and supply theory, and the electricity price increases;
when ∑D

d=1 xk∗
d < G∗

k , ah
k < 0, then λh+1

k < λh
k , and the electricity price decreases; when

∑D
d=1 xk∗

d = G∗
k , while λh+1

k = λh
k , the electricity price stays balanced. In paper [30,34,51],

γ is a fixed positive number, which is 0.8. Figure 5 shows the power and information
interaction between SHS-EVCS, EV drivers, and IMS. Real-time electricity price distributed
algorithm shows in Algorithm 2.

Algorithm 2: Real-time electricity price distributed algorithm

Initialization parameters: γ, D, k, mk
d, Mk

d, and stop error ε (ε is a positive number 0.1), for h = 0.
The IMS randomly releases electricity price λh

k to the SHS-EVCS and EV driver.

1. According to the random electricity price, use (26) to calculate the optimal electricity

consumption xk∗
d

(
λh

k

)
by the EV driver and report the optimal electricity consumption to

the ISM.
2. Use G∗

k = argmax(λkGk − Ck(Gk)) to calculate the optimal electricity supply G∗
k

(
λh

k

)
by

the SHS-EVCS, and report it to the ISM.

3. Accept the optimal xk∗
d

(
λh

k

)
and G∗

k

(
λh

k

)
, using λh+1

k = λh
k + γh

k ah
k to calculate the optimal

electricity price.

4. If 0 < G∗
k

(
λh

k

)
− ∑D

d=1 xk∗
d (λh

k ) ≤ ε, let λk = 1
2

(
λh

k + λh+1
k

)
; if not, input λh+1

k to 1

End: output the optimal solution for xk∗
d and G∗

k
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4. Case Study

Three scenarios are explored in this analysis: the first involves day-ahead forecasting
without the Time-of-Use (TOU) strategy, focusing on uncertainties associated with EVs.
The second scenario extends this to include real-time forecasting alongside day-ahead
predictions without a TOU strategy. The third introduces both day-ahead and real-time
forecasts with an active TOU strategy.

In the TOU scenarios, load management decisions are proactively shaped by antici-
pated demand and supply data from the transportation department, enabling planning
and optimization of energy resources. In contrast, the real-time TOU scenario leverages
a Markov decision process to dynamically adjust and optimize the load based on actual
data. This approach compares fixed loads, which are immutable and must be met under
any circumstances, with flexible loads that can be adjusted based on real-time information.
The objective is to assess the impact of these load adjustments on social welfare, with the
goal of enhancing efficiency, reducing costs, and improving the synchronization of energy
supply and demand.

Table 2 and Figure 6 show the initial scenario that involves fixed loads, where SHS-
EVCS parameters are based on the forecasting and scheduling methods based on transport
statistics from gov.uk, which is addressed in paper [59]. In Figure 6, the fixed load values
for Hammersmith & Fulham and Hounslow are based on weekday averages, which is why
the charging peaks occur before and after working hours. The fixed load values for the
other two EVCSs are based on weekend averages. Figure 7 displays the SHS-EVCS’s load
curves for day-ahead and real-time forecasts under a non-TOU framework, showing that
variables such as EV charging times, arrival and departure battery capacities, and charging
rates remain constant.
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Table 2. Four London areas’ SHS-EVCS parameters [45,46,60,61].

Parameters Hammersmith & Fulham Richmond upon Thames Hounslow Ealing

Charger capacity (kW) 360 360 360 360
Number of chargers per station 3 8 14 21
PV installed capacity (kWp) 500 1000 1000 1000
PV installation cost (£/kWp) 1112 1112 1112 1112
Battery capacity (kWh) 1000 800 800 800
Battery installed cost (£/kWh) 331.55 331.55 331.55 331.55
Battery initial state of charge (%) 40 40 40 40
Rated charge and discharge power of
battery (kWh) 500 500 500 500

Minimum battery state of charge (%) 25 25 25 25
Maximum battery state of charge (%) 100 100 100 100
Battery charge and discharge
efficiency (%) 85 85 85 85

Hydrogen tank capacity (m3) 1000 1000 1000 1000
Initial capacity of gas tank (%) 30 30 30 30
Hydrogen tank cost (£/m3) 27.63 27.63 27.63 27.63
Tank storage efficiency (%) 95 95 95 95
Electric to gas efficiency (%) 75 75 75 75
Electricity-to-gas coefficient
(kWh/m3) 0.2 0.2 0.2 0.2

Fuel cell generator capacity (kW) 800 1500 1000 1200
Gas-to-electric efficiency (%) 65 65 65 65
Gas-to-electricity coefficient
(m3/kWh) 0.295 0.295 0.295 0.295

RE feed-in tariff (£/kWh) 0.03 0.03 0.03 0.03
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Figure 7. SHS-EVCSs day ahead and real-time load curve without TOU strategy.

Figure 8 shows the anticipated EV load and the impact of implementing a TOU
strategy. The blue curve is the standard EV charging pattern without TOU modifications,
with pronounced peaks for SHS-EVCSs 1 and 3 around 9 a.m. and 7 p.m.—times that
align with typical charging periods. During the early hours (0 to 5 a.m.), power demand
is notably lower. In contrast, SHS-EVCSs 2 and 4 experience their peak loads at noon,
with lower demand levels mirroring those of SHS-EVCSs 1 and 3. The orange curve,
indicating post-TOU implementation, shows a significant smoothing of peaks across all
SHS-EVCSs, confirming the strategy’s effectiveness in peak shaving. Notably, SHS-EVCSs
2 and 4 exhibit a singular peak at noon, and the mean absolute percentage error (MAPE)
for this is 11.37% and 13.56%, further validating the efficiency of the TOU approach. The
benefits of the TOU strategy include a substantial decrease in peak loads, visible in the
shift from the blue to the orange curve, which alleviates stress on the electrical grid. This
could reduce the need for further grid infrastructure enhancements and diminish electricity
costs. By more evenly distributing power consumption, the TOU strategy enhances the
operational efficiency of power generation and distribution networks, contributing to more
consistent grid performance. Furthermore, this strategy can yield financial savings for
both utility providers and consumers by minimizing the dependence on more costly and
environmentally unfriendly peak power generation.
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Figure 8. EV prediction load and load after demand side management.

Figure 9 shows the prediction and reduced scenarios for SHS-EVCS prediction. For
each SHS-EVCS, a total of 50 scenarios were predicted. In the scenario reduction process,
there is a need to identify a subset of the initial scenario set and reassign probabilities to
these retained scenarios. This reassignment aims to minimize the probabilistic distance
between the probability distribution of the retained scenarios and the initial scenario set.
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Figure 9. Prediction scenarios and reduced scenarios.
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To identify the scenario with the smallest probability to be reduced, one scenario is
removed after each iteration. By the end of the entire iterative process, at least the five
scenarios with the highest probabilities are retained by the end of the total iteration. This
method ensures that while the number of scenarios is reduced, the most representative
scenarios are preserved, thereby maintaining the key probabilistic characteristics of the
initial scenario set. This approach significantly reduces computational complexity while
accurately reflecting the statistical properties of the initial scenario set. Over the span
of a day, the prediction scenarios display a high level of variation and complexity, with
numerous intersecting lines and extraneous data. In contrast, the reduced scenarios offer a
clearer, more focused view, emphasizing the primary trends in electricity demand. Notably,
peak demand times at 9 a.m. and 6 p.m. are clear in both scenarios. However, the
streamlined scenarios strip away minor variations and outliers, thereby simplifying the
information and enhancing its applicability for strategic decision-making.

5. Results and Discussion

Figure 10 shows the EV traffic flow for each SHS-EVCS over a 24 h period, highlighting
distinct peaks and valleys in demand. The most significant peak occurs around 10 a.m.,
with all stations experiencing a marked increase in EV numbers, signalling a morning
rush. EVCS 2 sees the highest vehicle count during this period, likely due to its location in
a commercial area, making it a popular choice for morning charging. In contrast, EVCS
3, although less busy overall, has notable peaks at 6 a.m. and 9 a.m., indicating specific
times of high demand. Another notable surge in charging activity is observed at 8 p.m.,
aligning with evening charging routines. This pattern is consistent across all stations, with
each experiencing an increase in vehicle numbers during this time. EVCS 4 also shows a
significant evening peak, indicating steady demand during these hours. The early hours
from midnight to 5 a.m. show the lowest vehicle numbers, suggesting minimal charging
activity. This low level of activity during the early morning hours might reflect reduced
travel and charging demand, potentially due to effective TOU strategies that shift usage
away from these times.
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World Electr. Veh. J. 2024, 15, 337 19 of 28

The charging trends observed are typically linked to daily routines, with morning
peaks aligning with pre-work charging and evening peaks with post-work charging. Most
EV drivers prefer charging their vehicles before and after work. By adopting strategies
to manage these peak times, such as expanding charging station capacity or fine-tuning
charging schedules, the efficiency of the entire system and the user experience can be
significantly improved.

Figures 11–14 show the energy consumption and electricity load profiles for four
SHS-EVCSs. Throughout the daytime, PV systems serve as the main electricity source
due to their efficiency and sustainability, making them well-suited for daytime energy
production. This reduces reliance on grid-supplied electricity and helps to lower carbon
emissions. The use of solar power not only cuts operational costs but also supports broader
RE initiatives. With the setting of the sun and the cessation of solar energy production, the
SHS-EVCSs transition to using hydrogen fuel cells for power generation. The hydrogen
used is typically produced during periods of low demand or when there is surplus solar
energy, contributing to a sustainable and reliable energy supply. Additionally, these systems
are supplemented by battery storage that accumulates excess energy produced during
daylight hours, particularly from the PV systems and the electricity purchased from the
grid when its buying price is lower than the P2P purchase price. These batteries then
discharge power during peak usage times or when the production from renewable sources
is reduced, thereby ensuring a consistent and dependable electricity supply. This capability
to balancing the variability of renewable sources underscores the importance of battery
integration in maintaining energy stability.
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Figure 11. SHS-EVCS1 RE usage and electricity load curve.

Moreover, each SHS-EVCS can engage in electricity trading with other stations in
the network, aimed at minimizing costs. This practice of inter-station energy trading
enhances flexibility and efficiency in energy management, allowing each station to optimize
its operations and reduce expenses. With diverse energy sources and trading options,
the SHS-EVCSs are well-equipped to respond to changing energy demands and market
conditions, thereby improving the overall stability and sustainability of the electrical grid.
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Figure 12. SHS-EVCS2 RE usage and electricity load curve.
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Figure 13. SHS-EVCS3 RE usage and electricity load curve.
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Figure 15 shows the relationship between electricity prices and social welfare over 24 h.
Initially, the electricity price is relatively high, at around £0.40. The price drops significantly
from 11 a.m. to 11 p.m. and remains low, hovering around £0.20. After 11 p.m., the price
rises again, peaking at approximately £0.35. Social welfare trends start at a low level when
the electricity price is high. As the electricity price decreases, social welfare increases,
indicating an inverse relationship between the two variables. This inverse relationship is
especially noticeable between 3 p.m. and 11 p.m. when lower electricity prices correspond
with higher and more stable levels of social welfare. This relationship suggests that lower
electricity prices contribute to higher social welfare, likely due to more affordable energy
access benefiting consumers and overall societal well-being. In the economic market, price
fluctuations in electricity can be attributed to changes in demand and supply, peak and
off-peak hours, or other market dynamics. However, in this paper, the fluctuations in
electricity prices are due to the SHS-EVCSs coalition. These fluctuations impact social
welfare, but the general trend indicates that as electricity prices decrease, social welfare
stabilizes and increases slightly.

Figure 16 shows the relationship between social welfare and time across intervals
(day 1, day 2, and day 3). The consistent patterns observed across these scenarios suggest
that short-term forecasting can be nearly as effective as long-term forecasting for immediate
social welfare planning. This provides insight into the relationship between various time
horizon scenarios and social welfare in energy management.

Figure 17 depicts the optimal dynamic power load over 24 h. During the valley load
period, from 11 p.m. to 9 a.m., the power load increases from approximately 4000 kW to
13,000 kW. The charging demand for EVs is low during this time, as some drivers charge
their EVs at home, and some EVs are already fully charged or have stopped charging. From
6 a.m. to 7 a.m., the sharp increase in load likely indicates that most EV drivers are charging
their vehicles as they prepare to leave for work. The SHS-EVCS optimizes the EV charging
load through demand response, load forecasting algorithms, and TOU pricing, enhancing
power utilization and balancing the internal grid load. It also regulates power distribution
to avoid resource wastage during the valley period. At 10 a.m. and from 4 p.m. to 5 p.m.,
the power load stabilizes around 14,000 kW. During these times, the charging demand for
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EVs is relatively stable. Dynamic pricing strategies can further smoothen the load curve
and reduce grid pressure fluctuations.
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Figure 16. Total user welfare at different time intervals.



World Electr. Veh. J. 2024, 15, 337 23 of 28

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 23 of 29 
 

 
Figure 16. Total user welfare at different time intervals. 

Peak load periods occur from 11 a.m. to 3 p.m. and 6 p.m. to 10 p.m., with loads 
exceeding 16,000 kW and peaking at 18,000 kW. During these times, the charging demand 
for EVs rises sharply, especially in the evening when many drivers charge their EVs after 
returning home from work. Peak shaving strategies such as time-based charging fees, re-
strictions, and intelligent scheduling systems can be adopted to address this situation. 
Adjusting the output power of charging stations and coordinating power demand can 
reduce the grid pressure during peak periods. Additionally, SHS-EVCSs utilize energy 
storage systems to feed excess power back into the grid during peak times, effectively 
achieving peak shaving and valley filling. Combined with the IMS, this enables the real-
time monitoring and dynamic management of EV charging demand, further enhancing 
the reliability and stability of both internal and external grids. 

 
Figure 17. Total optimal dynamic load. 

Figure 18 shows the profit versus iteration, with iterations ranging from 0 to 25 and 
profit values from £0 to £18,000. The profit rapidly increases from iteration 1 to 2, reaching 
approximately £16,800, and then stabilizes around this value for all subsequent iterations. 
This indicates that this process achieves optimal profit quickly, with minimal changes 

0 5 10 15 20 25
Time/h

4.365

4.37

4.375

4.38

4.385

4.39

4.395

4.4

4.405

So
ci

al
 w

el
fa

re
/£

104 Total user welfare at different time interval

Day 3
Day 2
Day 1

0 5 10 15 20 25
Time/h

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Po
w

er
/k

W

Optimal dynamic load

Optimal load
Valley
Flat
Peak

Figure 17. Total optimal dynamic load.

Peak load periods occur from 11 a.m. to 3 p.m. and 6 p.m. to 10 p.m., with loads
exceeding 16,000 kW and peaking at 18,000 kW. During these times, the charging demand
for EVs rises sharply, especially in the evening when many drivers charge their EVs after
returning home from work. Peak shaving strategies such as time-based charging fees,
restrictions, and intelligent scheduling systems can be adopted to address this situation.
Adjusting the output power of charging stations and coordinating power demand can
reduce the grid pressure during peak periods. Additionally, SHS-EVCSs utilize energy
storage systems to feed excess power back into the grid during peak times, effectively
achieving peak shaving and valley filling. Combined with the IMS, this enables the real-
time monitoring and dynamic management of EV charging demand, further enhancing the
reliability and stability of both internal and external grids.

Figure 18 shows the profit versus iteration, with iterations ranging from 0 to 25 and
profit values from £0 to £18,000. The profit rapidly increases from iteration 1 to 2, reaching
approximately £16,800, and then stabilizes around this value for all subsequent iterations.
This indicates that this process achieves optimal profit quickly, with minimal changes
needed afterward. The initial setup or optimization has an important impact, suggesting
that focusing resources on this phase is crucial.

Table 3 presents the energy storage and generation technologies across Hammersmith
& Fulham, Richmond upon Thames, Hounslow, and Ealing. Several trends and strategic
differences are evident in the deployment of battery storage systems and hydrogen storage
systems. The analysis reveals that Ealing has the highest battery storage capacity at
2000 kWh. In contrast, Richmond upon Thames shows a more diversified approach,
with significant investments across all technologies. Richmond highlights the highest
expenditures in battery systems, with a capacity of 1762.6758 kWh at a cost of £584,415.16,
and fuel cell capacity at 1988 kWh costing £997,260.32. All areas have hydrogen storage
system capacities of around 1300–1500 kWh. However, Richmond upon Thames again
stands out with a slightly higher capacity and cost. Richmond’s investment in fuel cells
is particularly notable, possibly due to their efficiency and operational flexibility benefits
compared to other forms of energy storage and generation. Ealing and Hounslow, while
also investing substantially, have lesser capacities and costs associated with their fuel cells.
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Table 3. Energy optimal parameters and cost.

Parameters Hammersmith & Fulham Richmond upon Thames Hounslow Ealing

Battery storage system (kWh) 800 1762.68 1000 2000
Battery storage system investment
and O/M cost (£/kWh) 265,240 584,415.16 497,330 663,100

Hydrogen storage tank capacity
(kWh) 1369.49 1524.98 1379.16 1277.06

Hydrogen storage tank investment
and O/M cost (£/kWh) 55,100.09 61,356.08 55,489.2 51,381.16

Fuel cell (kWh) 1582.5 1988 1500 1000
Fuel cell investment and O/M cost
(£/kWh) 793,845.3 997,260.32 752,460 501,640

The Table 4 shows the MAPE for four areas, Hammersmith & Fulham (13.04%),
Richmond upon Thames (11.37%), Hounslow (11.8%), and Ealing (13.56%). Richmond upon
Thames has the lowest MAPE, indicating the highest prediction accuracy, closely followed
by Hounslow. Hammersmith & Fulham and Ealing have higher MAPE values, with Ealing
having the highest, indicating the least accurate predictions. Overall, while these values
are within a reasonable and good range, there is a need for improved forecasting methods
in the future.

Table 4. MAPE for 4 SHS-EVCSs.

Hammersmith &
Fulham

Richmond upon
Thames Hounslow Ealing

MAPE/% 13.04 11.37 11.8 13.56

6. Conclusions

Incorporating a Markov decision process to model EV charging times and using
Monte Carlo simulations to predict charging demand has been instrumental in capturing
the stochastic nature of EV usage patterns. These methodologies provide a high degree of
accuracy in forecasting, enabling the optimization model to adapt to varying conditions and
enhancing the reliability of the SHS-EVCS system. Applying the dual theory to determine
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real-time electricity prices also helps manage demand-side energy consumption. The
system can incentivize off-peak charging, reduce peak load stress, and contribute to grid
stability by leveraging these theoretically optimal prices. This aligns with broader demand-
side management goals, achieving peak shaving and valley filling, reducing overall energy
costs, and improving system sustainability. Empirical analysis and case studies demonstrate
the effectiveness of TOU strategies in peak load reduction and load balancing. Comparative
results between predicted and actual load scenarios highlight the significant impact of
TOU in mitigating demand spikes and promoting efficient energy utilization. This benefits
the power grid by reducing the need for additional infrastructural investments and offers
economic advantages to both EVCS operators and consumers through lower electricity
prices and operational costs.

In conclusion, integrating advanced optimization techniques and game theory models
in managing SHS-EVCS systems offers a promising pathway toward sustainable and
efficient energy infrastructure. The findings of this paper offer valuable insights into the
complex interactions between renewable energy sources, storage systems, and EV charging
demands. Social welfare could reach up to £4.218 × 104 if the EV charging electricity price
is below £0.20. Future research should continue to explore the scalability of these models
and their application in diverse geographical and economic contexts, thereby contributing
to the global transition toward cleaner and more resilient energy systems.
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Nomenclature

af Waiting probability
ah

k The downward direction of function A(λk)
Bcap Battery capacity, 60 kWh (Tesla model 6 battery capacity)
cf, df The charging probability and the probability of interrupted charging
Ck(Gk) The cost of SHS-EVCS to provide electricity for Gk at time k
Ck The capital and O&M cost for SHS-EVCS from first-level output
D Total driver
Ekm Energy consumption, 16.25 kWh/100 km
EVCf, EVDf The states of charging mode and wating mode
fmax Maximum number of discrete variables
∆(−f ) The electricity loss when driving the EV
Gk SHS-EVCS’s electricity supply at time k
Gmin

k , Gmax
k Minimum and maximum electricity supplies of SHS-EVCS

mk
d, Mk

d Minimum and maximum electricity consumptions of EV driver d at time k
Nev Total EV number
pij, pji Transition probability of state i to j, transition probability of state j to i
Ps(EVCf), Ps(EVDf) The state probability of EVCf and EVDf
Pc Fixed charging power, 7 kW
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Pcha,sum Total charging power
Pcha,i i′th EV charging power
sdis

f The f ′th discrete state
Sdis Discrete state space
SoCstart, SoCstart,max,
SoCstart,min

Initial, maximum, and minimum SoCs for EV

∆T1, ∆T2 Charging and waiting times
v Average driving speed, 32 km/h
Vd

(
xk

d, ωk
d

)
Utility of EV driver d using xk

d at time k

xdis
f The f ′th discrete variable

xk
d The electricity consumption of EV driver d at time k

ωk
d Driver d′s elasticity of charging his EV at time k, ωk

d ∈ [1, 3.5]
ηc EV battery efficiency, 95%
λk The real-time electricity price
γh

k The distance, 0.8

Abbreviations

CSs Charging stations
DR Demand response
DSM Demand-side management
EV Electric vehicle
G2P Gas to power
IMS Internal Management System
MAPE Mean Absolute Percentage Error
P2G Power to gas
PV Photovoltic
RE Renewable energy
SHS-EVCSs Solar–Hydrogen-Battery Storage Electric Vehicle Charging Stations
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