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Abstract
Decentralized applications (DApps) built on blockchain platforms such as Ethereum
and coded in languages such as Solidity, have recently gained attention for their
potential to disrupt traditional centralized systems. Despite their rapid adoption,
limited research has been conducted to understand the underlying code structure of
these applications. In particular, each DApp is composed of multiple smart contracts,
each containing a number of functions that can be called to trigger a specific event,
e.g., a token transfer. In this paper, we reconstruct and analyse the network of
contracts and functions calls within the DApp, which is helpful to unveil vulnerabilities
that can be exploited by malicious attackers. We show how decentralization is
architecturally implemented, identifying common development patterns and
anomalies that could influence the system’s robustness and efficiency. We find a
consistent network structure characterized by modular, self-sufficient contracts and a
complex web of function interactions, indicating common coding practices across
the blockchain community. Critically, a small number of key functions within each
DApp play a central role in maintaining network connectivity, making them potential
targets for cyber attacks and highlighting the need for robust security measures.

Keywords: Decentralized applications; Blockchain; Network structure; Software
engineering; Smart contracts

1 Introduction
In recent years, the Total Value Locked (TVL) in decentralized finance platforms and
crypto protocols has reached 44 bUSD, with over 82 million wallets and active users world-
wide. Since the launch of Bitcoin, blockchains and decentralized platforms have evolved
to enable new functionalities and use cases beyond digital currency. These functionali-
ties are embedded in smart contracts, a digital agreement written in code, stored on a
blockchain, and executed automatically without intermediaries [1]. Smart contracts ben-
efit from the blockchain’s security and transparency, providing users with a way to en-
force agreements and streamline processes, and they are decentralized so they cannot be
changed or tampered with once they are deployed. These terms can be as simple as mak-
ing a single payment, or as complex as a multi-step process with many participants and
data point requirements. Once deployed, anyone with access to the blockchain can invoke
and interact with the smart contract. Multiple contracts can be linked together to form a
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Figure 1 Scheme of a DApp structure. The DApp is
composed of 3 contracts, each with a varying number of
functions. Contracts can interact between them via
function calls (black arrows)

more sophisticated application, with different purposes and functionalities. Notable use
cases include facilitating financial transactions or gaming interactions, enabling players to
own and trade in-game assets, participate in competitions, and earn rewards in the form
of tokens. These decentralized applications operating on blockchain systems, also widely
called DApps, enhance many traditional industries and services, and are not run or con-
trolled by a single central authority or trusted organisation. DApps are developed in most
cases in an open-source fashion on Github: they are composed of a collection of contracts,
each containing multiple functions that can be called by the same or different contracts,
one or multiple times, depending on the task performed by the user (see Fig. 1).

While DApps offer various advanced features like transparency and community collabo-
ration, they may not be completely immune to security breaches or hacking attempts, and
that is why a robust analytical framework is needed to study their complexity and vulner-
abilities. One of the issues that users are usually concerned about is technical vulnerabili-
ties, and while there are usually strong measures and smart contract bug bounty programs
in place to address these issues [2], smart contracts can still be exploited by malicious
actors, leading to financial loss or unintended consequences. As opposed to traditional
finance, developers of Decentralised Finance (DeFi) projects often lack financial experi-
ence, and cyber security is an afterthought in a hasty development process [3]. Moreover,
the hosting of smart contract code publicly on Github further enables an attacker’s oppor-
tunity to locate vulnerabilities quickly and efficiently. Exploiting DeFi projects currently
is a low-risk high-reward opportunity to malicious actors. For example in the past years,
the Decentralized Finance sector has experienced thousands of attacks causing the loss
of millions of dollars locked in protocols [4], which could be dramatically reduced by ac-
tively monitoring and fixing security threats related to bugs in the code. Another major
challenge with DApps is scalability [5]. Some blockchains have limitations in terms of pro-
cessing speed and capacity, which can result in slower transaction times and higher costs.
Scalability becomes a major concern especially when the number of users and transactions
increases. Often, these vulnerabilities are directly linked to the way in which contracts and
functions interact.

Let us consider a toy DApp example illustrating technical vulnerabilities. In Fig. 2, we
present a simplified DApp responsible for managing the buying and selling of items dur-
ing an auction. There are four contracts involved: Auction, Item, Participant, and
Vault. The Auction contract handles auction management, registering buyers, sell-
ers, and items. The Item contract manages auction items and updates related to offers
on an item. Participant manages the participants, allowing them to enrol as buyers
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Figure 2 Scheme of a toy DApp example vulnerable to re-entrancy and time dependency attacks

or sellers and keeps track of their respective bids. Lastly, Vault is responsible for safe-
guarding items and preventing them from being assigned to anyone before the auction’s
end. The vulnerable functions in this context are lock, release, placeBid, and
returnUnsuccessfulBids [6]. placeBid and returnUnsuccessfulBids are
susceptible to reentrancy attacks. Consequently, an attacker, by reentering the function’s
code multiple times, could illicitly withdraw the funds related to the bids (funds meant to
be collected by the auctioneer). On the other hand, the lock and release functions are vul-
nerable to time dependency issues, potentially causing items to be locked indefinitely or
released prematurely before the end of the auction. As a result, participants may purchase
items, which they will never gain ownership of, or items could be assigned to participants
who did not place the highest bid during the auction. The reentrancy attack has been ex-
ploited in the famous DAO Hack, where an attacker was able to call the function SplitDAO
recursively, transferring ∼ 50 mUSD in its account [7]. Note also that each function call
has an associated computational cost to run and execute the code, and a fee paid to the
network for validation (i.e., the so-called gas fees in Ethereum). In terms of scalability, a
more complex call structure corresponds to higher computational costs and fees to exe-
cute a given action.

This research, leveraging complex network analysis tools, intends to study the DApps’
complexity and characterize development practices. Our aim is to provide an understand-
ing of the code structure underlying DApps deployed on different blockchains. This offers
insights on architectural choices, vulnerabilities detection, and future development direc-
tions of decentralized systems.

While previous research has made significant progress in identifying vulnerabilities
within individual smart contracts [6, 8], there is a gap in understanding how the com-
plex interactions between functions across contracts can impact the overall security of
DApps. Smart contracts do not operate in isolation within DApps, instead they are part
of a complex interconnected ecosystem of contract, interacting via function calls, and de-
pending on each other to perform specific tasks. These non-trivial interactions can poten-
tially propagate vulnerabilities, and amplify their impact on the entire DApp. Traditional
code analysis techniques often focus on isolated contracts and may overlook the emer-
gent vulnerabilities arising from the architectural design and functions’ interdependencies
within DApps. To address this limitation, we propose a novel network-based approach to
analyze the function interaction graph of DApps. By representing functions as nodes and
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their invocations as edges, we construct weighted directed networks that capture the flow
of control and data within the DApp. This network representation allows us to apply ad-
vanced graph analysis techniques, such as community detection, centrality measures, and
resilience analysis, to uncover structural patterns, identify critical components, and as-
sess the potential impact of vulnerabilities on the overall functionality and security of the
DApp. Through a series of targeted analyses, we aim to provide new insights into the ar-
chitectural weaknesses of DApps and contribute to the development of more robust and
secure decentralized applications.

We aim to answer the following research questions:
• RQ1: Can we identify common development patterns and best practices across

networks of contracts and functions in different dApps?
• RQ2: How do topological properties of the functions’ interaction graph relate to the

security risks of DApps?
• RQ3: How resilient are DApps to targeted attacks on their function networks, and

what are the implications for their overall functionality and security?
In particular, we will show the following results:
• We find common practices concerning the implemented architecture of interactions

between functions and contracts across blockchain ecosystems and development
teams. This finding suggests the emergence of best practices and inherent constraints
in smart contract design, which is valuable for understanding the evolution of DApps’
development.

• We identify critical components of the DApp, more likely to be susceptible to
technical vulnerabilities. We will show that high betweenness functions act as crucial
bridges between different parts of the DApp, making them potential targets for
attacks. This insight is important for developers and auditors to prioritize security
efforts.

• We demonstrate how the topological properties of function interaction graphs relate
to security risks in DApps. Specifically, we show that the small-world nature of these
networks facilitates rapid information diffusion, which can be both beneficial for
functionality and problematic for vulnerability propagation.

• We quantify the resilience of DApps to targeted attacks on their function networks
and discuss the implications for overall functionality and security. Our analysis reveals
that removing just 2% of high betweenness nodes can often lead to network
fragmentation, highlighting a critical vulnerability in DApp design and providing a
quantifiable threshold for network vulnerability.

These results provide a novel perspective on DApp architecture and security: by mapping
network properties to potential security issues, we bridge the gap between structural anal-
ysis and practical security concerns in DApp development. This approach complements
existing smart contract analysis techniques and contributes to ensuring a safer ecosys-
tem for end-users. These results can be used to inform development guidelines and active
monitoring, ensuring a safer ecosystem for end-users. Indeed, recently regulators have
been looking more closely at ways to tackle and minimise malicious activities in crypto
markets [9], and businesses have joined forces to put forward best practices to ensure an
increased trust in the technology and support adoption.
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To facilitate reproducibility and further research, we have made the dataset used in this
study publicly available at https://zenodo.org/records/12731531 [10] and https://zenodo.
org/records/13772792 [11].

In the following, we will focus our analysis on 66 DApps written in Solidity, a widely
adopted, high-level programming language specifically designed for writing smart con-
tracts on blockchain platforms (e.g., Ethereum). In Sect. 2, we discuss related and com-
plementary literature. The dataset and methodology will be discussed in details in Sect. 3.
Finally, we will present the main results in Sect. 4, and we will discuss them in Sect. 5
pointing to future research directions.

2 Related works
Complex systems approaches have shed light on the users’ interactions [12], platform’s
growth, evolution and resilience [13], and market dynamics of crypto ecosystems [14].
In the context of blockchain open-source development, the interplay between developers’
team interactions on Github and market behavior of associated cryptocurrencies has been
explored [15, 16], highlighting a strong inter-dependence between the code development
and assets’ valuation. More specifically, complex networks approaches have also been used
to analyse blockchain transactions and addresses interactions, to characterise users’ be-
haviour [17], track malicious activities [18], and identify links with cryptocurrency price
dynamics [19].

Within the software engineering community, complex network tools have been increas-
ingly used to analyse characteristics of the underlying code structure. The most common
approach assumes that software modules are represented as nodes, while relations among
them correspond to edges. Other software artifacts, but also people involved in the soft-
ware development process, have been considered as nodes leading to different kinds of
networks. Modeling software systems as networks enabled a graph-based treatment and
analysis with the goal of investigating several properties, such as scale-freeness, and the
presence of small-world phenomena [20–23]. Object-oriented designs in particular, can be
naturally represented as graphs [24]. Software is built up out of many interacting units and
subsystems at many levels of granularity (subroutines, classes, source files, libraries, etc.),
and the interactions and collaborations of those pieces can be used to define networks or
graphs that form a description of a system [25]. In addition, software code remains pre-
dominantly a handmade product, produced by human developers, and as such, it is prone
to error. The result of a developer error can be directly translated into faults in code and
as the world demands ever larger and more complex software systems, controlling faults
in code becomes more difficult but increasingly necessary. Understanding fault insertion
and fault fixing is crucial to enabling the effective reduction of faults in software systems
[26].

In the context of blockchain systems, understanding the network interactions within
and among smart contracts could provide new perspectives on system vulnerabilities and
operational efficiencies [27]. Recently, researchers have started looking at defining rules
and metrics to evaluate smart contract code specifically, within the realm of the so-called
blockchain-oriented software engineering research [28]. A number of tools have been de-
veloped to analyse code and detect known and typical vulnerabilities, such as Mythril and
Osiris for a smart contract static analysis, Maian that detects smart contract vulnerabili-
ties by using dynamic analysis, and Gasper used to monitor the gas consumption of smart

https://zenodo.org/records/12731531
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contracts [2]. Preliminary classifications of typical smart contracts vulnerabilities, such as
re-entrancy, computational complexity and overflow have also been conducted [6, 8]. In
a recent work, Ibba et al. [29] examines software metrics in DApps to analyse their struc-
tural and behavioral characteristics as they grow in complexity. However, to the best of
our knowledge, there is limited research on the applicability of complex network theory
to the analysis of smart contracts’ and DApps’ code structure.

In this work, we aim to bridge this gap by proposing a complex networks driven software
engineering approach. The DApp’s underlying code structure is represented and analysed
as a network, whose nodes are functions and contracts, and links represent the strength
of the interactions between them.

3 Dataset and methods
Solidity is a high-level programming language specifically designed for writing smart con-
tracts on blockchain platforms [1]. It incorporates elements of pre-existing languages such
as JavaScript and Python, but is tailored to the requirements of blockchain development.
One of its standout features is its contract-oriented design, which allows for the con-
struction of modular and reusable code structures. This enables developers to create de-
centralised applications, capable of reproducing complex real-world processes. Analysing
Solidity smart contracts is of paramount importance – given its widespread adoption –
to assess two critical aspects: platforms’ security and robustness of the structural design
of DApps. Security vulnerabilities in smart contracts can be dangerous [28], given the
immutable nature of blockchain, while the study of Solidity contracts and functions in-
teractions allows to investigate the architecture and operational logic underlying DApps.
Indeed, contracts contain the rules and functions that dictate the behaviour of a DApp,
making their analysis crucial for understanding how these decentralised systems func-
tion. In the following sections we introduce the main steps to gather the data – together
with summary statistics and qualitative analysis of the data – and construct contract and
function networks.

3.1 Data extraction and parsing
In this work, we focus on a dataset composed of DApps mainly supported by the Ethereum
blockchain, but including also examples from other blockchains as Binance, Optimism,
Polygon, Astar, Shiden and ThunderCore. The data on the underlying smart contract code
is obtained from the Github repository of each DApp. For each DApp, the associated smart
contracts code is broken down into relevant sub-components (e.g., libraries, functions,
etc.) using an ad hoc tool specifically built to recognize these sub-parts in Solidity con-
tracts [30]. More specifically, we use the tool MindTheDApp, designed for the structural
analysis of DApps built with Solidity contracts [30]. The tool uses ANTLR4 [31] to tra-
verse the Abstract Syntax Tree (AST) – a tree representation of the abstract syntactic
structure of the source code – of Solidity contracts. ANTLR4 works by accepting gram-
mar rules to automatically produce both a lexer and a parser. The lexer first breaks down
the input Solidity code into tokens, eliminating unnecessary elements such as whitespaces
and comments. These tokens are then processed by the parser to form an Abstract Syntax
Tree (AST), which organizes the code into a hierarchical structure useful for the analysis.
The data extraction procedure using the tool MindTheDApp is schematically described in
Fig. 3.

https://ethereum.org/en/dapps/
https://academy.binance.com/en/glossary/decentralized-application
https://www.optimism.io/apps/all
https://polygon.technology/ecosystem
https://astar.network
https://shiden.astar.network
https://www.thundercore.com
https://www.antlr.org/
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Figure 3 The goal of the toolMindTheDapp is to create a bipartite graph that illustrates the interactions
between functions and contracts. Combining the ANTLR4 and Abstract Syntax Tree (AST) modules, the tool
extracts various elements including contract calls, modifiers, constructors, and events. The Figures above
shown are introduced in the original paper by Ibba et al. [30]. Figure 3a: Example of a solidity contract.
Figure 3b: After receiving the Solidity source code, ANTLR4’s lexer first tokenizes the input, breaking it down
into identifiable lexical units. These tokens are then fed to ANTLR4’s parser, which organises them into a
hierarchical structure, resulting in an Abstract Syntax Tree (AST). Figure 3c: Once the AST is constructed, the
Analyzer module scans and extracts key elements, such as contracts, functions, interfaces, events, modifiers,
and libraries. In the resulting bipartite graph, nodes represent two distinct categories: the first category
comprises functions, events, and modifiers, while the second category includes smart contracts, interfaces,
and libraries. An edge exists between a node from the first category and a node from the second category if
and only if the function, event, or modifier from the first category calls the corresponding contract, interface,
or library in the second category

Table 1 Example of dataset returned by the tool for the DApp Aave (Ethereum - DeFi)

File Source_Contract Source_Function Target_Contract

WETH9Mock.sol WETH9Mock mint WETH9Mock
WETH9Mock.sol WETH9Mock mint None
MockBadTransferStrategy.sol MockBadTransferStrategy constructor MockBadTransferStrategy
MockBadTransferStrategy.sol MockBadTransferStrategy performTransfer MockBadTransferStrategy
... ... ... ...

3.2 Dataset features
For each DApp the tool gives as output a CSV file, containing information regarding func-
tions invoking contracts, allowing for advanced network analysis. The dataset obtained
from our parser comprises for each DApp the information on the File in which the con-
tract is defined, on the Source Function, i.e. the function calling a target contract (for
example Function 1 in Fig. 1), the Source and Target Contract, respectively the contract
which the function belongs to and the contract the function is called by (Contract A and
B in Fig. 1). In Table 1 we provide an example of the parser output for Aave (category:
Ethereum - DeFi; balance: $108.85B; ranking: #2 in DeFi, #56 in General). As a lending
protocol, Aave allows users to supply assets and earn passive income.

Overall, our dataset consists of 51 DApps Ethereum-based, and 15 DApps deployed on
other blockchains (see Fig. 4 and Appendix A). The majority of DApps are Ethereum-
based, due to the significant expansion of the Ethereum ecosystems in recent years [32].
These applications are related to multiple sectors, such as:

DeFi Applications in this category handle various aspects of financial services: Insur-
ance, Investments, Lending and Borrowing, Payments, Token Swap, and Trading and Pre-
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Figure 4 Overview of the dataset

diction Market. Each of these sub-categories brings a unique set of functionalities, all aim-
ing to disrupt traditional financial systems by introducing automation, transparency, and
efficiency through blockchain and smart contract technology.

Art and Collectibles This category of DApps focuses on digital ownership and artistic
creation. Tokenization, based on so-called Non-Fungible Tokens (NFTs), plays a critical
role in use cases related to establishing ownership and provenance.

Gaming These DApps offer interactive entertainment and virtual exploration, and they
are generally divided into Competition and Digital World sub-groups. They allow buying
and trading digital assets that can enhance gameplay, and they operate in environments
that simulate various landscapes.

Technology This category contains DApps that aim to revolutionize developers’ tools
and integrate blockchain into existing technology platforms. They support open-source
development initiatives and facilitate the decentralization of various technological ser-
vices.

Gambling Gambling DApps comprise platforms allowing users to bet their money on
gambling and high-risk games. They range from decentralized casinos to prediction mar-
kets.

Staking Staking DApps are decentralized applications that allow users to lock their
cryptocurrencies to support network operations, often in exchange for rewards or other
benefits. It offers a way for users to potentially earn returns on their crypto holdings by
participating in network security or governance.

We decided to concentrate on DeFi-related DApps as, in 2021, DeFi protocols emerged
as the predominant targets of cryptocurrency hackers, and this pattern further intensified
in 2022 [33].

The number of Source Contracts that compose a DApp is taken as a proxy for its size, fol-
lowing [29]: DApps are categorized into Small (3 to 23 contracts), Medium (24 to 45 con-
tracts), and Large (46 to 193 contracts). The categorization of DApps into Small, Medium,
and Large groups – based on the number of contracts they are formed of – is a heuristic
approach driven by the characteristics of our dataset. The specific ranges (3 to 23, 24 to 45,
46 to 193) for these categories were selected to create a balanced sub-division that allows
meaningful comparison and analysis across groups. We, therefore, have 20 Small DApps,
22 Medium DApps, 22 Large DApps (see Fig. 5). This metric offers a quantitative measure
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Figure 5 Distribution of DApp sizes. The number of Source Contracts is a proxy for the size. Our dataset is
composed of 20 Small DApps, 22 Medium DApps, and 22 Large DApps

Figure 6 Box plot of the number of functions per contract. The ends of the box represent the first and third
quartiles, the median (second quartile) is marked by a line inside the box, and the end of the whiskers
represent the minimum and the maximum

of a DApp’s complexity and potentially its functional diversity. The smallest DApp is 1inch
Network (Ethereum - DeFi) with 6 functions and 2 contracts, while the largest is Balancer
(Ethereum - Exchanges) with 531 functions and 193 contracts.

Functions are the fundamental building blocks of contracts and, therefore, DApps. In
Fig. 6, we analyse the number of functions in each DApp, adjusted for their respective sizes.
On average, the number of functions is 5.09 times the number of contracts within the same
DApp, with a standard deviation of 1.91. The minimum value is 1.83 for the Ethereum -
DeFi category, while the maximum value is 9.43 for the Ethereum - Exchanges sector.
The DeFi and Exchanges categories show the highest dispersion, with values exhibiting
significant deviations from the median. The Gambling category is, instead, characterised
by a larger number of functions on average.

Several categories exhibit very narrow distributions, indicating low variability in the
number of functions per contract. For instance, the Collectibles category shows a tightly
clustered range of functions per contract, suggesting a more standardized approach in
how these contracts are structured. This could be related to the increased dominance of
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standardized protocols such as ERC-721 and ERC-1155 in the Ethereum ecosystem (and
similarly in other blockchain protocols) has led to a more uniform structure of collectible
contracts. These standards define a set of core functions and interfaces that are consis-
tently implemented across different collectible DApps, resulting in a reduced need for
additional, unique functions per contract. The median number of functions per contract
varies across categories. For example, the DeFi category, which is more variable, still shows
a relatively high median, indicating that DeFi contracts tend to have more functions com-
pared to categories like Collectibles or Games. Categories such as Exchanges and Gam-
bling display significant variability with some outliers, indicating that while many con-
tracts are standardized, there are a few with a significantly different number of functions.
This could reflect experimental or customized implementations within these categories.
We hypothesize that the complexity of the dApp is related to its use case, community
interest, and investments. DeFi and Exchanges are indeed the sectors with more experi-
mentation, and associated protocols record the highest number of transactions according
to recent experimental studies [34]. The high function complexity in DeFi and Exchanges
therefore aligns with their popularity and the substantial investments they attract. The
robust community interest and financial backing encourage developers to explore diverse
functionalities, leading to more sophisticated and feature-rich DApps. The correlation
between high transaction volumes and function complexity supports this hypothesis, as
DApps in these sectors must manage numerous and varied operations efficiently.

The presence of numerous functions suggests the reliance on multiple separate scripts
to accomplish different tasks. This technique of splitting larger tasks into multiple sub-
functions suggests a reduction in the responsibility of single contracts. If all tasks were
concentrated in few functions, the likelihood of the DApp ceasing to function in the event
of technical malfunctions would be considerably higher. Instead, by distributing tasks
across a greater number of functions, the risk of a technical malfunction affecting the
entire DApp is minimized. This result is not surprising, as a similar approach is observed
in ‘standard’ (i.e., non blockchain-related) software engineering. In software engineering,
the principal mechanism employed for designing object-oriented software is the class. The
allocation of responsibilities and collaborations among classes can take various forms. In
a delegated control style, a well-defined set of responsibilities is spread across multiple
classes. These classes assume distinct roles and occupy recognized positions within the
application architecture. Object-oriented design experts suggest that a delegated control
style is more comprehensible and adaptable than a centralized control style [35]. This ap-
proach shares similarities with our findings in the context of DApps, where a distributed
approach to functions mitigates the impact of potential technical failures on the entire
system.

3.3 Building contract and function networks
As shown in Table 1, the dataset reveals interactions between the calling function and the
contracts, which the call originates from and terminates into. We are indeed interested
in conducting a more fine grained analysis, as our objective is to understand interactions
within contracts and interactions within functions (considering functions with the same
Source Contract as identical). To construct the contracts network for each DApp, we use
information on the Source and Target Contract of each function call. We build the net-
work’s adjacency matrix, where the rows denote the sources and the columns denote the
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Table 2 Example of adjacency matrix for Aave’s (Ethereum - DeFi) contracts network

ACLManager AToken ATokenHarness AaveEcosystemReserveController ...

ACLManager 1 0 0 0
AToken 0 9 0 0
ATokenHarness 0 0 1 0
AaveEcosystemReserveController 0 0 0 5
...

Figure 7 Illustration of the bipartite network Functions - Contracts, and its projection on the Function layer.
For example, the edge weight from node F3 to F4 is computed as follows: it is equal to 1 (the number of
possible directions when starting from node 3, weighted by the probability of going through that link)
multiplied by the probability of reaching F4, divided by the total number of nodes through which the
information can flow (weighted by their respective probabilities): 1 · 4

2+1+4 = 0.57

targets (Table 2). The matrix element at position (i, j) may assume a value of 0, if the func-
tion belonging to the Source Contract i does not call Target Contract j, or it may assume a
value of n ∈N, if the function in Source Contract i calls Target Contract j n times. We, thus,
obtain for each DApp a weighted directed network of contracts interactions, resulting in
66 contracts networks.

To infer the network of connections among functions, further steps are necessary. We
use the information regarding the Source Function and the Target Contract: analysing
the relationship between them is crucial to determine the system’s robustness. Indeed,
vulnerabilities in function-contract calls have been exploited in hacking attacks aimed for
instance at stealing funds from cryptocurrency wallets and applications [28, 36]. As previ-
ously done, we build the bi-adjacency matrix, where the rows denote the Source Functions
and the columns denote the Target Contracts. The matrix element at position (i, j) may
assume a value of 0, if function i does not call target contract j, or a value of n, if func-
tion i calls target contract j n times. Given the possibility of multiple calls from the same
function to the same contract, we obtain a weighted bipartite graph. The two layers are
Functions (layer F) and Contracts (layer C) as schematically depicted in Fig. 7, top panel.
Since our interest lies in the relationships within the functions layer, we project the infor-
mation onto the single layer F . The one-mode projection onto layer F results in a network
consisting exclusively of F nodes, and it is a procedure extensively used in graph theory.
Determining how to weight the edges in this network is a critical aspect of the one-mode
projection. We adopt a methodology similar to the one introduced by Tao Zhou et al. in
[37]. In order to assess if the contract c ∈ C called by function f1 ∈ F is more likely to be
called also by function f2 ∈ F we have to perform a contraction of the bi-adjacency matrix
M over the contract dimension, i.e., the set C of contracts, and take the element (f1, f2).
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Table 3 Example of bi-adjacency matrix for Aave’s (Ethereum - DeFi) functions network

_approveDelegation _approve _approve_Incentivized _burnScaled ...

_approveDelegation 0.009 0.009 0.009 0.03
_approve 0.009 0 0.06 0.03
_approve_Incentivized 0 0 0 0.11
_burnScaled 0.004 0.004 0.004 0.018
...

This method is called probabilistic spreading approach. Let us consider one bit of infor-
mation on a generic function f1 ∈ F . We aim to describe how this information can spread
to contracts in C, then back to F . Firstly, the information moves to the contracts layer ac-
cording to the connection patterns of M. The probability that the information goes from
f1 to a given contract c is

ρF→C
f1→c =

Mf1,c
∑

c̃∈C Mf1,c̃
, (1)

where
∑

c̃∈C Mf1,c̃ is the number of possible paths from f1 to C, each weighted by the prob-
ability of going through a given path. Since the elements of M = 0, 1, . . . , n we are not
assuming equal transition probabilities, introducing a bias in the process. Secondly, the
information that reached the contracts layer jumps back to the functions one, following
again the connection patterns of M. The transition probability from c to a given function
f2 in layer F is:

ρC→F
c→f2 =

Mf2,c
∑

f̃ ∈F Mf̃ ,c
, (2)

where
∑

f̃ ∈F Mf̃ ,c is the number of possible weighted paths from c in layer C to layer F .
Finally combining these steps, the probability that the bit of information jumps from func-
tion f1 ∈ F to function f2 ∈ F , via all possible connected contracts c, is

ρF→F
f1→f2 =

∑

c∈C

ρF→C
f1→c ρC→F

c→f2 =
Mf1,c

∑
c̃∈C Mf1,c̃

Mf2,c
∑

f̃ ∈F Mf̃ ,c
. (3)

Equation (3) defines a monopartite network of F nodes, which can be interpreted as the
flow of information within functions in F . We can interpret the connections of this net-
work as conditional probabilities P(f2|f1) =

∑
c∈CP(f2|c)P(c|f1).

We thus obtain for each DApp a weighted directed monopartite network of functions
interactions, resulting in 66 functions networks. In Table 3 an example of the bi-adjacency
matrix for Aave’s functions network.

To assess the statistical significance of the elements of the matrices defined in (3), we re-
sort to a null model. We use the disparity filter,1 a filtering method that extract the relevant
connection backbone in complex networks, preserving the edges that represent statisti-
cally significant deviations with respect to a null model for the local assignment of weights
to edges [38]. An important aspect of this method is that it does not affect small-scale in-

1https://github.com/DerwenAI/disparity_filter.

https://github.com/DerwenAI/disparity_filter
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Figure 8 Network of contracts’ interactions for Aave. In blue, the nodes with self-loops. The width of the
border of each blue node corresponds to the weight of its self-loop link. The nodes positioned on the external
circle do not interact with other contracts

teractions and operates at all scales defined by the weight distribution. In this context, the
information on weights is significant as they directly correlate with the frequency of func-
tions calling a contract, influencing the associated gas fee expenses. We adopt a filtering
method that retains edges that represent statistically significant deviations when com-
pared to a null model of local weight assignment. It filters out connections characterized
by substantial disorder, while preserving structural properties and hierarchies. Our find-
ings from the network analysis indeed reflect intrinsic characteristics of the systems we
are examining, rather than being a mere consequence of the chosen filtering method. In
Sect. 4, we report the results of the analysis conducted on the filtered weighted functions
and contracts networks.

4 Results
We analyse 51 Ethereum-based DApps and 15 DApps from other blockchains (Binance,
Optimism, Polygon, Astar, Shiden, and ThunderCore), spanning various categories, and of
varying sizes. Contracts Networks We generate a total of 66 weighted directed networks
illustrating contracts’ interactions, with each network representing a DApp. In these net-
works the nodes represent a contract, and the width of the links reflects the strength of
interactions from the source to the target contract (how many times it is called), while
the node sizes are scaled based on the number of target contracts that a given contract
calls. In Fig. 8 the network of contracts’ interaction for Aave is presented. The names of
the contracts with the highest betweenness centrality are listed. For instance, None is a
Context contract, a dependency used to return the contest of transaction sender and data.
In Fig. 18 (Appendix B) several other examples of contracts networks are presented. We
decide to present the networks of DApps that, at present, exhibit notable balances – de-
fined as the total value of current assets held in the DApp’s smart contracts. To ensure a
representative sample, we include examples from various categories and blockchain plat-
forms. Figure 9 shows the distribution of networks’ degrees and density, and the preva-
lence of self-loops as the only connections. The networks exhibit a low degree, with the
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Figure 9 Left Panel: Probability Density Function (PDF) of the degree distribution for the 66 contracts
networks. Central Panel: PDF of the density of the networks. Right Panel: For each network, the ratio of nodes
having a self-loop as their sole connection to the total number of nodes is presented

majority falling within the range of 2 to 3: the nodes have few connections. The Left and
Central panels reveal consistent characteristics within the contracts networks of DApps,
regardless of their size or category, specifically their sparsity. The density of a graph is
a measure of how many potential edges are present in the graph compared to the total
number of possible edges in a complete graph of the same size. The networks display a
low density, with the exception of 1inch Network, which has a density of 1.0. However,
as said in Sect. 3, 1inch Network has only 2 contracts, making this result quite trivial.
In the Right panel, it becomes apparent that the majority of links consists of self-loops.
A total of 54 networks have a minimum of 40% of nodes with self-loops, and 33 net-
works (more than half of the dataset) have at least 60% of their nodes connected solely
through self-loops. A Louvain modularity analysis on the undirected version of these
graphs produces an average modularity coefficient of 0.8 across all networks. In conclu-
sion, the networks exhibit evident sparsity, with the majority of connections being self-
loops, and community structure is highly significant, resulting in a lot of distinct compo-
nents.

In a software engineering framework, it means that the DApps are designed with a high
level of independence and minimal inter-contract dependencies. This choice may be a
deliberate strategy to improve security and reduce the risk of chain failure, given the im-
mutability of contracts when deployed. The presence of self-loops indicates that most con-
tracts are self-sufficient, executing functions and maintaining a state without the need for
external calls or interactions. Instead, the presence of few communities indicates sets of
contracts grouped by functionality or purpose, facilitating maintainability and potential
scalability.

Functions Networks We generate a total of 66 weighted directed networks illustrating
functions’ interactions, with each network corresponding to a specific DApp. On average,
the ratio between post-filter and pre-filter nodes stands at 65%, with a standard deviation
of 14%. The minimum ratio of 32% is observed in the case of SWAPP Protocol (Ethereum
- DeFi), which features 214 nodes pre-filter (i.e. functions) reduced to 71 nodes post-filter.
In contrast, Plexus (Ethereum - Exchanges) shows the maximum ratio of 97%, having ini-
tially 66 nodes, which are reduced to 64 post-filter. The networks are visualized using the
spring layout; the nodes represent functions, and the width of the links reflects the strength
of interactions between functions. The node sizes are adjusted according to the number of
target contracts called by each function, and nodes are displayed in a purple shade if they
rank among the nodes with the highest betweenness, while a green color is assigned to
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Figure 10 Aave Functions Network (Ethereum - DeFi). In purple the nodes with highest betweenness (i.e.
cancel, withdrawFromStream, setClaimer), in green the nodes with highest clustering coefficient (i.e.
executeDelegateCall, updateDelay, updateGracePeriod). The purple functions are responsible for authorizing an
address to withdraw tokens on behalf of another specific address, clearing a queue of actions for execution, or
making a token withdrawal from a Stream. The green functions are responsible for updating the time (setting
the value to the next moment when the execution of a set of actions concludes) and adjusting the delay
between queuing a set of actions and their execution

the nodes with the highest clustering coefficient. In Fig. 10 the network of functions inter-
actions for Aave is presented. We observe a set of smaller components that represent the
secondary functionalities of the DApp. The characteristic of the contract network having
a high number of self-loops translates into this network as all minor components con-
sisting of functions defined within the same contract. For instance, in the red component,
there are only functions defined within the PolygonBridgeExecutor contract. In the orange
community functions are defined within AaveEcosystemReserveV2, and in the yellow com-
munity they belong to BridgeExecutorBase. In contrast, the core of the largest component
comprises functions defined in multiple contracts, representing the main functionality of
the DApp. For instance, within it, we find functions such as setReserveInterestRate, set-
PoolImpl, and setLiquidationProtocolFee, of fundamental importance for the functioning
of the DApp.

These functions are integral as they handle critical operations such as managing interest
rates, updating the pool implementation, and setting liquidation protocols. This example
highlight how different communities within the functions’ network shape specific sets of
higher-level functionalities. The smallest components typically focus on specialized tasks
confined within a single contract, while the largest component integrates functionalities
across multiple contracts, showing the collaborative nature of core operations in the DApp.
In Fig. 19, 20, 21 (see Appendix C) several other examples of these network visualizations
are presented. The structure is consistent across all of them: there is always a largest com-
ponent for the main functionality and a series of minor ones.

4.1 Characteristics of networks of functions in DApps
In the case of functions networks, Fig. 11, still reveals consistent characteristics across
DApps, regardless of their size or category, but the scenario differs from what was observed
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Figure 11 Left: PDF of the degree distribution for the 66 functions networks. Central: PDF of the density
distribution. Right: For each network, the ratio of nodes having a self-loop as their sole connection to the total
number of nodes

previously with contracts. The degree of the functions networks is higher compared to
the case of contracts networks, signifying a greater degree of connection. Similarly, the
network density is higher, suggesting a lower sparsity in the graphs. In the case of 1Inch
Network, the density is 1.6, as self-loops are included in the total count of edges, which
can result in densities exceeding 1. Finally, the proportion of nodes having self-loops as
their sole connection is significantly smaller compared to contracts networks: out of the
66 networks, 65 have a fraction of nodes connected solely by self-loops that accounts for
15% of the total nodes. On average, an analysis of Louvain modularity within the networks
gives a result of 0.69, confirming reduced division into distinct components and highly
connected nodes. This suggests greater complexity in interactions and a greater level of
integration and task sharing among functions within the same DApp.

Networks’ metrics and typical patterns in DApps In Fig. 12 - top panel, we show the re-
lationship between the diameter of the largest connected component and the number of
components in DeFi DApps is presented. Similar results and plots are for non DeFi DApps
in Fig. 22 in Appendix D. Our emphasis is placed on the largest component as it represents
the most crucial part of the network, housing the core functionalities of the DApp. Func-
tions outside of this component perform less essential actions. The plots reveal consistent
trends regardless of the DApp’s category, affirming the presence of a common develop-
ment pattern that is independent of the DApp’s intended purpose. As previously men-
tioned, a distinct division into separate components is evident (with the number of com-
ponents obviously increasing with the number of functions within the network). Functions
within these DApps tend to form discrete groups with limited interactions between these
groups, indicating a certain degree of compartimentalization in how functions are struc-
tured and interact within the application. Different sets of functions perform specific roles
and maintain limited direct interactions with functions defined in other contracts. Addi-
tionally, as DApps increase in complexity by incorporating more functions (as indicated
by the larger data points on the scatter plot), their internal network structure appears to
become more intricate. The maximum number of connections within the largest compo-
nent tends to grow with the number of functions in the DApp. Larger DApps may exhibit
greater specialization, requiring a broader range of functions to manage specific tasks and
fostering increased interaction and communication among these functions. The cluster-
ing coefficient is the fraction of all possible pairs of neighbors of node i that are themselves
linked in the graph. The clustering is like a local version of the betweenness, which is in
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Figure 12 Top: Scatter plot of the diameter of the largest connected component as a function of the number
of components. Bottom: Scatter plot of the global clustering coefficient in the largest components vs the
number of components. Each dot represents a DApp, and the size of the dot is proportional to the number of
functions in the specific DApp. This plot is restricted to DApps belonging to the DeFi category

turn a measure of centrality based on shortest paths. Betweenness and local clustering
are, indeed, correlated [39]. If a vertex has a larger local clustering value, then the neigh-
bors of the vertex can directly communicate with each other rather than going through
the particular vertex. If the neighbors of a vertex do not need go through the vertex for
shortest path communication, then it is more likely that the rest of the vertices in the
network would not need to go through the vertex for shortest path communication. If a
vertex has a smaller local coefficient, then the neighbors of the vertex are more likely to
go through the vertex for shortest path communication between themselves (as there is
more likely not a direct edge between the two neighbors, because of the low local coeffi-
cient for the vertex) [40]. Therefore, we expect an inverse relationship between these two
measures in our networks. In Fig. 13, we present an analysis of the relationship between
betweenness and clustering coefficient of each node located within the largest component
of each function network. Our goal is to discern whether there exists a distinctive char-
acteristic specific to the DApps. Given the consistent network patterns identified through
our prior analyses, regardless of the DApp’s category or the blockchain the DApp is de-
ployed on, we choose to analyse all nodes across all function networks together. As ex-
pected, the plot exhibits a clear trend, reinforcing a notion of similarity and consistent
structural patterns across the function networks. In the Left Panel, we illustrate the re-
lationship between the two quantities in the original networks. In the Right Panel, we
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Figure 13 Left: Relationship between clustering coefficient and betweenness in the original networks. Right:
Relationship between clustering coefficient and betweenness in a random null model

present the same relationship calculated for a null network model, constructed as con-
figuration model retaining the same number of nodes and block structure while shuffling
the links. For each network, we construct a random one, which retains the same modular
structure as the original one, but connects nodes within each sub-component randomly.
This null model preserves the modularity of the original networks, meaning that the com-
partimentalization of functions and the connections among functions performing similar
tasks are maintained, but randomly reconnect functions designated for a particular task.
This ensures that the results we obtain are not a mere consequence of the network’s struc-
tural characteristics. As expected, Fig. 13 shows that nodes with higher clustering coeffi-
cient tend to have lower betweenness centrality. This implies that nodes surrounded by
highly connected neighbors, located in densely connected areas of the graph, are the same
nodes with limited involvement in shortest paths between other nodes. As a result, they
are not essential for the overall network connectivity nor efficient information transmis-
sion. Instead, nodes with high betweenness, serving as fundamental intermediaries for the
flow of information or influence within the network, work as connectors between highly
connected areas. However, when comparing our networks to the null model, we observe
significant differences in the distribution of the clustering coefficient. In our networks,
the mean clustering coefficient is higher, with the majority of data points falling within
the range of 0.5 to 1. In contrast, the null model exhibits data points with lower cluster-
ing coefficients. Furthermore, the null model displays lower and less variable between-
ness centrality values compared to the original real networks. A schematic representation
of the structural differences between the real and randomised version of the networks
can be seen in Fig. 14. Therefore, our systems have characteristics that are independent
of their modular structure. These characteristics include variable betweenness centrality
with lower values and higher clustering coefficients, implying that our networks inher-
ently consist of highly interconnected communities within each component, with only
few nodes serving as bridges between them. This analysis helps detect patterns in dApps
function networks, highlighting common emergent structural features (e.g., in terms of
bridge-functions) previously undetected nor flagged in smart contract analysis, therefore
contributing to answering RQ1. In Sect. 5.1, we will further discuss the relationship be-
tween such structural properties and specific security threats and best practices sugges-
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Figure 14 Left: Scheme of the typical real network structure of functions interactions. There is a largest
component and few minor disconnected components on the side. The largest component is composed of
different communities, with few bridges between them (the purple nodes). These sub-components are
complete sub-graphs. Right: Randomised version of the function network with same number of nodes

tions for auditors and development teams In the function network examples in Figs. 19, 20,
21 in Appendix C, nodes with higher betweenness are marked in purple, while those with
a higher clustering coefficient are marked in green. The purple nodes act as intermediaries
between sub-components.

Interconnectedness of functions In network theory, small-world networks are distin-
guished from other networks by two properties: high clustering coefficient and short path
lengths (as commonly observed in random networks). This network type is known for its
ability to support rapid diffusion of information or processes across the network. Even
if two nodes may be distant from each other, there are relatively short paths that indi-
rectly link them, enabling quick transmission of information. In Fig. 12 - bottom panel,
we present the global clustering coefficients of nodes in the largest components of DeFi
DApps. Similar results are obtained for non-DeFi related DApps and are shown in Ap-
pendix D in Fig. 22. In Fig. 15 we provide a comparison between the average path lengths
in the largest connected components of the real networks and the ones of randomly gen-
erated networks with the same number of links and nodes. DApps exhibit high clustering
coefficients and low average path lengths, similar to the ones of random networks with
same number of nodes and links. The results suggest a similarity with the structure of
a small world network, indicating the presence of substantial local interactions, efficient
information flow within the component, and connectivity between functions, even when
they are not directly linked, allowing fast information diffusion and effective interaction
among functions. This result provides insights on structural and topological properties
of the function network as per RQ2. We will further connect these properties to specific
security risks in Sect. 5.1.

Information diffusion In graph theory, the concept of a clique is fundamental to under-
stand the connectivity of networks. A clique is a group of vertices within a graph where
each vertex is directly connected to every other vertex in the group, and its size is the num-
ber of vertices it contains. A maximal clique is a clique that cannot be extended by includ-
ing one more adjacent vertex, meaning it is not a subset of a larger clique. Figure 16 shows
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Figure 15 The plot shows a comparison between the average path length in the largest connected
component of the real (�) and random network (×). We consider only the networks where the largest
connected component contains more than 50 nodes

Figure 16 Maximal cliques’ sizes across all networks. For each network, we analyse the list of the maximal
cliques and normalize them by the size of the respective DApp. The cumulative cliques’ sizes across all
networks are shown in blue. There are two examples overlaying the bar chart: in orange, Pandora (Binance -
DeFi, 40 contracts), a medium-sized DApp, and in red, Nexo.io (Ethereum - DeFi, 176 contracts), a large DApp

the distribution of these maximal cliques of dimension 3 to 9 across the DApps networks,
revealing a consistent trend across different sizes. The pattern shows the prevalence of
large maximal cliques, meaning that the information on a function is just one step away
from another, so the information diffusion process is immediate. The observed (large) size
of the maximal cliques points to the fact that dApps are highly integrated systems, where
the data flow between functions is fast, with a continuous exchange of processed inputs
and outputs between functions. This result replies to RQ2.

4.2 Functions network resilience to targeted attacks
We can further analyse the largest connected components’ resilience by examining the
behaviour of average path length in the largest connected component in different condi-
tions. In this analysis, we only consider networks with more than 50 nodes in the largest
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Figure 17 The plot shows the average path length within the largest connected component as a function of
the fraction of nodes removed within the range of 0% to 20%. In orange, it represents the change in the
average path length when nodes are randomly removed, while in purple, it illustrates the effect of removing
nodes with the highest betweenness centrality, starting from the node with the highest betweenness and
proceeding accordingly. The betweenness centrality calculation was performed at the beginning of the
component analysis and it is not recomputed after each node removal. When the component becomes
disconnected, as observed in the case of Simpli Finance when more than 8% of nodes are removed, a cross is
marked on the plot

component. In Fig. 17, we investigate how the average path length changes as an increas-
ing fraction of nodes is removed, ranging from 0% to 20%. With targeted removal, the
distances between the remaining nodes tend to increase, leading to the fragmentation
into smaller, disconnected components. Targeting nodes with high betweenness central-
ity within DApps results in the complete disconnection of the component, a phenomenon
not arising from the random node removal. The cases presented are the scenarios where
the targeted removal of nodes keeps the component connected for as long as possible.
However, in the majority of cases (20 DApps out of 29), the component becomes discon-
nected after the removal of just 2% of the nodes 2. In the event of a hacking attack, the
DApps represented in the Fig. 17 are the only ones that maintain uninterrupted informa-
tion flow for a longer period, even when specific functions cease to operate. For all the
other DApps, it is evident that an attack on a small percentage of those functions charac-
terised by the highest betweenness centrality (indicating the presence of significant infor-
mation flow pathways), has the potential to disrupt the DApp’s functionality. This analysis
direclty informs on replies to resilience of DApps to targeted attacks as per our third re-
search question RQ3. For instance, in the case of the DApp Simpli Finance, the component
becomes disconnected when the functions safeDecreaseAllowance and withdraw are re-
moved, respectively in charge of controlling the amount of tokens that can be withdrawn
from an account and actually withdrawing them. This critical threshold consistently ap-
pears to be around 2% indicating that DApps are susceptible to potential targeted attacks.
The results show a similar pattern when nodes are removed based on their degree cen-
trality instead of betweenness centrality, indicating that the network’s response to targeted
removal is consistent across different centrality measures. This result is also confirmed by
the power-law degree distribution of nodes within the largest components, in Fig. 24 in
Appendix D. In a small world network with a degree distribution following a power-law,
deletion of a random node rarely causes a dramatic increase in the average path length,
because most shortest paths between nodes flow through supernodes, and if a peripheral

2The 2% threshold is not imposed, but emerges from the experiment by monitoring when the largest connected component
in the functions network becomes disconnected, upon removal of functions.
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node is deleted it is unlikely to interfere with passage between other peripheral nodes. As
the fraction of peripheral nodes in a small world network is much higher than the fraction
of supernodes, the probability of deleting an important node is very low.

5 Discussion & conclusion
5.1 Mapping network analyses to security issues in DApps
By performing targeted network analyses, such as centrality measures and resilience anal-
ysis, we have provided new insights into the structural weaknesses of DApps and their
implications for security. One of the key findings of our study is the importance of net-
work resilience in ensuring the overall security of DApps. Our resilience analysis reveals
that DApps are highly vulnerable to targeted attacks on functions with high betweenness
centrality. These functions act as critical bridges between different components of the
DApp, and their failure can lead to a significant disruption of the DApp’s functionality.
For instance, in the case of the DAO hack, the attacker exploited a reentrancy vulnera-
bility in a function with high betweenness centrality to drain funds from the contract re-
peatedly. This example highlights the need for DApp developers to prioritize the security
auditing of such critical functions and implement robust measures to prevent reentrancy
attacks.

Another important aspect of our network analysis is the identification of functions with
high clustering coefficients. These functions are tightly interconnected within their lo-
cal communities, and this may indicate a lack of proper access control mechanisms. In
the context of DApps, inadequate access control can allow attackers to manipulate sensi-
tive data or perform unauthorized actions. For example, in the case of the Parity Wallet
hack [28], a vulnerability in the access control mechanism of a library contract allowed the
attacker to take control of multiple wallets and steal funds. This incident shows the im-
portance of ensuring proper function segregation and implementing strict access control
policies in DApps.

The community structure identified in our analysis has implications for the propagation
of vulnerabilities. Tightly knit communities of functions may contain vulnerabilities that
can quickly spread within the community, but remain isolated from the rest of the DApp.
Conversely, functions that bridge communities (with high betweenness centrality) could
potentially spread vulnerabilities across different parts of the DApp if compromised.

Our findings also have significant implications for DApp auditors and users. For audi-
tors, our network-based approach can complement traditional code analysis techniques
by providing a holistic view of the DApp’s security. By analyzing the function interaction
network, auditors can identify vulnerabilities that may be overlooked when examining in-
dividual contracts in isolation.

This can help auditors prioritize their efforts and focus on the most critical components
of the DApp.

The small-world properties observed in DApp function networks suggest that informa-
tion – including potential exploit techniques – can spread rapidly through the network.
While this can be beneficial for efficient operation, it also means that once a vulnerabil-
ity is exploited, its effects could quickly cascade through the DApp. This underscores the
importance of robust security measures, particularly for functions that act as hubs in the
network.

For users, our findings can serve as a basis for assessing the overall security and resilience
of a DApp before deciding to interact with it. By considering the network properties of the
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DApp, such as the presence of critical functions or tightly connected communities, users
can make informed decisions about the potential risks associated with using the DApp
itself.

Our analysis of function call frequencies and network centrality can also provide insights
into gas optimization and potential Denial of Service (DoS) vulnerabilities. Functions with
high betweenness that are frequently called may be prime targets for gas optimization to
reduce overall transaction costs. However, these same functions, if not properly optimized
or protected, could be exploited in DoS attacks that aim to consume excessive gas and
disrupt the DApp’s functionality.

By analyzing the evolution of DApp function networks over time (through different ver-
sions or updates), we can identify potential security risks associated with code changes.
Functions that rapidly gain centrality in the network may require additional scrutiny,
as they represent new or expanded attack surfaces. Conversely, functions that lose con-
nections over time but remain in the codebase might represent deprecated functionality
that could present overlooked vulnerabilities. Our network analysis results provide in-
sights into the architectural vulnerabilities of DApps and their potential impact on secu-
rity.

Based on our findings, we recommend that DApp developers and auditors pay special
attention to functions with high betweenness centrality, as these represent critical points
of failure. Implementing additional security measures such as multi-signature require-
ments or time-locks for these functions could significantly enhance the overall security
of the DApp. Furthermore, regular network analysis of the DApp’s function interactions
can serve as an early warning system for potential architectural vulnerabilities introduced
during development or updates.

5.2 Conclusion
We considered decentralised applications (DApps) of varying sizes, with different pur-
poses, and deployed on various blockchain platforms, discovering consistent structural
characteristics of contract and function networks across all of them. This consistency sug-
gests that different development teams in the blockchain community adopt similar coding
practices for smart contract design and development, regardless of the specific blockchain
in use. In order to assess the resilience and security of DApps, we analysed the relationship
within functions ad contracts. Ensuring that each function has a precise role when inter-
facing with a contract mitigates the effects of faults, but also facilitates a more systematic
traceability, and verification of interactions for identifying anomalous behaviors. If modifi-
cations are required, all interactions of a given function can be redirected to an alternative
contract, thus preserving the system’s functionalities. In addition, by analysing and opti-
mizing the frequency and nature of interactions between functions and their respective
contracts, one can potentially minimize operational expenses like gas fees, consequently
increasing the overall efficiency of the DApp. The analysis of both contract and function
networks within decentralized applications reveals interesting structural insights and in-
teraction dynamics.

The networks of contracts interactions exhibit high sparsity, and a significant portion of
the links consists of self-loops, suggesting that contracts within a DApp primarily interact
with themselves. DApps are built with a focus on modular, self-sufficient contracts, form-
ing distinct communities with limited external interactions and prioritizing security, fault
isolation, and functional boundaries within DApps.
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We analyse the networks of functions interactions as well, in order to inspect code inter-
actions within the DApp at a finer resolution. Contracts tend to distribute responsibilities
among multiple functions, a practice that can be seen as a proactive measure against po-
tential issues when relying solely on a single function to perform a complex task. Also
the function networks maintain consistent characteristics that transcend the DApp’s in-
tended purpose. In this case there is a greater level of interconnection and a more intricate
web of interactions among functions within the same DApp. DApps function networks
exhibit a core largest component comprising functions interacting across multiple con-
tracts, and encoding the core DApps’ functionalities. Across all DApps, the organisation
in distinct sub-components emerges, representing groups of functions with different -
but secondary - tasks, defined within the same contract. Looking at the emergent struc-
tural organisation into core and secondary components, one may speculate that there is a
coordinated and planned development of the core components, while the secondary con-
tracts (interacting only with themselves) are disconnected parts added on an as-needed
basis. An analysis of the timeline of development, monitoring code changes on Github,
could shed further light on the architectural design and growth of the DApp infrastruc-
ture.

The largest component, containing interacting functions defined in different contracts,
encodes the core functionality of the DApp. The core functions exhibit a high cluster-
ing coefficient and a low average shortest path length, resembling a small world model
and suggesting significant local interactions, efficient information flow, and connectivity
between functions. In the context of DApps, the small world structure implies that even
when functions are not directly connected, efficient pathways for communication and in-
teraction exist. Nodes with a high degree, which are closely correlated with nodes exhibit-
ing high betweenness centrality (indicating their role as intermediaries between commu-
nities), as revealed by the degree distribution analysis, are relatively few: this means that
a hacking attack on a random function does not significantly impact the overall DApp’s
functioning. However, if functions with high betweenness centrality are targeted in an
attack, the largest component would immediately become disconnected and the infor-
mation would stop flowing. This critical threshold consistently appears to be the 2% of
the total number of nodes. These findings emphasize that DApps are susceptible to po-
tential targeted attacks, pointing to the importance of implementing robust strategies to
mitigate potential vulnerabilities in these specific functions and guarantee their continued
functionality.

Identifying the core areas and bridges within these networks allows us to monitor criti-
cal sections of the DApp, anticipate potential vulnerabilities, and explore ways to optimize
computational costs. These patterns in the data are found through the examination of net-
work structures. The subsequent phase should include the analysis of actual transaction
data, monitoring the execution of on-chain code, and the actual usage of functions and
contracts by DApps’ users.

Moreover, further information and metrics to assess the characteristics of functions can
be overlaid onto the network information, such as those extracted and analysed [29, 41].
This will allow further analyses of the quality of interactions among function calls. To
comprehend the underlying reasons for the emergence of these patterns, it is essential to
expand the information regarding the network structures with additional metrics, such
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as complexity costs or the number of lines of code in functions. As an extension to the
current analysis, it is also interesting to look more closely at the edge directionality in the
functions’ network, to identify particular structures within the network related to further
potentially exploitable vulnerabilities.

Indeed, not all vulnerabilities that exist are actually exploited [42], but they still con-
stitute a potential threat to the normal functioning of the platform. The exploitation of
vulnerabilities in targeted attacks, leads to a decrease in trust in decentralised platforms,
hindering users’ adoption [43] and institutional investors’ support [44].

Appendix A: List of DApps
The categorisation of DApps used in this work was done following the classification pro-
posed by BitDegree and DappRadar. The dataset analysed comprises the set of dApps
listed in Table 4.

Table 4 List of dApps grouped by blockchain and category.

Blockchain Category dApps

Ethereum Collectibles Async Art; Audius; Cryptovoxels
Ethereum DeFi 1inch Network; Aave; BondAppetit; BT.Finance*; Compound; Etherisc;

Naos Finance; Nexo.io; Nexus Mutual; Openleverage*; Origin Dollar;
Polymarket; PWN; Rari Capital; Rocket Pool; SIGH Finance; Simpli
Finance*; SPICE; SWAPP Protocol*; Synthetix*; TokenSets; Tsunami; UMA*

Ethereum Exchanges Balancer; Brickblock; Loopring Exchange; Plexus*; Popsicle V3
Optimizer*; ThorusFi*; Uniswap

Ethereum Gambling DSG; Stargate
Ethereum Games Axie Infinity; DARK FOREST; Gods Unchained; Marble.Cards
Ethereum High-risk Proof of Fair Launch
Ethereum Marketplaces Foundation; Fractional; OpenSea; Rarible; SuperRare
Ethereum Other Aragon Fundraising; AZTEC; Ethereum Name Service; Polymath;

PoolTogether; Tornado Cash
Binance Smart Chain DeFi Atlantis; BabySwap; FarmHero; KillSwitch; Pandora; Rikkei Finance;

Tranchess; Venus
Binance Smart Chain Gambling LuckyChip
Binance Smart Chain Gaming NomadLand
Astar DeFi ArthSwap
Polygon DeFi Angle
Polygon Gambling Reality Cards
Shiden DeFi Standard Protocol
ThunderCore DeFi Staking Pool

(∗ ): cross-chains DApps
Popsicle V3 Optimizer: Ethereum, Avalanche, Fantom, Binance, Polygon;
BT.Finance: Ethereum, Binance Smart Chain;
Simpli Finance: multichain;
ThorusFi: multichain;
SWAPP Protocol: Ethereum, Binance Smart Chain;
Openleverage: Ethereum, Binance Smart Chain;
Plexus: Ethereum, Binance Smart Chain, Optimism, Polygon;
Synthetix: Ethereum, Optimism;
UMA: Ethereum, Optimism.

Appendix B: Contracts networks
In this section, we show further examples of DApp contracts networks. In Fig. 18, panel
(A), we show Balancer Contracts Network, a DApp deployed in Ethereum and belonging

https://www.bitdegree.org/crypto-tracker/top-dapps
https://dappradar.com
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Figure 18 (A) Balancer Contracts Network (Ethereum - Exchanges). (B) Venus Contracts Network (BNB - DeFi).
(C) Reality Cards Contracts Network (Polygon - Gambling). In blue, the nodes with self-loops. The width of the
border of each blue node corresponds to the weight of its self-loop link. The names of the contracts with the
highest betweenness centrality are listed

to the category exchanges. It is a large DApp consisting of 193 contracts. The total bal-
ance is $223.7T and it is ranked #33 in the category Exchanges, and #359 in the General
category in DApp radar. In blue, we highlight the nodes with self-loops, where the width
of the border of each blue node corresponds to the weight of its self-loop link. The names
of the contracts with the highest betweenness centrality are listed. In Fig. 18, panel (B),
we show Venus Contracts Network, a DApp deployed on Binance (BNB) and belonging
to the DeFi category. It is classified as a large DApp with 83 contracts and a total balance
of $574.32B. It is ranked #5 in DeFi and #10 in General. In Panel (C), we present Reality
Cards Contracts Network, deployed on the Polygon blockchain network and listed in the
Gambling category. It is a rather small DApp with 12 contracts and a balance of $13, 32k.
It is ranked #1221 in the Gambling category.

Appendix C: Functions networks
In this section, we show further examples of DApp function networks before and after
applying the filter. We consider as in Sect. B the following DApps: Balancer (Fig. 19), Venus
(Fig. 20), and Reality Cards (Fig. 21). We also highlight key functions and their role in the
DApp within the networks.
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Figure 19 Balancer Functions Network (Ethereum - Exchanges). In purple the nodes with highest
betweenness (i.e. _addGauges, removeToken, removeAllowedAddress), in green the nodes with highest
clustering coefficient (i.e. _returnLeftoverEthIfAny, addGaugesWithVerifiedType, _onSwapMinimal). The purple
functions are in charge of claiming the measure of liquidity provided by users or removing an address that
was previously authorised for given transactions from the pool. The green functions return the ETHs that
advance as a result of a given transaction, retrieve the status of the pool and verify that it is active

Figure 20 Venus Functions Network (BNB - DeFi). In purple the nodes with highest betweenness (i.e.
reclaimToken, transferFrom, approve), in green the nodes with highest clustering coefficient (i.e. _burn,
allocateTo, _transferOwnership). The purple functions are in charge of transferring or claiming an amount of
tokens from one address to another and confirming that it has been done successfully. The green functions
destroy an amount of tokens relating to an account or transfer their ownership

Appendix D: Further results
In this section, we summarize the main structural traits of the principal DApps networks.
We present in Table 5 the network analysis results for the highest-ranked DApps, select-
ing one example for each underlying blockchain protocol. We use as proxy of ranking the
Unique Active Wallets (UAW) metric. UAW measures the number of individual Web3
wallets that have connected to a DApp over a given period of time. This metric is some-
times mistaken for a user count, however it differs from a regular user count because one
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Figure 21 Reality Cards Functions Network (Polygon - Gambling). In purple the nodes with highest
betweenness (i.e. addMarket, decreaseBidRate, changeApprovedAffiliatesOnly), in green the nodes with highest
clustering coefficient (i.e. _postQuestionToOracle, claimCard, exit). The purple functions are in charge of
removing the bet based on its withdrawal and changing the status of a market affiliate. The green functions
require a card during the game and end the current game

Table 5 Summary of main properties of the highest ranked DApps for each blockchain. The ranking
is based on the Unique Active Wallets (UAW) metric.

DApp and
Ranking

No. of
Contracts

No. of
Functions
pre-filter

Functions
Network
Density

Functions
Network
Clustering
Coefficient

No. of
Components

Size of
Largest
Component

Diameter of
Largest
Component

Ethereum Aave - #2 in
DeFi

107 392 0.28 0.69 11 104 4

Binance
Smart Chain

Venus - #13 in
DeFi

83 414 0.053 0.56 18 42 4

Astar ArthSwap -
#2844 in DeFi

14 63 0.33 0.38 1 58 4

Polygon Reality Cards -
#1214 in
Gambling

12 110 0.16 0.68 5 32 2

Shiden Standard
Protocol -
#2655 in DeFi

66 261 0.091 0.61 12 128 5

ThunderCore Staking Pool -
#517 in DeFi

45 224 0.074 0.53 11 46 3

person can have multiple wallets they use to connect with a DApp. The data regarding
the ranking are available on DappRadar, already used for the classification of DApps in
categories.

In Figs. 22 and 23 we include further analysis on cluster coefficients and diameter of
the largest connected component for non-DeFi related DApps. Patterns similar to those
observed by restricted the set to DeFi only DApps are present (see Fig. 12).

In Fig. 24 we show the degree distribution computed across all nodes in all DApps. The
power-law degree distribution suggests that most nodes have few neighbors, while some
supernodes (closely correlated with the nodes with highest betweenness) have a higher
number of neighbors.

https://dappradar.com
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Figure 22 Scatter plot of the global clustering coefficient in the largest components vs the number of
components. Each dot represents a DApp, and the size of the dot is proportional to the number of functions
in the specific DApp. Collectibles (•); Exchanges (�); Gambling: ( ); Games (�); High-risk (�); Marketplaces:
(�); Other: (�)

Figure 23 Scatter plot of the diameter of the largest connected component vs the number of components,
for non-DeFi related DApps. Each symbol represents a DApp, and its size is proportional to the number of
functions in the specific DApp. Collectibles (•); Exchanges (�); Gambling: ( ); Games (�); High-risk (�);
Marketplaces: (�); Other: (�)

Figure 24 In blue, the degree distribution of the largest components is displayed. In red, a power-law fit of
the distribution is shown, with α = 1.3 and xmin = 17. The fit is performed using the Python library powerlaw,
which implements the statistical method developed by Clauset et al. [45]

https://pypi.org/project/powerlaw/
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