

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.Doi Number

Approximate Computing: Concepts,
Architectures, Challenges, Applications,
and Future Directions

Ayad M. Dalloo 1, Amjad J. Humaidi 2, Ammar K. Al Mhdawi3, and Hamed Al-
Raweshidy4, (Senior Member, IEEE)
1Department of Communication Engineering, University of Technology, Baghdad 10066, Iraq
2Department of Control and Systems Engineering, University of Technology, Baghdad 10066, Iraq
3School of Engineering and Sustainable Development, De Montfort University, Leicester LE19BH, UK
4Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge UB8 3PH, UK.

Corresponding author: Hamed Al-Raweshidy (hamed.al-raweshidy@brunel.ac.uk)

ABSTRACT The unprecedented progress in computational technologies led to a substantial proliferation

of artificial intelligence applications, notably in the era of big data and IoT devices. In the face of exponential

data growth and complex computations, conventional computing encounters substantial obstacles pertaining

to energy efficiency, computational speed, and area. Due to the diminishing advantages of technology scaling

and increased demands from computing workloads, novel design techniques are required to increase

performance and decrease power consumption. Approximate computing, nowadays considered a promising

paradigm, achieves considerable improvements in overhead cost reduction (i.e., energy, area, and latency) at

the expense of a modest (i.e., still acceptable) deterioration in application accuracy. Therefore, approximate

computing at different levels (Data, Circuit, Architecture, and Software) has been attracted by the research

and industrial communities. This paper presents a comprehensive review of the major research areas of

different levels of approximate computing by exploring their underlying principles, potential benefits, and

associated trade-offs. This is a burgeoning field that seeks to balance computational efficiency with

acceptable accuracy. The paper highlights opportunities where these techniques can be effectively applied,

such as in applications where perfect accuracy is not a strict requirement. This paper presents assessments of

applying approximate computing techniques in various applications, especially machine learning algorithms

(ML) and IoT. Furthermore, this review underscores the challenges encountered in implementing

approximate computing techniques and highlights potential future research avenues. The anticipation is that

this survey will stimulate further discourse and underscore the necessity for continued research and

development to fully exploit the potential of approximate computing.

INDEX TERMS Approximate Computing, Approximate programming language, Approximate Memory,

Circuit-level, Approximate Machine Learning, Deep Learning, Approximate logic synthesis, Statistical and

Neuromorphic Computing, and Cross Layer and End-to-End Approximate computing

I. INTRODUCTION

Since 1974, Moore's law and Dennard scaling have

projected that the transistor would become smaller and the

transistor density would double, resulting in a 40% increase

in clock rate while the power density remained constant

with each generation [1]. As transistors shrink with

technological advancements, it becomes more costly for

designers and manufacturers to maintain transistors that

behave deterministically, even under typical operating

conditions. Verifying the correct operation of digital

integrated circuits is becoming more and more costly as

technology scales down. Both intrinsic (such as varying

dopant concentrations) and extrinsic (such as temperature)

factors are drastically increasing the variability of

transistors and interconnects [2], [3], [4] as well as reducing

energy-delay advantages via CMOS scaling. This

nondeterministic phenomenon impedes the constant

development of technology. According to ITRS and Intel's

technical data, at the 8 nm node, the area of dark silicon

exceeds 50% of the chip's area [3], [5].

In 2007, the rate of Dennard scaling slowed dramatically,

and by 2012, it had almost stopped completely [6], [7], as

shown in Figure 1. Therefore, the scaling of the threshold

and supply voltages slowed down due to concerns with

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2 VOLUME XX, 2017

leakage currents resulting from increasing on-chip power

density. To prevent the chip from overheating, the clock

frequency was gradually increased [1], [8], [9]. Due to these

limitations and requirements for future applications, novel

design techniques are required to handle ever-increasing

amounts of data at ever-increasing performance and ever-

decreasing power consumption. This is propelling us

towards the multi-core era [10]. Despite multi-core system-

on-chips (SoCs) aiming to augment throughput while

minimizing power consumption, this objective has only been

partially achieved due to the inherent challenges in

parallelizing certain sequential workloads and existing

power constraints [1], [9], As a consequence, the number of

active cores is restricted (a phenomenon termed “dark

silicon”), resulting in a gradual scaling-up of cores in

contemporary SoCs. As a result, thermal dissipation power

(TDP) is a limiting factor for multicore CPUs [1], [11], as

shown in Figure 2. Overheating problems were solved by

reducing processor clock speeds and powering down unused

cores in the “dark silicon” era, which followed the TDP

constraint [11].

The days of Dennard scaling are over, Amdahl's Law is

nearing its end, and keeping up with Moore's Law is

becoming difficult and expensive, particularly when the

benefits in terms of power and performance begin to

diminish [6], [11]. In many computer systems, especially

mobile devices, clusters, and server farms, energy efficiency

has become a primary design requirement. Saving energy on

a mobile phone may lengthen battery life and improve

mobility [12]. At nanometer age, the circuits become more

sensitive to parameter variations and faults. Reducing the

feature size of CMOS technology below 7 nm can lead to

deteriorating reliability [13]. This is due to the increased

difficulty in controlling and preventing parameter variations

and faults at such advanced nanoscales. At these smaller

dimensions, physical and quantum effects become more

pronounced. All these challenges have changed the

dynamics for designing and producing far faster, lower-

power circuits and haven't diminished the possibilities for

achieving that. For instance, manufacturers implement

various techniques such as strained silicon, high-k/metal

gates, and FinFET structures to tackle challenges like

leakage currents, variability, and other reliability concerns.

Furthermore, the percentage of computations for many

applications in the runtime represents 83% [14], as shown in

Figure 3. These challenges compel both the industry and the

academic communities to investigate feasible alternatives

and strategies for sustaining the conventional scaling of

performance and energy efficiency. In an era marked by the

explosive growth of data and the increasing complexity of

computations, the traditional methods of computing face

significant challenges in terms of energy efficiency,

computational speed, and resource utilization.

Approximate computing is one of the promising

techniques in this trend that has attracted significant traction

from both academic and industry communities [15], [16].

Major corporations such as IBM, Google, Intel, and ARM

are actively engaged in pioneering research and the

development of commercial offerings that incorporate

approximate computing strategies. An illustrative case is

FIGURE 2. An abstract illustration of the Dark Silicon phenomenon
which prevents powering-on more cores due to high power density and
thermal hotspots, where the white C represents the active cores and
the black C represents the idle cores [11].

FIGURE 1. 42 years of microprocessor trend data [6], [7]

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3 VOLUME XX, 2017

Google's Tensor Processing Units (TPUs), which employ an

approximate computing technique known as reduced

precision to lower energy usage [17]. Parallel paradigms,

such as stochastic computing, neuromorphic computing, and

quantum computing, have also garnered considerable

interest [18]. Table 1 shows a general comparison of these

four paradigms, where approximate computing can provide

a good balance between latency, accuracy, power

consumption, and reliability compared to others. The table

compares different computing paradigms, highlighting their

trade-offs. Approximate computing is fast but less accurate,

while stochastic computing is power-efficient but may not be

fast and accurate. Neuromorphic computing excels in power

efficiency but might lack in reliability, whereas quantum

computing could offer speed and precision but is not yet fully

developed. The ideal choice for a computing paradigm

depends on the application's specific accuracy needs, which

might lead one to choose stochastic computing, whereas

power constraints might favor neuromorphic computing.

This comparison is critical when selecting a suitable

computing approach for a given task.

 Approximate computing offers large power and

performance improvements in digital systems by relaxing the

numerical equality for implementing error-tolerant

applications [19]. In approximate computing, error metrics

emerge as a novel design parameter that can be traded off to

enhance performance or reduce power consumption.

Although computational faults are never desirable,

applications tolerant to errors confer additional advantages

due to their inherent resistance to inaccuracies, attributable

to several factors [19], [20]. Firstly, these algorithms handle

real-world, noisy input and redundant data, typically output

from diverse sensor types. Secondly, they exhibit a

probabilistic nature, often evident in iterative algorithms.

Lastly, a minor degree of imprecision in their results is

generally acceptable, largely due to the limitations of human

sensory capabilities.

Typical paradigms of approximate computing

applications range from big data to scientific applications,

such as image processing, machine learning, and data mining

domains. The multifaceted nature of approximate computing

results in unique trade-offs. Techniques can be implemented

at various levels, from transistor design to software; each

approach impacts hardware integrity and output quality in

different ways. For example, leveraging acceptable error

margins, as high as 10%, in a typical error-resilient image

processing algorithm can significantly enhance energy

efficiency and computational performance [21]. Another

example is that varying memory refresh rates or adopting

different data storage and representation precisions are

viable strategies to achieve such improvements. However,

these techniques might not be suitable for critical

applications like medical and military applications [22].

At the heart of approximate computing are four different

levels: data, software, architecture, and circuit (hardware).

One of its main issues is that the consequences of certain

approximations are far-reaching on efficiency and accuracy

for different applications; thus, there is no one-size-fits-all

solution. This paper will delve into the evaluation of

approximate computing at these four levels.

• Data-level: The importance of these techniques cannot

be underestimated in the quest for lower power

consumption and improved performance. Sampling,

quantization, and compression are some of the

techniques that allow us to manage quality vs.

efficiency issues for smaller or simpler data

representations.

• Software Level: There are approximate approaches

such as code optimizations like loop perforation,

which handle software code to have optimized code,

using approximate functions to construct approximate

algorithms, or using relaxed synchronization. This

aims to show valuable efficiency with a slight

degradation in output quality.

• Architecture Level: The approaches at this level for

increasing efficiency and saving power are more

complicated because we need to rethink the design of

specialized approximate processing units and memory

systems. Furthermore, it is necessary to expand and

TABLE 1. Comparison of Features of the Existing Computing Paradigms

Computing Approach Exact Approximate Stochastic Neuromorphic Quantum

Latency Low Low to Medium High Low Low (compared to the complexity of problem)

Accuracy High Medium to High Low to Medium Medium to High High (theoretically)

Power Consumption High Low to Medium Low Low High (due to cooling requirements)

Reliability High Medium to High Medium High Low to Medium (due to qubit instability)

Memory Usage High Low to Medium Low Medium to High Low (due to qubit superposition)

FIGURE 3. Intrinsic application resilience [9], [14]

9
0

%
7

8
%

9
4

% 9
7

%
8

9
% 9

6
%

7
4

%
6

2
%

7
9

%
6

5
%

9
6

%
7

7
% 8

3
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
p

p
lic

at
io

n
 E

xe
cu

ti
o

n
 T

im
e

 (
%

)

Document Search

Image search

Digit recognition

Digit Model Generation

Eye Detection

Eye Model Generation

Image segmentation

Census Data Modeling

Census Data Classification

Health Information Analysis

Character Recongnition

Online Data Clustering

Average

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4 VOLUME XX, 2017

enhance instruction sets and use different precisions to

contribute to increasing efficiency.

• Circuit level: the approaches are the cornerstone of

improved efficiency in power consumption; here we

need to rethink to approximate logic gates, optimize

transistor behavior, and redesign arithmetic unit

circuits, but they come with different degrees of

inaccuracy.

This multi-level analysis opens up further exploration of

how different approximations combine in real systems.

Understanding interactions between levels will guide the

development of robust, highly optimized hardware and

software designs for approximate computing. However,

cross-layer approaches to approximate computing have

emerged as a powerful tool for intelligently combining

approximation techniques across hardware, architecture,

software, and data levels. Through strategic coordination

across these layers, researchers aim to maximize efficiency

gains while adhering to user-specified quality constraints.

These are critical elements for the field's progress. Despite

its relative youth, this field demonstrates highly promising

results [23], [24], [25]. These early successes underscore the

potential of cross-layer techniques to push the boundaries of

resource efficiency without sacrificing the functionality of

computing systems.

This review tackles the fragmented nature of approximate

computing with a comprehensive approach, covering

techniques from circuit to architecture levels. It explores how

strategies like voltage scaling and selective precision

optimize energy efficiency and speed while carefully

balancing accuracy, making it ideal for domains like

machine learning where slight imprecision is acceptable. We

also aim to address the future directions of this promising

field, highlighting the potential research avenues and

emerging trends. This paper is intended to serve as a primer

for researchers and practitioners interested in exploring

approximate computing at different levels, providing

insights into its potential and limitations.

The subsequent sections of this manuscript unfold in the

following manner: Initially, Section II delves into prior

surveys to identify the main gaps to be filled by this present

survey. Section III presents the scope of this survey and the

review methodology. Section IV offers an overview of the

general framework for approximate computing. Section V

elaborates on the techniques of approximate computing at

the data level. Section VI delves into the methodologies

employed in approximate computing within the software

domain, focusing specifically on the nuances of

programming languages designed for approximation.

Section VII furnishes an in-depth examination of

approximate computing at the architectural stratum, with a

particular emphasis on approximate memory systems.

Following this, Section VIII elucidates the methodologies of

approximate computing at the circuit level, providing

detailed insights into their implementation and applications.

Section IX provides an overview of frameworks and

approaches in approximate logic synthesis. Section X

explores three emerging computing frameworks of: cross-

layer and comprehensive end-to-end methodologies and

statistical and Neuromorphic Computing. Section XI

explores the impact of applying approximate computing

strategies across diverse applications. Section XII provides

the benchmarks, tools, and libraries. Section XIII discusses

our perspectives of Future Directions. Section XIV presents

the remaining challenges in approximate computing at the

different levels, open research questions, and future research

directions. Finally, Section XV concludes this review paper.

II. Exiting and Current Surveys

In this section, we delve into an examination of extant

literature specifically oriented towards the realm of

approximate computing at different levels. As of the writing

of this paper, a limited number of surveys probing the

domain of approximate computing have been identified.

Hence, we have compiled the most significant surveys on

approximate computing up to the end of 2023, arranging

them in chronological order according to their publication

years in Table 2. Additionally, we directed attention to

comprehensive surveys that delve into and concentrate on

specific subjects within each broader topic, aiding readers in

their exploration. Table 2 provides a comparative analysis of

various surveys with regards to the topics addressed, namely

approximate techniques, applications, hardware and

software, and challenges. Furthermore, the table provides an

overview of the extent to which each topic was addressed,

indicating whether it was fully covered, only partially

covered, or not covered at all. The review paper encompasses

the number of pages and references cited, as well as the range

of years covered. Typically, a review paper should

concentrate on the various general aspects pertaining to the

implementation of approximate computing.

In the scholarly landscape, there are a modest number of

surveys that have embarked on the exploration of

approximate computing [19], [26], [27], [28], [29], [30],

[31], [32], [33], [34], [35]. These studies, while valuable,

primarily offer a cursory overview of the subject, often

focusing on specific facets and, consequently, leaving certain

aspects underexplored. The granularity of detail and

comprehensive understanding of the topic that these surveys

provide is, therefore, somewhat limited. Recognizing these

gaps in the existing literature, the present survey endeavors

to redress these shortcomings. For example, Zervakis et al.

[29] concentrated on a limited range of approximate

computing techniques. They presented a survey that covers

approximate multipliers and approximate high-level

synthesis for implementing CNN. Furthermore, they focused

on the reconfigurable approximation for neural network

inference. Damsgaard and colleagues [33] presented a

review paper that touched upon various AxC techniques at

the architecture and circuit levels, albeit with brief

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5 VOLUME XX, 2017

explanations. Their work distinctively highlights the

exploration of approximate wired and wireless network-of-

chips, an area frequently neglected in other reviews. Leon

and their colleagues [34], [35] presented a two-part review

that offers valuable insights and a comprehensive overview

of the field.

Recent literature on approximate computing (AxC) has

enriched the field with key insights but often lacks the scope

and depth our research intends to cover, particularly in

exploring the nuances of AxC techniques. This observation

underscores the necessity for continued research and

discussion to fill these gaps and provide a more detailed

exploration of AxC methodologies and applications.

However, our review delves deeply into the most

approximate techniques and applications, ranging from

mobile to cloud computing. Our review expands upon Leon's

work by offering a more nuanced analysis, breaking down

topics into detailed subtopics, and updating the discourse

with research from the last eight years. We also explore areas

not covered by Leon, such as approximate elementary and

activation functions, the impact on communication and

security. Moreover, we providing a broader and more

updated perspective in this area by presenting a

comprehensive list of influential review papers in the field of

approximate computing. We aim to enrich our understanding

of this sophisticated domain and lay a robust groundwork for

future research by filling the knowledge gaps left by previous

surveys to ensure more inclusive coverage of the topic. This

review paper covers the important key points as follows: 1)

the benefits; 2) techniques; 3) the cases used for each

technique; 4) frameworks; 5) hardware circuits and

accelerators; 5) programming languages 6) tools, including

compilers and logic synthesis; 7) security; and 8) challenges

and a future roadmap.

This survey underlines the transformative potential of

approximate computing in a variety of domains, particularly

machine learning and IoT, and aims to enrich the research

community by offering a valuable reference for researchers.

III. Survey methodology

This literature review provides a solid foundation for

understanding the evolution of this field. By tracing

TABLE 2. Comparative Analysis of Approximate Computing Surveys Across the Full Computing Stack

References Ours [19] [36] [27] [28] [29] [30] [32] [37] [34], [35]

Year of publication 2024 2016 2016 2017 2018 2021 2022 2023 2023 2023

Pages 70 10 33 34 32 8 10 22 49 69

References 513 59 82 70 183 38 83 62 186 717

Range of Years 2017-2024 - - - - - - - - -

Data-level Approximation   ~  ~ ~ ~ ~ ~ ~

Approx. Data      ~  ~  

Approx. structure          

Software level       ~ ~ ~ 

Code Optimization        ~  

Approximate Compiler          

Algorithm Approx.          

Approx. Parallelism          

Relaxed Synchronization          

Programming Frameworks and Tools          

Architectural level     ~  ~ ~  ~

Approximate Memory     ~  ~  ~ 

Approximate processors          

Energy-Memory Management     ~    ~ ~

Circuit Level     ~ ~    

Approximate Adders  ~ ~  ~    ~ 

Transistor Level  ~ ~     ~  

Gate Level  ~ ~     ~ ~ 

Approximate Multiplier   ~  ~   ~ ~ 

Approximate divider        ~  

Elementary and Activation Functions         ~ 

Approximate Logic Synthesis      ~    

Application Level     ~ ~ ~ ~  

AI/ML          

IOT          

Data mining          

Security          

Cross Layer and End-to-End Approx.          

Statistical and Neuromorphic

Computing
         

Benchmarks, Tools and Libraries          

Challenges and Future directions          

 discussed,  not discussed, ~ shortly discussed, - undefined years

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6 VOLUME XX, 2017

developments from early foundational works to the most

influential recent publications (2017-2024), we identify key

trends and breakthroughs. Publications from established

publishers (IEEE, ACM, Elsevier, Nature, Springer, MDPI,

etc.) were carefully considered, supplemented by insights

from select ArXiv preprints. Five hundred and two studies

encompassing various techniques in approximate computing

have been examined. The review includes 20 articles from

2024, 94 from 2023, 77 from 2022, 59 from 2021, 58 from

2020, 57 from 2019, 52 from 2018, 36 from 2017 and 62

from the preceding years. The focus of this research was

primarily on contemporary literature within the field of

Approximate Computing (AxC). An analytical review of

selected papers was conducted with several objectives in

mind: firstly, to catalog and elucidate the various AxC

methodologies; secondly, to enumerate and describe notable

AxC architectures that have been documented; thirdly, to

discuss the hurdles associated with AxC while proposing

feasible solutions; and lastly, to assess how AxC is applied

in practice. Figure 4 presents a visual representation of the

distribution of selected papers, categorized by their

publication years and the publishers involved.

IV. General Framework of Approximate Computing

Approximate computing represents a paradigm in

computational methodology that willingly sacrifices a

degree of precision in exchange for enhanced performance

and improved energy efficiency. This strategy proves

particularly advantageous for applications that can

accommodate a certain measure of inaccuracy without a

significant impact on the overall outcome. As delineated in

Figure 5, the framework for approximate computing

encompasses a multitude of stages and components.

The overarching structure of the approximate computing

framework is primarily composed of three integral

components: the selection of error-tolerant applications, the

implementation of approximate-aware design at compile-

time (offline), and the execution of approximate tuning at

run-time (online). The framework is segmented into finer

elements, each vital for the effective deployment of

approximate computing. These subdivisions collectively

contribute to enhancing the computational performance and

energy efficiency of the overall system. The process begins

by choosing one or more approximate levels (employing a

cross-layer approach) to implement an application. To

successfully leverage approximate computing, a critical first

step is to identify the non-critical computation units of the

application, which allow for relaxation in accuracy without

degrading the overall output quality. This step is called “non-

critical unit identification,” which requires thoughtful

analysis. Once these units are identified, the next step is

“Approximate Design”, which is performed both at compile-

time (offline) and runtime (online). Compile-time

Approximate design transforms these application units by

strategically introducing approximate computations. This

process can require specialized tools and compilers to

optimize the trade-off between accuracy and efficiency. To

maximize efficiency while maintaining accuracy, systems

must reconfigure themselves at runtime to change the degree

of approximations. This process involves the following

steps: monitor conditions, readjust approximation levels, and

continuously assess adherence to system goals. Intelligent

runtime management is crucial for realizing the full potential

of approximate computing. Developing systems that can

autonomously and rapidly select the optimal degree of

approximation in response to fluctuating requirements and

conditions remains a complex and active area of research.

To achieve approximate computation, researchers and

practitioners employ a toolbox of diverse techniques. These

span hardware components (approximate adders), software

frameworks, system-level strategies (sampling), and

programming language and logic synthesis features.

However, the error analysis and quality evaluation help us in

the selection and dynamic adjustment of these techniques.

The approximate computing framework reflects a

comprehensive strategy. The process begins to help us define

and identify the candidate parts or units of the application to

apply a suitable approximate technique. After integrating

approximated units or parts into the application's design, the

compilation and error analysis phases begin. Another critical

aspect of this framework is the runtime management of the

application through an ongoing assessment of the quality of

the results. This methodology facilitates more efficient

computing, especially in scenarios where some inaccuracy is

acceptable. The next subsequent sections will delve into each

component in detail.

FIGURE 4. The Distribution of Selected Papers, Categorized By their
Publication Years and the Publishers Involved.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7 VOLUME XX, 2017

V. Data-Level Approximations
A. APPROXIMATE DATA TYPES AND STRUCTURES

One straightforward way to incorporate approximation into

hardware and software is to use approximate data types and

structures. To save computing resources, data types and

structures allow for certain imprecision in storage and

manipulation. For example, we know that precision scaling

(e.g., using fixed-point) can accelerate computations and

reduce storage. Likewise, approximate data structures (such

as Bloom filters or Count-Min sketches) are also useful to

save more resources and time by providing probabilistic

functionality. Furthermore, approximate data representation

focuses on approximating the input data to allow for more

efficient computation. Unfortunately, the applications in

image processing and neural networks offer a certain

inherent level of error tolerance and this provide us the

opportunities for concrete enhancements in both

performance and energy efficiency. This section delves into

the specifics of approximate data types and structures and

discusses their implementation, benefits, and potential

drawbacks.

1) APPROXIMATE DATA REPRESENTATION

Approximate data representation involves strategically

employing techniques like sampling or simplified

representations to reduce the complexity or volume of

datasets. These methods see wide adoption in domains such

as data analysis, machine learning, and other

computationally demanding fields. Approximate data types

prove advantageous in three key scenarios:

• Resource Constraints: When hardware limitations

(memory, storage) are present, data-level

approximations enable operation on datasets that

would be otherwise infeasible, trading some precision

for efficiency gains.

• Real-Time Processing: In streaming or sensor data

scenarios, approximate techniques allow for rapid

insight extraction and decision-making, prioritizing

responsiveness over exhaustive analysis.

• Inherent Imprecision: Many real-world datasets (e.g.,

weather data, image data) contain natural variability.

In these cases, absolute accuracy may be less critical,

justifying the benefits of approximate representations.

This makes approximate methodologies suitable for

effective data handling, as the natural variability and

uncertainty in data sources make exact precision less critical.

a) Data Sampling

One common technique for approximate data

representation is data sampling [38], [39], [40], [41], [42],

[43], [44], [45], [46], [47]. Instead of analyzing the entire

dataset, a representative subset of the data with error

bounds is selected for applications such as database

search, stream analysis, and model training. This can

reduce the computational complexity of the analysis and

speed up the processing time. The selection of data can be

done based on various criteria such as random,

systematic, adaptive, stratified, multistage (clustering),

FIGURE 5. Overall framework of Approximate Computing

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8 VOLUME XX, 2017

reservoir Sampling, Sampling-Over-Joins, Bucketing

Strategy, Coreset etc. The inclusion of sampling operators

in leading database products (e.g., Oracle, Microsoft SQL

Server, IBM Db2) highlights their importance in

extracting insights from large datasets. This capability

proves crucial in many areas, including exploratory

analysis, predictive modeling, and hypothesis testing. The

most basic approach to random sampling is known as

uniform random sampling, in which every item in the full

data set (also referred to as the “population”) has an equal

chance of being selected. Despite its simplicity, uniform

random sampling can potentially result in significant

variability in the resulting estimates.

One strategy for overcoming this obstacle is to provide

the developer with abstractions to identify, reduce, and

reshape resilient and best-effort computations to be more

parallelizable or run on unstable hardware components

[9], [48]. There are many frameworks that provide the

developer with these abstractions and the capabilities of

distributed computing and data processing, such as

Hadoop MapReduce [49], ApproxHadoop [50], Apache

Spark, Apache Flink, Apache Storm, Apache Tez,

Apache Beam, etc. For example, Apache Beam, an open-

source framework, simplifies batch and stream processing

with its high-level API, compatible with various

execution engines like Apache Flink, Spark, and Google

Cloud Dataflow. Initiated by Google and developed with

partners such as Cloudera and PayPal, it transitioned from

Google Cloud Dataflow in 2014 to Apache Beam in 2016

under the Apache Software Foundation.

Data sampling is a technique used in various

frameworks to improve the efficiency and speed of

processing large datasets, especially in decision-making

and analytical applications. In this paper, we provide an

overview of how some frameworks utilize data

sampling. Laptev [49] proposed enhancing Hadoop with

statistics-based uniform sampling for efficient analysis

of massive datasets, addressing time and resource limits.

This extension, EARL on Hadoop, accelerates

processing when preliminary results suffice,

maintaining high accuracy with small samples and using

bootstrapping for accuracy estimates. Goiri et al. [50]

introduced an approximate Hadoop version using

strategies like data sampling and task dropping for large

datasets. This approach, allowing for both precise and

approximate MapReduce operations, can significantly

cut runtimes by up to 32 times with a tolerable error

margin of 1% at 95% confidence. Hu et al. [51] explored

sampling as a way to speed up decision-making queries

on large data sets by introducing a sampling framework

in Spark that allows for approximate computing with

error estimates. ApproxSpark supports various sampling

methods, such as partition versus data item sampling and

stratified sampling, to provide fast results with estimated

error bounds. The findings indicate that ApproxSpark

can notably enhance speed while retaining accuracy to

optimize for different applications.

Sampling techniques play a crucial role in addressing

the challenges of stream analytics. Quoc et al. [52]

developed StreamApprox, an approximate computing

system for stream analytics that provides significant

speedups and throughput gains (1.15x−3x) over native

Spark Streaming and Flink. This is achieved through

selective sampling, while still maintaining high

accuracy levels. StreamApprox outperforms a

competing Spark-based sampling system with

comparable accuracy. Zhenyu et al. [53] proposed a

system called ApproxIoT that employed approximate

analytics for high throughput edge computing. The

authors used online hierarchical stratified reservoir

sampling to gather data in a decentralized manner, but the

aforementioned systems [52] are designed to handle the

task of processing input data streams in a centralized

datacenter. The authors also employed an extended

stratified reservoir sampling to select data from multiple

sub-streams, ensuring no individual sub-stream is

ignored. It generates approximate output with defined

error bounds, making effective use of edge computing

resources. ApproxIoT surpassed traditional sampling

with 1.3x to 9.9x faster processing across 10%-80%

sampling rates, showing slight accuracy decreases (0.07%

at 10% sampling). In tests with NYC taxi data, it offered

improved data throughput, balancing efficiency and

quality. However, it's limited to linear queries and needs

manual sampling adjustments. Trong et al. [39]

introduced S-VOILA, a stratified random sampling

algorithm designed for efficient and representative data

stream handling. The algorithm was evaluated using real-

world datasets, including the OpenAQ dataset, and

compared with other methods such as Reservoir, ASRS,

and Senate sampling. It achieves a lower variance than

ASRS and approximates VOILA allocation. Empirical

results on real-world data demonstrate its superiority over

Neyman allocation. This makes S-VOILA valuable for

reducing computational overhead in machine learning

model training. Park et al. [54] developed BlinkML, a

system that enables error-sample size trade-offs for

machine learning training, efficiently estimating the

needed sample size for desired accuracies. BlinkML

outshone traditional methods by training 961 models in

30 minutes and finding the best model in 6 minutes, but

the traditional methods failed within an hour. It achieved

up to 95% accuracy in various models, using only 0.16%

to 15.96% of the usual training time, and employed

uniform random sampling for large datasets with a

memory-efficient approach. Anderson et al. [55] focused

on optimizing the time-consuming process of feature

engineering in machine learning. They proposed a

system, ZOMBIE, that treats feature evaluation as a query

optimization problem, thus accelerating the feature

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9 VOLUME XX, 2017

evaluation loop. They employed a variation of active

learning for data sampling. The system was tested using

different learning tasks and index group creation

methods, and the results showed that ZOMBIE

significantly outperformed conventional methods,

reaching the accuracy plateau for a task nearly eight times

faster. The authors conclude that ZOMBIE can reduce

engineer wait times from 8 to 5 hours in some settings.

Sampling frameworks offer compelling advantages

when dealing with massive datasets. By intelligently

reducing the volume of processed data, they lead to

faster execution times and improved scalability. Current

research is investigating improvements in sample

techniques to reduce errors and customize them for

certain analytical purposes.

Researchers commonly approximate data at the software

and hardware levels using three approaches: precision

scaling, quantization, and relaxed precision. These

techniques can reduce the complexity of computational

applications.

b) Relaxing Precision

The design methodology of approximate computing

involves sacrificing computational precision in exchange

for enhanced power efficiency and performance. A

prevalent approach is the relaxation of precision, which

involves reducing the bit count employed in representing

data or performing computations. However, the

compromise lies in the potential occurrence of errors or

imprecisions in calculations. Error-tolerant algorithms,

error compensation techniques, and error-aware design

can be used to alleviate the deleterious effects of precision

relaxation. The appropriateness of relaxing precision is

contingent upon the application's capacity to

accommodate errors, and a judicious evaluation is

necessary to achieve equilibrium between the advantages

of minimizing precision and the requisite degree of

exactness for a particular application. This involves

reducing the precision of numerical calculations, such as

using single-precision floating-point numbers instead of

double-precision. The floating-point data type is a

common target for approximation. By reducing the

precision of floating-point numbers, computations can be

performed more quickly and with less energy. This can

significantly reduce the computational cost of the

algorithm at the expense of reduced accuracy. Zachariah

et al. [56] explore low-precision numeric formats (fixed-

point, floating-point, and posit) at ≤8-bit precision for use

in DNN accelerators. Static analysis tools [57] play a key

role in enabling such precision reduction techniques.

c) Quantization

This technique refers to the process of reducing the

precision of numerical data in a program by mapping the

values to a smaller set of discrete values. This is typically

done in machine learning models to reduce the memory

requirements and computation costs of the model, which

is especially important for deployment on edge devices

with limited resources. As a result, the majority of recent

studies on quantization have concentrated on inference

[58]. One common method of quantization is fixed-point

quantization, where each numerical value is represented

as an integer or fixed-point number with a limited number

of bits. Quantization can be done during the training or

inference of a machine learning model. In post-training

quantization, the weights and activations of a pre-trained

model are quantized to a lower precision [59], while in

quantization-aware training [58], [59], [60], [61], [62],

the model is trained with the quantization process in

mind, often with the use of special quantization-aware

algorithms and techniques. The choice of quantization

method and the level of precision to use depend on the

specific requirements of the application and the trade-off

between accuracy and resource usage. This can save

memory and computational resources, but it can also

introduce some errors [63]. In the depicted training

workflow as shown in Figure 6, Novac et al. [61]

employed floating-point quantization to strike a balance

between computational efficiency and precision. Prior to

performing computations within each neural network

layer, the inputs, weights, and biases are quantized to

lower precision while retaining their floating-point

nature. Post-computation, the outputs are similarly

quantized before they proceed to the subsequent layer.

This approach ensures a consistent precision level

throughout the network's forward pass. The precise

methodology for quantization is outlined in [61]. Notably,

during Training, certain processes, such as the system

dynamically reassess the value range and updates the

scale factor before performing layer computations.

However, during inference, the scale factor remains fixed.

Also, Guowei et al. [64] tackled the challenge of

deploying accurate crop disease recognition models onto

resource-constrained hardware. Their multi-pronged

approach combines pruning, knowledge distillation, and

ActNN compression with INT8 quantization.

Remarkably, this significantly reduced model size (by

88%) and inference time (by 72%) while achieving an

impressive 94.24% accuracy. Their contribution

demonstrates the feasibility of accurate real-world image

analysis on smaller devices. Real-time ECG analysis at

the edge is challenging due to device limitations.

Mohammed's work [65] addresses this with a lightweight

model that uses quantization and pruning to achieve up to

99.1% and a 95% F1-score for edge-based deployment.

Due to hardware improvements and privacy

considerations, machine learning (ML) is moving towards

edge devices. Federated learning (FL) shines here,

improving privacy and network efficiency. To support

this trend, Diogo et al. [66] proposed L-SGD, a

lightweight version of SGD optimized for

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10 VOLUME XX, 2017

microcontrollers (MCUs). Their implementation is 4.2x

faster than standard SGD while consuming significantly

less memory (2.8%). It boasts both a floating-point and a

quantized version for fine-tuning, showing promise for

quick model updates and fairness fixes in FL scenarios.

d) Precision Tuning or Scaling

This technique involves adjusting the numerical precision

of calculations to improve both accuracy and efficiency.

It entails fine-tuning data and computations to maximize

efficiency and accuracy while using as few resources as

possible. Precision scaling or feature scaling approaches

(e.g., half-precision (16-bit) and mixed-precision

training) are both techniques used in deep learning that

aim to improve training efficiency and reduce

computational resources while maintaining or even

improving model performance [56], [67], [68]. These

breakthroughs have become particularly relevant with the

advent of powerful hardware accelerators such as GPUs

and TPUs, which can effectively leverage the benefits of

reduced precision arithmetic. Nevertheless, achieving

precision below half-precision has presented a

considerable challenge that requires extensive fine-

tuning. Numerous cutting-edge software-level

approaches [69], [70] have been developed to tackle

various challenges associated with precision scaling,

including scaling degree, scaling automation, mixed

precision, and dynamic scaling.

To handle the complexity and non-intuitive nature of

round-off errors in floating-point, Wei-Fan et al. [71]

addressed this issue using formal analysis with

FPTUNER, an automated tool that optimizes precision

through symbolic expansions. FPTUNER efficiently

manages precision modifications and was tested on

various benchmarks, showing significant energy savings

with mixed-precision code despite some compiler-related

challenges. For a detailed study on these quantization

techniques, the review paper [58] offers extensive

insights.

The utilization of graphics processing units (GPUs) has

become widespread in accelerating various emerging

applications, including but not limited to big data

processing and machine learning. Although GPUs have

demonstrated their effectiveness, one prevalent approach

to enhancing performance is approximate computing,

which involves sacrificing accuracy in exchange for

improved performance. The technique of approximating

high-precision values into lower-precision values with

precision scaling has become increasingly popular on

GPUs, with support for half-precision at the hardware

level. The issue with GPU-side kernel-level scaling is that

the overall improvement in program performance is often

limited due to the combination of data transfer, type

conversion, and kernel execution. To address this issue,

several solutions can be employed: optimizing data

transfer, kernel fusion [69], adaptive precision techniques

[72], memory hierarchy optimization, compiler and

runtime support, and advanced code analysis and

optimizations. By implementing these solutions, the

performance of GPU-side kernel-level scaling can be

significantly improved. Kotipalli et al. [72] addressed the

limitations of precision selection for applications with

strict accuracy requirements, neglect of performance

concerns in GPGPU accelerators, and insufficient

optimization techniques in existing approaches. It

provides a comprehensive solution, AMPT-GA, that

optimizes performance while satisfying accuracy

requirements in high-performance computing

applications. To face the scalability limitations of

FIGURE 6. Quantization-Aware Training architecture [61].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11 VOLUME XX, 2017

precision tuning techniques due to the wide search space,

Guo et al. [73] presented a scalable hierarchical search

algorithm for precision tuning, which was implemented

in the tool HiFPTuner. The results showed the proposed

algorithm reduce the search time by 59.6%. compared to

the state-of-the-art.

The concept of “dynamic precision scaling” pertains to

the modification of numerical precision in real-time,

which is contingent upon the particular demands of a

given computation or system [70], [74]. Deep neural

networks demand extensive linear operations, impacting

speed. George et al. [75] introduce a dynamic-mixed-

precision inference scheme to address this problem. Their

results show a significant execution time reduction (55%)

for linear operations while maintaining model accuracy.

Effective mixed-precision tuning demands tailored

hardware and software. William et al. [76] presented a

roadmap for this co-design. Their roadmap, informed by

recent advances, strives to maximize mixed-precision

benefits (performance and energy efficiency) for diverse

applications.

e) Compression

This technique involves reducing the size of data or files

through various compression techniques. The goal is to

store or transmit data in a more efficient way, thus

reducing storage or bandwidth requirements and

potentially improving performance and energy efficiency

[55], [56]. There are two main categories of data

compression: lossless and lossy. Lossless compression is

a type of compression that uniquely guarantees the ability

to recover the exact original data from its compressed

form. Examples of lossless compression techniques

include Huffman coding, Run Length Encoding, LZ77,

ZIP, GZIP, and RAR, which are used to compress text,

images, and other types of data [77]. There are also lossy

compression algorithms such as JPEG, MP3, and MPEG,

which eliminate unnecessary or less important

information where a certain amount of data loss will not

be detected by most users. These types of compression are

used to compress multimedia files like images, audio, and

video. For instance, JPEG, MP3, and MPEG-4 are used

for images, audio, and video, respectively [77], [78], [79],

[80], [81], [82]. Lossy compression formats, such as MP3

or MPEG4, achieve smaller file sizes in comparison to

lossless formats, albeit with a trade-off of reduced output

fidelity. Data compression plays a dual role in machine

learning and big data contexts. Lossy techniques (MP3,

MPEG4) aren't the only way to reduce the size of a file.

Dimensionality reduction techniques like Principal

Component Analysis (PCA) and t-Distributed Stochastic

Neighbor Embedding (t-SNE) hold particular

significance. These techniques streamline processing by

extracting high-level features from vast datasets while

potentially mitigating issues like the curse of

dimensionality.

Classical dimensionality reduction (PCA, t-SNE)

excels at finding linear structure in data but can have

difficulties capturing complex, nonlinear relationships

that often exist in high-dimensional datasets. Beyond

Linear Compression, Autoencoders [83] and generative

models (including Variational Autoencoders (VAEs) [84]

and Generative Adversarial Networks (GANs) [85]) use

deep neural networks inherently adept at nonlinear

patterns. These can encode richer, more expressive

representations of data. Auto-Encoder (AE) [86] is a

neural network architecture that specializes in encoding

and decoding data. The encoder component compresses

the input data x into a condensed representation known as

the latent variable z, following the function qϕ(z∣x), as

shown in Figure 7 (a). The decoder then attempts to

reconstruct the original input from this latent variable,

outputting x as per the function pθ(x∣z). The AE is

generally trained without supervision to minimize the

reconstruction error between x and 𝑥̂. Variations of AEs,

including Variational Auto-Encoders (VAEs) and their

derivatives, extend this basic framework to serve more

complex purposes like data generation and denoising,

adapting the architecture to a range of applications, as

shown in Figure 7(b).

For example, Duan et al. [84] introduced a

Quantization-aware ResNet VAE (QARV) for lossy

image compression, combining hierarchical VAEs design

with quantization optimizations for efficient entropy

coding and fast decoding. QARV is characterized by

using variable compression rates, which outperforms

existing methods in rate-distortion metrics. However,

choices like PCA's number of components or an

autoencoder's bottleneck size directly influence

information loss.

The choice of data compression technique depends on

the specific requirements of the application, such as the

FIGURE 7. Architectures of (a) Autoencoder, and (b) Variational
Autoencoders (VAEs) [86].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12 VOLUME XX, 2017

need for lossless reconstruction, the acceptable level of

data loss, and the computational resources available.

Wiedemann et al. [87] introduced DeepCABAC, a novel

neural network compression method based on Context-

based Adaptive Binary Arithmetic Coder (CABAC),

achieving high compression rates without compromising

accuracy. They demonstrate that DeepCABAC can

compress the VGG16 ImageNet model by a factor of

63.6, reducing the network's memory footprint to a mere

9 MB without compromising its accuracy.

In conclusion, although compression methods provide

notable advantages in minimizing data volume and

enhancing storage and communication efficiency, they

present a set of challenges that need to be addressed. The

low performance and high complexity of compression

and decompression algorithms can offset the benefits,

especially for low-power devices and real-time scenarios

(video streaming). The data types and compression ratio

also specify the type of compression algorithm to be used.

Therefore, being careful when making the decision to

select and implement compression techniques is crucial.

2) APPROXIMATE DATA STRUCTURES

Data structures offer a strategic approach to data storage and

retrieval, incorporating mechanisms for approximation or

lossy compression to curtail memory and computational

demands. This efficiency extends to supporting decrement

operations and managing negative counts, further enhancing

system performance. For example, in data analytics,

approximate data structures such as Bloom filters and

HyperLogLog can be used to estimate the cardinality of a set

without storing all the elements of the set [88], [89]. There

are some examples of approximate data structures:

a) Bloom filter

The Bloom filter's core strength lies in its space efficiency

and fast membership queries. However, its probabilistic

nature introduces the possibility of false positives

(indicating an element is present when it isn't actually in

the set) [90]. Despite this limitation, Bloom filters find

wide adoption in scenarios where some inaccuracy is

tolerable and space is a major constraint [91]. They are

widely used in various domains such as IOT, networking,

databases, and bioinformatics. Burton [92] introduced

Bloom filters in the 1970s. There are many categories of

Bloom filters based on practical measurements, namely,

Standard, Counting, Dynamic, Hierarchical, Loglog,

Spectral, Multidimensional, Fingerprint-based, Shifting,

Compressed Bloom Filters, etc. In general, designing

Bloom filters presents several key challenges: a trade-off

between false positive rate and space, no false negative

control, optimal hash function choice, predefining size,

and scalability. The predefined size of the Bloom Filter,

which cannot be changed later, poses challenges for large

or growing datasets. The rate of false positives can be

reduced by increasing the size of the Bloom filter or using

more hash functions. There are many proposed

approaches to reduce the rate of false positives. However,

both solutions require more computational resources. For

applications where false positives are absolutely

unacceptable within known data size constraints, EGH

filters provide a valuable solution, as demonstrated by

Sándor et al. [93]. This has potential implications for

areas like network security and data validation. For

providing control over false negatives, Bloom filters can

handle the deletion of elements, thus providing control

over false negatives.

Bloom filter is a little more memory-intensive hashing

method. BF's compute cost comes from hash function

computation and query judgment. MD5, SHA-1, and

other computation-intensive hash algorithms are needed

for BF. Perfect and locality-sensitive hashes are

considerably harder to compute. Determining the ideal

number of hash functions in a Bloom filter depends on

several factors: the filter's size, the expected dataset size,

and the most importantly, the relative cost of the hash

function itself. Modern optimization balances these

factors. Bloom filters exhibit either the capability to

delete data while incurring supplementary memory usage,

or the ability to expand data while incurring a higher rate

of false positives and a reduction in query speed.

Therefore, Yuhan W. [94] addressed and solved the two

shortcomings: no deletion and no expansion, by

proposing a new Bloom Filter, called Elastic Bloom

Filter.

The classic Bloom filter, while remarkably space-

efficient, faces inherent trade-offs between accuracy,

query speed, and memory usage. Recent work by

Gebretsadik et al. [95] presented the enhanced Bloom

filter (eBF), a novel design specifically tailored to the

challenges of intrusion detection in IoT networks. Their

experimental evaluation reveals the eBF as a significant

step forward, demonstrating considerable memory

savings (15.6x, 13x, 8x) over standard Bloom filters,

Cuckoo filters, and robust BFs, while maintaining fast

and accurate performance. Seymen et al. [96] proposed a

lightweight Bloom filter for IOT applications and

implemented it using the Murmur3 hash on a Nexys A7

FPGA board.

In summary, Bloom filters are celebrated for their

compactness and proficiency in membership

determination, despite their computational and memory

demands [97], [98]. Future efforts will aim at refining

these structures to lower false positives, enhance

scalability, and conserve computational resources,

thereby bolstering their effectiveness and efficiency for

expansive datasets.

b) Sketching data structures

This structure is a family of data structures used to

summarize large data sets in a small amount of space.

They can be used for approximate query answering and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13 VOLUME XX, 2017

data compression [99]. Particularly, sketch-based data

structures, such as the traditional Count sketch (CS),

Count-Min Sketch (CMS) [7], Count-Mean-Min Sketch

(CMMS) [100], and many more, are a frequent technique

for frequency estimation. The efficiency and reasonable

accuracy make sketch-based approaches compelling for

network measurement. However, the ongoing need to

balance accuracy with memory constraints creates an

active research area. Developing more versatile sketches

or techniques for dynamically adjusting sketch

parameters is crucial. New sketch data structures,

including the Count Min Log Sketch (CMLS) [101],

Switch Sketch [102], Elastic Sketch [103], HBL (Heavy-

Buffer-Light)-Sketch [104], or Diamond Sketch [105],

have emerged in recent years [106]. For example, faced

with the challenge of counting item frequencies in huge

datasets where exact storage is impossible, the Count-Min

Sketch emerges as a powerful solution. With a

probabilistic approach, it intelligently trades some

accuracy for a significantly reduced memory footprint

[107]. It is used in various applications like compressed

sensing, networking, databases, NLP, security, machine

learning, etc.

One of the challenges of the Count-min sketch

algorithm is overestimation of the frequency of events

due to hash collisions [108], and to mitigate the issue of

overestimation, one could use a variant of the Count-Min

Sketch known as the Count-Mean-Min Sketch [100]. The

accuracy of the CMS depends on the quality of the hash

functions used [109]. The quality of the hash functions

can be improved by using independently universal hash

families [110]. Khan A. et al. [109] introduced an

enhanced approach to sketch-based hashing, diverging

from direct full-key hashing. Their methodology involves

the use of multiple independent hash functions, each

targeting different segments and combinations of a key,

thereby establishing a composite hashing framework for

improved accuracy. The fact that the accuracy of CMS

improves with more space (i.e., more hash functions and

larger arrays) is another challenge leading to a trade-off

between the two. In addition, it should be noted that CMS

lacks support for decrement operations and negative

counts. Count-Sketch is a viable alternative to Count-

Min-Sketch for accommodating negative counts. CMS

can provide frequency estimates, and a combination of

data structures could be used to support exact queries; for

example, one could use a hash map for exact queries [111]

and Count-Min Sketch for frequency estimation. Another

challenge is that the CMS data structure cannot be resized

once it's created. This issue was addressed by Zhu et al.

[112] by proposing a dynamic variant of Count-Min

Sketch that allows for resizing, called Dynamic Count-

Min Sketch. The Count-Min Sketch is widely used in data

stream analysis, network monitoring, database size

estimation, and other areas where processing massive

amounts of data is required.

In 2018, a team from Tsinghua University and

Microsoft Research [93] proposed Elastic Sketch

algorithm, which would consume less memory and

provide a more precise estimation of item frequencies. It

is considered a solution for network-wide measurements,

which is a critical function for network management and

security. It is designed to adapt to different traffic

distributions and measurement tasks. Elastic Sketch

outperforms contemporary benchmarks with a speed

increase of 44.6 to 45.2-fold and a reduction in error rates

ranging from 2.0 to 273.7 times. This algorithm was

enhanced by Keyan [104], known as Heavy-Buffer-Light

(HBL) sketch. By comparing it to its predecessor, such as

the elastic sketch, and other conventional methods, HBL

manages to decrease the average relative error rate by

55% to 93% under identical memory constraints.

c) HyperLogLog (HLL)

HLL is a probabilistic data structure that is a very

powerful approximate algorithm used for estimating the

cardinality of a set. It's particularly useful when dealing

with large datasets because it provides acceptable

accurate estimation with significantly less memory [82],

[89]. It is used in various applications like network

monitoring, web analytics, data analysis, and databases.

HLL is a probabilistic algorithm that provides

approximate estimation, and one can improve the

accuracy of HLL [114] by increasing the number of

registers used or using high-quality hash functions. There

are also improved versions of the algorithm, such as

HyperLogLog++ [115], HyperLogLogLog [116], or

HLL-Tailcut [117], that offer better accuracy and less

memory usage. Unfortunately, HyperLogLog doesn't

support the deletion of elements; therefore, the sliding

HyperLogLog algorithm [118] was proposed to support

deletions. HyperLogLog sketches [119] are proposed to

extend the HyperLogLog algorithm to support estimating

the cardinalities of union, intersection, or relative

complements of two sets. Another issue is that

understanding privacy-related attributes of datasets, such

as re-identifiability and joinability, is crucial for data

governance. However, large datasets and organizations

require more efficient strategies, as brute force methods

are inefficient due to their massive systems and data

volume. Pern et al. [89] introduced an extension of the

HyperLogLog algorithm, KHyperLogLog (KHLL), an

algorithm based on approximate counting techniques for

estimating re-identifiability and joinability risks in large

databases. KHLL's joinability analysis helps distinguish

between pseudonymous and identified datasets. This

leads to reduce reliance on expert judgment and manual

reviews. It uses less memory and linear runtime.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14 VOLUME XX, 2017

d) MinHash

MinHash is a probabilistic data structure used to estimate

the similarity between two sets. It can return approximate

answers with high probability [90]. The utilization of

MinHash and HyperLogLog sketching algorithms has

become an essential practice in the realm of big data

applications for the purpose of set summarization.

HyperLogLog is a technique that enables the counting of

distinct elements using small fraction of storage space. On

the other hand, MinHash is a method that is well-suited

for rapid set comparison, as it permits the estimation of

Jaccard similarity and other related measures. Therefore,

Otmar et al. [121] introduced a novel data structure named

SetSketch, which effectively bridges the gap between the

two aforementioned use cases. In numerous instances, it

exhibits superior performance compared to the

corresponding state-of-the-art estimators. Also, Yun et al.

[122] introduced a novel compressed sketch known as

HyperMinHash, which is based on the HyperLogLog

framework and can serve as a seamless substitute for

MinHash. The HyperMinHash algorithm preserves the

fundamental characteristics of MinHash, including the

ability to perform streaming updates, unions, and estimate

cardinality.

e) T-digest

T-digest is an algorithm that is used for real-time

operations and constructing concise representations of

data that are capable of approximating rank-based

statistics with a high degree of accuracy, especially in the

vicinity of the distribution's extremities [123]. It was

introduced by Ted Dunning in 2013. This novel form of

sketch exhibits resilience in the face of non-normal

distributions, multiple iterations of sampling, and

arranged data sets. The integration of independently

computed sketches can be achieved with minimal or

negligible compromise in precision. The t-digest

algorithm is extensively utilized within prominent

corporations and is additionally incorporated into

commonly used software applications such as Postgres,

ElasticSearch, Apache Kylin, and Apache Druid. The t-

Digest has the property that the error is smaller around the

median and larger at the extremes, which makes it

particularly useful for applications that require accurate

estimates of quantiles for skewed data [91].

Overall, approximate data structures can be a useful

tool for handling large amounts of data efficiently while

sacrificing some level of accuracy. Each of those

techniques offers unique advantages and can be applied

in different scenarios depending on the specific

requirements of the application. However, they also have

their own challenges and limitations, such as ensuring that

the introduced approximations do not significantly

degrade output quality or lead to unacceptable errors. The

choice among these techniques, therefore, requires a

careful understanding of both the application's

characteristics and the capabilities of the approximation

technique.

VI. Software-level Approximations

Approximate computing is a technique used in computer

engineering to reduce the computational complexity and

energy consumption of computing systems while relaxing

the accuracy of the computations. This approach can be

particularly useful for applications where accuracy is not

critical or where the computations are too complex or time-

consuming to be performed exactly. The complexity of these

applications is ever-increasing since they must constantly

adapt to provide new services and process a large amount of

data. The growing cost of developing such systems,

including the target cost, power consumption, execution

time, and memory space for software development, is

directly proportional to the increasing complexity of

systems. The idea behind approximation computing at the

software level is to minimize processing complexity, which

is represented by the number of processing operations and

memory accesses, in order to reduce implementation costs.

Therefore, there are many approximate techniques at the

software level proposed in the literature in order to reduce

the computation and the time-execution of a program by

introducing inaccuracies or approximations in certain parts

of the computation while producing an acceptable accuracy

of results. The task of identifying and selecting computations

for approximation that have less influence on the quality of

the results is one of the most difficult aspects of approximate

computing. Software-level approximation techniques refer

to the methods used to simplify the design and analysis of

software platforms. These techniques aim to reduce the

complexity of software systems while maintaining

acceptable levels of performance and functionality. They can

be applied at various stages of the software development

process, including design, implementation, and testing.

A. CODE OPTIMIZATION-BASED APPROXIMATE
METHODS

These methods focus on modifying the code to optimize for

approximate computation while maintaining an acceptable

level of accuracy [124]. These methods can be applied

manually by the programmer or automatically by a compiler

or another tool. Approximation-enabled compilers are

another important avenue for software-level approximate

computing. These compilers introduce approximations into

programs automatically or semi-automatically. They analyze

the source code to identify parts of the program where

approximations can be introduced without significantly

affecting the overall output quality. Techniques employed by

these compilers include loop perforation (skipping some

iterations of a loop), operator approximation (replacing exact

operators with approximate ones), and task skipping

(skipping some non-critical computations). These techniques

modify the compiler to generate approximate code that

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15 VOLUME XX, 2017

trades off accuracy and performance. Examples of such

techniques include AutoTuning and Knowledge distillation,

matrix approximation, numerical optimization, rounding,

truncation, statistical sampling, Taylor series approximation,

linearization, neural networks, and piecewise linear

approximation. There are several different techniques for

optimizing code using approximate methods.

1) COMPUTATION SKIPPING

Computation skipping is a technique used in computer

programming to improve the performance and efficiency of

code by reducing the number of computations that need to be

performed [125]. This technique involves the exclusion of

code blocks based on predetermined criteria such as

acceptable levels of Quality-of-Service degradation,

constraints established by the programmer, and/or

predictions made regarding the accuracy of the output at

runtime. It involves skipping unnecessary computations that

would not change the outcome of the program. Skipping

computations in Convolutional Neural Networks (CNNs)

has been the subject of numerous studies. CNNs excel in

many recognition tasks, but their computational complexity

limits their use on power-constrained platforms. Therefore,

Lin Y. et al. [126] introduced PredictiveNet, a method for

reducing the computational complexity of CNN without

significant accuracy loss. It predicts sparse outputs from non-

linear layers, bypassing most computations. It skips many

CNN convolutions during runtime without changing the

CNN structure or needing additional branch networks. When

tested, PredictiveNet reduced computational cost by a factor

of 2.9 compared to a standard CNN, with minimal accuracy

degradation. There are several different techniques for

computation skipping, including:

a) Loop Perforation (Skipping)

This technique involves selectively skipping iterations of

a loop that are not critical to the output in a software

program to provide performance and energy gains in

exchange for QoS loss. There are several skipping

approaches for a different set of iterations based on

different criteria, such as skipping every other iteration,

skipping based on a condition, or skipping until a certain

threshold is met. Loop tiling involves breaking a loop into

smaller sub-loops to reduce the memory access pattern

[127], [128], [129], [130]. Figure 8 shows a loop that

iterates over a set of data. For each iteration, the loop

checks a perforation condition. If the condition is true, the

iteration is skipped. Otherwise, the iteration is executed.
Loop perforation is a powerful technique that can be used

to improve the performance and accuracy of loops.

However, traditional loop perforation, which only

considers the number of instructions to skip, overlooks

the significant influence of differences between

instructions and loop iterations on performance and

accuracy. To address this issue, Li et al. [128] advanced

loop perforation with their Sculptor system, introducing

selective dynamic loop perforation to enhance

performance and accuracy by skipping specific

instructions within loop iterations. Despite challenges in

instruction analysis and strategy optimization, they

proposed compiler improvements for selective and

adaptive perforation. Testing across eight applications

showed this method outperforms traditional loop

perforation, achieving speedups of 2.89x and 4.07x with

5% and 10% error tolerances, proving its effectiveness in

boosting both speed and accuracy.

The graph algorithms are widely used in high-

performance and mobile computing. The performance of

these algorithms can vary due to input dependence, i.e.,

changes in the input graph. Omar H. et al. [130] proposed

an input-aware loop perforation predictive model called

GraphTuner, which allows graph algorithms to

systematically trade off accuracy for performance and

power benefits. In this approximate computing

circumstance, they examine the consequences of input

dependence on graph algorithms. This helps to identify

the requirement for adaptation of inner and outer loop

perforations depending on input graph features such as

graph density or size. The outcomes indicate an average

performance improvement of approximately 30% and a

power utilization improvement of about 19% at a program

accuracy loss limit of 10% for NVidia® GPU.

The loop perforation technique has also been used in

approximation frameworks for optimizing embedded

GPU kernels. Daniel et al. [129] proposed a new memory-

aware perforation approach for GPU kernels, optimized

for embedded GPUs, and a framework for automatic loop

nest approximation based on polyhedral compilation.

This framework introduces new multidimensional

perforation schemes and generalizes existing ones. To

enhance result accuracy, a reconstruction technique is

incorporated, and a pruning method is proposed to

eliminate low-quality transformations in the large

transformation space.

b) Memory Access Skipping (MAS)

MAS is a new approach that tries to optimize storage and

memory access by skipping unnecessary for uncritical

FIGURE 8. Flowchart illustrating the concept of loop perforation

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

16 VOLUME XX, 2017

data. To achieve this technique, we need to statistically

analyze and profile the code in offline and real-time to

figure out unnecessary memory access. The main goals of

this technique are to save energy on memory access,

ineffective utilization of bandwidth, and the overall

performance of the system. MAS boosts performance

mainly for memory-bound applications. However, the

implementation of MAS faces two challenges: the

complexity and managing the overheads of accurate skip

detection. However, this area has significant potential for

improving performance and power consumption.

Due to the growth of dataset sizes and multi-level cache

hierarchies, memory performance in data mining

applications is a significant problem being addressed by

the current research. The important methods in data

mining applications are recursive partitioning methods

such as decision trees and random forest learning. To

address this issue, Kislal et al. [131] introduced a

framework to optimize performance in recursive

partitioning applications while managing accuracy loss.

Their key components include a data access skipping

module (DASM) guided by user-defined strategies and a

heuristic to predict the impact of skipping data accesses

for accuracy preservation. This proposed framework

leverages the inherent flexibility in these applications to

enhance performance with minimal accuracy losses.

Experimental evaluations show that this method can

enhance performance by up to 25% with minor accuracy

losses of up to 8%. The authors also prove the

framework's scalability under different accuracy needs

and its potential for memory performance improvement

in NoC/SNUCA systems. Also, Raparti et al. [132]

introduced two innovative solutions for memory

bottlenecks in many-core GPGPU (NoC) architectures.

They introduced an approximate memory controller

(AMC) to lower DRAM latency and optimize scheduling,

and a low-power NoC (Dapper) to enhance

communication efficiency. Experiments show the

architectures boost NoC throughput by 21% and cut

latency and power use by 45.5% and 38.3%, respectively.

Certain researchers have directed their attention

towards the deliberate skipping of costly data accesses.

Researchers must be aware of three critical questions.

What is the upper limit of skipping data accesses while

maintaining a specified level of inaccuracy? The

significance of architectural awareness in discerning

which data accesses to eliminate is a pertinent inquiry. Is

it always the case that two executions, which both skip

the same number of data accesses, will yield identical

output quality? Karakoy et al. [133] attempt to answer

these critical questions through proposing a program

slicing-based approach that identifies the set of data

accesses to skip.

2) ITERATIVE REFINEMENT

Iterative refinement is a method used when we are dealing

with ill-conditioned systems, where small changes in the

input can lead to large changes in the output. The technique

involves starting with an initial estimate of the solution and

then iteratively refining the estimate until a desired level of

accuracy is achieved. Iterative refinement can be used in

various fields, including computer graphics, machine

learning, and scientific computing. Recent research has

shown that iterative refinement can be particularly effective

in certain domains, such as optimization and machine

learning [134], [135], [136], [137], [138]. Recently, Yang et

al. [135] highlighted the effects of applying iterative

refinement in machine learning. They introduced a compact

deep neural network and applied learned gating criteria

during the training phase to figure out if the weight-sharing

cycle would work. This mechanism gives adaptive behavior

to the model. However, iterative refinement may not always

be best. It may converge slowly or not at all for ill-

conditioned systems.

3) EARLY STOPPING

Early Stopping is a technique used to improve performance

and prevent poor generalization in machine learning models

by stopping the training process before the maximum

number of iterations or epochs is reached. The primary goal

of early stopping is to prevent overfitting, reduce

computational costs, and enhance the efficiency of the

training process. Early stopping can be achieved by

monitoring various metrics during the training process when

certain criteria are met. Datasets are divided into three

subsets: training, validation, and test subsets. The training

dataset is utilized for modeling and assessing accuracy,

whereas the validation subset measures model

generalization. A threshold is set so as to decide the early

stopping condition and the ideal number of epochs for

training when the error on the validation subset drifts from

that on the training subset. As seen in Figure 9, during the

early training of a model showing high bias and low

FIGURE 9. The importance of early stopping approach in the machine
Learning.

Early stopping Number of iterations

Optimal Complexity Model Complexity

Underfitting Area Overfitting Area

Generalization

Error

Variance
Bais2

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

17 VOLUME XX, 2017

complexity, both training and validation errors tend to drop.

This is evident in the underfitting area, where bias and

generalization are included. In this area, the behavior is that

of a model that has not been trained enough to recognize the

patterns in the data. In the overfitting area, the variance or

error increases as a result of the model being trained for too

long. This is evident in the growing divergence between

training and validation errors and the loss of generalization.

There are a couple of techniques for mitigating overfitting,

such as early stopping, regularization techniques like L1/L2

regularization, data augmentation, and ensembling.

However, the early stopping approach is a simpler and easier

way than the others.

Recent research has shown that early stopping can be

particularly effective in deep learning models, which are

often computationally expensive and require large amounts

of data for training [139], [140]. Early stopping can be

applied to various types of algorithms, including search

algorithms, optimization algorithms, and machine learning

algorithms. Together, early stopping and the validation set

help to find that ideal balance to establish the optimal

capacity for a model's training, as shown in Figure 9. There

are several types of early stopping techniques that can be

used in machine learning to stop the training process before

it reaches the maximum number of iterations or epochs.

There are some common types, such as Fixed early stopping

[141], [142], Adaptive early stopping [143], Noisy early exit

[142], [144], Early stopping with patience [145], and

Gradual unfreezing [146], [147], [148].

Another recent study that uses early stopping is “Early

Stopping without a Validation Set” by Maren et al. [140].

The authors proposed a validation-free early stopping

approach that depends on the statistics of locally accessible

computed gradients. This method increases a little in

computation complexity, delay, and memory. The method

achieved comparable or better performance compared to

traditional methods that use a validation set.

4) FUNCTION APPROXIMATION

Function approximation is a technique used in mathematics

and computer science to estimate an unknown function using

a set of input-output pairs or data points. The purpose of this

technique is to figure out a function that approximates the

true underlying function as closely as possible. There are

many methods for function approximation, including

polynomial interpolation, the CORDIC algorithm,

regression analysis, spline interpolation, and neural networks

[149], [150], [151]. The implementation of approximate

functions within complex systems is facilitated by the

utilization of neural networks in software-hardware co-

design. This approach involves converting traditional

approximable codes into equivalent neural networks,

resulting in improved execution time performance at the

expense of reduced output accuracy [152], [153]. These

techniques are also used at the circuit (hardware) level, and

we will discuss them in detail later.

5) PRUNING

Pruning is a technique used a lot in deep learning and

machine learning models to make models smaller and

simpler. The goal is to remove redundant or unnecessary

parameters from the model, which can lead to better

generalization performance and faster inference times. There

are several types of pruning techniques that can be used

depending on the specific application and model architecture

[154], [155], [156], [157], [158]. The goal of pruning is to

generate a more compact and efficient model that can be

implemented on resource-constrained devices or used in

real-time applications without reducing accuracy or

performance. This can be done through a variety of methods,

including magnitude-based pruning [159], where weights

with small absolute values are removed, and iterative

pruning [160], where weights are gradually removed over

multiple iterations of training. Pruning methods can be

broadly categorized into unstructured pruning [159],

[160], [161], and structured pruning [81], [162], [163],

[164], [165]. For example, in deep learning, Neuron or

Weight pruning can be used to remove neurons or

connections that do not contribute significantly to the final

output. This can reduce the computational complexity of the

model and speed up the training process [166]. Another

example is that in a convolutional neural network, filter

pruning can be used to remove filters that have low

activation values or are redundant, which can help to

decrease the computational cost and memory requirements

of the model [165], [154], [167], [168], [169]. For example,

Jian-Hao [170] proposed a filter pruning algorithm called

ThiNet, which considers the interdependence of filters in a

layer and prunes them in a way that preserves accuracy. The

findings indicate that ThiNet achieves a significant reduction

in computational resources for VGG-16, including over 3

times fewer FLOPs and over 16 times compression, with a

minimal accuracy loss of 0.52%. Additionally, ThiNet cuts

parameters and FLOPs by over half, with a slight accuracy

decrease of about 1%.

6) SPARSITY

Sparsity is a crucial concept in modern data processing and

machine learning to optimize energy, memory, and

computation in algorithms, all without significant loss of

accuracy. Sparsity is a technique employed to ensure that a

large proportion of the elements in a dataset or matrix are

zero or have values that will not significantly impact a

calculation. There are many techniques to achieve sparsity:

pruning, regularization, dimensionality reduction

techniques, and matrix factorization methods. We discussed

pruning techniques in the previous subsection. We can use

regularization techniques like L1 regularization to handle

sparsity in neural network model parameters. To reduce the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

18 VOLUME XX, 2017

dimensionality of datasets and extract features, we can use

dimensionality reduction techniques like Principal

Component Analysis (PCA) and t-Distributed Stochastic

Neighbor Embedding (t-SNE), and Matrix Factorization

methods like Singular Value Decomposition (SVD) and

Non-negative Matrix Factorization (NMF). We discussed

dimensionality reduction techniques in the compression

subsection. These techniques and methods are parts of low-

rank matrix factorization techniques [171], which are

unsupervised learning methods used for data analysis tasks

such as dimension reduction, feature extraction, blind source

separation, data compression, and knowledge discovery.

Recent years have seen the success of artificial neural

networks in solving real-world problems and the rapid

increase in their complexity and parameters. Larger

networks are more computationally and memory-intensive,

making them difficult to use on embedded devices [172]. To

address this, there is growing interest in sparsifying neural

networks. Sparse neural networks can match the

performance of fully connected networks while using less

energy and memory, making them ideal for resource-limited

devices [173]. NVIDIA [174] has developed a

straightforward and widely applicable technique for

generating sparse deep neural networks through inference by

utilizing a particular form of sparsity structure known as 2:4

pattern. For example, the NVIDIA Ampere architecture's

third-generation Tensor Cores in A100 GPUs utilize fine-

grained sparsity in their neural network weights, enhancing

matrix multiplication speed in deep learning without losing

accuracy. Another example, Lu et al. [175] aims to develop

an FPGA accelerator for sparse CNNs, addressing

inefficiencies in existing FPGA architectures designed for

dense models. The proposed solution includes a weight-

oriented dataflow for handling irregular connections in

sparse convolutional layers, a tile look-up table to eliminate

runtime indexing matches, and a weight layout with a

channel multiplexer to prevent data access conflicts.

Experiments show the accelerator achieves 223.4-309.0

GOP/s on Xilinx ZCU102, offering a 3.6x-12.9x speedup

over previous dense CNN FPGA accelerators. Also,

Tragoudaras et al. [176] used a state-of-the-art HLS tool to

implement a MobileNetV2 model by integrating design

methodologies with sparsification techniques, including

sparse matrix methods and two weight pruning approaches.

The objective is to develop hardware accelerators that

maintain error metrics comparable to state-of-the-art systems

while significantly reducing inference latency and resource

utilization.

In sum, Sparsification techniques, such as sparse matrix

methods and weight pruning, are essential for enhancing the

efficiency of deep neural networks. By reducing the number

of non-zero elements, these techniques lower memory usage

and computational demands, enabling faster and more

resource-efficient inference. Additionally, they help

maintain model accuracy while optimizing hardware

performance. The challenges of implementing sparse

algorithms can be more complex compared to their dense

counterparts. However, sparsification is a crucial strategy for

advancing the practicality of real-time AI applications.

7) APPROXIMATE MEMOIZATION

Memoization is a technique employed to store the outcomes

of computationally expensive operations for subsequent

utilization in cases where identical operations and input data

are encountered [177]. Different levels of accuracy can be

used to compute many algorithms. Approximate computing

exploits this to decrease execution time by determining the

tradeoff between performance and accuracy. Approximate

memoization extends this concept by providing approximate

results for new input data that correlate with previously

computed and stored data. This approach, which relies on

software frameworks, compilers, and programmer's

decisions, is particularly useful in optimizing computational

efficiency. Real programs often contain redundant

computations due to factors like repetitive inputs, pattern

repetitions, repeated function calls, and poor programming

practices [178]. There are many works that achieve the

functions or tasks memoization either at compile-time or at

runtime. Although, Large Language Models (LLMs) train on

extensive datasets, they can potentially expose sensitive

information. Data preprocessing and differential privacy

techniques are designed to prevent data memorization and

face the challenge of reliance on data structure assumptions

that might lead to false privacy concerns.

Performance enhancement is a critical requirement in

high-performance and embedded computing applications,

often relying on the expertise of performance engineers to

optimize their efficiency by leveraging both manual work

and numerous analysis and optimization tools. Pedro et al.

[177] introduced a methodology that automates code

analysis and memoization to simplify the application of

memoization. It aims to assist developers without

optimization expertise and provide customizable analysis for

performance engineers. This approach caches the results of

computations for efficiency and is tailored for both novice

developers and expert performance engineers. Also, Arjun S.

[179] introduced a compile-time technique for function

memoization, extended its scope to user-defined functions,

and enabled transparent application to dynamically linked

functions.

High-performance and energy-efficient memoization

approaches face drawbacks like high runtime overheads and

limited applicability, while conventional hardware

techniques use specialized caches that consume excessive

area and energy. Guowei [180] introduced MCACHE, a

hardware technique that utilizes data caches for memoization

while sharing cache memory with regular program data. This

method boosts performance by 21x and outperforms

software memoization by 2.2x in runtime efficiency. The

need to improve computing efficiency by reducing function

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

19 VOLUME XX, 2017

call overhead through approximate function memoization

[181]. Therefore, Priya A. et al. [182] introduced a software

approach to function memoization that bypasses the

execution of functions implemented using approximate

computing techniques. A decision-making rule utilizing the

Bloom filter and Cantor's pairing function is proposed to

determine whether to search the look-up table (LUT) or

perform the actual computation. Additionally, a simple

approximation technique is proposed to search in the LUT to

find an approximate one. Evaluation conducted using

benchmarks from the AxBench suite demonstrates the

effectiveness of the proposed technique. To memoize a block

of code, Liu [183] proposed a hardware-compiler Codesign

framework, AxMemo. The goal of AxMemo is to memoize

code blocks with many inputs. In other words, AxMemo tries

to replace long instruction sequences with a few hash and

lookup operations. Brumar et al. [178] introduced

Approximate Task Memoization (ATM), a novel approach

to memoizing functions or tasks at runtime. Memoization of

previously executed tasks enables predictions of future

results without actual execution, preserving accuracy. The

runtime system also incorporates task similarity

measurement and correctness assessment to automatically

determine the feasibility of task approximation. The method

results in a 1.4x speed increase with memoization alone and

a 2.5x boost when adding task approximation, with a

negligible average accuracy drop of 0.7% (up to 3.2%).

Contrary to the aforementioned techniques, researchers

from Microsoft, in collaboration with researchers from the

Weizmann Institute [184], introduced a new training

procedure for ReLU networks that utilizes complex

recombination of neurons to achieve approximate

memorization. This approach aims to address the

shortcomings of previous constructions and achieve efficient

memorization with an almost ideal number of neurons and

weight magnitudes.

In relation to Large Language Models (LLMs), LLMs

train on massive amounts of text, including sensitive

information. LLM can potentially expose this sensitive

information, including personal information. Previous

research concentrated on literally preventing data

memorization using data preprocessing and differential

privacy techniques. This process faces the challenge of

reliance on data structure assumptions that might lead to

false privacy concerns and impact the model's overall

quality. Current research treats this issue of approximate

memorization in LLMs by using Reinforcement Learning.

For example, Kassem [185] proposed a novel framework that

employs a reinforcement learning approach, specifically

Proximal Policy Optimization (PPO). This framework uses a

negative similarity score, such as BERTScore or

SacreBLEU, to measure how close the LLM's output is to the

memorized data. If it's too similar, that's a negative reward.

8) ARCHITECTURE SEARCH

This technique is a process in machine learning where a

computer algorithm searches for the optimal architecture, or

configuration, of a neural network (NAS) for a specific task

[186]. There are several approaches to architecture search,

including reinforcement learning, evolutionary algorithms,

and Bayesian optimization. These methods can be used to

explore the vast space of possible network architectures and

identify those that are most likely to perform well on a given

task.

9) KNOWLEDGE DISTILLATION

Knowledge distillation is an approach using machine

learning to transfer knowledge from a large, sophisticated

teacher model to a simpler, faster, and smaller student model.

The student model mimics the teacher's behavior efficiently,

using limited resources. It makes this model adequate for

implementing on resource-constrained devices and using in

real-time applications. For example, in natural language

processing, a large language model can be distilled into a

smaller and faster model that can be deployed on mobile

devices [187], [188]. The soft targets produced by the teacher

model can be seen as a compressed representation of the

knowledge learned by the teacher model, and by

incorporating them into the student model training process,

the student model can effectively learn from the teacher's

knowledge. Knowledge distillation has been applied to a

variety of tasks and has been shown to be effective in

minimizing the scale and computational intricacy of deep

neural networks without compromising their effectiveness

[189], [190], [191], [192], [193], [194], [195], [196]. For

example, Hongxu et al. [197] proposed a new method called

DeepInversion. This technique reverses a trained network to

create class-specific images from random noise, refining the

input and using batch normalization data for regularization.

Adaptive DeepInversion enhances image variety by

leveraging differences between teacher and student network

outputs. The method has been applied to network pruning,

knowledge transfer, and continual learning without needing

original data. Existing knowledge distillation techniques

used to train student networks typically rely on task-specific

data. However, the availability of such data may be limited

due to privacy or confidentiality considerations. Several

techniques involve generating training samples from the

teacher network. Nevertheless, the generated images often

exhibit discrepancies when compared to authentic ones,

thereby imposing limitations on the performance of the

student network. Therefore, Tang et al. [190] proposed an

approach for building training datasets based on proposed

web crawling (ICCD). They proposed a pseudo-

classification strategy and frequency-domain supervision

(PCFS) to enhance performance by reducing the divergence

between the generated ICCD and target dataset. The findings

show the proposed PCFS surpasses the existing data-free

methods. The code is available online.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

20 VOLUME XX, 2017

B. APPROXIMATE PARALLELISM AND RELAXED
SYNCHRONIZATION

The relaxed synchronization technique removes

synchronization points that represent one of the major

bottlenecks in parallel applications, as synchronization

points can cause threads or processes to spend a lot of time

waiting [198]. The efficient execution of concurrent

applications on multicore systems necessitates the

implementation of synchronization mechanisms that

consume significant amounts of time, either to enable access

to shared data or to fulfill data dependencies. In general,

developers often use synchronization to prevent undesirable

interactions like data races when multiple parallel threads

access shared data. However, there are several drawbacks

associated with standard synchronization mechanisms:

synchronization overhead (time and space costs), parallelism

reduction (threads waiting), and failure propagation

(unperformed synchronization operations can cause threads

to hang indefinitely). Every synchronization point, acting as

a serialization point, can potentially impede parallel

scalability [199]. Therefore, researchers are indeed exploring

the concepts of relaxed synchronization and approximate

parallelism to mitigate these issues with trading minor

computational errors for enhanced performance and

efficiency. The synchronization error has higher

performance compared with mixed precision but produces

more errors. In particular, synchronization errors introduce

non-deterministic errors that are complex to handle. Loading

data into local memory requires a synchronization point to

ensure that all threads in a block have the same view of the

local memory. To decrease the time lost during

synchronization, SYprox was proposed by [200], which

provides a synchronization elimination mechanism that

defines a way to handle the number of synchronization

points. Lee et al. [201] introduced a novel algorithm for

solving large-scale quadratic programming problems in

parallel computing systems. They proposed “lazy

synchronization,” which reduces the synchronization rate

while improving processor utilization and convergence

speed. Tested on Amazon's 40-node distributed system, the

algorithm achieved speedup by 160x and reduced

communication overhead by 99.65% using the relaxed

synchronization technique compared to conventional

methods. To convert inherently sequential code to parallel

approximations, Greg S. et al. [202] introduced an automatic

parallelizing approximation-discovery framework,

PANDORA, based on symbolic regression machine

learning. The findings show the code accelerated by 2.3x to

81x with maintaining acceptable accuracy. The framework's

capabilities are further demonstrated through FPGA

experiments and by eliminating loops from the code. The

authors defined some limitations of PANDORA framework

and suggested some solutions. For example, PANDORA

faces difficulty handling complex problems due to its

reliance on symbolic regression, and consumes a lot of time

for discovering approximations, etc.

The majority of these works were noticed by Luis [203],

who applied the aggregate elimination of all synchronization

points without accounting for output quality variations due

to varying input data. Therefore, Luis [203] proposed a novel

strategy by using supervised learning methods to relax

synchronization in parallel applications that allow trade-offs

between quality and execution time. Also, the authors

proposed the relax factors to be applied to the input,

application, and execution environments together. The

results show this proposed technique enhanced the K-means

algorithm by a gain factor of 3.5x for video processing while

maintaining an acceptable quality rate.

Overall, applications like image processing and neural

networks can tolerate some errors, offering potential for

significant improvements in execution time and energy use.

Key software approximation techniques include mixed

precision, which uses lower precision data representation;

perforation, which skips instruction blocks, loop iterations,

or data assuming nearby values are similar; and relaxed

synchronization, which removes synchronization points, a

major bottleneck in parallel applications. These approaches

vary in performance and error. Typically, perforation and

synchronization elimination offer higher performance but

produce more errors than mixed precision. Synchronization

elimination also introduces complex, non-deterministic

errors.

C. PROGRAMMING FRAMEWORKS AND TOOLS
1) PROGRAMMING FRAMEWORKS FOR AXC

Approximate programming frameworks are considered

tools and mechanisms that help developers integrate

approximations into their programs in a controlled way to

manage the trade-off between accuracy and resource usage.

Approximate programming languages are particularly

advantageous in scenarios where computational efficiency is

of paramount importance and minor inaccuracies in the final

output do not significantly impact the overall result. Such

scenarios are commonplace in domains such as machine

learning, signal processing, and big data analytics, where

computations can be computationally intensive.

Programming languages with approximate features offer

novel constructs and abstractions that empower developers

to clearly define specific portions of a program where

approximations are deemed acceptable. The compiler and

runtime system utilize these specifications to enhance the

program's performance, energy efficiency, or other

measurable factors, while also guaranteeing that the ultimate

outcome falls within acceptable margins of error.

Approximation-enabled compilers provide a powerful means

of exploiting the error resilience of applications. By

automatically introducing approximations, they can

significantly improve performance and energy efficiency

without requiring extensive manual intervention. However,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

21 VOLUME XX, 2017

they also face several challenges. One key challenge is

ensuring that the approximations do not significantly

degrade the quality of the program's output. This requires

careful analysis of the program's behavior and the impact of

different approximation techniques. Another challenge is

managing the trade-off between accuracy and performance,

which can require sophisticated heuristics and tuning

mechanisms. For example, ACCEPT compiler was

developed by Bornholt et al. [204], which uses a combination

of static and dynamic program analysis to automatically

determine the approximable regions of a program. It then

applies a variety of approximation techniques to these

regions, such as loop perforation and task skipping.

Approximate programming languages can be classified

based on their approach to approximation:

a) Language Extensions

These are conventional programming languages

augmented with new syntax and semantics to support

approximation [205]. Examples of this category include

EnerJ, Rely [206], and Chisel. EnerJ [207] is a Java

extension with a design applicable to languages where

data types are explicitly declared by programmers.

FlexJava [208] streamlines approximate programming by

automating annotations, making energy-efficient coding

simpler and safer. FlexJava matches EnerJ's energy

savings by reducing the number of annotations by 2x to

17x and annotation time by up to 12x in user studies.

Typically, the foundational elements of language

extensions manifest in three primary stages:

• Introduction of Data Types: Extensions such as EnerJ

in Java incorporate novel data types like approx int or

approx float, which, though less precise in

calculations, yield benefits in performance and energy

efficiency.

• Modification of Overloaded Operators: Arithmetic

operations such as addition, subtraction,

multiplication, and division may undergo alterations

for approximate data types, facilitating the

management of error propagation or enabling more

relaxed calculations.

• Implementation of Annotations: These serve as

directives for the compiler, delineating the contexts in

which approximations are viable and specifying the

acceptable threshold for errors, (e.g.,

@approx_tolerance (0.05) for a function).

Introducing language extensions for approximate

computing faces key challenges: rigorous error tracking to

control compounded inaccuracies, ensuring type safety to

avoid mixing data types, and overcoming user resistance by

offering clear benefits and easy integration to encourage

widespread adoption.

b) Probabilistic Programming Languages

These languages incorporate uncertainty directly into the

language and employ statistical methods to compute

approximate results. PPLs are designed to express

probabilistic models and perform inferences over them

[209]. They provide constructs to define random

variables, specify dependencies between variables, and

encode probabilistic algorithms. PPLs often incorporate

advanced inference techniques like Markov chain Monte

Carlo (MCMC) and variational inference. FACTORIE

[210], FlexJava [208], Venture [211], BiiP [212], Stan

[213], SlicStan [214], Gen [215], Hakaru10 [216],

HackPPL [217] Anglican [218], Infergo [219], Aloe

[220], PyMC3 (Python), and Pyro [221] are

representative examples of this category. In addition,

there are many studies [222], [223] developing

operational semantics as a basis for probabilistic

programming languages such as Anglican, Venture, and

Church. For example, Sandra et al. [224] introduced a

library for probabilistic programming in the functional

logic programming language Curry. Another example,

Gen is a probabilistic programming language embedded

in Julia, designed by Marco [215], which offers sufficient

expressiveness and performance for general-purpose use.

Gen automatically optimizes custom inference strategies

for specific probabilistic models using static analysis. The

findings indicate that Gen's prototype matches Stan's

speed [213], is only about 1.4 times slower than a custom

Julia sampler, and is roughly 7,500 times quicker than

Venture, another probabilistic language allowing custom

inference. FACTORIE [210] is a Scala toolkit for

probabilistic models, providing tools for building factor

graphs, parameter estimation, and inference, developed

by McCallum and his colleagues. FACTORIE offers

learning and optimization tools for classification and

prediction, plus NLP features like segmentation and

tokenization. UMass Amherst offers tutorials and

downloads for more information [225].

c) Stochastic Programming Languages

These languages incorporate randomness directly into

their computations. Statistical programming languages

focus on expressing statistical models and performing

data analysis. They provide a wide range of statistical

functions and libraries for tasks such as data

manipulation, regression analysis, hypothesis testing, and

visualization. While they may not explicitly deal with

uncertainty, they often support probability distributions

and statistical techniques for uncertainty estimation. They

are often used in simulations, optimization, and machine

learning [226]. Examples include AMPL, GAMS,

SimJulia, StochasticPrograms.jl and SimPy.

d) Bayesian programming languages

These languages combine probabilistic modeling with

Bayesian inference to generate a library of functional

programming languages for Bayesian modeling and

inference [227], [228]. Bayesian programming aims to

substitute traditional languages with a probabilistic

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

22 VOLUME XX, 2017

approach that accounts for uncertainty and

incompleteness. One popular example of a Bayesian

programming language is “JS” (Just Another Gibbs

Sampler), which is specifically designed for Bayesian

analysis of complex statistical models. JAGS provides a

high-level syntax for creating and manipulating

probabilistic graphical models and supports a wide range

of built-in probability distributions and statistical

functions. Stan [213] is a probabilistic language

optimized for Bayesian inference with Hamiltonian

Monte Carlo methods, automating model specification

and inference. Such languages are valuable in fields like

machine learning and data analysis, where probabilistic

reasoning is crucial. By providing a dedicated framework

for Bayesian modeling, these languages make it easier for

developers to build applications that incorporate

sophisticated probability [229].

2) APPROXIMATION COMPUTING FRAMEWORKS
a) Approximate computing frameworks

There are several frameworks and libraries that have been

developed to support software-level approximate

computing, such as TensorRT, TVM, and FlexFlow.

These frameworks provide tools and APIs for optimizing

and deploying approximate computations on different

hardware platforms, such as CPUs, GPUs, and FPGAs.

They can also support different levels of approximation

and error metrics and can be used to automate the process

of tuning and optimizing the approximate computation

[230], [231], [232], [233], [234]. The challenge of

optimizing applications requires intensive resources and

flexibility in precision. For example, ApproxTuner [235]

is an automatic framework to address this issue.

ApproxTuner optimizes tensor-based applications for

accuracy-awareness, requiring just broad quality goals. It

integrates approximations across algorithmic, software,

and hardware levels through a unique three-phase tuning

method encompassing development, installation, and

operation stages, ensuring adaptability across devices.

The framework introduces predictive approximation-

tuning for faster autotuning by estimating the accuracy

effects of approximations analytically. Tested on 10

CNNs and a CNN-image processing mix, it achieved up

to 2.7x speedup on GPUs and 1.9x on CPUs with minimal

accuracy loss. ApproxTuner's novel tuning method

outpaced traditional tuning, offering similar advantages

more efficiently. Liu et al. [236] introduced an adaptive

program graph that allows for customizable quality at the

user level, based on criteria set by developers.

Approxilyzer framework [237] used both static and

dynamic analysis methods to help find opportunities for

approximation in software applications at the binary

level. This makes sure that certain computations can be

approximated without losing accuracy.

The rising power needs of DNN accelerators have led

to the use of approximate multipliers in modern solutions.

However, the accuracy assessment of these approximate

DNNs presents a challenge due to the insufficiency of

approximate arithmetic support in existing DNN

frameworks. To mitigate this, Danopoulos et al. [238]

proposed AdaPT, a rapid emulation framework that

augments PyTorch, enabling it to support both

approximate inference and retraining aware of

approximation. AdaPT, designed for seamless

deployment, is compatible with a majority of DNNs.

AdaPT notably enhanced error recovery and reduced

inference time by up to 53.9x across different DNN

models and applications compared to conventional

approximations.

b) Application-aware Framework

This framework involves identifying the computations

that are critical to the functionality of the application and

ensuring that these computations are not approximated.

This involves analyzing the application and identifying

the critical computations that must be executed with high

accuracy to ensure the overall functionality of the

application [231], [239]. It is also called approximate-

aware design framework [240], [241]. ApproxHadoop is

a framework for implementing approximate computing in

big data applications. It provides a way to automatically

identify opportunities for approximation and selectively

apply them to reduce the computational cost of data

processing [50]. Hanif et al. [242] introduced a

framework to systematically analyze the error resilience

of deep CNN and identify parameters for applying

approximate computing techniques.

c) Dynamic Approximation Framework

This framework involves dynamically identifying the

computations that can be approximated based on the input

data and the current state of the application. This involves

monitoring the application and identifying the

computations that can be approximated based on the

current state of the application [243], [244], [245], [246].

For example, Wang et al. [247] introduced the Runtime

Machine Learning-based Identification Model (RMLIM)

to highlight noncritical segments within a software

program's data flow graph. Trained offline with a

designated dataset, RMLIM is subsequently applied at

runtime for individual inputs. This simplifies the

identification process and enhances its applicability to

real-time scenarios. Preliminary results indicate that

RMLIM retains comparable energy efficiency and

accuracy to prevailing runtime AC techniques. It notably

reduces the execution time by 40 to 61 percent.

Recently, Soni et al. [248] introduced “As-Is,” an

innovative Anytime Speculative Interruptible System,

designed to enhance the adoption of approximate

computing by addressing the lack of hardware support

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

23 VOLUME XX, 2017

and real-time accuracy guarantees. They proposed this

system to leverage approximate computing to deliver

early outputs that improve over time, ensuring eventual

full accuracy. It merges approximate and speculative

computing to repurpose existing architectures for

efficient approximation, offering a solution that adapts to

real-time needs and allows users to choose between

immediate results and waiting for complete accuracy.

d) Data/input-ware Approximate Framework

The framework aims to identify the data that can be

reasonably approximated without causing substantial

disruption to the system's output. This is achieved through

the introduction of intentional faults into the variables,

followed by an analysis of the resulting impact on the

output quality [249], [250].

The approximation-based programming approach is

well-suited for error-tolerant applications on constrained-

resource devices, as it allows for efficient computation

and storage of program data. This is especially important

for devices like smartphones and tablets, where battery

life is crucial. However, implementing this paradigm

requires source code annotations and type qualifiers,

which can be problematic for large, real-world

applications with limited access to source code. Pooja et

al. [250] and Bernard et al. [249] present an innovative

sensitivity analysis framework which facilitates the

generation of annotations for programs designed for

approximate computing. The framework facilitates the

extraction of information pertaining to the sensitivity of

output, enabling the identification of a crucial subset of

data that requires precise computation and storage, while

the remaining data can be approximated.

e) Profiling framework for approximate computing

It is a tool designed to analyze and measure the

performance and accuracy of algorithms that use

approximation techniques. These algorithms are often

used in modern applications that require rapid processing

of large data sets. This tool trades off result accuracy with

faster execution or less memory use. The profiling

framework, such as AXPROF [251], provides developers

with the necessary support to implement these algorithms

effectively and automatically. Based on the desired

accuracy specified by developers, this framework begins

to generate code for statistical analysis and models for

analyzing accuracy, memory use, and timing. For

verification and assessment, this framework conducts

suitable statistical tests for implementation to be sure the

implementation meets the specification. This type of

framework is crucial in identifying bugs and performance

optimizations in the implementation of approximate

algorithms. AXPROF profiled 15 applications across data

analytics, numerical linear algebra, and approximate

computing, effectively detecting bugs and providing

various performance optimizations. The tutorials and

examples for this framework are available online.

VII. Architectural-Level Approximate Computing
Techniques

A. APPROXIMATE MEMORY TECHNIQUES

The constant communication between processors and off-

chip memory causes memory subsystems to be the largest

consumers of time and energy in modern computer

architectures, from servers to mobile devices. The escalating

disparity in speed between the CPU and the external

memory, known as the “Memory Wall”. This problem is a

significant bottleneck in computer system performance. In

order to overcome the memory wall and narrow the gap

between processors and memories, designers have

experimented with a wide variety of circuit and architectural

advances, including 3D integration [252], bigger on-chip

caches, memory-level parallelism [253], [254], faster off-

chip interconnects [255], new memory hierarchies, near-

memory processing or in-memory computing [256], [257],

and more [258]. Figure 10 shows the classification of

computing systems based on where they process data [259].

They are still not satisfied with reducing memory energy

consumption for many developing algorithms, such as

machine learning, that pose increasing demands on the

memory chip. Consequently, there is a need for the

development of novel methodologies to enhance both energy

efficiency and performance.

A common trait among the majority of emerging

applications that heighten memory consumption involves the

ability to endure approximations within the foundational

computations or data. Despite this, these applications

continue to generate outputs that meet an acceptable level of

quality. Approximate computing is one of the techniques that

improves energy and performance by leveraging the inherent

resilience of many developing applications using techniques

on memories. A key element of this methodology is the

application of approximate memories. These are

intentionally designed memory circuits known to

demonstrate imperfect data retention, a characteristic that

may be attributed to either the inherent tendency of these

circuits to slowly lose data over time or to errors that

transpire during read/write operations [9], [19]. Typical

approximate techniques that have been proposed for

developing circuits for approximation memory include, for

example, voltage scaling in the case of SRAMs [260],

lowering the refresh rate below the nominal value in DRAMs

[261], and compressing or encoding the data [258], [262]. To

lay the groundwork for understanding these concepts, the

rest of this section will offer a brief overview of dynamic and

static random-access memories. These two essential types of

memory hold significant relevance in the field of

approximation memories.

Dynamic random-access memories (DRAMs) have long

been the cornerstone of memory storage in embedded

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

24 VOLUME XX, 2017

systems. Due to its high-capacity, durability, and

affordability, DRAM remains the major choice for primary

memory in numerous embedded systems. A DRAM is

organized into channels, modules, ranks, chips, banks,

subarrays, rows, and columns, as shown in Figure 11(a)

[263]. Manufactured in various capacities and featuring data

bus widths ranging from 4 to 16 pins, DRAM chips exhibit a

degree of diversity [264]. For the creation of a wider data

bus, numerous DRAM chips are typically amalgamated into

a single module, forming what is referred to as a rank. A

closer examination of each DRAM chip reveals a

composition of numerous banks. Each of these banks

contains a series of two-dimensional arrays, or subarrays,

composed of individual DRAM cells. DRAM operations can

concurrently retrieve data from multiple chips within the

same rank. The chips in DRAM direct requests towards a

specific bank, row, and column location [264]. There are four

commands to achieve the DRAM access operations: the read

(RD) command, the write (WD) command, the activation

(ACT) command, and the precharging (PRE) command. The

Activation (ACT) command opens a row, transferring its

contents to the row buffer for read (RD) or write operations.

This is followed by cell charging through the Precharging

(PRE) command. Figure 11(b) presents an illustration of the

instructions associated with DRAM, namely ACT, RD or

WR, and PRE. Moreover, it delineates the associated timing

parameters, namely the delay from row address to column

address (tRCD), the active time of the row (tRAS), and the

precharge time of the row (tRP) [264], [265], [266].

While traditional DRAMs have been instrumental in

memory storage, there has been a growing interest in

optimizing power consumption without significantly

compromising performance. This leads us to the concept of

Approximate Dynamic Random-Access Memories

(AxDRAMs). Approximate DRAMs refer to the subset of

DRAM systems in which power conservation methodologies

have been instituted at the expense of an increased bit-cell

error rate. These entities hold a critical position as

fundamental components within the broader domain of

approximation computing. By embracing a trade-off

between power efficiency and accuracy, approximate

DRAMs open new avenues for energy-conscious design in

embedded systems and beyond [267].

Memory occupies a disproportionate amount of real estate

on an on-chip computer's integrated circuit and system

layout. SRAM cell architecture is the most popular kind of

memory architecture due to its speed and reliability [256].

While the popularity of SRAM is well-established,

optimizing its performance is an ongoing challenge. Various

methodologies have been explored to enhance the efficiency

of SRAM cells, including supply voltage scaling. The

method of supply voltage scaling aims to reduce the power

consumption of SRAM cells. However, when a substantial

number of cells are in standby mode, this can increase the

leakage power across the entire semiconductor chip [257],

[268]. Nevertheless, a significant degradation in stability is

observed when the supply voltage decreases, which causes

an increase in the occurrence of read, write, and hold errors

[258], [262]. To minimize the occurrence of failures, we

need to design a circuit considering the necessary device

capabilities.

In sum, the pursuit of innovative techniques to design

approximate memories propels a new wave of research in

hardware optimization. and steps forward in developing

energy-saving memory technologies to trade off power

consumption and a tolerable error. For example, Enrico et al.

[269] applied the approximate computing (AxC) methods to

analyze hardware accelerator components for deep neural

networks, focusing on computation, communication, and

memory subsystems. It examines performance enhancement

FIGURE 10. Categorizes computing systems by where they process data: (a)-(c) earlier CPU-centric models move data to the core, (d) newer models
use near-memory processing, and (e) computation-in-memory (by using memories with built-in processing capabilities (e.g., phase change memory,
memristors)) [259].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

25 VOLUME XX, 2017

aspects, including approximate multipliers, link voltage

swing reduction, voltage over-scaling, and lossy

compression methods for internal SRAM memory. The

investigation aims to improve computing systems' efficiency

and effectiveness. Numerous methodologies and techniques

have been explored and developed in the scientific

community for the design and implementation of

approximate memories, reflecting the complexity and

multifaceted nature of this field of study. In the next

subsections, these approaches will be explained in detail, and

some of their key considerations as well as benefits will be

highlighted.

1) APPROXIMATE MEMORY BASED ON REFRESH
RATE

Periodic refreshes of DRAM are required, and these

procedures may use up to half of the memory's entire power

[261]. During the refresh mode, the memory cannot serve

any memory access, and this increases the memory access

latency, consequently reducing the throughput of total

memory. Increasing the refresh period beyond the typical 64

milliseconds utilized by the majority of DRAM-integrated

circuits (ICs) nowadays is an effective method for lowering

DRAM power consumption [261].

Flikker [12] pioneered one of the initial methods in the

domain of approximate memory, specifically targeting low-

power mobile DRAM. This approach begins by partitioning

an application into two distinct segments: critical and non-

critical, as shown in Figure 12. By employing a suboptimal

refresh rate, errors are intentionally injected into the non-

critical portion, thereby achieving refresh power savings.

Consequently, Flikker introduced a software technique that

facilitates two refresh controls, allowing for the segregation

of DRAM into accurate and approximate sections, a feature

particularly applicable to LPDDR DRAM.

A hardware-based method has been developed for

approximating DRAM for generating high and low refresh

rates for the most and least significant bits of the operand,

respectively [270]. This method allows for the partitioning

of DRAM pages into more than two parts, with the

possibility of suboptimal refresh rates. Raha et al. [261]

depended on different quality parameters for partitioning

DRAM pages. These parameters are: error characteristics,

frequency, critical data percentage, and location. In a specific

study conducted by [271], extensive tests were performed on

8 chips of GC-eDRAMs. The results show this approach can

save energy, reaching 55% and 75% with an acceptance error

rate of 10-3 and 10−2, respectively. The authors used refresh

rates ranging from 11 to 24 ms.

For a more in-depth look at how DRAM defects affect

error-tolerant applications, we recommend seeing the

proposed works in Table 3. The approach developed by Enerj

[207] allows developers to mark parts of an application that

may tolerate errors and be moved into near-primitive RAM

(SRAM) or direct-access memory (DRAM). This approach

is very important for approximate memories. The concept of

approximating non-critical data allows a loosening of

accuracy against energy efficiency for these types of

applications.

2) APPROXIMATE MEMORY BASED ON APPROXIMATE
LSB OR COMPRESSION

The second strategy emerges from investigating the

relationship between output quality and the bit error rate of

LSB [267], [272], or the degree of compressing data in not-

critical regions [258]. Using such techniques can reduce

energy consumption. The output quality is little impacted by

dropping the LSBs of a data word and setting them to a

constant value (i.e., 0). This method requires simple circuits.

You can power down or remove bit cells to save a lot of

FIGURE 11. Illustration the Dynamic Random-Access Memories (DRAMs) (a) structures organization, (b) Instructions of DRAM access operations
[263].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

26 VOLUME XX, 2017

energy [272]. Within memory system technologies, selective

ECC has been applied to SRAM and DRAM to reduce MSB

errors. Many methods are focused on enhancing the memory

word size in traditional ECC memory configurations. For

example, a technique has been proposed that extends a 32-

bit memory word to 36-bit, incorporating a 4-bit ECC [273].

Reducing the number of ‘1’bits in data can lower power use

in both DRAM and SRAM, as DRAM power is tied to ‘1’-

bit quantity and SRAM power to switch probability and

voltage squared [274]. Another approach to enhancing

memory efficiency involves the utilization of

encoding/decoding [274] or compressing/decompressing

techniques [258], [262], [275] for the data written to or read

from the memory. These methods can be applied to error-

tolerant applications such as machine learning and video and

image processing, where slight imprecision is acceptable, to

significantly improve memory usage and power

requirements. This represents a strategic alignment with

contemporary computational demands, offering a pathway to

more sustainable and responsive memory management.

Machine learning algorithms often don't fit IoT devices

like sensors due to their complexity, high memory, and

energy needs. The growth of the IoT has given rise to a new

subfield of machine learning known as “tiny machine

learning” (TinyML) (IoT). TinyML relieves these challenges

and makes the deployment of these algorithms on IoT

possible. For example, Raha et al. [276] introduced the

foundational concepts of an approximate TinyML system,

including input-adaptive approximations [277]. Among

these limitations are the technology scaling and memory

technologies, which are major challenges in the application

of deep learning systems in IoT devices. As technology

scales below 20 nm, DRAM cells have shorter retention

times, increasing their refresh power. This is especially

problematic in memory-intensive applications, where

DRAM's refresh power significantly impacts total system

power [278]. Innovative solutions are being explored to

address this challenge. For instance, a novel approach to

enhancing memory efficiency was introduced by Nguyen et

al. [278]. They developed a zero-cycle bit-masking (ZEM)

technique integrated with ECC within the controller,

specifically targeting the asymmetry of retention failures in

DRAM. By applying this method, they were able to

eliminate the need for DRAM refresh across various

applications. The approach was tested on Tiny DNN

architectures like AlexNet, DCGAN, and RNN using the

Gem5 simulator. The results were promising, with

performance improvements of 10.4%, 11.27%, and 17.31%,

and total energy reductions of 30.2%, 34.38%, and 43.03%

for LPDDR3, DDR4, and HBM, respectively.

3) APPROXIMATE MEMORY BASED ON VOLTAGE
SCALING

Another technique to lower energy usage at the expense of

decreased frequency is voltage scaling. In the power

management strategy known as dynamic voltage scaling, the

voltage that is applied to a component may either be raised

or lowered, depending on the conditions that are present. The

purpose of voltage scaling (reducing voltages) is to reduce

energy consumption. SRAM is more sensitive and begins

encountering mistakes at a lower operating voltage than

logic parts. As voltage is scaled down, SRAMs become more

susceptible to malfunction [99], [260]. For instance, a study

conducted by Denkinger et al. [260] focused on evaluating

the robustness of artificial intelligence (AI) methods,

specifically convolutional neural networks (CNNs), to

SRAM errors in edge devices. By operating at reduced

voltages and employing quantization, they explored ways to

enhance efficiency. Their findings revealed that quantization

emerged as the most effective strategy, yielding energy

savings as high as 61.3%. This was achieved with only a

minimal accuracy loss of 7.1%. Further efficiency was

FIGURE 12. Memory allocation scheme (a) represents the baseline DRAM module, (b) module with sorting Data allocated in pages based on
different refresh rates, (c) Flikker Approach [12], and (d) QCA-DRAM Approach [261].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

27 VOLUME XX, 2017

gained through voltage scaling, leading to an additional

reduction of up to 11.0%. However, these benefits were

accompanied by a total accuracy loss of 13.6%.

In IoT nodes, the 6T Static Random-Access Memory

(SRAM) cell, known for its compactness and minimal area,

is widely used for data processing, as referenced in [268].

However, this cell suffers from several inherent limitations

that need to be considered when using it. Inherent limitations

of this cell include reliability issues at low voltage

conditions, potential conflicts during read/write processes,

data can be disturbed during reads, high data retention

voltage, and half-select problems [279]. To address these

challenges, several design strategies at the cell and

architecture levels have been introduced. These strategies

focus on reducing power usage in write, read, and leakage

states, improving stable data retrieval and write efficiency,

and addressing half-select problems [268]. One approach to

enhancing the performance and stability of the 6T SRAM

cell is to increase the number of transistors within the cell.

This modification can lead to improved control and

functionality, although it may also impact the cell's

compactness [268], [279]. A novel approach to reducing read

and hold power in SRAM architecture was proposed by

Gupta et al. [29], utilizing a reconfigurable VDD scaling

technique (R-VDD). This method significantly minimizes

power consumption. To implement this R-VDD scaled

architecture, they employed a “data-dependent low-power

10T” SRAM cell (D2LP10T).

4) APPROXIMATE MEMORY BASED ON APPROXIMATE
READ/WRITE OPERATIONS

Emerging non-volatile memory based on memristor

technology is proposed as the solution for approximate

computing, which can balance performance and power

consumption. When used for compute acceleration,

approximation-augmented processing combines each

processor with a tiny amount of controllable associative

memory [280]. Emerging STT-MRAM (Spin Transfer

Torque Magnetic Random Access Memory) memories,

which offer higher density and lower static power

consumption compared to SRAM, face challenges of high

energy usage in read/write operations. QuARK [281] and

Cast [282] are hardware and software approaches introduced

for STT-MRAM caches. These approaches allow tradeoffs

in reliability for saving energy in the on-chip memory

hierarchy of multi-core systems operating approximate

applications.

5) MEMORY REDUCTION BASED ON APPROXIMATE
COMPUTING TECHNIQUES

AxC techniques for memory reduction are commonly

implemented at the design stage, often in conjunction with

specific memory handling methods [283]. While these

strategies may be tailored to particular applications [284],

they necessitate a comprehensive understanding of the data's

computation and handling. This requirement can be time-

consuming and often serves as a barrier to quick

implementation. For instance, memory reduction can be

achieved by reducing buffer sizes [284], memory reuse

methodologies [285], and/or pruning and quantization

approaches [286], [287], with the cost of sacrificing accuracy

or throughput. In the context of Approximate Buffer (AxB)

techniques, one innovative approach presented in [288]

focuses on the reduction of buffer size. This method involves

the concatenation of data into buffers using the fixed-point

format with a chosen bit-width, where all data within an AxB

adheres to the same format. The primary goal of this

technique is to minimize the memory footprint, achieving

reductions ranging from 27% to 68% in applications such as

the full SKA SDP signal processing computing pipeline and

wavelet transform. Remarkably, this reduction is

accomplished without substantial degradation in output

quality. However, it does come with the drawback of

requiring manual and labor-intensive Design Space

Exploration (DSE). To further simplify this process, an

application DSE for buffer-sizing was proposed by [289].

This additional approach aims to reduce the memory

footprint while ensuring that the output quality remains

above a specified threshold.

6) EMERGING MEMORY DESIGN TECHNOLOGIES
PROCESSING- IN-MEMORY (PIM)

PIM is a computing paradigm that enhances data processing

efficiency by integrating processing capabilities closer to

storage units. Traditional architectures store data in memory

and make CPUs to move it between components, leading to

time-consuming and performance bottlenecks. PIM

integrates processing elements directly into memory cells or

controllers, allowing data to be processed in place without

transferring it to a separate unit. This results in significant

speedup and energy efficiency improvements, particularly

for data-centric workloads. There are different approaches to

implementing PIM: Processing in DRAM (P-DRAM),

Processing in NAND Flash (P-NAND) [290], Processing in

3D Stacked Memory [291], [292], and Near-Memory

Computing/Processing (NMC/NMP). Instead of integrating

processing into the memory cells themselves, the last

approach (NMC) places specialized processing units near the

memory, reducing data movement overhead.

Processing-In-Memory (PIM) technology is widely used

in image and neural network processing which consist of two

main types: analog-based PIM and digital-based PIM. In

analog-based PIM, the arithmetic operations can be achieved

using resistance networks. In digital-based PIM, the

execution the additions and multiplications can be through

basic operations like NOR which needs multiple clock

cycles. The analog PIM is known for its high speed, but it

encounters accuracy problems and demands a significant

area footprint to accommodate the required analog-to-digital

converter (ADC) and digital-to-analog converter (DAC)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

28 VOLUME XX, 2017

interface modules [293]. Byun et al. [293] proposed the

analog processor-in-memory filter within a CNN setup,

which features a 16x4 SRAM, 16 DACs, and 4 ADCs, as

depicted in Figure 13. It includes a controller for SRAM,

DAC, and ADC timing optimization and power reduction,

alongside a main controller overseeing all operations. Inputs

flow from the AI controller to the DAC controller, utilizing

a charge sharing method. Power efficiency is achieved by

activating components only as required.

On the other hand, the digital-based PIM excels in

accuracy but experiences higher latency due to the multiple

clock cycles required for computations, particularly with

multiplications. Through the strategic utilization of the

intrinsic parallelism present within application algorithms,

the acceleration of the computational process can be

effectively achieved.

Memristor, also referred to as Resistive Random Access

Memory (ReRAM), is a well-known technology in

Processing-In-Memory (PIM) architectures due to its

capability of analog computing that speeds up matrix-vector

multiplications, which are essential for the systems.

Nonetheless, convolutional neural network training using a

high-precision backward propagation phase presents

difficulties on account of the poor resolution of these analog

PIM accelerators. Hai et al. [294] addressed this challenge

by introducing a novel hybrid PIM accelerator for CNN

training on ReRAM arrays. ReHy combines analog PIM

(APIM) for performance in the feedforward propagation

phase (FP) and digital PIM (DPIM) for accuracy in the

backpropagation phase (BP), offering a comprehensive

solution for CNN training. The study reveals that ReHy

markedly improves CNN training efficiency, outpacing

standard CPU/GPU architectures (baseline) and FloatPIM by

48.8 and 2.4 times, respectively, while also reducing energy

usage by 35.1 and 2.33 times compared to each.

This involves integrating processing capabilities into

memory storage to reduce the data movement between the

CPU and memory. In the fields of image processing and

computer vision, convolutional neural networks (CNNs)

have emerged as a prevalent tool. While Graphics Processing

Units (GPUs) are commonly employed to enhance the

acceleration of CNNs, this approach is constrained by the

substantial computational costs and memory demands

associated with the convolution process. This limitation has

led to a focus on approximate computing, a method explored

in numerous studies to mitigate computational expenses

[269]. The introduction of the Approximate Data

Comparison processing-in-memory (ADC-PIM) solution by

Choi et al. [291] marks a significant advancement in

addressing the performance bottleneck caused by increased

memory bandwidth intensity. Implemented in 3D-stacked

memory, ADC-PIM strategically compares data for

similarity before it is loaded onto the GPU, unlike

conventional post-loading methods. This approach results in

the transfer of only essential data to the GPU, reducing data

movement and computational requirements. The application

of ADC-PIM has led to a 43% boost in processing speed and

a 32% reduction in energy use, with minimal accuracy loss

below 1%.

The limitations inherent in processing-using-DRAM are

primarily characterized by its limited support for a limited

range of basic operations, including logic functions and

addition. Such constraints have impeded the complete

exploitation of the capabilities inherent in processing-using-

DRAM, thereby necessitating the investigation of strategies

to enable the execution of more complex and user-specified

operations. Addressing this challenge, Nastaran et al. [295]

proposed SIMDRAM, an extensive framework explicitly

crafted to empower processing-using-DRAM that supports

complex functions and efficiently handles sophisticated and

user-defined functions without hardware changes. They

evaluated its performance, showing its superiority over

traditional CPUs and GPUs in throughput and energy

efficiency, especially with 16 DRAM banks. SIMDRAM

performed well in real-world applications with minimal

overhead. This marks a significant advancement in

processing-using-DRAM technology.

Within the field of Processing-In-Memory (PIM) or In-

memory computing (IMC), the predominant focus of

research has been the optimization of energy efficiency,

specifically within a limited voltage range. This

concentration on a narrow voltage spectrum has

consequently restricted the applicability of IMC in scenarios

characterized by dynamic workloads, where optimization

across a wide dynamic voltage range (WDVR) is

necessitated. In response to this limitation, a recent

innovation has been introduced by Hongtu et al. [296]. They

have implemented a novel IMC-based Binary Neural

Network (BNN) accelerator. This innovative development

addressed a previously unmet need within the IMC domain

by supporting energy-efficient operations over a broad

voltage range.

FIGURE 13. the architecture of the Convolutional Neural Network (CNN)
implemented within an Analog Processor-In-Memory framework [293].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

29 VOLUME XX, 2017

Processing-in-memory (PIM) represents a paradigm shift

in computing architecture that takes advantage of the

distinctive physical characteristics of emerging memory

systems to boost data processing. These systems include

resistive random-access memory (ReRAM), spin-transfer

torque magneto-resistive random-access memory (STT-

MRAM), and phase-change memory (PCM) [297]. The

principal merits of PIM lie in its ability to minimize data

movement and reduce latency. The inherent characteristics

of Processing-In-Memory (PIM) architectures significantly

enhance performance and energy efficiency, especially in

tasks that are data-intensive. However, the adoption of PIM

is not devoid of challenges. These challenges include

heightened design complexity, the imperative of efficient

thermal management, and the need to maintain data integrity.

Ongoing research in the development of advanced PIM

circuits and systems remains a key area of focus, with

potential for continued innovation in the domain.

7) APPROXIMATE CONTENT-ADDRESSABLE
MEMORIES

In the field of Content-Addressable Memory (CAM), this

memory system is notable for enabling data retrieval by

content instead of location, enhancing parallel search

capabilities essential for high-speed, memory-intensive

systems. CAM's adaptability is evident in its application

across network routing, digital signal processing, and

microprocessor design. Recent advancements in CAM

design have focused on improving efficiency in comparison-

driven tasks. However, challenges remain in creating CAM

systems that are cost-effective, energy-efficient, and capable

of similarity searches. The use of approximate CAM is

limited by factors like similarity, accuracy, speed,

complexity, and cost. The exploration of Approximate

Content-Addressable Memory (CAM) in computer memory

systems reveals significant benefits and drawbacks. Its rapid

associative searching capabilities are advantageous for

applications like network routing and data retrieval.

However, CAM faces challenges including high costs,

power consumption, limited scalability, and issues with data

integrity. Additionally, its read and write speeds may not

align with conventional RAM, its design complexity

demands careful implementation, and its static nature

complicates data updates, potentially leading to higher

latency during certain write operations [298]. Despite its

limitations, CAM is valuable for rapid associative searches,

but a thorough analysis of its trade-offs is crucial for its

effective integration in computing systems. Yinjin et al.

[299] introduced CARAM, a novel hybrid PCM and DRAM

primary memory system, to address Phase-Change

Memory's (PCM) limitations like slow memory write speed

and limited robustness, despite its high read throughput and

low standby power. CARAM, addressing the challenges of

limited primary memory capacity in modern DRAM-PCM

combinations, improves memory efficiency through

deduplication, line sharing, and optimized memory use. It

reduces write traffic and duplicate line writes, thereby

enhancing PCM wear-leveling and expanding memory

capacity. CARAM also maintains high data access

performance, which is essential for memory system

optimization. Experimental results demonstrate CARAM's

effectiveness, showing a 15%–42% reduction in memory

usage, a 13%–116% increase in I/O bandwidth, and 31%–

38% energy savings compared to existing hybrid systems. In

conclusion, CARAM marks notable progress in memory

technology, addressing PCM challenges effectively through

its innovative design and deduplication strategy, making it a

promising area for future exploration.

In contemporary computational systems, Hardware

Search Engines (HSEs) represent a paradigm shift from

traditional software search algorithms, offering enhanced

location access and data association capabilities. Hardware

Search Engines (HSEs), particularly Content Addressable

Memory (CAM), mark a significant advancement in

computational systems, offering improved data retrieval and

association. However, CAM's high energy use, especially in

cells and matchlines during searches, poses a challenge,

notably in the energy-efficient multi-port CAM used in

modern superscalar processors [300]. To overcome this,

research has focused on low-energy alternatives like

precharge-free CAM, which balances speed and power

efficiency in associative memory [300]. Additionally,

innovations include high-speed, energy-efficient single-port

CAM designed for dual-port functionality, improving search

performance, and addressing multi-port CAM limitations

[301].

8) FRAMEWORKS AND SIMULATORS FOR
APPROXIMATE MEMORY

An important role for approximate memory may be found in

error tolerant applications, where sacrificing perfect

accuracy in data processing in favor of saving energy is

acceptable. It is possible to introduce probabilistic errors into

read/write access in approximate memory. In most cases,

energy-saving circuitry or architectural changes (such as

reduced refresh rates or reduced voltages) are at blame for

these malfunctions. Since the degree of error that may be

accepted varies from application to application, the capacity

to simulate these systems is crucial [273], [302]. Through

simulation, one may examine an application's behavior and

test its robustness against real-world error rates, thereby

identifying the optimal trade-off between reduced energy use

and improved product quality. Menichelli et al. [273], Stazi

et al. [302], and Yayla et al. [303] proposed emulators to

reveal the effects of errors introduced by approximate

memory circuits and architectures on the hardware platform

and software. Yarmand et al. [304] introduced a

methodology for identifying suitable approximation degrees

for approximable memories within a memory hierarchy for

executing error-tolerant applications.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

30 VOLUME XX, 2017

B. VOLTAGE-FREQUENCY-POWER MANAGEMENT
TECHNIQUES

One of the main trade-offs in system-level approximate

computing is between the accuracy of the computation and

its performance (i.e., speed and energy consumption). In

general, increasing the level of approximation can lead to

faster and more energy-efficient computation, but it can also

reduce the accuracy of the results. Reducing processing

complexity in real-time systems provides for more idle

(slack) time. The slack time, as shown in Figure 14, is the

period between the task's end and its deadline. Exploiting

time slack refers to utilizing periods of idle time or low

activity in a system to reduce power consumption without

compromising performance [307]. Voltage-Frequency-

Power Management Techniques are strategies used in

electronic systems, particularly in processors, to optimize

TABLE 3. Comparative Analysis of Various Approximate Memory Implementation Strategies

Ref/Year Platform Design Approach Application Improvement Quality loss

[281]/2017 Gem5+

STT-MRAM cache+

Multicore

Different levels of

reliability for different

cache +Approximate

Read/write operation

recognition, mining

and synthesis (RMS)

benchmarks

40% write energy saving Acceptable

[261]/2017 Altera Stratix IV GX FPGA-

based Terasic TR4-230 with

1GB DDR3 DRAM

+ µC/OS-II

Refresh rate reduction 5 machine learning

and 3 image

processing

algorithms

73% reduction in

DRAM refresh power

Lossless-7%

[282]/2019 Gem5+ STT-MRAM cache+

Multicore

Different levels of

reliability for different

cache + full-

Approximate write

operation

Image processing+

Network+

Security+

Financial analysis

energy savings full-

approximate, 57%+

mixed-criticality, 34%+

full-accurate

applications 21%

Acceptable

[258]/2020 Stratix-IV FPGA

+ Intel UniPHY-DDR3

memory controller

+ NIOS-II processor

+ Hynix DDR3 DRAM or

LPDDR3 DRAM or

STT-MRAM

Approximate memory

Compression

8 machine learning

benchmarks

applications

Energy reduction

1.18x DDR3 DRAM

1.52x LPDDR3 DRAM

2.0x STT-MRAM

Execution time

reduction

5.2% DDR3 DRAM

5.4% LPDDR3 DRAM

9.3% STT-MRAM

0.3%

[270]/2020 PC-Linux

Virtex 7 VC707FPGA

DDR3-D RAM

Bit Truncation

+ Refresh rate reduction

Deep learning-

AlexNet, VGGNet,

GoogLeNet

Refresh Energy saving

69.1%+

Total energy saving 26%

negligible

[275]/2021 Xilinx Zynq

XC7Z045FFG900-2

+TSMC 28nm

DCT +Quantization +

Sparse matrix

compression

CNNs 403GOPS peak

throughput and

+1.4x~3.3x interlayer

feature map reduction

+2.16 TOPS/W energy

efficiency

0.18%-0.45%

[305]/2022 Xilinx Artix 7 (XC7A35T-1C)

Python API

Different levels of

reliability for different

cache + full-

Approximate write

operation

JPEG encoding +

KNN

write energy saving

~47.5%

<5%

[264]/2022 decrease the DRAM

supply voltage+

quantized weights to

reduce the DRAM

access energy

Spiking Neural

Networks (SNNs)

84.9% of DRAM energy

saving +

4.1x speed-up of DRAM

data t

BER ≤ 10−3

[274]/2023 Simulation

DRAM and SRAM

encodes the image to

effectively reduce the

number of bit-‘1’ in the

original pixel data

Discrete Cosine

Transform (DCT)

+quantization

+inverse

quantization and

inverse DCT (IDCT)

39.8% power reduction

for DRAM

25.9% write power

reduction for SRAM

average 3.36 dB

losses in (PSNR)

[306]/2023 Xilinx ZC702 FPGA Model compression

through data

quantization on

convolutions

Lightweight and

Energy-Efficient

Deep Learning

1.25× and 4.27× smaller

logic and BRAM size,

respectively

10.37× reduction in

power consumption at

100MHz

93.1% accuracy

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

31 VOLUME XX, 2017

power consumption and performance. These techniques

dynamically adjust the operating voltage and frequency of a

system based on the workload, power budget, and thermal

conditions. There are some approaches that can be used to

exploit time slack and reduce power consumption: Dynamic

Voltage and Frequency Scaling (DVFS), Thermal Design

Power Management (TDP), Dynamic Memory Management

(DMM), Dynamic Power Management (DPM), Task

Migration, Adaptive Voltage Scaling (AVS), Frequency

Scaling, Voltage Scaling, Clock Gating, Power Gating,

Energy-Efficient Scheduling, Near-Threshold Voltage

(NTV) Operation, Sub-Threshold Operation, etc. These

techniques are energy-efficient approaches at the

architecture or system level and have been widely adopted in

the Internet of Things (IoT). We will discuss shortly some of

these techniques:

1) DYNAMIC VOLTAGE AND FREQUENCY SCALING
(DVFS)

DVFS is a technique where the processor's voltage and

frequency are dynamically altered based on the according to

the workload. When the workload is low, the voltage and

frequency can be scaled down to reduce the power

consumption [308]. This technology is most effective in

dynamic power environments and is widely supported by

chip manufacturers, often referred to as “turbo mode” in

some contexts.

2) VOLTAGE OVERSCALING (VOS)
VOS is a method that reduces the supplied voltage of circuits

to improve energy efficiency. This can lead to increasing the

computation errors or failures due to insufficient voltage

provided to the transistors to switch states robustly. To

balance the energy gains with reliability, systems might need

error management strategies. VOS is especially useful in

energy-sensitive devices like battery-operated gadgets or IoT

sensors, where longer battery life is crucial.

3) DYNAMIC POWER MANAGEMENT (DPM)

DPM is a technique that involves dynamically adjusting the

power consumption of a system based on the workload. This

can be done by selectively turning off or reducing the power

to different components of the system [309]. In idle time, the

system enters a deep sleep state. During this state, the total

energy can be dramatically reduced using power-gating and

clock-gating.

4) DYNAMIC MEMORY MANAGEMENT (DMM)

DMM is a technique used to optimize the memory usage by

dynamically allocating and deallocating memory of a system

based on the workload. For example, a portion of the

memory can be turned off when it is not being used to save

power [310]. This technique is particularly useful in systems

with varying memory requirements and limited memory

resources, such as embedded systems and mobile devices.

5) DYNAMIC THERMAL MANAGEMENT (DTM)

DTM are technique used to manage the heat generation of a

system [311]. They monitor the temperature of the system

and dynamically adjust the voltage, frequency, or workload

distribution to prevent overheating. This can include

techniques like thermal throttling, where the system reduces

its performance to decrease heat generation when it detects

that it's getting too hot.

6) ADAPTIVE CLOCKING

This technique involves adjusting the clock frequency of a

processor based on the workload [312]. For example, the

clock frequency can be reduced during periods of low

activity to save power [313]. Li et al. [312] introduced a rapid

and power-saving SNN processor that supports online

learning. The researchers used various techniques, such as

adaptive clocking and event-driven to reduce the power

consumption and accelerate computation.

7) NEAR-THRESHOLD VOLTAGE (NTV)

This technique offers significant energy efficiency

improvements by operating processors close to the threshold

voltage of the CMOS transistors [314]. While this approach

reduces energy consumption, it also presents challenges such

as increased latency and sensitivity to transistor variability.

Techniques like massive parallelism and temporary voltage

boosts are proposed to mitigate these issues, and advanced

semiconductor technologies like finFETs help reduce

variability concerns. Operating near this threshold minimizes

energy consumption while still maintaining a higher degree

of reliability and lower error rates compared to VOS. NTV

strikes a balance between energy efficiency and

computational reliability. NTV computing requires careful

design and technological choices to fully harness its energy-

saving potential. NTV is particularly suited for IoT

applications, such as wireless audio hearables, which require

FIGURE 14. Optimization of slack intervals for energy efficiency in real-
time system operations [307]. (a) Preliminary computation, (b) DPM
technique, (c) DVFS technique

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

32 VOLUME XX, 2017

continuous operation but are not necessarily at full

performance all the time [314].

8) TASK MIGRATION

Task migration involves moving tasks from high-power

devices to low-power devices when the high-power device is

not being fully utilized. For example, tasks that are not

compute-intensive can be moved from a CPU to a low-power

GPU [315].

By utilizing these approaches, systems can reduce power

consumption during periods of idle time or low activity

without impacting performance. Agostino et al. [316]

provided an encouraged information about energy-effect

computing in hardware and software.

C. APPROXIMATE PROCESSORS

As computing tasks become increasingly complex, there's a

rising demand for new paradigms like approximate

computing that enhance efficiency. However, the majority of

existing hardware-based approximation solutions have been

tailored to specific applications or limited to smaller

computing units, necessitating significant engineering work

for full system integration [317]. Approximate processors

and accelerators are integrated approximate computing units

consisting of the co-design of hardware and software. They

were designed to enhance computational efficiency by

allowing for controlled inaccuracies, which are particularly

useful in error tolerance applications.

Research interest is growing in ARM processors, which,

due to their low-power architecture and supporting by

various tools., are prevalent in mobile devices. Furthermore,

there are available open-source instruction set architectures

(ISA) for processors, which are represented by open, royalty-

free RISC-V architectures, supported by major tech firms

[317], [318]. Aponte-Moreno et al. [318] proposed a fault

tolerance approach to reduce the execution time by using

approximate computing at the software level. The

researchers used the ARM and RISC-V microprocessor

architectures for testing the proposed approach. In another

work, Baroughi and his colleagues [317] introduced AxE, the

first general-purpose, heterogeneous RISC-V MPSoC

platform that combines exact and approximate cores. This

multiprocessor was supported by the capability of hardware

approximation exploration across various applications

through software instructions. The proposed task mapping

method tested on AxE achieved a 32% speed-up and 21%

energy savings while maintaining 99.3% accuracy across

three mixed workloads. However, MPSoC architectures are

becoming increasingly popular for demanding workloads in

low-power devices like wearables and IoT sensors due to

their high performance and exceptional QoS. Therefore, Ali

et al. [309] introduced a comprehensive review of MPSoC

architectures and explored that scheduling approaches and

voltage-frequency-power management techniques are the

most commonly used to reduce power consumption in

MPSoC.

The growth of IoT has led to an increase in demand for

low-cost, resource-constrained devices that have the

capability of power budgets. To increase these capabilities,

we need to plan new approaches, like approximate

computing techniques, to build a new generation of low-

power IOT devices. Therefore, Taştan et al. [319] proposed

an approximate IoT processor using the RISC-V ISA, which

was designed specifically for machine learning tasks like

classification and clustering. The proposed processor

achieves up to 23% power savings in ASIC implementations,

maintaining over 90% top-1 accuracy on trained models and

test datasets. The integration of IoT in smart cities has

necessitated advanced solutions for processing mixed

workloads, combining real-time data with historical records

for enhanced analytics. Jawarneh et al. [320] introduced

SpatialSSJP, an adaptive system that efficiently manages

stream-static joins, optimizing for Quality of Service (QoS)

and geo-statistical accuracy. SpatialSSJP was implemented

on Spark Structured Streaming and tested on large datasets.

Consequently, SpatialSSJP showed significant performance

improvements over existing methods and achieved high

accuracy levels, with notable gains in optimal scenarios.
Deep learning tasks require optimized memory bandwidth

due to their intense resource and memory requirements. The

requirements make them suitable for parallel computing

architectures like TPUs, which feature deeply pipelined

networks of processing elements for efficient dataflow and

high performance [17], [321]. Google's Tensor Processing

Units (TPUs) are specialized ASICs that accelerate machine

learning by using less precise formats like bfloat16 instead

of 32 bits floating-point format significantly cutting

computation time and memory use while preserving

accuracy for many tasks [17]. TPUs were used to implement

the NN applications (MLPs, CNNs, and LSTMs) in

datacenters. Elbtity et al. [321] proposed an approximate

tensor processing unit (APTPU) consisting of two key

components: approximate processing elements (APEs) with

low-precision multipliers and approximate adders, and pre-

approximate units (PAUs) that pre-process operands for the

APEs within the APTPU's systolic array. However, Systolic

array DNN accelerators are known for their cost efficiency

but struggle with high energy use, limiting their use in low-

power devices. Approximate computing offers a solution at

the expense of slight accuracy losses, which could, however,

make DNNs more prone to disturbances like permanent

faults, already a concern in accurate DNNs especially in

critical applications like autonomous driving where

reliability is paramount. Ensuring the reliability of DNN

hardware often requires extensive fault injection testing

[322], [323]. Siddique et al. [322] and Ahmadilivani et al.

[323] addressed the challenge of exploring approximation

and fault resiliency of DNN accelerators. Siddique et al.

[322] conducted a detailed analysis of fault resilience and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

33 VOLUME XX, 2017

energy consumption in various AxDNNs on a layer and bit

level, using the Evoapprox8b signed multipliers. Their

findings reveal that a single permanent fault in AxDNNs

could result in as much as a 66% drop in accuracy, while the

same fault might cause just a 9% accuracy reduction in a

conventional DNN accelerator. At similar work,

Ahmadilivani et al. [323] focused on enhancing DNN

accelerators' fault resilience and approximation, using AxC

arithmetic circuits for error emulation and a GPU-based

framework for swift evaluation. It also delves into analyzing

fault propagation and masking in networks.

TPUs enhance deep learning efficiency through optimized

dataflow and low-precision support, but at the cost of

potential accuracy drops and fault vulnerability.

Advancements in approximate computing show promise in

mitigating these issues, crucial for applications demanding

high performance and reliability.

There are many interesting approximate processors and

accelerators that have gained importance in different

applications, such as energy-efficient IoT devices, real-time

video processing, and machine learning inference tasks,

where trade-offs between precision and performance can

yield significant benefits. Some of these processors and

accelerator will be mentioned in applications section.

VIII. Circuit-Level Approximations

The concept of approximating logical functionality is

sufficiently generic that it is applicable to both software

[150] and hardware [15]. When multiplication and division

based on logarithms, were first being developed, the early

1960s marked the beginning of the acceptance of

approximation computing [324]. The considerable research

interest in designing approximate circuits has been propelled

by the substantial potential for power consumption

reduction. Approximate computing focuses primarily on

arithmetic units, e.g., adders and multipliers, at the level of

custom hardware, as these constitute the fundamental

components of numerous error-tolerant applications and all

computations. The current research in VLSI design focuses

heavily on real-time DSP and machine learning for

applications like surveillance and wearable technology.

These areas need quick, accurate data analysis for pattern

recognition. IoT and edge processing emphasize immediate,

local processing over cloud computing due to latency and

connectivity issues. However, local processing requires

solutions that are low-power, accurate, fast, and cost-

effective. Many algorithms in this field use basic functions

like trigonometric and logarithmic functions. Calculating

transcendental functions on computers typically involves

software, leading to delays. Thus, hardware implementations

have become vital due to their performance benefits over

software. Numerous publications detail these hardware

implementations for arithmetic units and elementary

functions.

A. APPROXIMATE ADDERS

Approximate computing is an emerging paradigm that aims

to optimize power consumption, area, and delay. This

approach involves the strategic redesign of a system's logic

circuit to allow for controlled imprecision in calculations by

allowing for some degree of inaccuracy in the results. The

computing error is generally undesirable, but there are some

applications that can tolerate imprecise computation.

A critical focus within this domain has been on the design

of arithmetic circuits, particularly adders. Adders represent a

fundamental element in these arithmetic units that have

received special attention from researchers and play an

important role in error-tolerant applications. Accurate adders

may suffer from high delays, complexity, or power

consumption. A Ripple Carry Adder (RCA) works by adding

the bits of the two numbers one by one, starting from the least

significant bit (LSB) to the most significant bit (MSB) in a

chain-like manner. The critical path of an adder is defined by

its whole carry chain. Although the RCA is relatively slow,

it is a simple and commonly used circuit for small addition

operations. For larger additions, other types of adders, such

as carry-lookahead adders or carry-select adders, are used,

which have faster carry-propagation but suffer from

overhead and higher power consumption. Approximate

computing is becoming increasingly important as the

demand for more efficient computing grows, as it allows for

the same task to be completed with fewer resources. For

computationally intensive processes like machine learning,

this speeds up and improves outcomes.

In digital circuit design, the approximation computing

technique provides a potential solution for decreasing power,

area, and latency. This is accomplished by redesigning the

logic circuit using many different implementing approaches

that permit a decrease in accuracy [15]. Approximate

computing can be applied to circuits at different levels:

transistor level, logic gate level, and architecture level. In the

literature, a wide variety of approximation adders [15], [16],

[325], [326], [327], [328], [329], [330], [331] have been

reported: segmented adders, where an n-bit adder is

partitioned into k-bit subadders [15], [325], [326]; an

approximate full adder, in which a single full adder can be

approximated at the logic or transistor level [16], [327],

[328]; carry-select adders, which are multi-stage subadders

are utilized [329], [330]; and speculative adders, reimagining

traditional designs, optimize performance by bypassing the

infrequently used critical path [331], [332].

A more in-depth look at the many different kinds of

approximation adders (and, more generally, approximate

units) reveals that the many techniques now in use adopt one

of three different methodologies towards inaccuracy [15],

[333]: 1) insignificant and frequently errors, 2) significant

and improbable errors, or 3) a combination of 2 and 3. In the

first methodology, the designers engineer and approximate

the lower significant bits of the arithmetic unit to obtain a

small magnitude of errors that are frequent. The quality of

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

34 VOLUME XX, 2017

the application is not substantially diminished by these

errors, as they are overshadowed by the system's intrinsic

truncation and noise errors. For instance, Optimized

Feedback Lower-part Constant-OR Adder [15] and Lower-

part OR Adder (LOA) [327] follow the first methodology. In

the second methodology, the designers engineer the more

significant bits of the arithmetic unit to appear as infrequent

errors but large in magnitude. The thinking behind this is that

applications are resilient enough to recover from occasional

errors. Examples of this methodology are the Almost Correct

Adder (ACA) [325], the Feedback Approximate Adder

(FAA) [15], and the Generic Accuracy Configurable Adder

(GeAr) [326]. In the third methodology, the designers

engineer the arithmetic unit, including the two previous

methodologies, to enhance the existing approximate adders,

for example, the enhanced [15] and hybrid [333]

approximate adders. Combining the best features of both

previous principles is the preferred and sometimes necessary

choice for real-world applications. The primary purpose of

this work is to survey the current research and development

status of various approximation approaches.

1) APPROXIMATE FULL ADDER AT THE TRANSISTOR
LEVEL

As the one-bit full adder (OBFA) is the primary circuit for

implementing an n-bit adder, the fundamental arithmetic

circuit of any digital system, it plays a crucial role in the

calculation process [334]. A full adder is a type of

combinational logic circuit designed to add together three

bits: two input bits and a carry bit from a previous stage. But

an approximate hybrid full adder is a modified version of a

full adder that uses a combination of two or more logic styles

together to reduce power consumption and area overhead

while maintaining reasonable accuracy [334].

There are seven different full adder cells based on static

logic styles, which are: the Complementary Metal-Oxide

Semiconductor (CMOS), Complementary Pass-transistor

(CPL), pass-transistor logic (PTL), single-rail pass transistor

(LEAP), double pass transistor (DPL), pseudo-NMOS

(Ratioed logic), gate diffusion input (GDI), and hybrid full

adders. As a result, a great deal of thought and care must be

invested into selecting a particular topology of OBFA at the

transistor level and designing the associated circuit to affect

the overall performance and energy of the system. Also, we

recommend to read these papers [334], [335].

The CMOS Full Adder is a widely used circuit for binary

addition of two 1-bit numbers, employing NMOS and PMOS

transistors. This logic style is widely used in digital circuits

due to its high noise immunity, low power consumption, and

reliable operation at low voltages. Despite its benefits, it has

drawbacks like the presence of bulky PMOS transistors,

increased transistor count, high input impedance, and high

delay. The CMOS full adder is usually designed using

multiple stages of CMOS inverters and transmission gates

[336], [337]. For example, a 14-transistor (14T) CMOS

complete adder cell which boasts a 50% reduction in the

threshold loss issue and an increase in the output voltage

swing, but has significant delays.

Pass-Transistor Logic (PTL) is a digital logic circuit

design method that uses pass transistors to implement logic

functions. It offers greater efficiency and energy savings

compared to traditional static CMOS logic. PTL achieves

smaller circuit sizes and lower production costs due to fewer

transistors in its gates, leading to less power use and reduced

propagation delays. However, PTL can face signal

degradation from parasitic capacitances, especially in

complex circuits, which may impact performance.

Hybrid logic circuits offer a balance between speed and

power consumption, attracting increasing attention due to the

proliferation of hybrid-based topologies in recent years

[334], [335], [338], [339], [340], [341], [342]. The purpose

of this review is to provide the designer with a sample but

effective method for discovering which topologies are

optimal in terms of power consumption, throughput, or a mix

of these metrics.

This survey considers hybrid architectures and includes

the most current topologies. Several requirements are traded

off to attain distinct benefits in full adder designs. In this

context, the number of transistors, delay time, power

consumption, and output voltage swing are crucial [338]. In

contrast to the typical CMOS full adder, which requires 24

transistors, the Mirror adder requires 28 transistors. Both

provide precise output voltage levels, which results in a large

area and significant energy use. In order to reduce the

number of transistors required while maintaining the entire

output voltage swing, several different designs have been

proposed. Unfortunately, many designs have reduced the

number of transistors to achieve low power consumption;

however, this comes at the expense of a diminished output

voltage swing [339], [343]. For example, the proposal in

[339] employs just 8 transistors, based on two XNOR gates,

each with three transistors and an inverter, making it a

simpler architecture in terms of transistor count. However,

this lower-transistor-based circuit has an issue with threshold

loss, which causes the logic voltages ‘1’ and ‘0’ to be slightly

off from Vdd and 0, respectively. Many designs have

implemented solutions to this problem, often by expanding

the allowed range of the output voltage or by increasing the

voltage at each of the outputs. When operating at low supply

voltages (i.e., Vdd=1.8 volts), the deteriorated output might

lead the circuit to give incorrect outputs for certain input

combinations, making it all the more crucial to minimize

threshold loss [338]. In order to reduce the threshold loss

problem and increase output voltage swing, Hassani et al.

[338] proposed a 16-transistor accurate full adder (16T FA)

design using a 10T CMOS FA. This design serves as a

foundational element for proposing a Lower-part-OR (LOA)

approximate adder [327]. This design reduces power

consumption by 53% compared to the LOA adder, at the cost

of a 12% drop in accuracy and increased delays.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

35 VOLUME XX, 2017

Diverse methodologies for designing XOR-XNOR

circuits have been published in recent years and are used to

prevent glitches in the complete adder's output nodes.

Kandpal et al. [342] proposed a 10-transistor XOR-XNOR

circuit to provide full swing outputs with improvements in

power consumption and performance. The outcomes show

the power delay product (PDP) is 7.5% higher than that of

the available XOR-XNOR modules in 2020. They used this

XOR-XNOR circuit to design a 1-bit full adder (OBFA)

called high-speed hybrid full adder design-4 (HSHFA-D4)

using 20 transistors. The results show a 28.13%

improvement in terms of PDP compared to other

architectures. Another hybrid full adder design is called

scalable low-power hybrid full adder (SLPHFA) which

proposed by Hasan et al. [341]. Without resorting to an

intermediary propagate signal, the carry signal and summing

operation are generated via a novel AND-OR module and

two XOR modules, respectively, utilizing transmission gates

and CPL logic styles. Both HSHFA-D4, SLPHFA and HFA-

22T [344] characterize by no driving capability. Figure 15

shows different classical and hybrid FA adders based on

various logic styles.

The Gate Diffusion Input (GDI) method is an efficient

technique for designing full adders, reducing transistor count

and power consumption while offering compact design, but

faces limitations in voltage scaling and operating speed. The

GDI-10T full adder is proposed by Nirmalraj et al. [345],

which consists of one 4T XOR gate and two 2:1

multiplexers. Combining the GDI and PTL logic styles

produced a novel twist on the conventional full adder circuit;

as a result, the design only required 10 transistors to perform

addition.

The shrinking of MOSFETs leads to challenges like

increased leakage current and higher manufacturing costs.

To address these, feature size scaling in digital circuits is key

for reducing power-delay product (PDP) and power

consumption. Carbon nanotube field-effect transistors

(CNFETs), including p-type and n-type, are emerging as

alternatives to MOSFETs, offering higher switching speeds

and similar mobility for equivalent sizes [346]. There is a

substantial amount of published material that describes the

circuit implementation using CNFETs. For example,

Bhargav et al. [346] proposed 10T and 13T approximate

adders, based on 32 nm CNFET technology.

2) APPROXIMATE FULL ADDER AT GATE LEVEL

In an effort to lessen the critical path and hardware

complexity of precise adders, a number of approximation

approaches have been developed. Approximate adders are

based on the idea that they can complete the addition faster

than precise adders by breaking the carry propagation chain.

This kind of approximate adder separates the adder into two

separate segments: an exact adder is used for the higher

significant segment, while approximate full adders are used

for the less significant ones. This group has a basic truncation

method [15], [16], [327], [347], [348]. The Lower-part OR

Adder (LOA) [327] is the most well-known design in this

class, which proposed in 2010, where consists of two

subadders: an accurate subadder and an approximate

subadder. The higher significant (accurate) subadder

achieves the error-free calculation by using a conventional

precise adder like the ripple carry adder (RCA) or the carry-

lookahead adder (CLA). The lower significant (approximate)

subadder is constructed by only OR gates to approximately

obtain LSB summations. Moreover, the accurate subadder's

precision is enhanced by using the carry from the MSB input

pair of the inaccurate subadder through AND gate. However,

the precise subadder size determines the LOA critical path

delay, and LOA has positive and negative errors.

In 2012, Albicocco et al. [349] proposed LOAWA, a

modified version of LOA adder, by removing AND gate that

provides a carry from inaccurate part to accurate part, and

this design has only positive errors. After a year, Gupta et al.

[328] proposed an approximate adder, APPROX5, where an

inaccurate part is composited by one of the input pairs. In

2018, Dalloo et al. [16] studied, analyzed, and systematically

designed the approximate adder called Optimized Constant

Lower-part OR Adder (OLOCA), where the inaccurate part

is constructed by ones and OR gates. Dalloo et al [15], [16]

showed that the number of OR gates must not be less than

two. In the same year, Dalloo [15] systematically designed

an approximate adder segment (cell) called Feedback

Approximate Adder Cell (FAA), which constructs an

accurate adder segment with a unique logic circuit as shown

in Figure 15. This cell has the capability of smoothly error-

correction, which means it composites partly errors produced

by the inaccurate subadder through returning carry feedback

to the inaccurate subadder. The cell feeds an accurate

subadder by carrying the MSBs of the inaccurate subadder.

The authors pointed out that the cell can be repeated and

connected through OR gate. Furthermore, Dalloo [15]

modified OLOCA, called OFLOCA, to construct the

inaccurate subadder with ones, two OR gates, and two bits

of the cell. The cell can be repeated to lessen the critical path.

OFLOCA outperforms the state-of-the-art architectures such

as OLOCA, LOA, etc.

In 2019, Balasubramanian et al. [350] proposed a

modified OLOCA by using a 2-to-1 multiplexer (MUX21)

FIGURE 15. Architecture of Feedback approximate adder cell [15]

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

36 VOLUME XX, 2017

in the MSB of an inaccurate subadder, and the carry of the

MSB of the inaccurate subadder (denoted as Ck) is used to

control the multiplexer and feed the accurate subadder. The

multiplexer is fed the carries of Ck and Ck-1 and generates the

MSB’s sum of inaccurate subadders. This adder is called

Hardware Optimized and Error Reduced Approximate

Adder (HOERAA), which cannot correct the error that

occurs when the carries Ck and Ck-1 are “01” and the inputs

Xk and Yk are ““X0” or “0X”. To partly solve the issue, the

same authors [351] modified HERLOA by adding OR gate

after the multiplexer, as shown in Figure 16. The modified

design is proposed in 2021 as a hardware-optimized

approximate adder with a near normal error distribution

(HOAANED).

In 2020, Seo et al. [352] proposed an approximate adder

called Hybrid Error Reduction LOA (HERLOA)

approximate adder. This design is a modified LOA with a

similar structure to OFLOCA in using carry feedback to

lower significant bits of inaccurate subadder through OR

gates and the two-bit feedback cell, but with modifications.

Lee et al. [347], 2021, proposed a new approximate adder

called Error Reduced Carry Prediction Approximate adder

(ERCPAA), which aims to reduce error metrics while

increasing cost metrics.

Figure 16 shows the architectures of the aforementioned

gate-level approximate adders, where n, k, and n-k refer to

the size of the approximate adder, inaccurate subadder, and

(a) LOA (2010)
(b) LOAWA (2012)

(c) APPROX5 (2013) (d) OLOCA (2018)

(e) OFLOCA (2018) (f) HOERAA (2019)

(g) HERLOA (2020)

(h)
(i) HOAANED (2021)

FIGURE 16. Block schematics of some approximate gate-level adders, (a) LOA [327], (b) LOAWA [349], (c) APPROX5 [328], (d) OLOCA [16], (e) OFLOCA
[15], (f) HOERAA[350], (g) HERLOA [352], and (i) HOAANED [351]

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

37 VOLUME XX, 2017

accurate subadder, respectively. X and Y are the inputs to the

approximate adder, but SUM refers to its output.

Furthermore, the Parallel-Prefix Adders (PPA) are among

the fastest adders, and their process of binary addition is

segmented into three distinct stages [353], [354]: pre-

processing, prefix-processing, and post-processing. The pre-

processing stage calculates generate and propagate signals,

The heart of the PPA, the prefix-processing stage, leverages

the prefix operator for accelerated computation of carry. The

nature of the prefix operator allows for the flexibility of

executing individual operations in any sequence, which has

led to the development of various parallel-prefix

architectures. Lastly, in the post-processing stage, the sum

bits are calculated adding the previous carries and propagate

signals. Researchers have paid special attention to being

approximated; for example, recently, Rosa et al. [346]

proposed approximate parallel prefix adders (PPAs) using

proposed approximate prefix operators (AxPOs), which

consist of carry operator nodes. They used four well-known

PPA adder architectures: Kogge-Stone, Brent-Kung, Ladner-

Fischer, and Sklasky, to apply approximate AxPOs.

Advanced digital design requires parallel prefix circuits like

adders or priority encoders, which conventional design

techniques often struggle to balance between area and delay

effectively. Therefore, the NVIDIA Applied Deep Learning

Research group [354] proposed a reinforcement learning-

based method with a specialized environment and

representation for efficiently designing parallel prefix

circuits. There are interesting review papers [355], [356] on

gate-level architectures of approximate adders.

To minimize the critical path and complexity of precise

adders, numerous alternative approximation schemes have

been proposed. These approximate schemes are the

speculative adders such as Carry Cut-Back adder [357],

Reverse Carry Propagate adder [358], VASP adder [332],

and segmented adders such as Feedback adder [15] and a

low-latency generic accuracy configurable adder (GeAr)

[326].

In conclusion, the characteristics and performance of

segmented and speculative adders diverge significantly from

those of approximate full adders. Segmented adders split the

carry chain, leading to larger but infrequent errors. In

contrast, speculative adders offer high accuracy but at the

cost of complex circuits. This creates a trade-off: speculative

adders are less favorable due to their complexity compared

to segmented and approximate full adders. The design of

adders thus requires balancing efficiency with precision.

C. APPROXIMATE MULTIPLIER

Multipliers exhibit high complexity, which tends to consume

energy and cause increased delays in computational

operations. Multipliers are essential to microprocessors,

digital signal processors, and embedded systems. Their

applications vary from fundamental filtering operations to

advanced convolutional neural networks [359]. This is

especially important in large-scale machine learning tasks

because convolution operations depend heavily on

multiplication-accumulation processes. Consequently, there

has been a notable shift in research focus towards developing

low-power, high-performance approximate multipliers. This

development stems from the need to optimize energy

efficiency and processing speed in such tasks, addressing the

inherent limitations of multipliers in comparison to simpler,

more energy-efficient adders. The operational structure of a

multiplier comprises three stages: partial product generation,

partial product reduction (accumulation), and final addition.

Approximations can be introduced in any of these stages, but

the accumulation stage, in particular, is a focus of research

for its significant power and delay consumption, highlighting

the importance of designing low power and delay

approximate multipliers. The Wallace tree, Dadda tree, and

carry-save adder array are primary structures for partial

product accumulation in multipliers. The Wallace tree uses

parallel-operating full or half adders (FAs/HAs) without

carry propagation, leading to a logarithmic delay

(𝑂(𝑙𝑜𝑔(𝑛))). Its FAs, acting as (3:2) compressors, can be

replaced by other compressors, like (4:2), to reduce delay.

The Dadda tree is similar but uses fewer adders. In

contrast, the carry-save adder array passes carry and sum

signals from one row of FAs/HAs to the next, operating in

series, resulting in a linear delay (𝑂(𝑛)), which is longer than

the Wallace tree's. For example, Sabetzadeh et al. [360]

proposed a new approximate multiplier which produced the

least significant half of the product using an approximate

multiplier with error compensation capability and the other

half using an accurate multiplier. The proposed design

enhances the energy-delay product by 77% over exact

designs and 54% compared to existing approximate designs,

on average.

1) TRUNCATED MULTIPLIERS
In the quest for efficient computational operations, the

design of approximate multipliers is a key area of focus,

particularly for applications that demand a balance between

accuracy and power consumption. Among the various

strategies employed, truncated multiplication, simplifies

operations by discarding the least significant bits of input

operands or removing the partial products (AND gates) or

Full adder cells, thus reducing the silicon area and speeding

FIGURE 17. The structure of 7x7 BAM multiplier [327].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

38 VOLUME XX, 2017

up the multiplier, but with a manageable loss in precision.
By employing appropriate correction functions, the

truncation error can be effectively minimized. For example,

Broken-Array Multiplier (BAM) [327] is a variant of

truncated array multipliers. This design shares foundational

similarities with the conventional array multiplier but

introduces a distinctive modification: the strategic omission

of Carry-Save Adder (CSA) cells in both horizontal and

vertical orientations. This alteration, as depicted in Figure

17, is not arbitrary but is governed by two critical

parameters: the Horizontal Break Level (HBL) and the

Vertical Break Level (VBL). These parameters determine

the specific cells to be omitted, as marked by hatching in the

figure. The primary advantage of this design lies in its

compact and expedited circuitry, achieved at the expense of

precision. Then, Farshchi et al. [361] modified BAM

multiplier using booth encoding. Then, Roy and his

colleagues realized the needs of computational applications

in real-time precision demands through designing

approximate and reconfigurable circuits, ensuring power

consumption aligns with computational accuracy. Therefore,

Roy et al. [362] proposed an accuracy reconfigurable version

of approximate Broken-Array booth multiplier. This design

incorporates partial error correction by adding sign bits to a

Broken-Array multiplier. This new reconfigurable multiplier

design significantly reduces power consumption compared

to traditional and modern multipliers.

2) COMPRESSOR-BASED MULTIPLIERS
Another approach, compressor-based designs, which stand

out for their ability to streamline the accumulation stage.

These designs utilize various compressor configurations,

such as 7:3, 5:2, 4:2, and 3:2 compressors [363], [364].

Among these, the 4:2 compressor is often favored for its

structural regularity, particularly when implemented in

cascading configurations. This preference is also reflected in

its widespread application in the design of Dadda multipliers

[363], [364]. For example, Edavoor and colleagues [364]

introduced an innovative 4:2 compressor design. This

approximation-based approach yields significant

improvements. Specifically, it achieves a 56.80%, 57.20%,

and 73.30% reduction in area, power consumption, and

delay, respectively. These improvements are in comparison

to a conventional, accurate 4:2 compressor. However, this is

balanced by an error rate of 25% and a maximum error

distance of ±1. The 4:2 compressor efficiently executes four

additions at once, enhancing parallelism which in turn

minimizes the critical path and dynamic power dissipation.

Dornelles et al. [365] proposed two topologies based on

CMOS+ gates to decrease the power, area, and delay of the

4:2 compressor.

3) BOOTH ENCODING MULTIPLIER

The ever-growing demand for efficient and compact digital

circuits has fueled the development of approximate

computing techniques. In the domain of multiplication,

Booth multipliers represent a popular choice due to their

versatility and ease of implementation. The use of modified

Booth encoding significantly streamlines the multiplication

of large numbers by reducing partial products. The modified

Booth encoding (MBE) can reduce the number of PPs by half

[366]. Zhu et al. [367] introduced a novel approach to

designing Approximate-Truncated Booth Multipliers

(ATBMs). These ATBMs are crafted using a combination of

Modified Radix-4 Booth Encoders (AMBEs), Approximate

4:2 compressors (ACs), and a technique of gradually

truncating partial products. A key feature of this design is its

ability to adjust accuracy levels. This adjustability is

achieved by varying the number of AMBEs and ACs

incorporated into the system, thereby allowing for a

customizable balance between precision and computational

efficiency.

However, traditional Booth multipliers suffer from high

hardware complexity, limiting their applicability in resource-

constrained scenarios. Haider and colleagues [368]

addressed this challenge by introducing an innovative

approximation approach to enhance the efficiency and

reduce the hardware complexity of Booth multipliers while

maintaining negligible error rates. The new approach

requires only N/4 Booth decoders, reducing the Normalized

Mean Error Deviation (NMED) and Power-Area-Product

(PAP) in the 16-bit BD16.4 approximate Booth multiplier

compared to existing advanced multipliers.

4) SEGMENTED (RECURSIVE) MULTIPLIERS

Approximate segmented (recursive) multipliers offer another

way of dividing the multiplication process into smaller

multiplier blocks. The simplest method in this category

involves using smaller, approximate multipliers to develop

larger multipliers, leading to the generation of approximated

partial products [369], [370]. The low-power approximate

techniques are applied more aggressively to the segments

dealing with less significant bits. The research teams focus

on developing approximate 2x2 or 4x4 multipliers, utilizing

near-exact half (HA) and full (FA) adders, or alternatively,

employing approximate counters or compressors for this

purpose. In 2011, Kulkurani et al. [369] proposed under-

designed approximate multiplier (UDM) based on the

proposed approximate 2x2 multiplier block. The

approximate 2x2 multiplier produced the output error only

when the inputs are one where the output is “111” instead of

the accurate output is “1001”, reducing the accumulating

stage. In 2016, Rehman et al. [371] also proposed a 2x2

approximate multiplier block with a lower magnitude of

maximum error. After a year, Venkatachalam et al. [372]

used the statistical analysis to transform the partial products

am,n and an,m , to form propagate pm,n and generate gm,n signals

as follows:

𝑝𝑚,𝑛 = 𝑎𝑚,𝑛 + 𝑎𝑚,𝑛

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

39 VOLUME XX, 2017

 𝑔𝑚,𝑛 = 𝑎𝑚,𝑛 . 𝑎𝑚,𝑛 (1)

In comparison, the chances of 𝑔𝑚,𝑛 being one are

substantially lower at 1/16, unlike 𝑎𝑚,𝑛, which has a higher

probability of 1/4. On the other hand, the probability for

𝑝𝑚,𝑛 to be one is 7/16, exceeding the likelihood for 𝑔𝑚,𝑛.

Using this transform concept, Venkatachalam and his

colleagues proposed approximate 4x4 multiplier blocks and

a 4x2 compressor using the proposed approximate half and

full adders. Furthermore, they used the proposed blocks and

compressor to build higher approximate multipliers, which

characterize a high error rate and cost. But Waris et al. [370]

achieved similar methodology to transform the partial

products to form propagate- and generate-signals and design

NOR based two approximate HF (NxHA) and one FA

(NxFA) adders. The authors used these adder cells to build

two 4x4 approximate multiplier blocks (more-approximated

(MxA) and less-approximated (LxA) multipliers) and then

larger multipliers. Waris and his colleagues designed the

multiplier with a lower error rate (approximately half), lower

cost, and higher performance than Venkatachalam’s design.

5) FPGA BASED DESIGNED MULTIPLIER

FPGA provided high-speed multipliers, which are

characterized by their flexibility of reconfiguration and

different precision formats to optimize performance for a

specific task. FPGA has a limited number of depicted

multipliers; therefore, we need to design this operation using

FPGA LUTs. The designers will face the challenge of design

complexity, and then creating efficient FPGA designs

requires specialized knowledge. For example, Ullah et al.

[373] introduced a new approximate multiplier architecture

tailored for FPGA-based systems, offering a methodical

design approach and an accessible online library. This

innovation outperforms traditional ASIC-based

approximations in terms of area, latency, energy efficiency,

and accuracy. Specifically, it surpasses Xilinx Vivado's

multiplier IP, showing up to 30% area, 53% latency, and

67% energy improvements with minimal accuracy

compromise. The provided open-source library aims to spur

further research within the FPGA community, marking a

significant shift towards optimized reconfigurable

computing.

6) LOGARITHMIC MULTIPLIER

Logarithmic multipliers (LM), especially the base-2

logarithm, offer a highly efficient approach for converting

multiplication to addition and shifting operations. They

significantly improve the hardware efficiency of error-

tolerant applications [374], [375]. The implementation of

these multipliers comes with accuracy and design

complexity bottlenecks, and it requires a dedicated circuit to

compensate for errors and improve both hardware and

accuracy. For example, Pilipovi´c et al. [376] proposed a

two-stage approximate logarithmic multiplier that uses less

area and energy. Makimoto et al. [377] proposed two-

segment piecewise-linear compensation to Mitchell’s

logarithmic multiplier to improve its accuracy. Yu et al.

[378] proposed an approximate LM, named HEALM, that

integrates error compensation with mantissa truncation,

using a lookup table to enhance accuracy and efficiency.

7) HYBRID MULTIPLIER

Lastly, hybrid techniques that combine two or more of these

methods can offer a balanced solution, optimizing both

accuracy and power consumption. For example, Ansari et al.

[379] proposed and developed a new 4x4 and higher

approximate multipliers using a combination of booth input

encoding and a proposed approximate (4:2) compressor. The

proposed design achieved a 52% reduction in the PDP-

MRED product and outperformed other similar-accuracy

approximate Booth multipliers. Choudhary et al. [380]

introduced an automated method for generating approximate

circuits with formal worst-case relative error (WCRE)

guarantees using Look-Up Tables (LUTs) and SAT-based

techniques. The proposed 8-bit approximate multiplier

reduced the power consumption and delay by 83.33% and

25.3%, respectively, with only a 1.2 dB SNR degradation in

a Finite Impulse Response (FIR) filter.

D. APPROXIMATE DIVIDER

There are many exact algorithms that have been proposed for

implementing division operations. Digit recurrence, which is

a trusted and exact division algorithm and offers simple logic

but faces latency and space inefficiencies, is therefore

limiting its use in high-speed applications [381]. The digit

recurrence is an iterative algorithm including Rostering,

Non-Rostering, and SRT dividers (as a sub-branch of non-

restoring). For example, Patankar et al. [381] introduced the

exact USP-Awadhoot divider, as a digit recurrence design

can be adaptable as restoring or non-restoring and optimized

for space-efficient electronic applications.

Designing an efficient divider necessitates using an

inexact computation to address the inherent issues of high

latency, large area, and significant power consumption in

typical traditional division circuits [382]. Piso et al. [383]

showed that a 1% improvement in a division circuit block

can boost system performance by up to 20%. An

approximate divider is a computational unit designed to

perform division with a trade-off between accuracy and

efficiency and used in various error-tolerant applications,

including image processing, machine learning, wearable

electronics, etc. Recent research on approximate dividers

focuses on finding effective trade-offs by reducing the

complexity, such as employing approximate subtraction or

reciprocal [384], [385], [386], [385], logarithmic [384],

truncating [385], reducing the number of iterations [387],

using lookup tables, or applying other approximate

techniques). Furthermore, the researchers focus on

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

40 VOLUME XX, 2017

developing new methods for error analysis and management

to minimize errors.

1) FLOATING, FIXED POINTS, AND FPGA DIVIDERS

The floating-point divider is a complex component in

arithmetic-heavy digital designs, categorized into

combinational and sequential types, with a focus on the

latter. Peter Malik [388] implemented three iterative division

algorithms, including Newton-Raphson, Goldschmidt, and

combined Goldschmidt and binomial divisions. The key

principle of these algorithms is that the implementation of

the division operation depends on an inverse process of the

multiplication operation, where the denominator is

iteratively subtracted from the numerator. The accuracy

depends on the number of iterations and the computation

complexity of the iteration. Bureneva et al. [389] proposed a

fixed point version of Newton-Raphson division. Recently,

Ebrahimi et al. [390] proposed RAPID, the tunable accuracy

multiplier and divider architectures, customized for FPGAs.

2) TRUNCATED, APPROXIMATE RECIPROCAL AND
DYNAMIC ITERATION STOPPING DIVIDERS

Approximate floating-point (FP) multipliers have been

extensively explored in recent applications, which

overwhelm the study and development of approximate FP

dividers, despite their significant utility [384]. We noticed

that a number of significant research efforts have been

dedicated to developing approximate dividers using different

approximate computing techniques. For example, Oelund et

al. [384] proposed an approximate floating-point divider

using an approximate hardware-friendly reciprocal and

iterative logarithmic multiplier. The authors corrected the

errors by storing them in a lookup table. The accuracy of this

design can be configured in real-time. Vahdat et al. [385]

also used the approximate reciprocal multiplied by the

truncated value of the dividend for designing the

approximate divider. Truncated dividers are a basic approach

to approximate division by limiting calculations to a certain

number of bits, offering speed and simplicity at the cost of

potential errors, which vary by application. Behroozi et al.

[387] introduced SAADI, an approximate divider design

which boosts energy efficiency in error-tolerant applications

by allowing dynamic adjustments in accuracy for energy-

quality balance. SAADI can dynamically balance the

accuracy, speed, and energy in a division circuit by adjusting

iteration counts for reciprocal approximation, diverging from

traditional fixed-accuracy designs. It achieves 92.5% to

99.0% accuracy in divisions while providing flexibility in

latency scaling, showcasing its potential in low-power signal

processing. Wang et al. [391] introduced an approximate

divider called “HEADiv” based on the truncated Taylor

series, and the induced error is compensated by carefully

considering the associated hardware complexity.

3) APPROXIMATE SUBTRACTOR-BASED DIVIDER

Designing approximate dividers can be achieved by

employing an approximate subtractor. This method is

characterized by the ability to fine-tune error management

through adjustable approximation levels in the subtractors,

but it may influence the overall efficiency. The subtractor is

a common unit in the class of division algorithms called digit

recurrence algorithms. For example, Jha et al. [392]

proposed inexact restoring-array dividers (IRADs) using

four different proposed approximate subtractors based on

CMOS technology. The authors also in-depth analyze the

designs based on PTL and CMOS technologies.

4) APPROXIMATE LOGARITHMIC DIVIDERS
Approximate Logarithmic Dividers operate on the principle

of logarithmic computation to perform division, which is a

fundamentally different approach from traditional division

algorithms. When multiplication and division based on

logarithms were first developed by Mitchell in the early

1960s, it marked the beginning of the acceptance of

approximation computing [324]. Logarithmic Dividers

(LDs) introduced significant errors, which makes them

unsuitable for applications where high precision is required.

However, LDs are characterized by low complexity, low

power consumption, and high speed. This makes them well-

suited for use in error-tolerant applications such as digital

signal processing, image and video processing, and machine

learning algorithms, where they contribute to more energy-

efficient designs [393], [394]. Liu et al. [393] addressed the

issue of high errors by combing restoring-array and

logarithmic dividers to design approximate hybrid dividers.

Also, Wu et al. [394] introduced a low-power, high-

performance approximate divider using logarithmic

operation and piecewise constant approximation. The design

was optimized using a heuristic algorithm to minimize

errors.

5) APPROXIMATE HIGH-RADIX DIVIDERS
The importance of high-radix dividers is their ability to

significantly improve computing speed and efficiency, but

they also need careful consideration of hardware complexity,

power consumption, and precise control. For example, Chen

et al. [395] proposed a high radix divider and analyzed and

compared this design with other different approximate

dividers. They showed that the approximate radix-2 divider

is particularly beneficial in constrained-resource

applications, but the high-radix divider is useful for

applications requiring high-speed computations. The

decision to implement a high-radix divider should be based

on a comprehensive analysis of these factors (computational

efficiency, precision, latency, scalability, and circuit

complexity) in the context of the intended.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

41 VOLUME XX, 2017

E. APPROXIMATE ELEMENTARY AND ACTIVATION
FUNCTIONS

The importance of elementary and activation functions in

various computational paradigms cannot be overstated.

Elementary functions such as trigonometric, exponential,

and logarithmic forms are the bedrock of numerous

applications in science and engineering. However, the

complexity of these functions often poses challenges in real-

time or high-performance computing environments. The

need for rapid calculations in applications like signal

processing and control systems makes it imperative to find

efficient ways to implement these functions, often leading to

a trade-off between speed and accuracy.

On the other hand, activation functions are the linchpin of

deep learning algorithms, particularly in the architecture of

neural networks. These specialized functions introduce the

necessary non-linearity that enables the network to learn

from data and adapt to various complexities. They are crucial

in applications that require pattern recognition, such as

image and speech recognition, natural language processing,

and even in complex game theory problems. However, the

choice of an activation function and its implementation can

significantly impact the learning efficiency and operational

complexity of a neural network. The challenges here are

multifold, including but not limited to, the vanishing and

exploding gradient problems, computational cost, training

convergence and the risk of overfitting. Therefore,

understanding the mathematical properties and

computational complexities of these functions is crucial for

both academic research and practical implementations.

These characteristics collectively ensure that activation

functions can effectively support the diverse needs of neural

network training. For instance, the Gaussian Error Linear

Unit (GELU), the Rectified Linear Unit (RELU), the Leaky

RELU, the Sigmoid, and the Hyperbolic Tangent (Tanh) are

all examples of popular activation functions. GELU is

known for its smoothness and is often used in transformer

models like GPT-3, BERT, and most other Transformers

[396]. For models like BERT and GPT-2 that employ the

tanh approximation, utilizing this method to approximate the

GELU activation function is advisable for model

reproduction. However, it's worth noting that this approach

generally yields less accurate results and can be slower for

large input sizes compared to directly computing the

accurate GELU function [397]. RELU, characterized by its

simplicity and computational efficiency, is widely used in

convolutional neural networks but suffers from the “dying

RELU” problem where neurons can sometimes become

inactive. Leaky RELU addresses this issue by allowing a

small, non-zero gradient when the input is less than zero.

Sigmoid and Tanh functions are among the earliest used

activation functions and are particularly useful in scenarios

where the output needs to be scaled between specific ranges;

however, they are less popular in deep networks due to the

vanishing gradient problem. Each of these activation

functions has its own advantages and disadvantages, and the

choice often depends on the specific requirements of the

neural network architecture and the problem being solved.

Figure 18 shows the most used activation functions over the

last six years [398].

Typically, five prevalent computing techniques are used

to implement these functions, including look-up table (LUT)

approach [399], [400], the polynomial approximation

methodology [401], [402], Piecewise linear, nonlinear and

polynomial approximation, shift-and-add algorithms [403]

like the coordinate rotation digital computer (CORDIC)

algorithm [404], [405] and Hybrid Approaches [406]. The

approximate and stochastic computing approaches [407],

[408], [409], [410], [411], [412] have also garnered a

considerable interest in recent years.

There are benefits and drawbacks of strategies mentioned

above [406]. The LUT method, known for its simplicity and

speed in computing elementary functions, demands

significant silicon space due to its memory-based accuracy.

While it's computationally simple and fits stable functions,

its accuracy hinges on memory size [413]. Recent

advancements have focused on enhancing LUT methods

through techniques like linear interpolation [414], range

addressable LUTs (RALUT) [415], table-lookup-and-

addition methods like multipartite methods [416], input-

aware quantized table lookup [417] and twofold lookup

methods [418] though these also introduce challenges in

terms of hardware complexity. Polynomial approximation,

used for finer estimates, necessitates numerous multipliers,

adders, and coefficient-storing LUTs, making it area-

inefficient and slow [419]. The CORDIC algorithm is a cost-

effective iterative method using adders, shift operations, and

registers. However, it's limited by serial multiplier-like

delays and a narrow input range, making it slower for

exponential and hyperbolic functions. Despite this,

enhancements over the past two decades show promise for

efficient real-time computing solutions. Function

FIGURE 18. The most popular activation functions are used in over the last six years [398].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

42 VOLUME XX, 2017

approximation varies in complexity and suitability [420].

Piecewise Linear Approximation (PLA) is basic, offering

low computational needs and ease of use, ideal for simple

control systems and initial data analysis but struggles with

complex functions. Piecewise Nonlinear Approximation

(PNA) addresses this by using nonlinear functions for better

complexity handling, useful in machine learning and

financial models but with higher computational demands.

Piecewise Polynomial Approximation (PPA) uses

segmented polynomials for function approximation,

common in signal processing and scientific computing but

can have boundary issues. Hybrid methods mix various

techniques to enhance accuracy or efficiency [406].

Recently, there's been significant interest in approximation

and stochastic computing, known for high speed, fault

tolerance, and low cost. While stochastic computing offers

low power usage, it faces challenges like reduced precision

and longer latency [421]. Approximate computing, on the

other hand, balances hardware cost and accuracy, showing

potential for improving integrated system performance

[412], [422].

For example, Dong et al. [43] introduced a piecewise

linear approximation computation (PLAC) method for

nonlinear unary functions, which includes an optimized

segmenter and quantizer, enhancing the universal and error-

flattened piecewise linear approximation approach. Then

Lyu et al. [44] developed PLAC without a multiplier, later

optimized by Yu et al. [45] to minimize segment count and

reduce the maximum absolute error (MAE). For their circuit

designs, all authors focused on the [0,1) interval. However,

this approach requires the use of the exponential function's

scaling property for processing inputs and outputs. Recently,

Dalloo et al. [406] proposed hybrid approach for

implementing exponential and hyperbolic functions with

input range [-10,10]. Hajduk et al.[419] proposed a simple

FPGA-based method for implementing the hyperbolic

tangent function using ordinary or Chebyshev polynomial

approximations. The authors examined different

implementation configurations to show their effects on

FPGA resources and calculation time. For more details, we

recommend two references [406] which provides a valuable

literature review about methods of implementing these

functions. For designing Nth root and power operations,

Changela et al. [423] proposed a low-complexity VLSI

architecture using three classes of radix-4 CORDIC

algorithms. They computed logarithms, division, and

exponential operations using the radix-4 of the modified

hyperbolic vectoring, linear vectoring, and the modified

scaling-free hyperbolic rotation CORDICs, respectively.

In our analysis, we found that although there have been

significant improvements in these techniques, challenges

persist in attaining balance among energy efficiency, latency,

accuracy, and hardware complexity. Specifically, certain

existing systems face constraints in terms of scalability,

adaptability, and performance, especially when confronting

the rigorous demands of real-time digital signal processing

(DSP) and artificial intelligence tasks. We believe

addressing these challenges demands innovative approaches

that can effectively achieve the trade-offs of hardware

designs in elementary and activation function computations.

IX. Approximate Logic Synthesis and Frameworks

Approximate logic synthesis (ALS) is an automated design

approach to approximate digital circuits that can achieve a

balance between accuracy and efficiency in terms of power,

area, and performance. It automates combinational and

sequential circuits and accelerator design to be adapted to

various applications and technological and user constraints

[424]. In real-world applications, the current challenge that

faces ALS is how to adapt to different accuracy needs while

managing power and delay variations. To accomplish that, it

requires the design of quality-configurable circuits that can

adjust to varying accuracy levels in real time. Furthermore,

it must not only focus on gate-based netlists or Boolean

circuit representations but also on inexact operators.

There are two main approaches to ALS: deterministic and

stochastic. Deterministic ALS uses predictable techniques to

design approximate digital circuits, making definitive and

predictable modifications to enhance efficiency. Stochastic

ALS uses probabilistic algorithms to randomly simplify or

modify digital circuits, leading to varied outcomes in

different iterations [425], [426]. Furthermore, ALS can be

categorized into four main categories, each of which has

unique methodologies and applications: structural netlist

transformation, Boolean rewriting, approximate high-level

synthesis (AHLS), and evolutionary synthesis.

A. STRUCTURAL NETLIST TRANSFORMATION

Structural netlist transformation involves the optimization of

a given logic circuit by transforming its netlist structure. This

can be achieved through various techniques such as gate

replacement, reordering, or removing [357], [424], [425],

[427]. Several Approximate Logic Synthesis (ALS) methods

function by manipulating the circuit netlist. For instance,

Gate-Level Pruning (GLP) [357] and Circuit Carving

[427]achieve this through the removal of gates from a circuit.

Conversely, SASIMI [5] employs a different approach by

altering the circuit's wiring. The primary goal is to reduce the

overall complexity of the circuit without significantly

affecting its functionality. The AxLS framework [428] is an

open-source tool dedicated to the exploration and testing of

existing netlist transformation techniques, serves as a pivotal

resource in the field of Approximate Logic Synthesis (ALS).

This ALS converts Verilog netlist to synthesized netlist (in

XML format) based on standard-cell library and then applied

the approximate techniques under user and application

constraints. Finally, AxLS uses external synthesis and

simulation tools for analyzing and evaluating the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

43 VOLUME XX, 2017

approximate netlist. Figure 19 shows the simplified version

of the AxLS framework.

In another work, Witschen [429] introduced an innovative

methodology for ALS called MUSCAT, which generates

valid approximate circuits by inserting cutpoints into the

netlist. It utilizes formal verification engines to identify

minimally unsatisfiable subsets, ensuring optimal cutpoint

activation without violating quality constraints. MUSCAT

outperformed the state-of-the-art methods, including AIG-

rewriting [430] and EvoApproxLib [431], achieving up to

80% higher savings in circuit area with lower computation

times.

B. BOOLEAN REWRITING

Boolean rewriting focuses on the manipulation of Boolean

functions to achieve a more efficient representation. This can

involve the use of approximation techniques to simplify

complex Boolean expressions. The main objective is to

reduce the computational complexity of the function while

maintaining an acceptable level of accuracy. For example,

Hashemi et al. [432] introduced BLASYS, a novel paradigm

that uses Boolean matrix factorization (BMF) to synthesize

approximate circuits. This method allows for a balance

between accuracy and circuit complexity. This approach

saved the power up to 63%, with a cost of 5% of the average

relative error.

Recently, Rezaalipour et al. [433] proposed a new

algorithm named XPAT, which is designed for creating

approximate circuits through Boolean rewriting. The XPAT

algorithm uses an SMT solver to customize circuits based on

a sum of products template. It outperforms existing methods

(MUSCAT and BLASYS) in reducing circuit areas by 9.85%

on average, with up to 60.4% improvement in some cases.

Figure 20 shows the test results which indicate savings in

area for different error thresholds (ET). However, XPAT has

longer runtimes for larger benchmarks, potentially

addressable by using multi-level templates or applying

XPAT iteratively to circuit parts.

Ammes et al. [434] introduced a two-level approximate

logic synthesis method using cube insertion and removal,

demonstrating scalability for large circuits with high error

thresholds. The method achieved literal number reductions

ranging from 38% to 93%, depending on the error rate,

ranging from 1% to 5%. The authors provided the codes

online. While the authors made significant strides with their

two-level synthesis method, it's essential to recognize the

broader landscape of research in this domain. Diverse

methodologies have been introduced, each with its own

unique approach and emphasis. Among these, the work of

Wu et al. [435] stands out, offering a multilevel perspective

on the problem by proposing ALFANS as an advanced

multilevel approximate logic synthesis framework, utilizing

the Boolean network representation of circuits. Central to

ALFANS is its capability for node simplification in Boolean

networks. Another approach, Barbareschi et al. [436],

introduced an open-source systematic approximate design

approach tailored for combinational logic circuits. The

authors potentially minimized hardware resource needs by

using the non-trivial local rewriting of and-inverter graphs

(AIG) to reduce the AIG-node count. Through multi-

objective optimization, the approach judiciously balances

approximation with optimal error and hardware trade-offs

and includes the synthesis of Pareto-optimal configurations

to ascertain tangible benefits. Meng et al. [437] introduced

ALSRAC, an open-source simulation-based Approximate

Logic Synthesis (ALS) flow, employing approximate re-

substitution with an approximate care set. Utilizing logic

simulation, the authors recommend approximating the care

set in ALSRAC by identifying external don't-cares (EXDCs)

through the maximum error distance constraint. They

translated the proposed care patterns to internal nodes rather

than primary inputs (PIs) to enhance scalability. Also, they

noticed that in the larger circuits, the number of PIs increases

exponentially with increasing EXDCs. Experimental

outcomes indicate that the proposed approach results in an

FIGURE 19. The simplified version of the AxLS framework [428].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

44 VOLUME XX, 2017

area reduction of 7%−18% in comparison to existing state-

of-the-art methods.

C. APPROXIMATE HIGH-LEVEL SYNTHESIS (AHLS)

In contrast to traditional approximate logic synthesis (ALS)

techniques, which focus on gate-based netlists or Boolean

circuit representations, Approximate High-Level Synthesis

(AxHLS) aims to utilize inexact operators. AxHLS is a

strategy that aims to efficiently implement designs in high-

level languages such as behavioral Verilog or C language. It

focuses on the design and synthesis of hardware at a high

abstraction level. The strategy involves transforming high-

level descriptions, like C/C++ code, into hardware

descriptions, like VHDL or Verilog. The main goal is to

create hardware that meets specific performance, power, and

area constraints while often sacrificing accuracy.

One of the early works in this field, Nepal et al. [438],

introduced an advanced ABACUS methodology for the

autonomous generation of approximate designs from

behavioral RTL descriptions, expanding potential

approximation avenues. The Automated Behavioral

Approximate CircUit Synthesis (ABACUS) methodology is

an approximate logic synthesis tool that transforms RTL

descriptions into ASTs through applying various operators,

such as data type simplifications, arithmetic operation

approximations, and loop modifications. It utilizes a design

space exploration technique for identifying optimal designs

on the Pareto frontier, considering accuracy and power

balance. ABACUS focuses on optimizing critical paths post-

synthesis for additional power savings through voltage

scaling. This tool, featuring a recursive stochastic

evolutionary algorithm, generates optimal approximate

hardware variants from high-level Verilog inputs, with the

codes accessible online.

Recently, Leipnitz and colleagues [439] developed an

AHLS design framework for FPGAs capable of

autonomously determining the most effective combinations

of multiple approximation techniques. This approach could

be suitable for specific applications and constraint design.

The proposed method outperformed single-technique

approaches in various benchmarks, reducing mean squared

error by up to 30% and increasing accuracy by up to 6.5%.

Additionally, Castro-Godínez et al. [440] developed a new

approximate high-level synthesis framework for

approximate accelerators based on a library of approximate

functional units. Furthermore, this framework addresses the

challenge of optimizing resources while meeting accuracy

constraints. It features “AxME,” which represents analytical

models for resource estimation, and “DSEwam,” which

represents a methodological approach for the exploration of

design space in applications that exhibit a tolerance for

errors. These tools enable the automatic generation of

optimal approximate accelerators from C language

descriptions. The framework is released as open-source to

advance research in approximate accelerator generation.

D. EVOLUTIONARY SYNTHESIS

Evolutionary synthesis employs evolutionary algorithms,

such as genetic algorithms, to optimize digital circuits. It

involves iterative processes of selection, crossover, and

mutation to explore the design space and find optimal or

near-optimal solutions. Evolutionary algorithms are heuristic

and metaheuristic search algorithms such as the genetic

algorithm (GA), genetic programming (linear and cartesian

genetic programming), machine learning, deep learning, etc.

For example, Ranjan et al. [441] proposed a novel approach

that leverages state-of-the-art AI generative networks to

synthesize constraint-aware arithmetic operator designs to be

optimized specifically for FPGA.

Despite the focus of the most existing approximate logic

synthesis methods primarily on ASIC designs, there are not

many works of ALS for FPGA design. For example, Wu et

al. [442] introduced a novel method specifically tailored for

FPGA design. They used the adaptability of lookup tables

and developed a technique that combines wire removal and

local function alteration.

One of the evolutionary synthesizers was the development

of a reinforcement learning-based logic synthesis framework

known as AISYN by Pasandi et al. [443]. This study

advocated for the incorporation of Artificial Intelligence

(AI), particularly Reinforcement Learning (RL), into logic

synthesis procedures. The hypothesis is that AI and RL can

aid in increasing Quality of Results (QoR) by avoiding local

minima, thereby transforming logic synthesis optimization

into an AI-guided process. Experimental evaluations show

AI-guided logic synthesis can significantly improve key

metrics like area, delay, and power. A RL-aided rewriting

algorithm improved total cell area by 69.3%, highlighting the

transformative potential of AI and RL in enhancing logic

synthesis efficiency. Furthermore, Pasandi et al. [444]

developed Deep-PowerX, a framework combining deep

learning, approximate computing, and low-power design for

logic optimization at the synthesis level. It significantly

reduces the dynamic power consumption and area of digital

CMOS circuits with acceptable error rates. Compared to

exact solutions, it achieves up to 1.47× and 1.43× reductions

FIGURE 20. Comparison of areas of Multiply-add obtained by XPAT,
MUSCAT, and BLASYS [433].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

45 VOLUME XX, 2017

in power and area, respectively, and surpasses current

approximate logic synthesis tools by 22% and 27%, with

much lower run-times.

Within the field of Genetic Programming (GP), the

absence of a Boolean function benchmark suite for logic

synthesis (LS) has been recognized as a significant issue

[445], [446]. Roman K. et al. [446] developed a benchmark

suite for logic synthesis, encompassing various Boolean

functions used in evaluating genetic programming systems.

They presented baseline results from previous studies and

their own experiments using Cartesian genetic programming

(CGP). To automate the functional approximation of

combinational circuits at many levels, including gate and

register-transfer levels, Sekanina et al. [447] proposed a

genetic programming-based approach structure.

E. ERROR ESTIMATION AND EVALUATION
FRAMEWORKS

Error Estimation Frameworks offer structured

methodologies for evaluating potential inaccuracies in

computational systems. Tailored for contexts employing

approximations, these frameworks leverage sophisticated

algorithms to balance accuracy and efficiency trade-offs,

thereby serving as benchmarks for assessing computational

result reliability. In the ALS process, as depicted in Figure

21, integration with error modeling and Quality of Results

(QoR) evaluation is fundamental [424]. The process

commonly starts with an error-modeling phase, which is

designed to evaluate the effects of removing individual gates

on the circuit's accuracy and give annotating them with the

error percentage. This step can guide ALS methods in

identifying the least error-prone transformation. Then, it is

followed by a post-synthesis error estimation phase, or QoR

evaluation. This evaluation is significant for ensuring that the

resultant circuit complies with specified demands [424].

Monte Carlo sampling methods are commonly used in ALS

approaches to determine the actual error introduced by

approximations in the process, making it a prevalent

technique in error evaluation in approximate computing.

This method is notably utilized in Approximate Logic

Synthesis (ALS) methods, including BLASYS [432] and

Vasicek [448] for Quality of Result (QoR) evaluation, as

well as in Su's approach [449] for error modeling. However,

a significant constraint inherent to Monte Carlo sampling is

the absence of definitive guarantees, as its worst-case error

only reflects the highest error within a limited sample space,

thus providing a limited exploration scope. Error Estimation

Frameworks, for example, VECBEE [450], is a key

framework in Approximate Logic Synthesis (ALS),

combining Monte Carlo simulation with signal propagation

for error estimation. It's adaptable to various error metrics

and circuit representations, balancing accuracy with

efficiency. This approach was integrated into the open-

source ALS methods, which significantly contribute to

optimizing circuit approximations.

Recently, Rezaalipour et al. [451] proposed a novel SMT

and SAT solver-based algorithm for error evaluation in

approximate computing, adaptable to any circuit and error

metric. This approach significantly outperforms traditional

methods, including AIG-rewriting [430] and [452], by

efficiently and systematically navigating the error space,

ensuring more accurate and reliable design validations.

In sum, Approximate Logic Synthesis (ALS) techniques,

essential in digital circuit design, are categorized into four

main types: structural netlist transformation, Boolean

rewriting, approximate high-level synthesis (AHLS), and

evolutionary synthesis. These categories utilize unique

methods for introducing approximations in circuits to

enhance efficiency and performance. Key insights into these

techniques are also provided by review papers such as [453],

[454]. These works highlight ALS's significance in

optimizing digital circuits, especially in applications that

balance computational accuracy with efficiency.

X. Emerging Computing Frameworks
A. CROSS-LAYER AND END-TO-END AXC

FRAMEWORKS

The cross-layer approximation approach, aimed at

leveraging the error resilience of applications across various

abstraction layers, is becoming popular. This approach

involves several approximation techniques from circuit to

application level. FPGA approximate computing

frameworks harness the flexibility of FPGAs to optimize

computational tasks by trading off accuracy for improved

performance, energy efficiency, or reduced resource usage

[455]. They support adaptable precision for diverse tasks,

making them efficient for applications requiring high

computational power.

Efforts to enhance program efficiency and error tolerance

have led to SIMD use in FPGAs, facing issues like limited

approximation operations, isolated kernel adjustments

without thorough evaluation, and a lack of targeted

optimization strategies. Furthermore, a comprehensive

multi-level approach is essential across all layers from

application to circuit [24]. To address these challenges,

Ebrahimi et al. [24] proposed a cross-layer methodology for

multi-kernel applications using toolchains across layers of

abstraction. For designing hardware with runtime-adjustable

accuracy, Alan et al. [23] introduced a unique cross-layer

approach that reduces energy use with sightly increasing

area. Also, Hanif et al. [25] tried to facilitate DNN

FIGURE 21. overview of the standard ALS process with the error
modeling and quality of results (QoR) evaluation [424]

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

46 VOLUME XX, 2017

implementing on resource-constrained devices through

introducing a cross-layer approach using various

optimization techniques across the computing stack's layers.

Several research studies have shown that applying the

principles and techniques of approximate computing,

initially designed for the ASIC platform, yields different

advantages when implemented on FPGA platforms [456].

Another challenge is that it is time-consuming to explore

numerous approximate accelerator variants due to the vast

architecture space required for simple applications like

Gaussian filters. Therefore, Ullah et al. [373] developed a

method to systematically create various effective

approximate multiplier designs for FPGA platforms.

Subsequently, the authors deployed a range of machine

learning models to assess and choose configurations that

meet the specific accuracy and performance requirements of

the application. Furthermore, Prabakaran et al. [457]

introduced a novel end-to-end automated framework named

Xel-FPGAs, aimed at enhancing the efficiency of exploring

FPGA-based approximate accelerators integrated with

advanced statistical and machine learning methodologies.

This approach is designed to significantly cut down on the

traditionally lengthy exploration time, making the process

more efficient and effective. The Xel-FPGAs framework

reduced FPGA-based accelerator exploration time by 95%,

boosting efficiency with minimal performance impact. It's

open-source and available online.

Developed primarily by Xilinx Lab researchers [458],

FINN is an open-source tool designed for building fast and

flexible deep learning inference on FPGAs. Unlike general

DNN accelerators, FINN provides an end-to-end flow that

emphasizes co-design and exploration to optimize

quantization and parallelization for specific resource and

performance requirements. On a ZC706 FPGA platform

consuming less than 25 W, FINN delivers record-breaking

image classification speeds up to 12.3 million classifications

per second at 0.31 microseconds latency with 95.8%

accuracy on MNIST, and 21,906 classifications per second

at 283 microseconds latency with over 80% accuracy on

CIFAR-10 and SVHN datasets.

B. SHANNON-INSPIRED STATISTICAL COMPUTING

In 1948, Shannon established information as a statistical

quantity and introduced a theory of communication over

noisy channels. He defined channel capacity based on noise

statistics and demonstrated that reliable communication is

possible if the transmission rate is below this capacity.

Shannon also showed that error control codes can approach

this channel capacity. Shanbhag et al. [459] inspired to

Shannon theory to design and develop principles and

fundamental limits for realizing statistical information

processing systems using stochastic components.

The Shannon-inspired Statistical Computing framework

[459] leverages the statistical properties of both application

data and nanoscale hardware to create robust, energy-

efficient, and scalable computing systems. By integrating

computation within memory (DIMA) and sensor arrays

(DISA), and employing statistical design techniques like

Data-driven Hardware Resilience (DDHR), Statistical Error

Compensation (SEC) and Hyperdimensional Computing

(HD), it ensures high reliability even in the presence of

significant hardware noise and errors. This framework is

particularly advantageous for data-centric applications,

offering enhanced performance and energy savings by

minimizing data transfer and adapting dynamically to errors.

Furthermore, this framework allows circuits to operate at

lower SNR levels, significantly saving energy. However, it

comes with complexities in design and implementation,

requiring sophisticated error-aware models and initial

training overheads. This framework is used in advanced

machine learning accelerators, low-power medical devices,

and large-scale sensor networks, where traditional

deterministic computing falls short due to increasing

stochasticity at the nanoscale level.

Another example, Kim et al. [460] introduced a maximum

likelihood (ML)-based statistical error compensation

(MLEC) technique to enhance the compute signal-to-noise

ratio (SNR) in 6T SRAM-based analog in-memory

computing (IMC) architectures. These architectures, known

for their energy efficiency and compute densities in machine

learning, are limited by device variations and noise. The

proposed MLEC technique improves the accuracy of binary

dot-products (DPs) in these systems.

By integrating Shannon-inspired Statistical Computing

with Approximate Computing, we can significantly enhance

the robustness, adaptability, and energy efficiency of

approximate computing systems. Leveraging information-

theoretic principles allows for precise error management,

optimal design, and dynamic adaptation, making it possible

to exploit the benefits of approximation without sacrificing

reliability or performance. This hybrid approach provides a

powerful framework for developing advanced computing

systems capable of meeting the demands of modern data-

centric applications and nanoscale technologies.

C. BRAIN-INSPIRED COMPUTING

Astounding progress in several tasks has been driven

primarily by advances in deep learning, which form the

backbone of today's Artificial Intelligence (AI)

developments. The rapid development of artificial

intelligence (AI) demands the rapid development of domain-

specific hardware specifically designed for AI applications.

Neuro-inspired computing (Neuromorphic computing) chips

integrate a range of features inspired by neurobiological

systems and could provide an energy-efficient approach to

AI computing workloads. Neuromorphic computing refers

specifically to the design of hardware systems that emulate

the neural architecture of the brain. It aims to create physical

circuits and devices that operate similarly to biological

neurons and synapses. Neuromorphic computing, inspired

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

47 VOLUME XX, 2017

by neuroscience, is key to next-generation AI. It focuses on

three levels: computing models, architecture, and learning

algorithms [461]. Spiking Neural Networks (SNNs), with

more realistic neuronal dynamics than Artificial Neural

Networks (ANNs), serve as the computing model.

Architecturally, SNNs enable efficient in-memory

computing. Neuro-inspired learning paradigms, including

online, learning-to-learn, and unsupervised learning, allow

continuous adaptation and form the basis for low-power,

accurate, and reliable neuromorphic systems. This includes

designing and fabricating neuromorphic chips that replicate

the brain's parallel processing capabilities. Neuromorphic

systems often use spiking neural networks (SNNs), where

information is processed in discrete spikes, similar to neural

spikes in the brain. This leads to event-driven, as opposed to

clock-driven, computation, which can be more energy-

efficient [462]. Neuromorphic computing can be

implemented by combining analog and digital circuits to

replicate the analog nature of biological processes. This can

involve using memristors, specialized transistors, and other

nanoscale components to build artificial neurons and

synapses [463].

To further enhancement, Sen et al. [464] introduced

AxSNN, an approach applying approximate computing to

enhance the efficiency of Spiking Neural Networks (SNNs)

by selectively skipping low-impact neuron updates, utilizing

static and dynamic parameters to identify approximable

neurons. They implemented AxSNN in both hardware

(SNNAP, synthesized in 45nm technology) and software (on

a 2.7 GHz Intel Xeon server) to achieve 1.4–5.5x reduction

in scalar operations across six image recognition

benchmarks, demonstrating significant improvements in

computational efficiency and energy savings with minimal

quality loss.

XI. Applications
A. APPROXIMATE INTERNET OF THINGS (IOT)

The widespread use of smart devices and sensors has led to

a demand for intelligent computing to handle vast amounts

of data. Conventional exact computing is commonly used in

these devices which suffer of high-power consumption and

low performance [465]. To address these challenges,

approximate IoT (AxIoT) is the optimal solution and an

emerging paradigm in this field, which depends on

approximate computing techniques. These techniques

manage the intensive computational processing and analysis

demands of IoT devices. The exact results are not always

required, this feature allows us to accept some errors.

Approximate computing offers significant benefits in the

resource-constrained IoT devices. Additionally, the big

challenges that are faced by a designer are maintaining the

quality of computations to meet specific application needs,

reliability, and security concerns. To address these

challenges, various strategies have been proposed, for

example, energy of IOT can be saved using Bloom filter

[95],[96], 6T SRAM [268], voltage-frequency-power

management techniques [309], [314], approximate IoT

processor [319], In-memory computing IMC-based Binary

Neural Network (BNN) accelerator [296], DRAM Refresh

rate [12]. For example, Ghosh et al. [466] illustrated

synergistic approximation by utilizing a smart camera

system that performs DNN-based image classification and

object detection, highlighting how the sensor, memory,

compute, and communication subsystems can all be

effectively approximated. Adaptive approximation levels,

which allow for dynamic adjustment based on application

needs, can manage the accuracy-efficiency trade-off.

Hierarchical sampling algorithms, such as stratified reservoir

sampling, offer rigorous error bounds while enhancing

computation efficiency, as demonstrated in the

APPROXIOT system [53]. APPROXIOT was implemented

based on Apache Kafka. Fabjančič et al. [467] introduced

“Mobiprox,” a framework for on-device deep learning with

adjustable accuracy. It features tunable tensor operation

approximations and runtime layer adjustment, utilizing a

profiler and tuner for optimal configuration. The results

show Mobiprox's implementation on Android OS reduces

energy use by up to 15% in mobile applications like activity

recognition and keyword detection, with minimal accuracy

loss. Mobile devices, reliant on battery power, face

constraints that make battery life a crucial factor. Reducing

computational energy could significantly benefit these

systems. Therefore, exploring mobile approximate

computing emerges as a promising research and

development avenue for advancing approximate computing

paradigms [466], [468]. Bin Qaim et al. [469] surveys

energy-efficient solutions including data compression and

approximate computing techniques for IoWT applications

from 2010 to 2020. It categorizes these solutions,

highlighting their pros, cons, and key performance

parameters. The study discusses trade-offs and suggests

future research directions to improve wearable device

performance and address challenges. Recently,

B. DEEP AND MACHINE LEARNING

Strategic approximate computing reduces precision in neural

network computations on a need basis that saves power and

time, particularly for multiply-and-accumulate (MAC)

operations, which dominate the energy use in DNNs [470].

Studies indicate that these operations are responsible for

consuming up to 99% of the energy in Deep Neural

Networks (DNNs) [471] .Concentrating on simplifying

multipliers within MAC units results in huge energy savings

with hardly any degradation in accuracy. These approximate

designs can be customized to suit different accuracy

specifications as they are error-configurable. Efficiency is

further optimized through dynamic reconfigurability and

temperature-aware methods that control chip temperatures

while ensuring computational speed, energy savings, and

output quality remain balanced. Sarwar et al. [472] proposed

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

48 VOLUME XX, 2017

an approximate multiplier and a Multiplier-less Artificial

Neuron (MAN) to improve neural networks' energy

efficiency by exploiting error tolerance and computation

sharing. They also recommend retraining to offset accuracy

losses. Evaluations show MANs significantly reduce power

and size with minimal accuracy impact, maintaining

consistent speed. Peng et al. [473] proposed “AXNet,” a

unified neural network that simplifies training and improves

efficiency by integrating approximation and prediction tasks.

The results show a 50.7% increase in safe approximation

rates and significant reductions in training time. The codes

are available online. Ashar et al. [474] proposed a novel

quantize-enabled multiply-accumulate (MAC) unit with a

right shift-and-add computation for runtime truncation

without extra hardware. Applying this MAC to a LeNet DNN

model reduced resources by 42% and delay by 27%, ideal for

high-throughput edge-AI applications.

Balancing CNN accuracy, efficiency, and resource use

presents challenges, exacerbated by high storage and

computational needs and inefficient hardware deployment.

Despite this, CNNs are crucial in computer vision, though at

the expense of greater computational demand, as seen in

models like VGG-16. Addressing these issues requires

software-hardware co-optimization, including model

compression techniques like pruning and parameter

quantization, to enhance CNN efficiency on FPGA

platforms.[475], [476]. For example, Sui and his colleagues

proposed new CNN pruning [476] and Quantization [475]

methods aimed at reducing storage requirements,

computational load, and enhancing hardware deployment

efficiency. The study [476] presented a new CNN pruning

method (KRP) which combined with GSNQ quantization

[475] to achieve a 27× reduction in model size and improving

FPGA efficiency. There are many techniques to enhance

deep CNN and machine learning algorithms including fixed-

point arithmetic, zero-skipping and weight pruning for

enhancing CNN on FPGA [477], compression through

innovative use of parallel layer processing and pipelining

[478], Compression though using reversed-pruning, peak-

pruning and quantization [479], cross-layer approach using

the structure pruning and inputs and network parameters

quantization at the software and approximate arithmetic units

at hardware level [25], quantization in PIM [480],

approximate accelerators [457], approximate adder [422],

approximate logarithmic multiplier [376], [29], Computation

skipping [126], ApproxTuner [235] frameworks [238],

[242], Approximate Memory based on Voltage Scaling

[260], analog processor-in-memory [293], hybrid PIM

accelerator [294], DCT, Quantization , Sparse matrix

compression [275], and other techniques mentioned in Table

3.

Approximate processors and accelerators, which embody

the synergy of hardware and software co-design in

approximate computing, are engineered to boost

computational efficiency through permissible inaccuracies,

making them well-suited for applications where error

tolerance is acceptable. There are many proposed

approximate processors depend on approximate computing

techniques to enhance the overall system efficiency,

including relaxed precision in TPUs for implementing NN

applications (MLPs, CNNs, and LSTMs) in datacenters[17],

mixed precision for GPU Tensor Cores for Deep Neural

Networks (DNNs) [481], processing elements (APEs)

consisting of a low-precision multiplier and an approximate

adder in TPU [321], parallel analog convolution-in-pixel,

and low-precision quinary weight neural networks [482].

Gharavi et al. [483] proposed enhancing multicore

performance with configurable approximate Arithmetic

units. Their machine learning framework dynamically

adjusted frequency and precision to optimize performance

within TDP constraints. Experiments showed a 19% speed

increase using a floating point approximate ALU with three

configurations per core, all within the same TDP limit.

Machine learning enhances IoT by analyzing vast data for

actionable insights, crucial for applications like wearables

and smart devices [465]. The embedded processing near the

sensor is often preferred to cloud processing due to privacy,

latency, and bandwidth constraints. Despite these

advantages, sensor devices face significant challenges

related to energy consumption, cost, throughput, and

accuracy. Circuit designers are key to developing energy-

efficient solutions for these tasks. For example, Younes and

his colleagues [484] published a couple of research papers

which applied algorithmic level approximate computing

techniques (AxCTs) to supervised machine learning

algorithms, specifically K-Nearest Neighbor (KNN) and

Support Vector Machine (SVM), for applications in touch

modality and image classification. These techniques,

including reduced sampling and precision as well as loop

perforation, aim to decrease complexity and latency while

maintaining a balance between speed and accuracy.

Comparing to traditional exact implementations, the results

in showed the proposed method achieved a 49% reduction in

power consumption and a 3.2× speedup. Furthermore, it used

40% fewer hardware resources and consumed 82% less

energy for classifying touch inputs, all with a minimal

accuracy loss of less than 5%. In addition, Mienye et al.[485]
addressed a gap in the literature by providing a

comprehensive overview of decision tree-based methods in

machine learning. It explored core concepts, algorithms, and

applications, from early development to recent high-

performing ensemble algorithms. Also, they discussed the

methods. tree pruning to enhance the performance of model

and reduce the overfitting.

C. DATA MINING

Redundant computations and data are considered as big

challenges for algorithms in terms of speed, scalability,

memory, and efficiency, for example, unnecessary

computations, function calls, Redundant iterations,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

49 VOLUME XX, 2017

redundant memory access, etc. These inefficiencies increase

execution time, waste computational resources, and reduce

the scalability of data mining analyses [486]. The core

challenge of data miming algorithms is to extract extracting

hidden knowledge from large datasets and mitigating use of

redundant computations. Sampling is a data reduction

strategy, addresses these volume-related challenges in

environments running big data tasks like classification and

clustering. There are several papers discussed the concept of

approximate data mining. For example, stratified random

sampling were used from streaming and stored data [38],

[39]. Graph sampling [40] is a very effective method to deal

with scalability issues when analyzing large-scale graphs.

There are others data mining techniques such as

memoization (storing and reusing previous computations),

efficient data structure design, and careful algorithm

optimization, loop perforation, iteration skipping, memory

access skipping, Computation skipping, Function

approximation, etc., we discussed these techniques in

previous sections.

The machine learning algorithms are considered common

data mining algorithms. For example, approximate nearest

neighbor search (ANNS) is considered as core solution in

data-mining and is widely used in different applications such

as computer vision, information retrieval, etc. [487].

Approximate nearest neighbor search algorithms are used for

fast retrieval of relevant information. Instead of perfect

matches, these algorithms find items that are “close enough”

in high-dimensional data spaces and saving computational

expense during large-scale searches [488]. For instance,

numerous major corporations, including google, employ this

strategy [489].

D. SECURITY

We know that approximate computing promises significant

advantages but there are security implications, particularly in

sensitive applications, require careful consideration and

further research. Approximate computing can complicate

reverse engineering efforts but could introduce new target

areas for hardware Trojans, particularly in circuits

controlling the level of approximation. Approximate circuits'

defense against passive side-channel attacks can differ with

voltage-frequency settings, making security assessments

challenging. Approximate circuits, particularly at

operational limits, may be vulnerable to fault injection

attacks, but the full effects and countermeasure effectiveness

are still unclear [490], [491]. Also, Processing-In-Memory

alters security models due to factors like architecture

changes, different programming models, side-channel risks,

device reliability, and potential hardware Trojans. To address

these challenges, Yellu et al. [492] proposed obfuscating the

boundary between approximate and precise computations by

blurring the entry point and broadening the transition zone.

The entry-blurring scheme uses a hidden quality metric

correlated with approximation errors to conceal the switch

between modes, enhancing resilience to attacks. The

boundary-broadening scheme extends the transition zone

with dual thresholds and random AC module selection,

further securing AC systems. Their methods significantly

improve application quality (up to 168% over baseline) with

minimal impact on latency, area, and power costs (increases

limited to 6% and 8%, respectively). Another work, Sheikh

A. Islam [493] highlighted the security risks in AC synthesis

for implementing approximate Computing (AC). He showed

how vulnerabilities could be exploited to insert malicious

elements like Hardware Trojans without affecting efficiency.

Therefore, he proposed a defense mechanism using input

vectors and path profiling to detect such threats and

emphasized the necessity of incorporating security into AC

systems to prevent exploitation and suggesting future

enhancements to synthesis tools for improved security. The

study [487] introduced a cloud-assisted LSH scheme for

efficient Approximate Nearest Neighbor searches. He

tackled the high computational demands of traditional LSH,

especially on devices with limited resources. This approach

ensures data privacy and includes a method to verify the

integrity of cloud-processed results. Experiments and

analyses confirmed the scheme's effectiveness, security, and

practical applicability, offering a viable solution for

resource-constrained environments. The research [494]

introduced a multilevel approximate architecture for Ring-

Learning-with-Errors (R-LWE), a quantum-resistant

cryptographic scheme ideal for IoT due to low area and

memory requirements. The proposed novel AxRLWE

approach is tailored for resource-constrained IoT devices,

achieves substantial reductions in area and energy on FPGAs

and ASICs, with some compromise on quantum security.

We conclude that while approximate computing offers

significant advantages in certain applications, its security

implications, particularly in sensitive applications, require

careful consideration and further research.

XII. Tools and Libraries of Approximate Circuit

Approximate computing is an emerging paradigm that

allows trading off design accuracy and improvements in

design metrics such as design area and power consumption.

This paradigm is widely used in applications across various

abstraction layers through managing and controlling the

error. Numerous researchers share code or plan to release

libraries of approximate components for application use, or

offer benchmark suites of diverse applications as open-

source to assist others in their research. Additionally, another

group of researchers makes available free software tools to

support scientific research. In Table 4, we present a selection

of libraries for approximate components and established

benchmark suites. At end of this table, we include two

websites: one offering access to published papers with

accompanying codes, particularly in the DL/ML fields, and

the other hosting a comprehensive collection of open-source

benchmark suites, along with tested and recommended

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

50 VOLUME XX, 2017

platforms for their use. In this review paper, we have noted

at the conclusion of each discussed work that the authors

have made the code available.

There are several free software programs provided the

teams of researchers that can be used for circuit or processor

design at the transistor and logic levels, for example

BLASYS tool-chain framework which is used to design

approximate circuits through a couple of free tools. Recent

advancements have facilitated rapid DNN deployment on

FPGAs through automation tools. FP-DNN [506]

streamlines converting TensorFlow DNN models into

efficient FPGA implementations, supporting networks like

CNNs with improved performance and flexibility.

ARTLCNN compiler [507] streamlines FPGA hardware

customization for CNN inference, significantly boosting

performance by using an optimized RTL module library and

a flexible system template. Tested on Intel FPGAs with

complex CNNs, it achieves over double the efficiency of

current automated solutions. Another open-source tool

called FINN which primarily developed by Xilinx Lab

researchers [458] for building fast and flexible deep learning

inference on FPGAs. FINN provides an end-to-end flow and

focuses on co-design and exploration to optimize

quantization and parallelization tuning for specific resource

and performance needs. It's not a general DNN accelerator

[508].

The choice of the tool is determined by many factors,

including the amount of simulation and synthesis needed, the

complexity of the circuit, and the designer's expertise with

the program.

XIII. Challenges and Future Directions

TABLE 4. Open-source libraries and benchmark suits of approximate computing techniques and applications

Ref./Year Name AxC Units/ Benchmark Suite Platforms Source code Implementing Tools

/libraries used

[495]/2004 SciMark 2.0

Fast Fourier Transform, Jacobi

Successive Over-relaxation, Monte Carlo,

Sparse Matrix Multiply, and dense LU

matrix factorization

Intel and AMD

processors1
C++ N/A

[496]/2009 Rodinia_Bench

Applications from different domains (e.g.

Image/Video Compression, Data Mining,

etc.)

GPU and CPU

Heterogeneous

computing

OpenMP,

OpenCL and

CUDA

N/A

[326]/2014 ApproxAdderLib
Adders (GeAr, ACA-I, ETAII, ACA-II

and GDA)
FPGA and ASIC

MATLAB,

VHDL/Verilog

MATLAB R2013a and ISE

Design Suite 14.5

[497]/2017 Axbench

Applications from different domains (e.g.

Computer Vision, Data Analytics,

Multimedia, Web Search, Finance, etc.).

GPU, CPU,

FPGA, ASIC

C++, Verilog,

CUDA

Boost Libraries, G++,

Python, Fast Artificial

Neural Network Library,

NPU compiler, CUDA

Toolkit, Rodinia

[431]/2017 EvoApprox8b
8-bit approximate adders and 8-bit

approximate multipliers
FPGA and ASIC

Verilog, Matlab

and C

multi-objective Cartesian

genetic programming

[498]/2018 SMApproxLib Multipliers FPGA, CPU VHDL, Matlab Matlab, Vivado 17.1

[499]/2019
PaderBench

Adder, FFT, Cordic, array multiplier,

filters, MAC….
 Verilog N/A

[424]/2020 BACS
FFT, SVM classifier, Adder, Multiplier,

filter, square
FPGA and ASIC

Verilog and

python

open-source tool ABACUS

together with the FreePDK

45-nm library.

[500]/2020 DSPBench

Distributed Data Stream Processing

Systems: big data, data-stream, apache-

spark, etc. and different domains like

Finance, Telecommunications, Sensor

Networks, Social Networks and others

Azure Cloud

computing service
Java N/A

[501]/2021 RTRBench

Benchmark suite for real-time robotics: 6

kernels for example, Extended Kalman

Filter, Reinforcement learning using

Bayesian Optimization

CPU C++ N/A

[502]/2022 SOMALib

Library of Exact and Approximate

Activation Functions for Hardware-

efficient Neural Network Accelerators

CPU, GPU, and

FPGA, ASIC

RTL (VHDL,

Verilog)
N/A

[503]/2023 TransPimLib

Transcendental Functions on Processing-

in-Memory Systems: CORDIC-based and

LUT-based methods for trigonometric

functions, hyperbolic functions,

exponentiation, logarithm, square root,

etc.

PIM C N/A

[504]
Open-

benchmarking

This website developed by Phoronix Media. They collected free and open-source benchmark suits, analysis and tests

on different platforms.

[505] paperswithcode
This website developed by Meta AI Research team, which collect a free and open resource with Machine Learning

papers, code, datasets, methods and evaluation tables. It also archives the analysis of the activity of works

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

51 VOLUME XX, 2017

A. CHALLENGES IN PROCESSING-IN-MEMORY (PIM)
IMPLEMENTATION

Research and development in the field of Processing-In-

Memory are ongoing, and it has the potential to play a crucial

role in addressing the performance bottlenecks faced by

traditional computing architectures in dealing with massive

amounts of data in modern computing scenarios. In previous

section, we primarily discussed approximate memory

techniques, focusing on strategies to overcome the “Memory

 Wall” through various circuit and architectural

advancements, including Approximate Computing. It details

methods such as voltage scaling, lowering refresh rates, and

data compression or encoding to enhance energy efficiency

in memory systems, particularly for applications like

machine learning that can tolerate some level of errors. These

strategies aim to balance power conservation with acceptable

error rates, contributing to the broader field of energy-

efficient and performance-optimized memory design.

As new memory technologies continue to evolve, future

directions for PIM may involve the integration of processing

logic with emerging memory technologies like resistive

RAM (ReRAM) or phase-change memory (PCM). The

concept of Processing-In-Memory (PIM) holds immense

potential for revolutionizing computing architectures by

bringing processing capabilities closer to data storage,

thereby reducing data movement overhead and improving

system efficiency. PIM is a nascent technology with ongoing

advancements in materials, devices, and circuit design.

However, the realization of PIM faces several challenges

must be addressed to realize the full potential of PIM.

The integration of processing logic into memory cells or

controllers faces challenges of increasing hardware

complexity and design. This necessitates careful design and

using efficient power management techniques (e.g. DVFS,

DPM, etc.) to handle unacceptable increased power

consumption and heat dissipation that come with added

processing capabilities in memory. As processing tasks

move closer to the memory, ensuring data reliability and

integrity during in-memory computation poses a critical

challenge. Safeguarding data against errors and corruption

during processing necessitates developing robust error

correction techniques to ensure maintaining the integrity of

data during the processing cycle. Furthermore, scalability

issues arise as PIM is extended to larger memory sizes and

higher bandwidths. These include maintaining performance

efficiency and managing the complexities of larger PIM

systems. To address scalability issues in PIM, we need to

trend to use approximate computing and management

strategies, for example by reducing precision or using

adaptive precision scaling or lossy compression, using

approximate memory access including partition data on

critical important and refresh rate.

For successful PIM implementation, developing

appropriate programming models and software support is

crucial. This involves creating new programming paradigms

and tools that can efficiently leverage the PIM architecture

to minimize data movement and maximize computational

efficiency. As future directions, PIM shows promise in

advancing artificial intelligence and machine learning

workloads, big data analytics, and high-performance

computing. The exploration of memory-centric architectures

and emerging memory technologies, alongside

considerations for security and privacy, can further enhance

PIM's capabilities [509]. As new memory technologies like

ReRAM and PCM evolve, integrating these with processing

capabilities poses challenges in terms of compatibility,

performance optimization, and leveraging their unique

properties for PIM. Also, the ensuring the security and

privacy of data processed within memory becomes an

important consideration. This includes addressing potential

vulnerabilities and safeguarding against unauthorized access

or tampering. The limited precision of analog PIM

accelerators, particularly during the high-precision backward

propagation phase in CNN training, presents challenges that

necessitate innovative solutions like hybrid PIM accelerators

and Shannon-inspired statistical computing principles.

Instead of just augmenting existing CPUs with PIM

capabilities, future directions might involve the exploration

of memory-centric architectures where the memory is at the

center of computation, and traditional CPUs are reimagined

as accelerators. Additionally, the integration of approximate

computing techniques with PIM holds promise for

optimizing computation in memory-intensive tasks and

further improving energy efficiency while providing

satisfactory output quality for specific applications. For

example, recently, Jinyu et al. [480] introduced CIMQ, a

quantization framework for improving neural network

accelerator efficiency using Computing in Memory (CIM)

architectures.

Embracing these challenges and future directions can pave

the way for the widespread adoption of Processing-In-

Memory and revolutionize modern computing paradigms. In

conclusion, while challenges exist, ongoing research and

development efforts in the field will unlock the full potential

of Processing-In-Memory for next-generation computing

systems.

B. ADDRESSING DESIGN AND VERIFICATION
COMPLEXITIES IN APPROXIMATE COMPUTING
CIRCUITS

In the pursuit of energy-efficient computing, a pivotal

challenge emerges in meeting the real-time precision

demands of various applications. Conventional circuits

typically function at constant power levels without adjusting

for the specific precision needs of individual tasks. This one-

size-fits-all approach to power consumption, irrespective of

the required accuracy for distinct operations, represents a

significant hurdle in optimizing energy efficiency across

varied computing applications. The optimal approach for

energy-efficient computing involves designing circuits that

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

52 VOLUME XX, 2017

are both approximate and reconfigurable, ensuring that

power consumption is closely aligned with the required

computational accuracy. Reconfigurable circuits adapt their

configuration to the current computational needs, optimizing

energy efficiency by alternating between high-precision and

lower-precision modes as necessary. This combination offers

a tailored balance between energy conservation and

computational accuracy for various applications.

Designing approximation circuits with the

aforementioned features while adhering to quality

constraints significantly extends the design cycle. This

complexity arises as designers must ensure that circuits not

only meet functional and optimal performance criteria but

also operate within predefined error margins. To enhance the

design of approximation circuits with effective error

management, it's essential to employ advanced methods such

as Approximate Logic Synthesis (ALS). ALS is geared

towards meeting diverse accuracy requirements while also

addressing power and delay variances. Integrating ALS,

especially AHLS, and automated design exploration tools

along with appropriate analytical or semi-analytical error

models underscores the necessity for designing quality-

configurable circuits that adjust to different accuracy levels

in real time. It's also important to extend approximation

beyond traditional gate-based designs to include more

complex functional units. Though initial research efforts,

such as those by Lee [510] and Alan [511] and their

colleagues, have started to address these challenges through

proposals for approximate high-level synthesis in custom

hardware circuit design and runtime accuracy-configurable

circuits, respectively, this area is still in its nascent stages.

This trend towards customized ML models requires new

Auto-ML tools and co-design strategies that integrate

algorithmic and hardware considerations for optimal use of

approximate computing in advanced ML settings.

C. ADAPTIVE ERROR REDUCTION IN
RECONFIGURABLE APPROXIMATE CIRCUIT

The current challenge is that each application requires a

specific characteristic of approximations to mention the

accuracy within acceptable level. Different approximations

have varying effects on the performance and accuracy of

application. Intuitively, there is no one-size-fits-all solution.

Therefore, the future direction is to design on universal

design with adapting itself to reduce error as possible as.

Addressing the challenge of reducing errors in input data

reconfigurable approximate circuits, particularly with an

approximate adder, involves a dynamic and adaptive

approach. In such circuits, the configuration of each full

adder can be adjusted based on the input data and the carry

signal. This adaptability allows the circuit to modify how it

performs approximations in real-time, optimizing for

accuracy in critical computations while still benefiting from

the efficiency of approximation in less critical areas.

For instance, if the approximate adder detects that the

input data or the carry signal leads to a potentially significant

error, it can reconfigure itself to reduce or eliminate the

approximation for that specific calculation. This self-

adjusting capability ensures that the circuit maintains a

balance between the desired efficiency of approximation

techniques and the need for accuracy in the output,

particularly for computations where precision is crucial. By

dynamically adjusting the level of approximation based on

the input data characteristics and the computational context,

such reconfigurable approximate circuits can effectively

minimize errors while still leveraging the benefits of

approximate computing.

In recent years, much of the focus in approximation

computing was on a single-layer approach, limiting

approximation to specific modules. However, researchers

are now aiming to maximize the advantages of approximate

computing by integrating various techniques across different

design levels, including hardware or software or both, for a

given application. This approach, known as cross-layer

codesign, represents a significant and ongoing challenge in

the field. For example, explores approximation strategies in

printed circuits for machine learning, enhancing efficiency

and reducing complexity.

XIV. Perspectives on Future Directions

In recent years, the field of approximate computing (AC) has

witnessed significant advancements, positioning it as a

potential mainstream computing approach in future systems.

One primary reason for this shift is the diminishing returns

on performance improvement through the scaling of CMOS

technology. Additionally, the diversity of modern

architectures, ranging from high-performance computing

(HPC) to embedded systems like the Internet of Things (IoT)

and autonomous vehicles, necessitates a balance between

efficiency in terms of memory, performance, power

consumption, and the quality of final outcomes. However,

approximate computing is one of the most promising

techniques for many future applications, especially those

related to human perception [15], [16]. Recent trends

indicate its increasing adoption in various domains,

including AI-based applications and services, supported by

industry leaders like Google and IBM. Major corporations

such as IBM, Google, Intel, and ARM are actively engaged

in pioneering research and the development of commercial

offerings that incorporate approximate computing strategies.

For example, Google's Tensor Processing Units (TPUs),

which employ an approximate computing technique known

as reduced precision to lower energy usage [17]. Google also

employs approximate computing strategies in its data centers

to optimize energy usage without compromising the quality

of service. Another example is that IBM has developed an

AI accelerator chip capable of achieving high performance

(in TOPS) by integrating multiple and multi-level

approximate techniques [512].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

53 VOLUME XX, 2017

Due to these significant advancements achieved by AxC,

this motivated other communities in electronic design

automation (EDA) and software engineering to develop tools

and methodologies to facilitate approximate computing

designs. Therefore, developing specialized hardware

architectures optimized for AxC, coupled with

corresponding software tools and programming models, will

be crucial for realizing its full potential. Effective error

resilience techniques and error estimation Frameworks to

manage and mitigate errors introduced by approximation are

essential for ensuring the reliability and robustness of AxC

systems. To fully realize the potential of AxC, it is crucial to

investigate its application across multiple layers of the

computing stack, including hardware, architecture, software,

and algorithms. Most of the current research concentrates on

error-tolerant applications, but we believe the next research

area is to demonstrate the effectiveness of these AxC

techniques in safety-critical applications. Therefore, a

comprehensive approach to implementing AxC across

different layers can unlock new efficiencies and capabilities

in modern computing systems.

One of the recent future directions is to build systems

employing dynamic, adaptive approximation techniques that

can adjust the level of approximation based on application

requirements, input data characteristics, and available

resources. This ensures optimal trade-offs between accuracy

and performance. AxC is well-suited for machine learning

and AI applications, where small losses in accuracy can be

tolerated in exchange for significant performance gains.

Research will focus on developing approximate algorithms

and hardware accelerators tailored for these applications.

AxC is expected to find applications in various emerging

fields, such as IoT, edge computing, and embedded systems,

where energy efficiency and real-time performance are

critical.

Recent advancements in neuromorphic computing have

addressed the power and latency issues of traditional digital

systems. The researchers attempt to create more efficient and

intelligent computer systems to mimic the human brain by

constructing sophisticated hardware architectures and

developing new theories and brain-inspired algorithms.

Brain-inspired computing faces several significant

challenges, holds promising future directions, and directly

relates to emerging non-volatile memory (eNVM). eNVM is

attractive for implementing the synapses in the neural

network [463]. Processing-In-Memory (PIM) is the most

attractive architecture used in designing brain-inspired

computing models. The brain-inspired computing model is

based on the so-called Spiking Neural Networks (SNNs).

Recent research highlights the potential of hybrid neural

networks (HNNs) in various applications. The emerging

trend of designing hybrid neural networks (HNNs) by

combining spiking and artificial neural networks leverages

the strengths of both. Therefore, Zhao et al. [513] proposed

a framework using hybrid units (HUs) to link and integrate

multiple neural network structures, especially the integration

of spiking neural networks (SNNs) within HNNs. Overall,

the future of brain-inspired computing lies in continuing to

refine these hybrid models and exploring new materials and

architectures to bridge the gap between biological and

artificial neural systems. By integrating approximate

computing techniques, HNNs can achieve better

performance and energy efficiency, making them more

viable for large-scale, real-time applications. This

opportunity must be exploited by researchers and designers

to align with the broader goal of creating scalable and

sustainable AI systems that can handle increasingly complex

tasks with minimal resources.

We know that one of the primary concerns for

communities is ensuring the security and privacy of data,

especially when the data is processed using AC techniques.

Future crucial research areas focus on developing secure and

privacy-preserving AC methodologies. The potential of

approximate computing extends beyond traditional AI and

signal processing applications. Emerging areas such as

hardware security, cryptocurrency mining, and lattice-based

post-quantum cryptography are poised to benefit from the

efficiency gains offered by approximate computing. These

applications require significant computational resources and

can tolerate a degree of error, making them ideal candidates

for approximate computing techniques. We also believe that

one of the challenges that faces approximate computing is

the lack of a systematic and theoretical foundation for AC,

including formal models for error analysis, performance

optimization, and algorithm design. Therefore, establishing

a strong theoretical foundation will guide future research and

development in this field.

While challenges remain, the ongoing research and

development in approximate computing are paving the way

for its widespread adoption. By leveraging approximate

computing techniques, future systems can achieve

significant improvements in energy efficiency and

performance, particularly in error-tolerant applications. The

growing demand for approximate computing will necessitate

diverse contributions from various stakeholders, including

hardware designers, system developers, test engineers, and

researchers. Collaborative efforts across these disciplines

will be essential to advance approximate computing as a

mainstream paradigm. This interdisciplinary approach will

help address the challenges associated with approximate

computing, such as error management, reliability, and user

acceptance. As the field continues to evolve, we expect to

see more innovative applications and a growing integration

of approximate computing into mainstream computing

paradigms.

XV. Conclusion

In this paper, we explored the state-of-the-art of approximate

computing, focusing on its application in data, software,

hardware, and architecture, and highlighting its benefits

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

54 VOLUME XX, 2017

across various fields. It reviews recent progress and

challenges in approximate computing, with a detailed

examination of its significant impact, particularly in machine

learning and IoT. The survey emphasizes the transformative

potential of approximate computing in these areas and aims

to enrich the research community, offering a valuable

reference for researchers. We explored and discussed the

state-of-the-art data level of approximation. We focused on

the data sampling algorithms used in various frameworks to

improve the efficiency and speed of processing large

datasets. We discussed programming models and software

frameworks (e.g., ApproxHadoop), which are used for

processing large datasets across clusters of computers or on

the cloud or another example, like BlinkDB, which is

specifically designed for approximate queries on large

datasets. We review the state-of-the-art data structures,

which are not less important than the others because they

offer efficiency in data storage and computation. For

example, Boom filters are widely used in IOT and wearable

electronics, where battery life is a major concern. In this

review paper, we expanded our focus on approximations

beyond the data level. We performed an extensive analysis

of optimizing the code using approximate computing

techniques and discussed and categorized the most important

types of approximate programming languages. Regarding

the architecture level, we discussed the state-of-the-art

different approximate memories and emphasized significant

innovation in the approximate Processing-In-Memory and

Content-Addressable Memory (CAM). Expanding our focus

on approximations beyond just memories to explore the last

innovate works on processors, especially in the AI domain.

At the circuit level, we presented and discussed the state-of-

the-art of all arithmetic units, elementary and activation

functions, and emphasized in our discussion on approximate

logic synthesis.

Regarding the application level, we focused on the

emerging IOT, DL/ML, and data mining applications and

discussed software, hardware, cross-layer, and end-to-end

approximations. We highlighted the traditional use of

approximate computing techniques focusing on a single

subsystem. The core argument is that to realize the full

benefits of approximate computing, we need to move beyond

these siloed approaches and focus on a full-system approach

through applying approximations strategically across

different system layers. There are great advantages to using

cross-layer and end-to-end approximations (full-system

approach): they can lead to significant improvements in

speed, energy consumption, and overall optimization; they

can control holistic errors through understanding the

propagation of errors throughout the entire system, which

enables better management of overall accuracy; and they can

tailor the solutions where A full-system view allows for

custom-designed approximations matching the specific

tolerance and performance requirements of individual

applications. We reported well-established libraries and

benchmark suites for evaluating the quality-of-service of

approximate designs. We presented some open-source tools

and logic syntheses. We intended to discuss the security

concerns of using approximate computing. Despite advances

in approximate computing, there's a critical need for

continued innovation to unlock its full potential in complex

system designs. Our survey concludes with a discussion on

these challenges and future research directions. Establishing

standardized benchmarks and error metrics for approximate

computing. This will enable researchers and designers to

compare different approaches and help users select the most

appropriate solution for their use case.

REFERENCES
[1] A. G. M. Strollo and D. Esposito, “Approximate computing in the

nanoscale era,” in 2018 International Conference on IC Design

Technology (ICICDT), Jun. 2018, pp. 21–24. doi:

10.1109/ICICDT.2018.8399746.

[2] A. Najafi, “Systematic design of low-power processing elements using

stochastic and approximate computing techniques,” Jan. 2021, doi:

10.26092/elib/460.

[3] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D.

Burger, “Dark silicon and the end of multicore scaling,” in 2011 38th

Annual International Symposium on Computer Architecture (ISCA),

Jun. 2011, pp. 365–376.

[4] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward

Dark Silicon in Servers,” IEEE Micro, vol. 31, no. 4, pp. 6–15, Jul.

2011, doi: 10.1109/MM.2011.77.

[5] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The EDA

challenges in the dark silicon era,” in 2014 51st ACM/EDAC/IEEE

Design Automation Conference (DAC), Jun. 2014, pp. 1–6. doi:

10.1145/2593069.2593229.

[6] J. L. Hennessy and D. A. Patterson, “A new golden age for computer

architecture,” Commun. ACM, vol. 62, no. 2, pp. 48–60, Jan. 2019,

doi: 10.1145/3282307.

[7] K. Rupp, karlrupp/microprocessor-trend-data. (Aug. 29, 2024).

Gnuplot. Accessed: Sep. 02, 2024. [Online]. Available:

https://github.com/karlrupp/microprocessor-trend-data

[8] S. Dutt, S. Nandi, and G. Trivedi, “A comparative survey of

approximate adders,” in 2016 26th International Conference

Radioelektronika (RADIOELEKTRONIKA), Apr. 2016, pp. 61–65.

doi: 10.1109/RADIOELEK.2016.7477392.

[9] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,

“Approximate computing and the quest for computing efficiency,” in

2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),

Jun. 2015, pp. 1–6. doi: 10.1145/2744769.2744904.

[10] M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era,”

Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008, doi:

10.1109/MC.2008.209.

[11] M. Shafique and S. Garg, “Computing in the Dark Silicon Era: Current

Trends and Research Challenges,” IEEE Design & Test, vol. 34, no.

2, pp. 8–23, Apr. 2017, doi: 10.1109/MDAT.2016.2633408.

[12] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:

saving DRAM refresh-power through critical data partitioning,”

SIGPLAN Not., vol. 46, no. 3, pp. 213–224, Mar. 2011, doi:

10.1145/1961296.1950391.

[13] W. Liu, F. Lombardi, and M. Shulte, “A Retrospective and Prospective

View of Approximate Computing [Point of View,” Proceedings of the

IEEE.

[14] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,

“Analysis and characterization of inherent application resilience for

approximate computing,” in Proceedings of the 50th Annual Design

Automation Conference, in DAC ’13. New York, NY, USA:

Association for Computing Machinery, May 2013, pp. 1–9. doi:

10.1145/2463209.2488873.

[15] A. Dalloo, “Enhance the Segmentation Principle in Approximate

Computing,” in 2018 International Conference on Circuits and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

55 VOLUME XX, 2017

Systems in Digital Enterprise Technology (ICCSDET), Dec. 2018, pp.

1–7. doi: 10.1109/ICCSDET.2018.8821112.

[16] A. Dalloo, A. Najafi, and A. Garcia-Ortiz, “Systematic Design of an

Approximate Adder: The Optimized Lower Part Constant-OR Adder,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 26, no. 8, pp. 1595–1599, Aug. 2018, doi:

10.1109/TVLSI.2018.2822278.

[17] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor

Processing Unit,” in Proceedings of the 44th Annual International

Symposium on Computer Architecture, in ISCA ’17. New York, NY,

USA: Association for Computing Machinery, Jun. 2017, pp. 1–12.

doi: 10.1145/3079856.3080246.

[18] N. Enright Jerger and J. San Miguel, “Approximate Computing,”

IEEE Micro, vol. 38, no. 4, pp. 8–10, Jul. 2018, doi:

10.1109/MM.2018.043191120.

[19] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate Computing: A

Survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb. 2016, doi:

10.1109/MDAT.2015.2505723.

[20] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design

of voltage-scalable meta-functions for approximate computing,” in

2011 Design, Automation Test in Europe, Mar. 2011, pp. 1–6. doi:

10.1109/DATE.2011.5763154.

[21] A. Rahimi, A. Ghofrani, K.-T. Cheng, L. Benini, and R. K. Gupta,

“Approximate associative memristive memory for energy-efficient

GPUs,” in 2015 Design, Automation & Test in Europe Conference &

Exhibition (DATE), Mar. 2015, pp. 1497–1502. doi:

10.7873/DATE.2015.0579.

[22] G. Rodrigues, F. Lima Kastensmidt, and A. Bosio, “Survey on

Approximate Computing and Its Intrinsic Fault Tolerance,”

Electronics, vol. 9, no. 4, Art. no. 4, Apr. 2020, doi:

10.3390/electronics9040557.

[23] T. Alan, A. Gerstlauer, and J. Henkel, “Cross-Layer Approximate

Hardware Synthesis for Runtime Configurable Accuracy,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 2021,

doi: 10.1109/TVLSI.2021.3068312.

[24] Z. Ebrahimi, D. Klar, M. A. Ekhtiyar, and A. Kumar, “Plasticine: A

Cross-layer Approximation Methodology for Multi-kernel

Applications through Minimally Biased, High-throughput, and

Energy-efficient SIMD Soft Multiplier-divider,” ACM Trans. Des.

Autom. Electron. Syst., vol. 27, no. 2, p. 16:1-16:33, Nov. 2021, doi:

10.1145/3486616.

[25] M. A. Hanif and M. Shafique, “A cross-layer approach towards

developing efficient embedded Deep Learning systems,”

Microprocessors and Microsystems, vol. 88, p. 103609, Feb. 2022,

doi: 10.1016/j.micpro.2020.103609.

[26] S. Mittal, “A Survey of Techniques for Approximate Computing,”

ACM Comput. Surv., vol. 48, no. 4, p. 62:1-62:33, Mar. 2016, doi:

10.1145/2893356.

[27] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A Review,

Classification, and Comparative Evaluation of Approximate

Arithmetic Circuits,” J. Emerg. Technol. Comput. Syst., vol. 13, no. 4,

p. 60:1-60:34, Aug. 2017, doi: 10.1145/3094124.

[28] F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and U.

Karpuzcu, “Approximate Communication: Techniques for Reducing

Communication Bottlenecks in Large-Scale Parallel Systems,” ACM

Comput. Surv., vol. 51, no. 1, p. 1:1-1:32, Jan. 2018, doi:

10.1145/3145812.

[29] G. Zervakis, H. Saadat, H. Amrouch, A. Gerstlauer, S. Parameswaran,

and J. Henkel, “Approximate Computing for ML: State-of-the-art,

Challenges and Visions,” in 2021 26th Asia and South Pacific Design

Automation Conference (ASP-DAC), Jan. 2021, pp. 189–196.

[30] J. Henkel et al., “Approximate Computing and the Efficient Machine

Learning Expedition,” in Proceedings of the 41st IEEE/ACM

International Conference on Computer-Aided Design, in ICCAD ’22.

New York, NY, USA: Association for Computing Machinery, Dec.

2022, pp. 1–9. doi: 10.1145/3508352.3561105.

[31] J. Lee et al., “Resource-Efficient Convolutional Networks: A Survey

on Model-, Arithmetic-, and Implementation-Level Techniques,”

ACM Comput. Surv., Mar. 2023, doi: 10.1145/3587095.

[32] H.-H. Que, Y. Jin, T. Wang, M.-K. Liu, X.-H. Yang, and F. Qiao, “A

Survey of Approximate Computing: From Arithmetic Units Design to

High-Level Applications,” jcst, vol. 38, no. 2, pp. 251–272, 2023, doi:

10.1007/s11390-023-2537-y.

[33] H. J. Damsgaard, A. Ometov, and J. Nurmi, “Approximation

Opportunities in Edge Computing Hardware: A Systematic Literature

Review,” ACM Comput. Surv., vol. 55, no. 12, p. 252:1-252:49, Mar.

2023, doi: 10.1145/3572772.

[34] V. Leon et al., “Approximate Computing Survey, Part I: Terminology

and Software & Hardware Approximation Techniques,” Jul. 20, 2023,

arXiv: arXiv:2307.11124. doi: 10.48550/arXiv.2307.11124.

[35] V. Leon et al., “Approximate Computing Survey, Part II: Application-

Specific & Architectural Approximation Techniques and

Applications,” Jul. 20, 2023, arXiv: arXiv:2307.11128. doi:

10.48550/arXiv.2307.11128.

[36] S. Mittal, “A Survey of Techniques for Approximate Computing,”

ACM Comput. Surv., vol. 48, no. 4, p. 62:1-62:33, Mar. 2016, doi:

10.1145/2893356.

[37] H. J. Damsgaard, A. Ometov, and J. Nurmi, “Approximation

Opportunities in Edge Computing Hardware: A Systematic Literature

Review,” ACM Comput. Surv., vol. 55, no. 12, p. 252:1-252:49, Mar.

2023, doi: 10.1145/3572772.

[38] K. K. Pandey and D. Shukla, “Stratified Sampling-Based Data

Reduction and Categorization Model for Big Data Mining,” in

Communication and Intelligent Systems, J. C. Bansal, M. K. Gupta, H.

Sharma, and B. Agarwal, Eds., in Lecture Notes in Networks and

Systems. Singapore: Springer, 2020, pp. 107–122. doi: 10.1007/978-

981-15-3325-9_9.

[39] T. D. Nguyen, M.-H. Shih, D. Srivastava, S. Tirthapura, and B. Xu,

“Stratified random sampling from streaming and stored data,” Distrib

Parallel Databases, vol. 39, no. 3, pp. 665–710, Sep. 2021, doi:

10.1007/s10619-020-07315-w.

[40] J. Zhang, H. Chen, D. Yu, Y. Pei, and Y. Deng, “Cluster-preserving

sampling algorithm for large-scale graphs,” Sci. China Inf. Sci., vol.

66, no. 1, p. 112103, Nov. 2022, doi: 10.1007/s11432-021-3370-4.

[41] S. Shankar and A. G. Parameswaran, “Towards Observability for

Production Machine Learning Pipelines,” Proc. VLDB Endow., vol.

15, no. 13, pp. 4015–4022, Sep. 2022, doi:

10.14778/3565838.3565853.

[42] B. G. Galuzzi, L. Milazzo, and C. Damiani, “Best Practices in Flux

Sampling of Constrained-Based Models,” in Machine Learning,

Optimization, and Data Science, G. Nicosia, V. Ojha, E. La Malfa, G.

La Malfa, P. Pardalos, G. Di Fatta, G. Giuffrida, and R. Umeton, Eds.,

in Lecture Notes in Computer Science. Cham: Springer Nature

Switzerland, 2023, pp. 234–248. doi: 10.1007/978-3-031-25891-

6_18.

[43] N. Sobhani and S. J. Delany, “Identity Term Sampling for Measuring

Gender Bias in Training Data,” in Artificial Intelligence and Cognitive

Science, L. Longo and R. O’Reilly, Eds., in Communications in

Computer and Information Science. Cham: Springer Nature

Switzerland, 2023, pp. 226–238. doi: 10.1007/978-3-031-26438-

2_18.

[44] H. Wu, H. Xu, X. Tian, W. Zhang, and C. Lu, “Multistage Sampling

and Optimization for Forest Volume Inventory Based on Spatial

Autocorrelation Analysis,” Forests, vol. 14, no. 2, Art. no. 2, Feb.

2023, doi: 10.3390/f14020250.

[45] B. Zhang et al., “Multi-layer Adaptive Sampling for Per-Flow Spread

Measurement,” in Algorithms and Architectures for Parallel

Processing, Y. Lai, T. Wang, M. Jiang, G. Xu, W. Liang, and A.

Castiglione, Eds., in Lecture Notes in Computer Science. Cham:

Springer International Publishing, 2022, pp. 743–758. doi:

10.1007/978-3-030-95384-3_46.

[46] S. Moshtaghi Largani and S. Lee, “Efficient Sampling for Big

Provenance,” in Companion Proceedings of the ACM Web Conference

2023, in WWW ’23 Companion. New York, NY, USA: Association

for Computing Machinery, Apr. 2023, pp. 1508–1511. doi:

10.1145/3543873.3587556.

[47] V. Sanca and A. Ailamaki, “Sampling-Based AQP in Modern

Analytical Engines,” in Data Management on New Hardware, in

DaMoN’22. New York, NY, USA: Association for Computing

Machinery, Jun. 2022, pp. 1–8. doi: 10.1145/3533737.3535095.

[48] E. A. Deiana, V. St-Amour, P. A. Dinda, N. Hardavellas, and S.

Campanoni, “Unconventional Parallelization of Nondeterministic

Applications,” in Proceedings of the Twenty-Third International

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

56 VOLUME XX, 2017

Conference on Architectural Support for Programming Languages

and Operating Systems, in ASPLOS ’18. New York, NY, USA:

Association for Computing Machinery, Mar. 2018, pp. 432–447. doi:

10.1145/3173162.3173181.

[49] N. Laptev, K. Zeng, and C. Zaniolo, “Early Accurate Results for

Advanced Analytics on MapReduce,” Jun. 30, 2012, arXiv:

arXiv:1207.0142. doi: 10.48550/arXiv.1207.0142.

[50] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen,

“ApproxHadoop: Bringing Approximations to MapReduce

Frameworks,” SIGPLAN Not., vol. 50, no. 4, pp. 383–397, Mar. 2015,

doi: 10.1145/2775054.2694351.

[51] G. Hu, D. Zhang, S. Rigo, and T. D. Nguyen, “Approximation with

Error Bounds in Spark,” Jun. 06, 2019, arXiv: arXiv:1812.01823. doi:

10.48550/arXiv.1812.01823.

[52] D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and T. Strufe,

“StreamApprox: approximate computing for stream analytics,” in

Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,

Las Vegas Nevada: ACM, Dec. 2017, pp. 185–197. doi:

10.1145/3135974.3135989.

[53] Z. Wen, D. L. Quoc, P. Bhatotia, R. Chen, and M. Lee, “ApproxIoT:

Approximate Analytics for Edge Computing,” in 2018 IEEE 38th

International Conference on Distributed Computing Systems

(ICDCS), Jul. 2018, pp. 411–421. doi: 10.1109/ICDCS.2018.00048.

[54] Y. Park, J. Qing, X. Shen, and B. Mozafari, “BlinkML: Efficient

Maximum Likelihood Estimation with Probabilistic Guarantees,” in

Proceedings of the 2019 International Conference on Management of

Data, Jun. 2019, pp. 1135–1152. doi: 10.1145/3299869.3300077.

[55] M. R. Anderson and M. Cafarella, “Input selection for fast feature

engineering,” in 2016 IEEE 32nd International Conference on Data

Engineering (ICDE), May 2016, pp. 577–588. doi:

10.1109/ICDE.2016.7498272.

[56] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L.

Gustafson, and D. Kudithipudi, “Performance-Efficiency Trade-off of

Low-Precision Numerical Formats in Deep Neural Networks,”

arXiv.org, Mar. 2019, doi: 10.1145/3316279.3316282.

[57] S. Cherubin and G. Agosta, “Tools for Reduced Precision

Computation: A Survey,” ACM Comput. Surv., vol. 53, no. 2, p. 33:1-

33:35, Apr. 2020, doi: 10.1145/3381039.

[58] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K.

Keutzer, “A Survey of Quantization Methods for Efficient Neural

Network Inference,” Jun. 21, 2021, arXiv: arXiv:2103.13630.

Accessed: Mar. 15, 2023. [Online]. Available:

http://arxiv.org/abs/2103.13630

[59] T. Zebin, P. J. Scully, N. Peek, A. J. Casson, and K. B. Ozanyan,

“Design and Implementation of a Convolutional Neural Network on

an Edge Computing Smartphone for Human Activity Recognition,”

IEEE Access, vol. 7, pp. 133509–133520, 2019, doi:

10.1109/ACCESS.2019.2941836.

[60] “Quantization aware training | TensorFlow Model Optimization,”

TensorFlow. Accessed: Mar. 15, 2023. [Online]. Available:

https://www.tensorflow.org/model_optimization/guide/quantization/t

raining

[61] P.-E. Novac, G. Boukli Hacene, A. Pegatoquet, B. Miramond, and V.

Gripon, “Quantization and Deployment of Deep Neural Networks on

Microcontrollers,” Sensors, vol. 21, no. 9, Art. no. 9, Jan. 2021, doi:

10.3390/s21092984.

[62] J. Zhai, B. Li, S. Lv, and Q. Zhou, “FPGA-Based Vehicle Detection

and Tracking Accelerator,” Sensors, vol. 23, no. 4, Art. no. 4, Jan.

2023, doi: 10.3390/s23042208.

[63] P. Colangelo, N. Nasiri, E. Nurvitadhi, A. Mishra, M. Margala, and K.

Nealis, “Exploration of Low Numeric Precision Deep Learning

Inference Using Intel® FPGAs,” in 2018 IEEE 26th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), Apr. 2018, pp. 73–80. doi:

10.1109/FCCM.2018.00020.

[64] G. Dai and J. Fan, “An Industrial-Grade Solution for Crop Disease

Image Detection Tasks,” Frontiers in Plant Science, vol. 13, 2022,

Accessed: Jun. 08, 2023. [Online]. Available:

https://www.frontiersin.org/articles/10.3389/fpls.2022.921057

[65] M. M. Farag, “A Self-Contained STFT CNN for ECG Classification

and Arrhythmia Detection at the Edge,” IEEE Access, vol. 10, pp.

94469–94486, 2022, doi: 10.1109/ACCESS.2022.3204703.

[66] D. Costa, M. Costa, and S. Pinto, “Train Me If You Can: Decentralized

Learning on the Deep Edge,” Applied Sciences, vol. 12, no. 9, Art. no.

9, Jan. 2022, doi: 10.3390/app12094653.

[67] P. Micikevicius et al., “Mixed Precision Training,” 2018.

[68] “Train With Mixed Precision,” NVIDIA Docs. Accessed: Jun. 08,

2023. [Online]. Available:

https://docs.nvidia.com/deeplearning/performance/mixed-precision-

training/index.html

[69] S. Kang, K. Choi, and Y. Park, “PreScaler: an efficient system-aware

precision scaling framework on heterogeneous systems,” in

Proceedings of the 18th ACM/IEEE International Symposium on Code

Generation and Optimization, in CGO 2020. New York, NY, USA:

Association for Computing Machinery, Feb. 2020, pp. 280–292. doi:

10.1145/3368826.3377917.

[70] S. Yesil, I. Akturk, and U. R. Karpuzcu, “Toward Dynamic Precision

Scaling,” IEEE Micro, vol. 38, no. 4, pp. 30–39, Jul. 2018, doi:

10.1109/MM.2018.043191123.

[71] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G.

Gopalakrishnan, and Z. Rakamarić, “Rigorous floating-point mixed-

precision tuning,” SIGPLAN Not., vol. 52, no. 1, pp. 300–315, Jan.

2017, doi: 10.1145/3093333.3009846.

[72] P. V. Kotipalli, R. Singh, P. Wood, I. Laguna, and S. Bagchi, “AMPT-

GA: automatic mixed precision floating point tuning for GPU

applications,” in Proceedings of the ACM International Conference on

Supercomputing, in ICS ’19. New York, NY, USA: Association for

Computing Machinery, Jun. 2019, pp. 160–170. doi:

10.1145/3330345.3330360.

[73] H. Guo and C. Rubio-González, “Exploiting community structure for

floating-point precision tuning,” in Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis,

in ISSTA 2018. New York, NY, USA: Association for Computing

Machinery, Jul. 2018, pp. 333–343. doi: 10.1145/3213846.3213862.

[74] S. Garg, J. Lou, A. Jain, Z. Guo, B. J. Shastri, and M. Nahmias,

“Dynamic Precision Analog Computing for Neural Networks,” IEEE

J. Select. Topics Quantum Electron., vol. 29, no. 2: Optical

Computing, pp. 1–12, Mar. 2023, doi: 10.1109/JSTQE.2022.3218019.

[75] G. Giamougiannis et al., “Analog nanophotonic computing going

practical: silicon photonic deep learning engines for tiled optical

matrix multiplication with dynamic precision,” Nanophotonics, vol.

12, no. 5, pp. 963–973, Mar. 2023, doi: 10.1515/nanoph-2022-0423.

[76] W. Fornaciari et al., “Hardware and Software Support for Mixed

Precision Computing: a Roadmap for Embedded and HPC Systems,”

in 2023 Design, Automation & Test in Europe Conference &

Exhibition (DATE), Apr. 2023, pp. 1–6. doi:

10.23919/DATE56975.2023.10137092.

[77] S. Yamagiwa, W. Yang, and K. Wada, “Adaptive Lossless Image Data

Compression Method Inferring Data Entropy by Applying Deep

Neural Network,” Electronics, vol. 11, no. 4, Art. no. 4, Jan. 2022, doi:

10.3390/electronics11040504.

[78] H. M. Yasin and S. Y. Ameen, “Review and Evaluation of End-to-End

Video Compression with Deep-Learning,” in 2021 International

Conference of Modern Trends in Information and Communication

Technology Industry (MTICTI), Dec. 2021, pp. 1–8. doi:

10.1109/MTICTI53925.2021.9664790.

[79] C. Ma, D. Liu, X. Peng, L. Li, and F. Wu, “Convolutional Neural

Network-Based Arithmetic Coding for HEVC Intra-Predicted

Residues,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 30, no. 7, pp. 1901–1916, Jul. 2020, doi:

10.1109/TCSVT.2019.2927027.

[80] S. Wiedemann et al., “DeepCABAC: Context-adaptive binary

arithmetic coding for deep neural network compression,” May 2019,

doi: 10.48550/arXiv.1905.08318.

[81] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML

for Model Compression and Acceleration on Mobile Devices,” in

Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C.

Sminchisescu, and Y. Weiss, Eds., in Lecture Notes in Computer

Science. Cham: Springer International Publishing, 2018, pp. 815–832.

doi: 10.1007/978-3-030-01234-2_48.

[82] D. Dai et al., “Ms RED: A novel multi-scale residual encoding and

decoding network for skin lesion segmentation,” Medical Image

Analysis, vol. 75, p. 102293, Jan. 2022, doi:

10.1016/j.media.2021.102293.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

57 VOLUME XX, 2017

[83] D. G. Cortés, E. Onieva, I. P. López, L. Trinchera, and J. Wu,

“Autoencoder-Enhanced Clustering: A Dimensionality Reduction

Approach to Financial Time Series,” IEEE Access, vol. 12, pp. 16999–

17009, 2024, doi: 10.1109/ACCESS.2024.3359413.

[84] Z. Duan, M. Lu, J. Ma, Y. Huang, Z. Ma, and F. Zhu, “QARV:

Quantization-Aware ResNet VAE for Lossy Image Compression,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

46, no. 1, pp. 436–450, Jan. 2024, doi:

10.1109/TPAMI.2023.3322904.

[85] H. Zhang, Z. Hu, C. Luo, W. Zuo, and M. Wang, “Semantic Image

Inpainting with Progressive Generative Networks,” in Proceedings of

the 26th ACM international conference on Multimedia, in MM ’18.

New York, NY, USA: Association for Computing Machinery, Oct.

2018, pp. 1939–1947. doi: 10.1145/3240508.3240625.

[86] Y. Yang, K. Zheng, B. Wu, Y. Yang, and X. Wang, “Network

Intrusion Detection Based on Supervised Adversarial Variational

Auto-Encoder With Regularization,” IEEE Access, vol. 8, pp. 42169–

42184, 2020, doi: 10.1109/ACCESS.2020.2977007.

[87] S. Wiedemann et al., “DeepCABAC: A Universal Compression

Algorithm for Deep Neural Networks,” IEEE Journal of Selected

Topics in Signal Processing, vol. 14, no. 4, pp. 700–714, May 2020,

doi: 10.1109/JSTSP.2020.2969554.

[88] X. Wang, Z. Liu, Y. Gao, X. Zheng, X. Chen, and C. Wu, “Near-

Optimal Data Structure for Approximate Range Emptiness Problem in

Information-Centric Internet of Things,” IEEE Access, vol. 7, pp.

21857–21869, 2019, doi: 10.1109/ACCESS.2019.2897154.

[89] P. H. Chia et al., “KHyperLogLog: Estimating Reidentifiability and

Joinability of Large Data at Scale,” presented at the 2019 IEEE

Symposium on Security and Privacy (SP), IEEE Computer Society,

May 2019, pp. 350–364. doi: 10.1109/SP.2019.00046.

[90] X. Yang, A. Vernitski, and L. Carrea, “An approximate dynamic

programming approach for improving accuracy of lossy data

compression by Bloom filters,” European Journal of Operational

Research, vol. 252, no. 3, pp. 985–994, Aug. 2016, doi:

10.1016/j.ejor.2016.01.042.

[91] R. Patgiri, A. Biswas, and S. Nayak, “DeepBF: Malicious URL

detection using Learned Bloom Filter and Evolutionary Deep

Learning,” Feb. 26, 2022, arXiv: arXiv:2103.12544. doi:

10.48550/arXiv.2103.12544.

[92] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970, doi:

10.1145/362686.362692.

[93] S. Z. Kiss, É. Hosszu, J. Tapolcai, L. Rónyai, and O. Rottenstreich,

“Bloom Filter With a False Positive Free Zone,” IEEE Transactions

on Network and Service Management, vol. 18, no. 2, pp. 2334–2349,

Jun. 2021, doi: 10.1109/TNSM.2021.3059075.

[94] Y. Wu et al., “Elastic Bloom Filter: Deletable and Expandable Filter

Using Elastic Fingerprints,” IEEE Transactions on Computers, vol.

71, no. 4, pp. 984–991, Apr. 2022, doi: 10.1109/TC.2021.3067713.

[95] F. G. Gebretsadik, S. Nayak, and R. Patgiri, “eBF: an enhanced Bloom

Filter for intrusion detection in IoT,” Journal of Big Data, vol. 10, no.

1, p. 102, Jun. 2023, doi: 10.1186/s40537-023-00790-9.

[96] H. A. Seymen and M. E. Yalçın, “Design and Implementation of a

Lightweight Bloom Filter Accelerator for IoT Applications,” 2023

14th International Conference on Electrical and Electronics

Engineering (ELECO), pp. 1–5, Nov. 2023, doi:

10.1109/ELECO60389.2023.10415987.

[97] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo,

“Optimizing Bloom Filter: Challenges, Solutions, and Comparisons,”

Jan. 06, 2019, arXiv: arXiv:1804.04777. doi:

10.48550/arXiv.1804.04777.

[98] A. Singh, S. Garg, R. Kaur, S. Batra, N. Kumar, and A. Y. Zomaya,

“Probabilistic data structures for big data analytics: A comprehensive

review,” Knowledge-Based Systems, vol. 188, p. 104987, Jan. 2020,

doi: 10.1016/j.knosys.2019.104987.

[99] P. Reviriego, P. Junsangsri, S. Liu, and F. Lombardi, “Error-Tolerant

Data Sketches Using Approximate Nanoscale Memories and Voltage

Scaling,” IEEE Transactions on Nanotechnology, vol. 21, pp. 16–22,

2022, doi: 10.1109/TNANO.2021.3139394.

[100] F. Deng and D. Rafiei, “New estimation algorithms for streaming data:

Count-min can do more,” Webdocs. Cs. Ualberta. Ca, 2007.

[101] G. Pitel and G. Fouquier, “Count-Min-Log sketch: Approximately

counting with approximate counters,” Feb. 2015, doi:

10.48550/arXiv.1502.04885.

[102] Z. Wei, Y. Tian, W. Chen, L. Gu, and X. Zhang, “DUNE: Improving

Accuracy for Sketch-INT Network Measurement Systems,” Dec. 09,

2022, arXiv: arXiv:2212.04816. doi: 10.48550/arXiv.2212.04816.

[103] T. Yang et al., “Elastic Sketch: Adaptive and Fast Network-Wide

Measurements,” in Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, in SIGCOMM ’18.

New York, NY, USA: Association for Computing Machinery, 2018,

pp. 561–575. doi: 10.1145/3230543.3230544.

[104] K. Zhao, J. Wang, H. Qi, X. Xie, X. Zhou, and K. Li, “HBL-Sketch:

A New Three-Tier Sketch for Accurate Network Measurement,” in

Algorithms and Architectures for Parallel Processing, S. Wen, A.

Zomaya, and L. T. Yang, Eds., in Lecture Notes in Computer Science.

Cham: Springer International Publishing, 2020, pp. 48–59. doi:

10.1007/978-3-030-38991-8_4.

[105] T. Yang, S. Gao, Z. Sun, Y. Wang, Y. Shen, and X. Li, “Diamond

Sketch: Accurate Per-flow Measurement for Big Streaming Data,”

IEEE Transactions on Parallel and Distributed Systems, vol. 30, no.

12, pp. 2650–2662, Dec. 2019, doi: 10.1109/TPDS.2019.2923772.

[106] J. Zhu, J. Jin, Z. Gao, and P. Reviriego, “Single Event Transient

tolerant Count Min Sketches,” Microelectronics Reliability, vol. 129,

p. 114486, Feb. 2022, doi: 10.1016/j.microrel.2022.114486.

[107] G. Cormode and S. Muthukrishnan, “An improved data stream

summary: the count-min sketch and its applications,” Journal of

Algorithms, vol. 55, no. 1, pp. 58–75, Apr. 2005, doi:

10.1016/j.jalgor.2003.12.001.

[108] A. Ebrahim, “High-Level Design Optimizations for Implementing

Data Stream Sketch Frequency Estimators on FPGAs,” Electronics,

vol. 11, no. 15, Art. no. 15, Jan. 2022, doi:

10.3390/electronics11152399.

[109] A. Khan and S. Yan, “Composite Hashing for Data Stream Sketches,”

Apr. 16, 2019, arXiv: arXiv:1808.06800. doi:

10.48550/arXiv.1808.06800.

[110] N. Seleznev, S. Kumar, and C. B. Bruss, “Double-Hashing Algorithm

for Frequency Estimation in Data Streams,” Apr. 01, 2022, arXiv:

arXiv:2204.00650. doi: 10.48550/arXiv.2204.00650.

[111] P. Tyagi, M. C. Malta, and A. Dutta, “Hashing for cleaner reverse

engineered queries for the Entity Comparison Problem in RDF

Graphs,” in 2020 IEEE/WIC/ACM International Joint Conference on

Web Intelligence and Intelligent Agent Technology (WI-IAT), Dec.

2020, pp. 177–186. doi: 10.1109/WIIAT50758.2020.00028.

[112] X. Zhu, G. Wu, H. Zhang, S. Wang, and B. Ma, “Dynamic Count-Min

Sketch for Analytical Queries Over Continuous Data Streams,” in

2018 IEEE 25th International Conference on High Performance

Computing (HiPC), Dec. 2018, pp. 225–234. doi:

10.1109/HiPC.2018.00033.

[113] “Erasable Virtual HyperLogLog for Approximating Cumulative

Distribution over Data Streams.” Accessed: Mar. 15, 2023. [Online].

Available: https://ieeexplore.ieee.org/document/9328544

[114] K. G. Paterson and M. Raynal, “HyperLogLog: Exponentially Bad in

Adversarial Settings,” in 2022 IEEE 7th European Symposium on

Security and Privacy (EuroS&P), Jun. 2022, pp. 154–170. doi:

10.1109/EuroSP53844.2022.00018.

[115] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in practice:

algorithmic engineering of a state of the art cardinality estimation

algorithm,” in Proceedings of the 16th International Conference on

Extending Database Technology, in EDBT ’13. New York, NY, USA:

Association for Computing Machinery, Mar. 2013, pp. 683–692. doi:

10.1145/2452376.2452456.

[116] M. Karppa and R. Pagh, “HyperLogLogLog: Cardinality Estimation

With One Log More,” May 23, 2022, arXiv: arXiv:2205.11327. doi:

10.48550/arXiv.2205.11327.

[117] Q. Xiao, S. Chen, Y. Zhou, and J. Luo, “Estimating Cardinality for

Arbitrarily Large Data Stream With Improved Memory Efficiency,”

IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp. 433–446,

Apr. 2020, doi: 10.1109/TNET.2020.2970860.

[118] J. Xu, “Cardinalities estimation under sliding time window by sharing

HyperLogLog Counter,” Oct. 31, 2018, arXiv: arXiv:1810.13132. doi:

10.48550/arXiv.1810.13132.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

58 VOLUME XX, 2017

[119] O. Ertl, “New cardinality estimation algorithms for HyperLogLog

sketches,” Feb. 23, 2017, arXiv: arXiv:1702.01284. doi:

10.48550/arXiv.1702.01284.

[120] W. Li et al., “Approximate Nearest Neighbor Search on High

Dimensional Data — Experiments, Analyses, and Improvement,”

IEEE Transactions on Knowledge and Data Engineering, vol. 32, no.

8, pp. 1475–1488, Aug. 2020, doi: 10.1109/TKDE.2019.2909204.

[121] O. Ertl, “SetSketch: filling the gap between MinHash and

HyperLogLog,” Proc. VLDB Endow., vol. 14, no. 11, pp. 2244–2257,

Jul. 2021, doi: 10.14778/3476249.3476276.

[122] Y. W. Yu and G. M. Weber, “HyperMinHash: MinHash in LogLog

space,” Jul. 13, 2019, arXiv: arXiv:1710.08436. doi:

10.48550/arXiv.1710.08436.

[123] T. Dunning, “The t-digest: Efficient estimates of distributions,”

Software Impacts, vol. 7, p. 100049, Feb. 2021, doi:

10.1016/j.simpa.2020.100049.

[124] B. W. Ford, “An Instruction Profiling Based Framework to Promote

Software Portability,” May 2022, Accessed: Mar. 06, 2023. [Online].

Available: https://digital.library.txstate.edu/handle/10877/15757

[125] A. Mercat, J. Bonnot, M. Pelcat, W. Hamidouche, and D. Menard,

“Exploiting computation skip to reduce energy consumption by

approximate computing, an HEVC encoder case study,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2017,

Lausanne, Switzerland: IEEE, Mar. 2017, pp. 494–499. doi:

10.23919/DATE.2017.7927039.

[126] Y. Lin, C. Sakr, Y. Kim, and N. Shanbhag, “PredictiveNet: An energy-

efficient convolutional neural network via zero prediction,” in 2017

IEEE International Symposium on Circuits and Systems (ISCAS), May

2017, pp. 1–4. doi: 10.1109/ISCAS.2017.8050797.

[127] E. Eskandarnia, H. M. Al-Ammal, and R. Ksantini, “An embedded

deep-clustering-based load profiling framework,” Sustainable Cities

and Society, vol. 78, p. 103618, Mar. 2022, doi:

10.1016/j.scs.2021.103618.

[128] S. Li, S. Park, and S. Mahlke, “Sculptor: Flexible Approximation with

Selective Dynamic Loop Perforation,” in Proceedings of the 2018

International Conference on Supercomputing, in ICS ’18. New York,

NY, USA: Association for Computing Machinery, Jun. 2018, pp. 341–

351. doi: 10.1145/3205289.3205317.

[129] D. Maier and B. Juurlink, “Model-Based Loop Perforation,” in Euro-

Par 2021: Parallel Processing Workshops: Euro-Par 2021

International Workshops, Lisbon, Portugal, August 30-31, 2021,

Revised Selected Papers, Berlin, Heidelberg: Springer-Verlag, Aug.

2021, pp. 549–554. doi: 10.1007/978-3-031-06156-1_48.

[130] H. Omar, M. Ahmad, and O. Khan, “GraphTuner: An Input

Dependence Aware Loop Perforation Scheme for Efficient Execution

of Approximated Graph Algorithms,” in 2017 IEEE International

Conference on Computer Design (ICCD), Nov. 2017, pp. 201–208.

doi: 10.1109/ICCD.2017.38.

[131] O. Kislal and M. T. Kandemir, “Data access skipping for recursive

partitioning methods,” Computer Languages, Systems & Structures,

vol. 53, pp. 143–162, Sep. 2018, doi: 10.1016/j.cl.2018.03.003.

[132] V. Y. Raparti and S. Pasricha, “Approximate NoC and Memory

Controller Architectures for GPGPU Accelerators,” IEEE

Transactions on Parallel and Distributed Systems, vol. 31, no. 5, pp.

25–39, May 2020, doi: 10.1109/TPDS.2019.2958344.

[133] M. Karakoy, O. Kislal, X. Tang, M. T. Kandemir, and M.

Arunachalam, “Architecture-Aware Approximate Computing,” Proc.

ACM Meas. Anal. Comput. Syst., vol. 3, no. 2, p. 38:1-38:24, Jun.

2019, doi: 10.1145/3341617.3326153.

[134] S. Leroux, P. Molchanov, P. Simoens, B. Dhoedt, T. Breuel, and J.

Kautz, “IamNN: Iterative and Adaptive Mobile Neural Network for

Efficient Image Classification,” Apr. 2018, doi:

10.48550/arXiv.1804.10123.

[135] J. Yang, Y. Bhalgat, S. Chang, F. Porikli, and N. Kwak, “Dynamic

Iterative Refinement for Efficient 3D Hand Pose Estimation,” Nov.

11, 2021, arXiv: arXiv:2111.06500. doi: 10.48550/arXiv.2111.06500.

[136] Y. Yoo, D. Han, and S. Yun, “EXTD: Extremely Tiny Face Detector

via Iterative Filter Reuse,” Jun. 2019, doi:

10.48550/arXiv.1906.06579.

[137] W. Jin, J. Wohlwend, R. Barzilay, and T. Jaakkola, “Iterative

Refinement Graph Neural Network for Antibody Sequence-Structure

Co-design,” Jan. 27, 2022, arXiv: arXiv:2110.04624. doi:

10.48550/arXiv.2110.04624.

[138] Y. Tian, Y. Zhang, and H. Zhang, “Recent Advances in Stochastic

Gradient Descent in Deep Learning,” Mathematics, vol. 11, no. 3, Art.

no. 3, Jan. 2023, doi: 10.3390/math11030682.

[139] C. Shieh, S. Ofner, and C. B. Draucker, “Reasons for and associated

characteristics with early study termination: Analysis of

ClinicalTrials.gov data on pregnancy topics,” Nursing Outlook, vol.

70, no. 2, pp. 271–279, Mar. 2022, doi:

10.1016/j.outlook.2021.12.006.

[140] M. Mahsereci, L. Balles, C. Lassner, and P. Hennig, “Early Stopping

without a Validation Set,” Jun. 06, 2017, arXiv: arXiv:1703.09580.

doi: 10.48550/arXiv.1703.09580.

[141] M. Vilares Ferro, Y. Doval Mosquera, F. J. Ribadas Pena, and V. M.

Darriba Bilbao, “Early stopping by correlating online indicators in

neural networks,” Neural Networks, vol. 159, pp. 109–124, Feb. 2023,

doi: 10.1016/j.neunet.2022.11.035.

[142] Y. Bai et al., “Understanding and Improving Early Stopping for

Learning with Noisy Labels,” Dec. 26, 2021, arXiv:

arXiv:2106.15853. doi: 10.48550/arXiv.2106.15853.

[143] Y.-W. Chen, C. Wang, A. Saied, and R. Zhuang, “ACE: Adaptive

Constraint-aware Early Stopping in Hyperparameter Optimization,”

Aug. 04, 2022, arXiv: arXiv:2208.02922. doi:

10.48550/arXiv.2208.02922.

[144] Y. Matsubara, M. Levorato, and F. Restuccia, “Split Computing and

Early Exiting for Deep Learning Applications: Survey and Research

Challenges,” ACM Comput. Surv., vol. 55, no. 5, p. 90:1-90:30, Dec.

2022, doi: 10.1145/3527155.

[145] S. Paguada, L. Batina, I. Buhan, and I. Armendariz, “Being Patient and

Persistent: Optimizing An Early Stopping Strategy for Deep Learning

in Profiled Attacks,” Nov. 29, 2021, arXiv: arXiv:2111.14416. doi:

10.48550/arXiv.2111.14416.

[146] E. Cetinic, T. Lipic, and S. Grgic, “Fine-tuning Convolutional Neural

Networks for fine art classification,” Expert Systems with

Applications, vol. 114, pp. 107–118, Dec. 2018, doi:

10.1016/j.eswa.2018.07.026.

[147] E. Lattanzi, C. Contoli, and V. Freschi, “Do we need early exit

networks in human activity recognition?,” Engineering Applications

of Artificial Intelligence, vol. 121, p. 106035, May 2023, doi:

10.1016/j.engappai.2023.106035.

[148] C. Yang and X. Ma, “Improving Stability of Fine-Tuning Pretrained

Language Models via Component-Wise Gradient Norm Clipping,”

Oct. 19, 2022, arXiv: arXiv:2210.10325. doi:

10.48550/arXiv.2210.10325.

[149] F. Liu, X. Huang, Y. Chen, and J. A. K. Suykens, “Random Features

for Kernel Approximation: A Survey on Algorithms, Theory, and

Beyond,” Jul. 11, 2021, arXiv: arXiv:2004.11154. doi:

10.48550/arXiv.2004.11154.

[150] A. De Marchi, A. Dreves, M. Gerdts, S. Gottschalk, and S. Rogovs,

“A Function Approximation Approach for Parametric Optimization,”

J Optim Theory Appl, vol. 196, no. 1, pp. 56–77, Jan. 2023, doi:

10.1007/s10957-022-02138-4.

[151] D. Dũng and V. K. Nguyen, “Deep ReLU neural networks in high-

dimensional approximation,” Neural Networks, vol. 142, pp. 619–635,

Oct. 2021, doi: 10.1016/j.neunet.2021.07.027.

[152] Z. Zainuddin and O. Pauline, “Function approximation using artificial

neural networks,” WSEAS Trans. Math., vol. 7, no. 6, pp. 333–338,

Jun. 2008.

[153] T. De Ryck, S. Lanthaler, and S. Mishra, “On the approximation of

functions by tanh neural networks,” Neural Networks, vol. 143, pp.

732–750, Nov. 2021, doi: 10.1016/j.neunet.2021.08.015.

[154] S. S. Sawant, M. Wiedmann, S. Göb, N. Holzer, E. W. Lang, and T.

Götz, “Compression of Deep Convolutional Neural Network Using

Additional Importance-Weight-Based Filter Pruning Approach,”

Applied Sciences, vol. 12, no. 21, Art. no. 21, Jan. 2022, doi:

10.3390/app122111184.

[155] C.-T. Huang, J.-C. Chen, and J.-L. Wu, “Learning Sparse Neural

Networks Through Mixture-Distributed Regularization,” in 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), Jun. 2020, pp. 2968–2977. doi:

10.1109/CVPRW50498.2020.00355.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

59 VOLUME XX, 2017

[156] C. Louizos, M. Welling, and D. P. Kingma, “Learning Sparse Neural

Networks through L_0 Regularization,” Jun. 22, 2018, arXiv:

arXiv:1712.01312. doi: 10.48550/arXiv.1712.01312.

[157] J. Luo, Y. Gan, C.-M. Vong, C.-M. Wong, and C. Chen, “Scalable and

memory-efficient sparse learning for classification with approximate

Bayesian regularization priors,” Neurocomputing, vol. 457, pp. 106–

116, Oct. 2021, doi: 10.1016/j.neucom.2021.06.025.

[158] Z. Izzo, M. A. Smart, K. Chaudhuri, and J. Zou, “Approximate Data

Deletion from Machine Learning Models,” in Proceedings of The 24th

International Conference on Artificial Intelligence and Statistics,

PMLR, Mar. 2021, pp. 2008–2016. Accessed: Jun. 30, 2023. [Online].

Available: https://proceedings.mlr.press/v130/izzo21a.html

[159] S. Park, J. Lee, S. Mo, and J. Shin, “Lookahead: A Far-Sighted

Alternative of Magnitude-based Pruning,” Feb. 12, 2020, arXiv:

arXiv:2002.04809. doi: 10.48550/arXiv.2002.04809.

[160] N. Lee, T. Ajanthan, and P. H. S. Torr, “SNIP: Single-shot Network

Pruning based on Connection Sensitivity,” Feb. 23, 2019, arXiv:

arXiv:1810.02340. doi: 10.48550/arXiv.1810.02340.

[161] X. XIAO, Z. Wang, and S. Rajasekaran, “AutoPrune: Automatic

Network Pruning by Regularizing Auxiliary Parameters,” in Advances

in Neural Information Processing Systems, Curran Associates, Inc.,

2019. Accessed: Mar. 19, 2023. [Online]. Available:

https://proceedings.neurips.cc/paper/2019/hash/4efc9e02abdab6b616

6251918570a307-Abstract.html

[162] Z. Huang and N. Wang, “Data-Driven Sparse Structure Selection for

Deep Neural Networks,” Sep. 05, 2018, arXiv: arXiv:1707.01213. doi:

10.48550/arXiv.1707.01213.

[163] S. Yu et al., “Hessian-Aware Pruning and Optimal Neural Implant,”

Jun. 21, 2021, arXiv: arXiv:2101.08940. doi:

10.48550/arXiv.2101.08940.

[164] Y. Fu et al., “Exploring Structural Sparsity of Deep Networks Via

Inverse Scale Spaces,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 45, no. 2, pp. 1749–1765, Feb. 2023, doi:

10.1109/TPAMI.2022.3168881.

[165] N. J. Kim and H. Kim, “AGT: Channel Pruning Using Adaptive

Gradient Training for Accelerating Convolutional Neural Networks,”

in 2023 International Conference on Electronics, Information, and

Communication (ICEIC), Feb. 2023, pp. 1–3. doi:

10.1109/ICEIC57457.2023.10049943.

[166] S. Gao, P. Dong, Z. Pan, and X. You, “Lightweight Deep Learning

Based Channel Estimation for Extremely Large-Scale Massive MIMO

Systems,” IEEE Transactions on Vehicular Technology, pp. 1–6,

2024, doi: 10.1109/TVT.2024.3364510.

[167] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter Pruning via

Geometric Median for Deep Convolutional Neural Networks

Acceleration,” presented at the 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), IEEE Computer

Society, Jun. 2019, pp. 4335–4344. doi: 10.1109/CVPR.2019.00447.

[168] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian,

“Variational Convolutional Neural Network Pruning,” in 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2019, pp. 2775–2784. doi: 10.1109/CVPR.2019.00289.

[169] M. Sabih, F. Hannig, and J. Teich, “DyFiP: explainable AI-based

dynamic filter pruning of convolutional neural networks,” in

Proceedings of the 2nd European Workshop on Machine Learning and

Systems, in EuroMLSys ’22. New York, NY, USA: Association for

Computing Machinery, Apr. 2022, pp. 109–115. doi:

10.1145/3517207.3526982.

[170] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A Filter Level Pruning Method

for Deep Neural Network Compression,” Jul. 19, 2017, arXiv:

arXiv:1707.06342. doi: 10.48550/arXiv.1707.06342.

[171] K.-L. Du, M. N. S. Swamy, Z.-Q. Wang, and W. H. Mow, “Matrix

Factorization Techniques in Machine Learning, Signal Processing,

and Statistics,” Mathematics, vol. 11, no. 12, Art. no. 12, Jan. 2023,

doi: 10.3390/math11122674.

[172] M. Sabih, A. Mishra, F. Hannig, and J. Teich, “MOSP: Multi-

Objective Sensitivity Pruning of Deep Neural Networks,” in 2022

IEEE 13th International Green and Sustainable Computing

Conference (IGSC), Oct. 2022, pp. 1–8. doi:

10.1109/IGSC55832.2022.9969374.

[173] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste,

“Sparsity in deep learning: pruning and growth for efficient inference

and training in neural networks,” J. Mach. Learn. Res., vol. 22, no. 1,

p. 241:10882-241:11005, Jan. 2021.

[174] J. Choquette and W. Gandhi, “NVIDIA A100 GPU: Performance &

Innovation for GPU Computing,” in 2020 IEEE Hot Chips 32

Symposium (HCS), Aug. 2020, pp. 1–43. doi:

10.1109/HCS49909.2020.9220622.

[175] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An Efficient

Hardware Accelerator for Sparse Convolutional Neural Networks on

FPGAs,” in 2019 IEEE 27th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), San

Diego, CA, USA: IEEE, Apr. 2019, pp. 17–25. doi:

10.1109/FCCM.2019.00013.

[176] A. Tragoudaras et al., “Design Space Exploration of a Sparse

MobileNetV2 Using High-Level Synthesis and Sparse Matrix

Techniques on FPGAs,” Sensors, vol. 22, no. 12, Art. no. 12, Jan.

2022, doi: 10.3390/s22124318.

[177] P. Pinto and J. M. P. Cardoso, “A methodology and framework for

software memoization of functions,” in Proceedings of the 18th ACM

International Conference on Computing Frontiers, in CF ’21. New

York, NY, USA: Association for Computing Machinery, May 2021,

pp. 93–101. doi: 10.1145/3457388.3458668.

[178] I. Brumar, M. Casas, M. Moreto, M. Valero, and G. S. Sohi, “ATM:

Approximate Task Memoization in the Runtime System,” in 2017

IEEE International Parallel and Distributed Processing Symposium

(IPDPS), May 2017, pp. 1140–1150. doi: 10.1109/IPDPS.2017.49.

[179] A. Suresh, E. Rohou, and A. Seznec, “Compile-time function

memoization,” in Proceedings of the 26th International Conference

on Compiler Construction, in CC 2017. New York, NY, USA:

Association for Computing Machinery, Feb. 2017, pp. 45–54. doi:

10.1145/3033019.3033024.

[180] G. Zhang and D. Sanchez, “Leveraging Hardware Caches for

Memoization,” IEEE Computer Architecture Letters, vol. 17, no. 1,

pp. 59–63, Jan. 2018, doi: 10.1109/LCA.2017.2762308.

[181] G. Tziantzioulis, N. Hardavellas, and S. Campanoni, “Temporal

Approximate Function Memoization,” IEEE Micro, vol. 38, no. 4, pp.

60–70, Jul. 2018, doi: 10.1109/MM.2018.043191126.

[182] P. Arundhati, S. K. Jena, and S. K. Pani, “Approximate function

memoization,” Concurrency and Computation: Practice and

Experience, vol. 34, no. 23, p. e7204, 2022, doi: 10.1002/cpe.7204.

[183] Z. Liu, A. Yazdanbakhsh, D. K. Wang, H. Esmaeilzadeh, and N. S.

Kim, “AxMemo: hardware-compiler co-design for approximate code

memoization,” in Proceedings of the 46th International Symposium on

Computer Architecture, in ISCA ’19. New York, NY, USA:

Association for Computing Machinery, Jun. 2019, pp. 685–697. doi:

10.1145/3307650.3322215.

[184] S. Bubeck, R. Eldan, Y. T. Lee, and D. Mikulincer, “Network size and

weights size for memorization with two-layers neural networks,” in

Proceedings of the 34th International Conference on Neural

Information Processing Systems, in NIPS’20. Red Hook, NY, USA:

Curran Associates Inc., Dec. 2020, pp. 4977–4986.

[185] A. M. Kassem, “Mitigating Approximate Memorization in Language

Models via Dissimilarity Learned Policy,” 2023, doi:

10.48550/ARXIV.2305.01550.

[186] G. Kyriakides and K. Margaritis, “An Introduction to Neural

Architecture Search for Convolutional Networks,” May 22, 2020,

arXiv: arXiv:2005.11074. doi: 10.48550/arXiv.2005.11074.

[187] J. Fabrício Filho, I. Felzmann, and L. Wanner, “SmartApprox:

Learning-based configuration of approximate memories for energy-

efficient execution,” Sustainable Computing: Informatics and

Systems, vol. 34, p. 100701, Apr. 2022, doi:

10.1016/j.suscom.2022.100701.

[188] T. Huang, W. Dong, F. Wu, X. Li, and G. Shi, “Uncertainty-Driven

Knowledge Distillation for Language Model Compression,”

IEEE/ACM Transactions on Audio, Speech, and Language

Processing, pp. 1–9, 2023, doi: 10.1109/TASLP.2023.3289303.

[189] X. Liu, Z. Shi, Z. Wu, J. Chen, and G. Zhai, “GridDehazeNet+: An

Enhanced Multi-Scale Network With Intra-Task Knowledge Transfer

for Single Image Dehazing,” IEEE Transactions on Intelligent

Transportation Systems, vol. 24, no. 1, pp. 870–884, Jan. 2023, doi:

10.1109/TITS.2022.3210455.

[190] W. Tang, M. S. Shakeel, Z. Chen, H. Wan, and W. Kang, “Target

Category Agnostic Knowledge Distillation With Frequency-Domain

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

60 VOLUME XX, 2017

Supervision,” IEEE Transactions on Industrial Informatics, vol. 19,

no. 7, pp. 8462–8471, Jul. 2023, doi: 10.1109/TII.2022.3218635.

[191] C.-S. Lin and Y.-C. F. Wang, “Describe, Spot and Explain:

Interpretable Representation Learning for Discriminative Visual

Reasoning,” IEEE Transactions on Image Processing, vol. 32, pp.

2481–2492, 2023, doi: 10.1109/TIP.2023.3268001.

[192] Y. Zhao and N.-M. Cheung, “FS-BAN: Born-Again Networks for

Domain Generalization Few-Shot Classification,” IEEE Transactions

on Image Processing, vol. 32, pp. 2252–2266, 2023, doi:

10.1109/TIP.2023.3266172.

[193] J. Li, X. Chen, P. Zheng, Q. Wang, and Z. Yu, “Deep Generative

Knowledge Distillation by Likelihood Finetuning,” IEEE Access, vol.

11, pp. 46441–46453, 2023, doi: 10.1109/ACCESS.2023.3273952.

[194] J. Chen, X. Qu, J. Li, J. Wang, J. Wan, and J. Xiao, “Detecting Out-

of-Distribution Examples Via Class-Conditional Impressions

Reappearing,” in ICASSP 2023 - 2023 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Jun. 2023, pp.

1–5. doi: 10.1109/ICASSP49357.2023.10095909.

[195] Y. Wang et al., “Explicit and Implicit Knowledge Distillation via

Unlabeled Data,” in ICASSP 2023 - 2023 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

Jun. 2023, pp. 1–5. doi: 10.1109/ICASSP49357.2023.10095175.

[196] L. Yu, T. Hua, W. Yang, P. Ye, and Q. Liao, “CDHD: Contrastive

Dreamer for Hint Distillation,” in ICASSP 2023 - 2023 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Jun. 2023, pp. 1–5. doi:

10.1109/ICASSP49357.2023.10096829.

[197] H. Yin et al., “Dreaming to Distill: Data-Free Knowledge Transfer via

DeepInversion,” in 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), Jun. 2020, pp. 8712–8721. doi:

10.1109/CVPR42600.2020.00874.

[198] Z. Altuntaş, S. Arslan, and B. Boz, “Approximate execution and

grouping of critical sections for performance-accuracy tradeoff,”

Concurrency and Computation: Practice and Experience, vol. n/a, no.

n/a, p. e7614, doi: 10.1002/cpe.7614.

[199] S. K. Khatamifard, I. Akturk, and U. R. Karpuzcu, “On Approximate

Speculative Lock Elision,” IEEE Transactions on Multi-Scale

Computing Systems, vol. 4, no. 2, pp. 141–151, Apr. 2018, doi:

10.1109/TMSCS.2017.2773488.

[200] L. Carpentieri and B. Cosenza, “Towards a SYCL API for

Approximate Computing,” in Proceedings of the 2023 International

Workshop on OpenCL, in IWOCL ’23. New York, NY, USA:

Association for Computing Machinery, Apr. 2023, pp. 1–2. doi:

10.1145/3585341.3585374.

[201] K. Lee, R. Bhattacharya, J. Dass, V. N. S. Prithvi Sakuru, and R. N.

Mahapatra, “A Relaxed Synchronization Approach for Solving

Parallel Quadratic Programming Problems with Guaranteed

Convergence,” in 2016 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), May 2016, pp. 182–191. doi:

10.1109/IPDPS.2016.66.

[202] G. Stitt and D. Campbell, “PANDORA: An Architecture-Independent

Parallelizing Approximation-Discovery Framework,” ACM Trans.

Embed. Comput. Syst., vol. 19, no. 5, p. 39:1-39:17, Nov. 2020, doi:

10.1145/3391899.

[203] A. L. C. Bueno, N. de L. R. Rodriguez, and E. D. Sotelino, “Adaptive

relaxed synchronization through the use of supervised learning

methods,” Future Generation Computer Systems, vol. 106, pp. 260–

269, May 2020, doi: 10.1016/j.future.2019.12.051.

[204] A. Sampson et al., “ACCEPT: A Programmer-Guided Compiler

Framework for Practical Approximate Computing”.

[205] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S.

Amarasinghe, “Language and compiler support for auto-tuning

variable-accuracy algorithms,” in International Symposium on Code

Generation and Optimization (CGO 2011), Apr. 2011, pp. 85–96. doi:

10.1109/CGO.2011.5764677.

[206] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative

reliability for programs that execute on unreliable hardware,”

Commun. ACM, vol. 59, no. 8, pp. 83–91, Jul. 2016, doi:

10.1145/2958738.

[207] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and

D. Grossman, “EnerJ: approximate data types for safe and general

low-power computation,” in Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation,

in PLDI ’11. New York, NY, USA: Association for Computing

Machinery, Jun. 2011, pp. 164–174. doi: 10.1145/1993498.1993518.

[208] J. Park, H. Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris,

“FlexJava: language support for safe and modular approximate

programming,” in Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, in ESEC/FSE 2015. New York,

NY, USA: Association for Computing Machinery, Aug. 2015, pp.

745–757. doi: 10.1145/2786805.2786807.

[209] M. Nguyen, R. Perera, M. Wang, and N. Wu, “Modular probabilistic

models via algebraic effects,” Proc. ACM Program. Lang., vol. 6, no.

ICFP, p. 104:381-104:410, Aug. 2022, doi: 10.1145/3547635.

[210] A. McCallum, K. Schultz, and S. Singh, “FACTORIE: Probabilistic

Programming via Imperatively Defined Factor Graphs,” in Advances

in Neural Information Processing Systems, Curran Associates, Inc.,

2009. Accessed: Jul. 02, 2023. [Online]. Available:

https://proceedings.neurips.cc/paper_files/paper/2009/hash/847cc55b

7032108eee6dd897f3bca8a5-Abstract.html

[211] V. Mansinghka, D. Selsam, and Y. Perov, “Venture: a higher-order

probabilistic programming platform with programmable inference,”

Mar. 31, 2014, arXiv: arXiv:1404.0099. doi:

10.48550/arXiv.1404.0099.

[212] A. Todeschini, F. Caron, M. Fuentes, P. Legrand, and P. Del Moral,

“Biips: Software for Bayesian Inference with Interacting Particle

Systems,” Dec. 11, 2014, arXiv: arXiv:1412.3779. doi:

10.48550/arXiv.1412.3779.

[213] B. Carpenter et al., “Stan: A Probabilistic Programming Language,” J

Stat Softw, vol. 76, p. 1, 2017, doi: 10.18637/jss.v076.i01.

[214] M. I. Gorinova, A. D. Gordon, and C. Sutton, “Probabilistic

programming with densities in SlicStan: efficient, flexible, and

deterministic,” Proc. ACM Program. Lang., vol. 3, no. POPL, p. 35:1-

35:30, Jan. 2019, doi: 10.1145/3290348.

[215] M. Cusumano-Towner and V. K. Mansinghka, “A design proposal for

Gen: probabilistic programming with fast custom inference via code

generation,” in Proceedings of the 2nd ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages, in

MAPL 2018. New York, NY, USA: Association for Computing

Machinery, Jun. 2018, pp. 52–57. doi: 10.1145/3211346.3211350.

[216] O. Kiselyov, “Probabilistic Programming Language and its

Incremental Evaluation,” in Programming Languages and Systems, A.

Igarashi, Ed., in Lecture Notes in Computer Science. Cham: Springer

International Publishing, 2016, pp. 357–376. doi: 10.1007/978-3-319-

47958-3_19.

[217] J. Ai et al., “HackPPL: a universal probabilistic programming

language,” in Proceedings of the 3rd ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages, in

MAPL 2019. New York, NY, USA: Association for Computing

Machinery, Jun. 2019, pp. 20–28. doi: 10.1145/3315508.3329974.

[218] D. Tolpin, J.-W. van de Meent, H. Yang, and F. Wood, “Design and

Implementation of Probabilistic Programming Language Anglican,”

in Proceedings of the 28th Symposium on the Implementation and

Application of Functional Programming Languages, in IFL 2016.

New York, NY, USA: Association for Computing Machinery, Aug.

2016, pp. 1–12. doi: 10.1145/3064899.3064910.

[219] D. Tolpin, “Deployable probabilistic programming,” in Proceedings

of the 2019 ACM SIGPLAN International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software, in

Onward! 2019. New York, NY, USA: Association for Computing

Machinery, Oct. 2019, pp. 1–16. doi: 10.1145/3359591.3359727.

[220] K. Joshi, V. Fernando, and S. Misailovic, “Aloe: verifying reliability

of approximate programs in the presence of recovery mechanisms,” in

Proceedings of the 18th ACM/IEEE International Symposium on Code

Generation and Optimization, in CGO 2020. New York, NY, USA:

Association for Computing Machinery, Feb. 2020, pp. 56–67. doi:

10.1145/3368826.3377924.

[221] E. Bingham et al., “Pyro: Deep Universal Probabilistic

Programming,” Oct. 18, 2018, arXiv: arXiv:1810.09538. doi:

10.48550/arXiv.1810.09538.

[222] A. Ścibior et al., “Denotational validation of higher-order Bayesian

inference,” Proc. ACM Program. Lang., vol. 2, no. POPL, p. 60:1-

60:29, Dec. 2017, doi: 10.1145/3158148.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

61 VOLUME XX, 2017

[223] A. K. Lew, M. F. Cusumano-Towner, B. Sherman, M. Carbin, and V.

K. Mansinghka, “Trace types and denotational semantics for sound

programmable inference in probabilistic languages,” Proc. ACM

Program. Lang., vol. 4, no. POPL, p. 19:1-19:32, Dec. 2019, doi:

10.1145/3371087.

[224] S. Dylus, J. Christiansen, and F. Teegen, “Probabilistic Functional

Logic Programming,” in Practical Aspects of Declarative Languages,

F. Calimeri, K. Hamlen, and N. Leone, Eds., in Lecture Notes in

Computer Science. Cham: Springer International Publishing, 2018,

pp. 3–19. doi: 10.1007/978-3-319-73305-0_1.

[225] “FACTORIE: Home.” Accessed: Jul. 02, 2023. [Online]. Available:

http://factorie.cs.umass.edu/

[226] M. Biel and M. Johansson, “Efficient Stochastic Programming in

Julia,” INFORMS Journal on Computing, vol. 34, no. 4, pp. 1885–

1902, Jul. 2022, doi: 10.1287/ijoc.2022.1158.

[227] A. Ścibior, O. Kammar, and Z. Ghahramani, “Functional

programming for modular Bayesian inference,” Proc. ACM Program.

Lang., vol. 2, no. ICFP, p. 83:1-83:29, Jul. 2018, doi:

10.1145/3236778.

[228] A. Ścibior, Z. Ghahramani, and A. D. Gordon, “Practical probabilistic

programming with monads,” in Proceedings of the 2015 ACM

SIGPLAN Symposium on Haskell, in Haskell ’15. New York, NY,

USA: Association for Computing Machinery, Aug. 2015, pp. 165–

176. doi: 10.1145/2804302.2804317.

[229] C. Grazian and Y. Fan, “A review of approximate Bayesian

computation methods via density estimation: Inference for simulator-

models,” WIREs Computational Statistics, vol. 12, no. 4, p. e1486,

2020, doi: 10.1002/wics.1486.

[230] M. Barbareschi, S. Barone, N. Mazzocca, and A. Moriconi, “Design

Space Exploration Tools,” in Approximate Computing Techniques:

From Component- to Application-Level, A. Bosio, D. Ménard, and O.

Sentieys, Eds., Cham: Springer International Publishing, 2022, pp.

215–259. doi: 10.1007/978-3-030-94705-7_8.

[231] S. Misailovic, “Accuracy-Aware Compilers,” in Approximate

Computing Techniques: From Component- to Application-Level, A.

Bosio, D. Ménard, and O. Sentieys, Eds., Cham: Springer

International Publishing, 2022, pp. 177–214. doi: 10.1007/978-3-030-

94705-7_7.

[232] D. Gadioli, E. Vitali, G. Palermo, and C. Silvano, “mARGOt: A

Dynamic Autotuning Framework for Self-Aware Approximate

Computing,” IEEE Transactions on Computers, vol. 68, no. 5, pp.

713–728, May 2019, doi: 10.1109/TC.2018.2883597.

[233] W.-C. Lee et al., “White-Box Program Tuning,” in 2019 IEEE/ACM

International Symposium on Code Generation and Optimization

(CGO), Feb. 2019, pp. 122–135. doi: 10.1109/CGO.2019.8661177.

[234] T. T. Jost, Y. Durand, C. Fabre, A. Cohen, and F. Pérrot, “Seamless

Compiler Integration of Variable Precision Floating-Point

Arithmetic,” in 2021 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), Feb. 2021, pp. 65–76. doi:

10.1109/CGO51591.2021.9370331.

[235] H. Sharif et al., “ApproxTuner: a compiler and runtime system for

adaptive approximations,” in Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, in

PPoPP ’21. New York, NY, USA: Association for Computing

Machinery, Feb. 2021, pp. 262–277. doi: 10.1145/3437801.3446108.

[236] L. Liu, S. Isaacman, and U. Kremer, “An Adaptive Application

Framework with Customizable Quality Metrics,” ACM Trans. Des.

Autom. Electron. Syst., vol. 27, no. 2, p. 13:1-13:33, Nov. 2021, doi:

10.1145/3477428.

[237] R. Venkatagiri et al., “gem5-Approxilyzer: An Open-Source Tool for

Application-Level Soft Error Analysis,” in 2019 49th Annual

IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), Jun. 2019, pp. 214–221. doi:

10.1109/DSN.2019.00033.

[238] D. Danopoulos, G. Zervakis, K. Siozios, D. Soudris, and J. Henkel,

“AdaPT: Fast Emulation of Approximate DNN Accelerators in

PyTorch,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 42, no. 6, pp. 2074–2078, Jun.

2023, doi: 10.1109/TCAD.2022.3212645.

[239] M. Schramm, S. Bhowmik, and K. Rothermel, “Flexible application-

aware approximation for modern distributed graph processing

frameworks,” in Proceedings of the 5th ACM SIGMOD Joint

International Workshop on Graph Data Management Experiences &

Systems (GRADES) and Network Data Analytics (NDA), in GRADES-

NDA ’22. New York, NY, USA: Association for Computing

Machinery, Jun. 2022, pp. 1–10. doi: 10.1145/3534540.3534693.

[240] S. De, S. Mohamed, D. Goswami, and H. Corporaal, “Approximation-

Aware Design of an Image-Based Control System,” IEEE Access, vol.

8, pp. 174568–174586, 2020, doi: 10.1109/ACCESS.2020.3023047.

[241] M. A. Johnston and V. Vassiliadis, “Towards an Approximation-

Aware Computational Workflow Framework for Accelerating Large-

Scale Discovery Tasks: Invited paper,” in Proceedings of the 2022

Workshop on Advanced tools, programming languages, and

PLatforms for Implementing and Evaluating algorithms for

Distributed systems, in ApPLIED ’22. New York, NY, USA:

Association for Computing Machinery, Jul. 2022, pp. 7–14. doi:

10.1145/3524053.3542746.

[242] M. A. Hanif, R. Hafiz, and M. Shafique, “Error resilience analysis for

systematically employing approximate computing in convolutional

neural networks,” in 2018 Design, Automation Test in Europe

Conference Exhibition (DATE), Mar. 2018, pp. 913–916. doi:

10.23919/DATE.2018.8342139.

[243] K. Parasyris et al., “Approximate Computing Through the Lens of

Uncertainty Quantification,” in SC22: International Conference for

High Performance Computing, Networking, Storage and Analysis,

Nov. 2022, pp. 1–14. doi: 10.1109/SC41404.2022.00072.

[244] A. Bernstein, A. Dudeja, and Z. Langley, “A framework for dynamic

matching in weighted graphs,” Proceedings of the 53rd Annual ACM

SIGACT Symposium on Theory of Computing, pp. 668–681, Jun. 2021,

doi: 10.1145/3406325.3451113.

[245] X. Fang, N. Han, G. Zhou, S. Teng, Y. Xu, and S. Xie, “Dynamic

Double Classifiers Approximation for Cross-Domain Recognition,”

IEEE Trans. Cybern., vol. 52, no. 4, pp. 2618–2629, Apr. 2022, doi:

10.1109/TCYB.2020.3004398.

[246] M. Gao and G. Qu, “Estimate and Recompute: A Novel Paradigm for

Approximate Computing on Data Flow Graphs,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol.

39, no. 2, pp. 335–345, Feb. 2020, doi: 10.1109/TCAD.2018.2889662.

[247] Y. Wang, J. Dong, Y. Liu, C. Wang, and G. Qu, “RMLIM: A Runtime

Machine Learning Based Identification Model for Approximate

Computing on Data Flow Graphs,” IEEE Transactions on Sustainable

Computing, vol. 7, no. 1, pp. 201–210, Jan. 2022, doi:

10.1109/TSUSC.2021.3074292.

[248] M. Soni, A. Pal, and J. S. Miguel, “As-Is Approximate Computing,”

ACM Trans. Archit. Code Optim., vol. 20, no. 1, p. 3:1-3:26, Nov.

2022, doi: 10.1145/3559761.

[249] B. Nongpoh, R. Ray, S. Dutta, and A. Banerjee, “AutoSense: A

Framework for Automated Sensitivity Analysis of Program Data,”

IEEE Transactions on Software Engineering, vol. 43, no. 12, pp.

1110–1124, Dec. 2017, doi: 10.1109/TSE.2017.2654251.

[250] P. Roy, R. Ray, C. Wang, and W. F. Wong, “ASAC: automatic

sensitivity analysis for approximate computing,” SIGPLAN Not., vol.

49, no. 5, pp. 95–104, Jun. 2014, doi: 10.1145/2666357.2597812.

[251] K. Joshi, V. Fernando, and S. Misailovic, “Statistical algorithmic

profiling for randomized approximate programs,” in Proceedings of

the 41st International Conference on Software Engineering, in ICSE

’19. Montreal, Quebec, Canada: IEEE Press, May 2019, pp. 608–618.

doi: 10.1109/ICSE.2019.00071.

[252] C. Gonzalez, H. Liu, M. Noh, E. Karl, T. Toifl, and S. Hsu, “F5:

Enabling New System Architectures with 2.5D, 3D, and Chiplets,” in

2021 IEEE International Solid-State Circuits Conference (ISSCC),

Feb. 2021, pp. 529–532. doi: 10.1109/ISSCC42613.2021.9365834.

[253] A. Zeitak and A. Morrison, “Cuckoo Trie: Exploiting Memory-Level

Parallelism for Efficient DRAM Indexing,” in Proceedings of the

ACM SIGOPS 28th Symposium on Operating Systems Principles, in

SOSP ’21. New York, NY, USA: Association for Computing

Machinery, Oct. 2021, pp. 147–162. doi: 10.1145/3477132.3483551.

[254] R. Kumar, M. Alipour, and D. Black-Schaffer, “Freeway: Maximizing

MLP for Slice-Out-of-Order Execution,” in 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA),

Feb. 2019, pp. 558–569. doi: 10.1109/HPCA.2019.00009.

[255] K. Dimple, S. Guglani, A. Dasgupta, R. Sharma, S. Roy, and B. K.

Kaushik, “Modified Knowledge-Based Neural Networks Using

Control Variates for the Fast Uncertainty Quantification of On-Chip

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

62 VOLUME XX, 2017

MWCNT Interconnects,” IEEE Transactions on Electromagnetic

Compatibility, vol. 65, no. 4, pp. 1232–1246, Aug. 2023, doi:

10.1109/TEMC.2023.3279695.

[256] H. Liu et al., “Accelerating Personalized Recommendation with

Cross-level Near-Memory Processing,” in Proceedings of the 50th

Annual International Symposium on Computer Architecture, in ISCA

’23. New York, NY, USA: Association for Computing Machinery,

Jun. 2023, pp. 1–13. doi: 10.1145/3579371.3589101.

[257] J. Song et al., “A Calibration-Free 15-level/Cell eDRAM Computing-

in-Memory Macro with 3T1C Current-Programmed Dynamic-

Cascoded MLC achieving 233-to-304-TOPS/W 4b MAC,” in 2023

IEEE Custom Integrated Circuits Conference (CICC), Apr. 2023, pp.

1–2. doi: 10.1109/CICC57935.2023.10121207.

[258] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan,

“Approximate Memory Compression,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 980–991,

Apr. 2020, doi: 10.1109/TVLSI.2020.2970041.

[259] G. Singh et al., “Near-memory computing: Past, present, and future,”

Microprocessors and Microsystems, vol. 71, p. 102868, Nov. 2019,

doi: 10.1016/j.micpro.2019.102868.

[260] B. W. Denkinger et al., “Impact of Memory Voltage Scaling on

Accuracy and Resilience of Deep Learning Based Edge Devices,”

IEEE Design & Test, vol. 37, no. 2, pp. 84–92, Apr. 2020, doi:

10.1109/MDAT.2019.2947282.

[261] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality

Configurable Approximate DRAM,” IEEE Transactions on

Computers, vol. 66, no. 7, pp. 1172–1187, Jul. 2017, doi:

10.1109/TC.2016.2640296.

[262] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan,

“Approximate memory compression for energy-efficiency,” in 2017

IEEE/ACM International Symposium on Low Power Electronics and

Design (ISLPED), Jul. 2017, pp. 1–6. doi:

10.1109/ISLPED.2017.8009173.

[263] R. V. W. Putra, M. A. Hanif, and M. Shafique, “An Off-Chip Memory

Access Optimization for Embedded Deep Learning Systems,” in

Embedded Machine Learning for Cyber-Physical, IoT, and Edge

Computing: Hardware Architectures, S. Pasricha and M. Shafique,

Eds., Cham: Springer International Publishing, 2024, pp. 175–198.

doi: 10.1007/978-3-031-19568-6_6.

[264] R. V. W. Putra, M. A. Hanif, and M. Shafique, “EnforceSNN:

Enabling resilient and energy-efficient spiking neural network

inference considering approximate DRAMs for embedded systems,”

Frontiers in Neuroscience, vol. 16, 2022, Accessed: Jan. 14, 2023.

[Online]. Available:

https://www.frontiersin.org/articles/10.3389/fnins.2022.937782

[265] L. Orosa et al., “Dataplant: Enhancing System Security with Low-

Cost In-DRAM Value Generation Primitives,” Nov. 05, 2019, arXiv:

arXiv:1902.07344. doi: 10.48550/arXiv.1902.07344.

[266] R. V. Wicaksana Putra, M. Abdullah Hanif, and M. Shafique,

“DRMap: A Generic DRAM Data Mapping Policy for Energy-

Efficient Processing of Convolutional Neural Networks,” in 2020 57th

ACM/IEEE Design Automation Conference (DAC), Jul. 2020, pp. 1–

6. doi: 10.1109/DAC18072.2020.9218672.

[267] G. Stazi, A. Mastrandrea, M. Olivieri, and F. Menichelli, “Quality

Aware Selective ECC for Approximate DRAM,” in Applications in

Electronics Pervading Industry, Environment and Society, S.

Saponara and A. De Gloria, Eds., in Lecture Notes in Electrical

Engineering. Cham: Springer International Publishing, 2020, pp. 109–

116. doi: 10.1007/978-3-030-37277-4_13.

[268] N. Gupta, A. P. Shah, S. Khan, S. K. Vishvakarma, M. Waltl, and P.

Girard, “Error-Tolerant Reconfigurable VDD 10T SRAM

Architecture for IoT Applications,” Electronics, vol. 10, no. 14, Art.

no. 14, Jan. 2021, doi: 10.3390/electronics10141718.

[269] E. Russo et al., “Combined Application of Approximate Computing

Techniques in DNN Hardware Accelerators,” in 2022 IEEE

International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), May 2022, pp. 16–23. doi:

10.1109/IPDPSW55747.2022.00013.

[270] D. T. Nguyen, N. H. Hung, H. Kim, and H.-J. Lee, “An Approximate

Memory Architecture for Energy Saving in Deep Learning

Applications,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 67, no. 5, pp. 1588–1601, May 2020, doi:

10.1109/TCSI.2019.2962516.

[271] A. Teman, G. Karakonstantis, R. Giterman, P. Meinerzhagen, and A.

Burg, “Energy versus data integrity trade-offs in embedded high-

density logic compatible dynamic memories,” in 2015 Design,

Automation & Test in Europe Conference & Exhibition (DATE), Mar.

2015, pp. 489–494. doi: 10.7873/DATE.2015.0783.

[272] G. Stazi, L. Adani, A. Mastrandrea, M. Olivieri, and F. Menichelli,

“Impact of Approximate Memory Data Allocation on a H.264

Software Video Encoder,” in High Performance Computing, R.

Yokota, M. Weiland, J. Shalf, and S. Alam, Eds., in Lecture Notes in

Computer Science. Cham: Springer International Publishing, 2018,

pp. 545–553. doi: 10.1007/978-3-030-02465-9_38.

[273] F. Menichelli, G. Stazi, A. Mastrandrea, and M. Olivieri, “An

Emulator for Approximate Memory Platforms Based on QEmu,” in

Applications in Electronics Pervading Industry, Environment and

Society, A. De Gloria, Ed., in Lecture Notes in Electrical Engineering.

Cham: Springer International Publishing, 2018, pp. 153–159. doi:

10.1007/978-3-319-55071-8_20.

[274] M. Liu et al., “A Selective Bit Dropping and Encoding Co-Strategy in

Image Processing for Low-Power Design in DRAM and SRAM,”

IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, pp. 1–1, 2023, doi: 10.1109/JETCAS.2023.3234402.

[275] Z. Shao et al., “Memory-Efficient CNN Accelerator Based on

Interlayer Feature Map Compression,” Oct. 12, 2021, arXiv:

arXiv:2110.06155. doi: 10.48550/arXiv.2110.06155.

[276] A. Raha et al., “Special Session: Approximate TinyML Systems: Full

System Approximations for Extreme Energy-Efficiency in Intelligent

Edge Devices,” in 2021 IEEE 39th International Conference on

Computer Design (ICCD), Oct. 2021, pp. 13–16. doi:

10.1109/ICCD53106.2021.00015.

[277] A. Raha, S. Venkataramani, V. Raghunathan, and A. Raghunathan,

“Energy-Efficient Reduce-and-Rank Using Input-Adaptive

Approximations,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 25, no. 2, pp. 462–475, Feb. 2017, doi:

10.1109/TVLSI.2016.2586379.

[278] D.-T. Nguyen, N.-M. Ho, M.-S. Le, W.-F. Wong, and I.-J. Chang,

“ZEM: Zero-Cycle Bit-Masking Module for Deep Learning Refresh-

Less DRAM,” IEEE Access, vol. 9, pp. 93723–93733, 2021, doi:

10.1109/ACCESS.2021.3088893.

[279] S. Pal, S. Bose, W.-H. Ki, and A. Islam, “Characterization of Half-

Select Free Write Assist 9T SRAM Cell,” IEEE Transactions on

Electron Devices, vol. 66, no. 11, pp. 4745–4752, Nov. 2019, doi:

10.1109/TED.2019.2942493.

[280] M. Imani and T. S. Rosing, “Approximate CPU and GPU Design

Using Emerging Memory Technologies,” in Approximate Circuits:

Methodologies and CAD, S. Reda and M. Shafique, Eds., Cham:

Springer International Publishing, 2019, pp. 383–398. doi:

10.1007/978-3-319-99322-5_19.

[281] A. M. H. Monazzah, M. Shoushtari, S. G. Miremadi, A. M. Rahmani,

and N. Dutt, “QuARK: Quality-configurable approximate STT-

MRAM cache by fine-grained tuning of reliability-energy knobs,” in

2017 IEEE/ACM International Symposium on Low Power Electronics

and Design (ISLPED), Jul. 2017, pp. 1–6. doi:

10.1109/ISLPED.2017.8009198.

[282] A. M. Hosseini Monazzah, A. M. Rahmani, A. Miele, and N. Dutt,

“CAST: Content-Aware STT-MRAM Cache Write Management for

Different Levels of Approximation,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 39,

no. 12, pp. 4385–4398, Dec. 2020, doi:

10.1109/TCAD.2020.2986320.

[283] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi, “On Memory Reuse

Between Inputs and Outputs of Dataflow Actors,” ACM Trans.

Embed. Comput. Syst., vol. 15, no. 2, p. 30:1-30:25, Feb. 2016, doi:

10.1145/2871744.

[284] S. Minakova and T. Stefanov, “Buffer Sizes Reduction for Memory-

efficient CNN Inference on Mobile and Embedded Devices,” in 2020

23rd Euromicro Conference on Digital System Design (DSD), Aug.

2020, pp. 133–140. doi: 10.1109/DSD51259.2020.00031.

[285] S. Minakova and T. Stefanov, “Memory-Throughput Trade-off for

CNN-Based Applications at the Edge,” ACM Trans. Des. Autom.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

63 VOLUME XX, 2017

Electron. Syst., vol. 28, no. 1, p. 2:1-2:26, Dec. 2022, doi:

10.1145/3527457.

[286] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the State

of Neural Network Pruning?,” Mar. 06, 2020, arXiv:

arXiv:2003.03033. doi: 10.48550/arXiv.2003.03033.

[287] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A Survey of Model

Compression and Acceleration for Deep Neural Networks,” Jun. 14,

2020, arXiv: arXiv:1710.09282. doi: 10.48550/arXiv.1710.09282.

[288] H. Miomandre et al., “Approximate Buffers for Reducing Memory

Requirements: Case Study on SKA,” in 2020 IEEE Workshop on

Signal Processing Systems (SiPS), Oct. 2020, pp. 1–6. doi:

10.1109/SiPS50750.2020.9195262.

[289] H. Miomandre, J.-F. Nezan, and D. Ménard, “Design Space

Exploration for Memory-Oriented Approximate Computing

Techniques,” in 2022 IEEE 33rd International Conference on

Application-specific Systems, Architectures and Processors (ASAP),

Jul. 2022, pp. 122–125. doi: 10.1109/ASAP54787.2022.00028.

[290] C. Gao, X. Xin, Y. Lu, Y. Zhang, J. Yang, and J. Shu, “ParaBit:

Processing Parallel Bitwise Operations in NAND Flash Memory

based SSDs,” in MICRO-54: 54th Annual IEEE/ACM International

Symposium on Microarchitecture, in MICRO ’21. New York, NY,

USA: Association for Computing Machinery, Oct. 2021, pp. 59–70.

doi: 10.1145/3466752.3480078.

[291] J. Choi, H.-J. Lee, and C. E. Rhee, “ADC-PIM: Accelerating

Convolution on the GPU via In-Memory Approximate Data

Comparison,” IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 12, no. 2, pp. 458–471, Jun. 2022, doi:

10.1109/JETCAS.2022.3167391.

[292] G. H. Lee, S. Hwang, J. Yu, and H. Kim, “Architecture and Process

Integration Overview of 3D NAND Flash Technologies,” Applied

Sciences, vol. 11, no. 15, Art. no. 15, Jan. 2021, doi:

10.3390/app11156703.

[293] S.-J. Byun et al., “A Low-Power Analog Processor-in-Memory-Based

Convolutional Neural Network for Biosensor Applications,” Sensors,

vol. 22, no. 12, Art. no. 12, Jan. 2022, doi: 10.3390/s22124555.

[294] H. Jin et al., “ReHy: A ReRAM-Based Digital/Analog Hybrid PIM

Architecture for Accelerating CNN Training,” IEEE Transactions on

Parallel and Distributed Systems, vol. 33, no. 11, pp. 2872–2884, Nov.

2022, doi: 10.1109/TPDS.2021.3138087.

[295] N. Hajinazar et al., “SIMDRAM: a framework for bit-serial SIMD

processing using DRAM,” in Proceedings of the 26th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems, in ASPLOS ’21. New York, NY,

USA: Association for Computing Machinery, Apr. 2021, pp. 329–345.

doi: 10.1145/3445814.3446749.

[296] H. Zhang, Y. Shu, Q. Deng, H. Sun, W. Zhao, and Y. Ha, “WDVR-

RAM: A 0.25–1.2 V, 2.6–76 POPS/W Charge-Domain In-Memory-

Computing Binarized CNN Accelerator for Dynamic AIoT

Workloads,” IEEE Transactions on Circuits and Systems I: Regular

Papers, pp. 1–14, 2023, doi: 10.1109/TCSI.2023.3294296.

[297] A. Ehrmann, T. Blachowicz, G. Ehrmann, and T. Grethe, “Recent

developments in phase-change memory,” Applied Research, vol. 1,

no. 4, p. e202200024, 2022, doi: 10.1002/appl.202200024.

[298] E. Garzón, L. Yavits, A. Teman, and M. Lanuzza, “Approximate

Content-Addressable Memories: A Review,” Chips, vol. 2, no. 2, Art.

no. 2, Jun. 2023, doi: 10.3390/chips2020005.

[299] Y. Fu and Y. Wu, “CARAM: A Content-Aware Hybrid PCM/DRAM

Main Memory System Framework,” in Network and Parallel

Computing: 17th IFIP WG 10.3 International Conference, NPC 2020,

Zhengzhou, China, September 28–30, 2020, Revised Selected Papers,

Berlin, Heidelberg: Springer-Verlag, Sep. 2020, pp. 243–248. doi:

10.1007/978-3-030-79478-1_21.

[300] T. Venkata Mahendra, S. Wasmir Hussain, S. Mishra, and A.

Dandapat, “Energy-Efficient Precharge-Free Ternary Content

Addressable Memory (TCAM) for High Search Rate Applications,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol.

67, no. 7, pp. 2345–2357, Jul. 2020, doi:

10.1109/TCSI.2020.2978295.

[301] H. Zhan, C. Wang, H. Cui, X. Liu, F. Liu, and X. Cheng, “High-Speed

and Energy-Efficient Single-Port Content Addressable Memory to

Achieve Dual-Port Operation,” in 2023 Design, Automation & Test in

Europe Conference & Exhibition (DATE), Apr. 2023, pp. 1–6. doi:

10.23919/DATE56975.2023.10137206.

[302] G. Stazi, A. Mastrandrea, M. Olivieri, and F. Menichelli, “Full System

Emulation of Approximate Memory Platforms with AppropinQuo,”

Journal of Low Power Electronics, vol. 15, no. 1, pp. 30–39, Mar.

2019, doi: 10.1166/jolpe.2019.1595.

[303] M. Yayla, Z. Valipour Dehnoo, M. Masoudinejad, and J.-J. Chen,

“TREAM: A Tool for Evaluating Error Resilience of Tree-Based

Models Using Approximate Memory,” in Embedded Computer

Systems: Architectures, Modeling, and Simulation, A. Orailoglu, M.

Reichenbach, and M. Jung, Eds., in Lecture Notes in Computer

Science. Cham: Springer International Publishing, 2022, pp. 61–73.

doi: 10.1007/978-3-031-15074-6_4.

[304] R. Yarmand, M. Kamal, A. Afzali-Kusha, and M. Pedram, “DART: A

Framework for Determining Approximation Levels in an

Approximable Memory Hierarchy,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp. 273–286,

Jan. 2020, doi: 10.1109/TVLSI.2019.2935832.

[305] F. Ferdaus, B. M. S. Bahar Talukder, and M. T. Rahman,

“Approximate MRAM: High-performance and Power-efficient

Computing with MRAM Chips for Error-tolerant Applications,” IEEE

Transactions on Computers, pp. 1–1, 2022, doi:

10.1109/TC.2022.3174584.

[306] K. Kim, S.-J. Jang, J. Park, E. Lee, and S.-S. Lee, “Lightweight and

Energy-Efficient Deep Learning Accelerator for Real-Time Object

Detection on Edge Devices,” Sensors, vol. 23, no. 3, Art. no. 3, Jan.

2023, doi: 10.3390/s23031185.

[307] J. Bonnot, A. Mercat, E. Nogues, and D. Ménard, “Approximate

Computing at the Algorithmic Level,” in Approximate Computing

Techniques: From Component- to Application-Level, A. Bosio, D.

Ménard, and O. Sentieys, Eds., Cham: Springer International

Publishing, 2022, pp. 109–142. doi: 10.1007/978-3-030-94705-7_5.

[308] J. Murray, P. Wettin, P. P. Pande, and B. Shirazi, “Chapter 7 -

Dynamic Voltage and Frequency Scaling,” in Sustainable Wireless

Network-on-Chip Architectures, J. Murray, P. Wettin, P. P. Pande, and

B. Shirazi, Eds., Boston: Morgan Kaufmann, 2016, pp. 79–105. doi:

10.1016/B978-0-12-803625-9.00014-5.

[309] H. Ali et al., “A survey on system level energy optimisation for

MPSoCs in IoT and consumer electronics,” Computer Science Review,

vol. 41, p. 100416, Aug. 2021, doi: 10.1016/j.cosrev.2021.100416.

[310] S. S.B., A. Garg, and P. Kulkarni, “Dynamic Memory Management

for GPU-Based Training of Deep Neural Networks,” in 2019 IEEE

International Parallel and Distributed Processing Symposium

(IPDPS), May 2019, pp. 200–209. doi: 10.1109/IPDPS.2019.00030.

[311] S. Pandey, L. Siddhu, and P. R. Panda, “NeuroCool: Dynamic

Thermal Management of 3D DRAM for Deep Neural Networks

through Customized Prefetching,” ACM Trans. Des. Autom. Electron.

Syst., vol. 29, no. 1, pp. 1–35, Jan. 2024, doi: 10.1145/3630012.

[312] S. Li, Z. Zhang, R. Mao, J. Xiao, L. Chang, and J. Zhou, “A Fast and

Energy-Efficient SNN Processor With Adaptive Clock/Event-Driven

Computation Scheme and Online Learning,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 68, no. 4, pp. 1543–1552,

Apr. 2021, doi: 10.1109/TCSI.2021.3052885.

[313] R. N. Tadros and P. A. Beerel, “A Robust and Self-Adaptive Clocking

Technique for SFQ Circuits,” IEEE Transactions on Applied

Superconductivity, vol. 28, no. 7, pp. 1–11, Oct. 2018, doi:

10.1109/TASC.2018.2856836.

[314] S. Vangal et al., “Near-Threshold Voltage Design Techniques for

Heterogenous Manycore System-on-Chips,” Journal of Low Power

Electronics and Applications, vol. 10, no. 2, Art. no. 2, Jun. 2020, doi:

10.3390/jlpea10020016.

[315] J. Baik, J. Lee, and K. Kang, “Task Migration and Scheduler for

Mixed-Criticality Systems,” Sensors, vol. 22, no. 5, Art. no. 5, Jan.

2022, doi: 10.3390/s22051926.

[316] D. D’Agostino, I. Merelli, M. Aldinucci, and D. Cesini, “Hardware

and Software Solutions for Energy-Efficient Computing in Scientific

Programming,” Scientific Programming, vol. 2021, p. e5514284, Jun.

2021, doi: 10.1155/2021/5514284.

[317] A. S. Baroughi, S. Huemer, H. S. Shahhoseini, and N. TaheriNejad,

“AxE: An Approximate-Exact Multi-Processor System-on-Chip

Platform,” in 2022 25th Euromicro Conference on Digital System

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

64 VOLUME XX, 2017

Design (DSD), Maspalomas, Spain: IEEE, Aug. 2022, pp. 60–66. doi:

10.1109/DSD57027.2022.00018.

[318] A. Aponte-Moreno, F. Restrepo-Calle, and C. Pedraza, “A Low-cost

Fault Tolerance Method for ARM and RISC-V Microprocessor-based

Systems using Temporal Redundancy and Approximate Computing

through Simplified Iterations,” Journal of Integrated Circuits and

Systems, vol. 16, no. 3, pp. 1–14, 2021, doi: 10.29292/jics.v16i3.539.

[319] İ. Taştan, M. Karaca, and A. Yurdakul, “Approximate CPU Design for

IoT End-Devices with Learning Capabilities,” Electronics, vol. 9, no.

1, Art. no. 1, Jan. 2020, doi: 10.3390/electronics9010125.

[320] I. M. A. Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R.

Montanari, “SpatialSSJP: QoS-Aware Adaptive Approximate Stream-

Static Spatial Join Processor,” IEEE Transactions on Parallel and

Distributed Systems, vol. 35, no. 1, pp. 73–88, Jan. 2024, doi:

10.1109/TPDS.2023.3330669.

[321] M. E. Elbtity, P. S. Chandarana, B. Reidy, J. K. Eshraghian, and R.

Zand, “APTPU: Approximate Computing Based Tensor Processing

Unit,” IEEE Transactions on Circuits and Systems I: Regular Papers,

pp. 1–0, 2022, doi: 10.1109/TCSI.2022.3206262.

[322] A. Siddique, K. Basu, and K. A. Hoque, “Exploring Fault-Energy

Trade-offs in Approximate DNN Hardware Accelerators,” in 2021

22nd International Symposium on Quality Electronic Design

(ISQED), Apr. 2021, pp. 343–348. doi:

10.1109/ISQED51717.2021.9424345.

[323] M. H. Ahmadilivani et al., “Special Session: Approximation and Fault

Resiliency of DNN Accelerators,” in 2023 IEEE 41st VLSI Test

Symposium (VTS), Apr. 2023, pp. 1–10. doi:

10.1109/VTS56346.2023.10140043.

[324] J. N. Mitchell, “Computer Multiplication and Division Using Binary

Logarithms,” IRE Transactions on Electronic Computers, vol. EC-11,

no. 4, pp. 512–517, Aug. 1962, doi: 10.1109/TEC.1962.5219391.

[325] A. B. Kahng and S. Kang, “Accuracy-configurable adder for

approximate arithmetic designs,” in DAC Design Automation

Conference 2012, Jun. 2012, pp. 820–825. doi:

10.1145/2228360.2228509.

[326] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency

generic accuracy configurable adder,” in 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC), Jun. 2015,

pp. 1–6. doi: 10.1145/2744769.2744778.

[327] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-

Inspired Imprecise Computational Blocks for Efficient VLSI

Implementation of Soft-Computing Applications,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 57, no. 4, pp. 850–

862, Apr. 2010, doi: 10.1109/TCSI.2009.2027626.

[328] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-Power

Digital Signal Processing Using Approximate Adders,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 32, no. 1, pp. 124–137, Jan. 2013, doi:

10.1109/TCAD.2012.2217962.

[329] K. Du, P. Varman, and K. Mohanram, “High performance reliable

variable latency carry select addition,” in 2012 Design, Automation &

Test in Europe Conference & Exhibition (DATE), Mar. 2012, pp.

1257–1262. doi: 10.1109/DATE.2012.6176685.

[330] S. Singh and Y. B. Shukla, “Low Power Carry Select Adder using

FinFET Technology,” in 2022 6th International Conference on

Devices, Circuits and Systems (ICDCS), Apr. 2022, pp. 152–155. doi:

10.1109/ICDCS54290.2022.9780840.

[331] Ch. R. N. Praneeth, Ch. U. Kumari, T. Padma, and N. A. Vignesh,

“Low-Energy-Consumption Design: 16 Bit Block Based Carry

Speculative Approximate Adder,” in 2022 IEEE 3rd Global

Conference for Advancement in Technology (GCAT), Oct. 2022, pp.

1–4. doi: 10.1109/GCAT55367.2022.9972197.

[332] H. Ghabeli, A. Sabbagh Molahosseini, A. A. Emrani Zarandi, and L.

Sousa, “Variable Latency Carry Speculative Adders with Input-based

Dynamic Configuration,” Computers & Electrical Engineering, vol.

93, p. 107247, Jul. 2021, doi: 10.1016/j.compeleceng.2021.107247.

[333] A. Najafi, M. Weißbrich, G. Payá-Vayá, and A. Garcia-Ortiz,

“Coherent Design of Hybrid Approximate Adders: Unified Design

Framework and Metrics,” IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, vol. 8, no. 4, pp. 736–745, Dec. 2018,

doi: 10.1109/JETCAS.2018.2833284.

[334] G. Giustolisi and G. Palumbo, “Hybrid Full Adders: Optimized

Design, Critical Review and Comparison in the Energy-Delay Space,”

Electronics, vol. 11, no. 19, Art. no. 19, Jan. 2022, doi:

10.3390/electronics11193220.

[335] hareesh-reddy basireddy, K. challa, and T. Nikoubin, “Hybrid Logical

Effort for Hybrid Logic Style Full Adders in Multistage Structures,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 27, no. 5, pp. 1138–1147, May 2019, doi:

10.1109/TVLSI.2018.2889833.

[336] A. Nandal and M. Kumar, “Design and Implementation of CMOS Full

Adder Circuit with ECRL and Sleepy Keeper Technique,” in 2018

International Conference on Advances in Computing, Communication

Control and Networking (ICACCCN), Oct. 2018, pp. 733–738. doi:

10.1109/ICACCCN.2018.8748336.

[337] M. Agarwal, N. Agrawal, and Md. A. Alam, “A new design of low

power high speed hybrid CMOS full adder,” in 2014 International

Conference on Signal Processing and Integrated Networks (SPIN),

Feb. 2014, pp. 448–452. doi: 10.1109/SPIN.2014.6776995.

[338] A. M. Hassani, M. Rezaalipour, and M. Dehyadegari, “A Novel Ultra

Low Power Accuracy Configurable Adder at Transistor Level,” in

2018 8th International Conference on Computer and Knowledge

Engineering (ICCKE), Oct. 2018, pp. 165–170. doi:

10.1109/ICCKE.2018.8566643.

[339] M. Kumar, S. K. Arya, and S. Pandey, “Single bit full adder design

using 8 transistors with novel 3 transistors XNOR gate,” Jan. 10, 2012,

arXiv: arXiv:1201.1966. doi: 10.48550/arXiv.1201.1966.

[340] P. Kumar and R. K. Sharma, “Low voltage high performance hybrid

full adder,” Engineering Science and Technology, an International

Journal, vol. 19, no. 1, pp. 559–565, Mar. 2016, doi:

10.1016/j.jestch.2015.10.001.

[341] M. Hasan, Md. J. Hossein, M. Hossain, H. U. Zaman, and S. Islam,

“Design of a Scalable Low-Power 1-Bit Hybrid Full Adder for Fast

Computation,” IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 67, no. 8, pp. 1464–1468, Aug. 2020, doi:

10.1109/TCSII.2019.2940558.

[342] J. Kandpal, A. Tomar, M. Agarwal, and K. K. Sharma, “High-Speed

Hybrid-Logic Full Adder Using High-Performance 10-T XOR–

XNOR Cell,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 28, no. 6, pp. 1413–1422, Jun. 2020, doi:

10.1109/TVLSI.2020.2983850.

[343] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,

“IMPACT: IMPrecise adders for low-power approximate computing,”

in IEEE/ACM International Symposium on Low Power Electronics

and Design, Aug. 2011, pp. 409–414. doi:

10.1109/ISLPED.2011.5993675.

[344] H. Naseri and S. Timarchi, “Low-Power and Fast Full Adder by

Exploring New XOR and XNOR Gates,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 26, no. 8, pp. 1481–1493,

Aug. 2018, doi: 10.1109/TVLSI.2018.2820999.

[345] T. Nirmalraj, S. K. Pandiyan, R. K. Karan, R. Sivaraman, and R.

Amirtharajan, “Design of Low-Power 10-Transistor Full Adder Using

GDI Technique for Energy-Efficient Arithmetic Applications,”

Circuits Syst Signal Process, Jan. 2023, doi: 10.1007/s00034-022-

02287-x.

[346] A. Bhargav and P. Huynh, “Design and Analysis of Low-Power and

High Speed Approximate Adders Using CNFETs,” Sensors, vol. 21,

no. 24, Art. no. 24, Jan. 2021, doi: 10.3390/s21248203.

[347] J. Lee, H. Seo, H. Seok, and Y. Kim, “A Novel Approximate Adder

Design Using Error Reduced Carry Prediction and Constant

Truncation,” IEEE Access, vol. 9, pp. 119939–119953, 2021, doi:

10.1109/ACCESS.2021.3108443.

[348] K. Chen, W. Liu, J. Han, and F. Lombardi, “Profile-Based Output

Error Compensation for Approximate Arithmetic Circuits,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 67, no.

12, pp. 4707–4718, Dec. 2020, doi: 10.1109/TCSI.2020.2996567.

[349] P. Albicocco, G. C. Cardarilli, A. Nannarelli, M. Petricca, and M. Re,

“Imprecise arithmetic for low power image processing,” in 2012

Conference Record of the Forty Sixth Asilomar Conference on

Signals, Systems and Computers (ASILOMAR), Nov. 2012, pp. 983–

987. doi: 10.1109/ACSSC.2012.6489164.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

65 VOLUME XX, 2017

[350] P. Balasubramanian and D. L. Maskell, “Hardware Optimized and

Error Reduced Approximate Adder,” Electronics, vol. 8, no. 11, Art.

no. 11, Nov. 2019, doi: 10.3390/electronics8111212.

[351] P. Balasubramanian, R. Nayar, D. L. Maskell, and N. E. Mastorakis,

“An Approximate Adder With a Near-Normal Error Distribution:

Design, Error Analysis and Practical Application,” IEEE Access, vol.

9, pp. 4518–4530, 2021, doi: 10.1109/ACCESS.2020.3047651.

[352] H. Seo, Y. S. Yang, and Y. Kim, “Design and Analysis of an

Approximate Adder with Hybrid Error Reduction,” Electronics, vol.

9, no. 3, Art. no. 3, Mar. 2020, doi: 10.3390/electronics9030471.

[353] M. M. A. da Rosa, G. Paim, P. Ü. L. da Costa, E. A. C. da Costa, R. I.

Soares, and S. Bampi, “AxPPA: Approximate Parallel Prefix Adders,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 31, no. 1, pp. 17–28, Jan. 2023, doi:

10.1109/TVLSI.2022.3218021.

[354] R. Roy et al., “PrefixRL: Optimization of Parallel Prefix Circuits using

Deep Reinforcement Learning,” in 2021 58th ACM/IEEE Design

Automation Conference (DAC), San Francisco, CA, USA: IEEE Press,

Dec. 2021, pp. 853–858. doi: 10.1109/DAC18074.2021.9586094.

[355] P. Balasubramanian, R. Nayar, and D. L. Maskell, “Gate-Level Static

Approximate Adders: A Comparative Analysis,” Electronics, vol. 10,

no. 23, Art. no. 23, Jan. 2021, doi: 10.3390/electronics10232917.

[356] S. Xu and B. C. Schafer, “Exposing Approximate Computing

Optimizations at Different Levels: From Behavioral to Gate-Level,”

IEEE Transactions on Very Large Scale Integration Systems, 2017,

doi: 10.1109/TVLSI.2017.2735299.

[357] V. Camus, M. Cacciotti, J. Schlachter, and C. Enz, “Design of

Approximate Circuits by Fabrication of False Timing Paths: The Carry

Cut-Back Adder,” IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 8, no. 4, pp. 746–757, Dec. 2018, doi:

10.1109/JETCAS.2018.2851749.

[358] M. Pashaeifar, M. Kamal, A. Afzali-Kusha, and M. Pedram,

“Approximate Reverse Carry Propagate Adder for Energy-Efficient

DSP Applications,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 26, no. 11, pp. 2530–2541, Nov.

2018, doi: 10.1109/TVLSI.2018.2859939.

[359] D. Esposito, A. G. M. Strollo, E. Napoli, D. D. Caro, and N. Petra,

“Approximate Multipliers Based on New Approximate Compressors,”

IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 1–

14, 2018, doi: 10.1109/TCSI.2018.2839266.

[360] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, “An Ultra-

Efficient Approximate Multiplier With Error Compensation for Error-

Resilient Applications,” IEEE Transactions on Circuits and Systems

II: Express Briefs, vol. 70, no. 2, pp. 776–780, Feb. 2023, doi:

10.1109/TCSII.2022.3215065.

[361] F. Farshchi, M. S. Abrishami, and S. M. Fakhraie, “New approximate

multiplier for low power digital signal processing,” in The 17th CSI

International Symposium on Computer Architecture & Digital

Systems (CADS 2013), Oct. 2013, pp. 25–30. doi:

10.1109/CADS.2013.6714233.

[362] A. S. Roy, H. Agrawal, and A. S. Dhar, “ACBAM-Accuracy-

Configurable Sign Inclusive Broken Array Booth Multiplier Design,”

IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 4,

pp. 2072–2078, Oct. 2022, doi: 10.1109/TETC.2021.3107509.

[363] Z. Wang, G. A. Jullien, and W. C. Miller, “A new design technique

for column compression multipliers,” IEEE Transactions on

Computers, vol. 44, no. 8, pp. 962–970, Aug. 1995, doi:

10.1109/12.403712.

[364] P. J. Edavoor, S. Raveendran, and A. D. Rahulkar, “Approximate

Multiplier Design Using Novel Dual-Stage 4:2 Compressors,” IEEE

Access, vol. 8, pp. 48337–48351, 2020, doi:

10.1109/ACCESS.2020.2978773.

[365] R. Dornelles, G. Paim, B. Silveira, M. Fonseca, E. Costa, and S.

Bampi, “A power-efficient 4-2 Adder Compressor topology,” in 2017

15th IEEE International New Circuits and Systems Conference

(NEWCAS), Jun. 2017, pp. 281–284. doi:

10.1109/NEWCAS.2017.8010160.

[366] W.-C. Yeh and C.-W. Jen, “High-speed Booth encoded parallel

multiplier design,” IEEE Transactions on Computers, vol. 49, no. 7,

pp. 692–701, Jul. 2000, doi: 10.1109/12.863039.

[367] Y. Zhu, W. Liu, P. Yin, T. Cao, J. Han, and F. Lombardi, “Design,

evaluation and application of approximate-truncated Booth

multipliers,” IET Circuits, Devices & Systems, vol. 14, no. 8, pp.

1305–1317, 2020, doi: 10.1049/iet-cds.2019.0398.

[368] M. H. Haider, H. Zhang, and S.-B. Ko, “Decoder Reduction

Approximation Scheme for Booth Multipliers,” IEEE Transactions on

Computers, pp. 1–12, 2023, doi: 10.1109/TC.2023.3343093.

[369] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading Accuracy for

Power with an Underdesigned Multiplier Architecture,” in 2011 24th

Internatioal Conference on VLSI Design, Jan. 2011, pp. 346–351. doi:

10.1109/VLSID.2011.51.

[370] H. Waris, C. Wang, W. Liu, J. Han, and F. Lombardi, “Hybrid Partial

Product-Based High-Performance Approximate Recursive

Multipliers,” IEEE Transactions on Emerging Topics in Computing,

vol. 10, no. 1, pp. 507–513, Jan. 2022, doi:

10.1109/TETC.2020.3013977.

[371] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J. Henkel, and J.

Henkel, “Architectural-space exploration of approximate multipliers,”

in 2016 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), Nov. 2016, pp. 1–8. doi: 10.1145/2966986.2967005.

[372] S. Venkatachalam and S. B. Ko, “Design of Power and Area Efficient

Approximate Multipliers,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 25, no. 5, pp. 1782–1786, May 2017,

doi: 10.1109/TVLSI.2016.2643639.

[373] S. Ullah, S. S. Sahoo, N. Ahmed, D. Chaudhury, and A. Kumar,

“AppAxO: Designing Application-specific Approximate Operators

for FPGA-based Embedded Systems,” ACM Trans. Embed. Comput.

Syst., vol. 21, no. 3, p. 29:1-29:31, May 2022, doi: 10.1145/3513262.

[374] T. Zhang, Z. Niu, and J. Han, “A Brief Review of Logarithmic

Multiplier Designs,” in 2022 IEEE 23rd Latin American Test

Symposium (LATS), Sep. 2022, pp. 1–4. doi:

10.1109/LATS57337.2022.9936921.

[375] Y. Wu et al., “A Survey on Approximate Multiplier Designs for

Energy Efficiency: From Algorithms to Circuits,” ACM Trans. Des.

Autom. Electron. Syst., vol. 29, no. 1, p. 23:1-23:37, Jan. 2024, doi:

10.1145/3610291.

[376] R. Pilipović, P. Bulić, and U. Lotrič, “A Two-Stage Operand

Trimming Approximate Logarithmic Multiplier,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 68, no. 6, pp. 2535–

2545, Jun. 2021, doi: 10.1109/TCSI.2021.3069168.

[377] R. Makimoto, T. Imagawa, and H. Ochi, “Approximate Logarithmic

Multipliers Using Half Compensation with Two Line Segments,” in

2023 IEEE 36th International System-on-Chip Conference (SOCC),

Sep. 2023, pp. 1–6. doi: 10.1109/SOCC58585.2023.10256796.

[378] S. Yu, M. Tasnim, and S. X.-D. Tan, “HEALM: Hardware-Efficient

Approximate Logarithmic Multiplier with Reduced Error,” in 2022

27th Asia and South Pacific Design Automation Conference (ASP-

DAC), Jan. 2022, pp. 37–42. doi: 10.1109/ASP-

DAC52403.2022.9712543.

[379] M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han, “Low-Power

Approximate Multipliers Using Encoded Partial Products and

Approximate Compressors,” IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, vol. 8, no. 3, pp. 404–416, Sep. 2018,

doi: 10.1109/JETCAS.2018.2832204.

[380] P. Choudhary, L. Bhargava, M. Fujita, and V. Singh, “LUT-based

Arithmetic Circuit Approximation with Formal Guarantee on Worst

Case Relative Error,” in 2023 IEEE 24th Latin American Test

Symposium (LATS), Mar. 2023, pp. 1–2. doi:

10.1109/LATS58125.2023.10154494.

[381] U. S. Patankar, M. E. Flores, and A. Koel, “Novel data dependent

divider circuit block implementation for complex division and area

critical applications,” Sci Rep, vol. 13, no. 1, Art. no. 1, Feb. 2023, doi:

10.1038/s41598-023-28343-3.

[382] M. D. Savio M, D. T, D. D. P, K. P, K. Sonali, and P. Saraswat,

“Design and Implementation of Approximate Divider For Error-

Resilient Image Processing Applications,” in 2023 Second

International Conference on Electrical, Electronics, Information and

Communication Technologies (ICEEICT), Apr. 2023, pp. 1–5. doi:

10.1109/ICEEICT56924.2023.10157050.

[383] D. Piso, J. A. Pineiro, and J. D. Bruguera, “Analysis of the impact of

different methods for division/square root computation in the

performance of a superscalar microprocessor,” in Proceedings

Euromicro Symposium on Digital System Design. Architectures,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

66 VOLUME XX, 2017

Methods and Tools, Dortmund, Germany: IEEE Comput. Soc, 2002,

pp. 218–225. doi: 10.1109/DSD.2002.1115372.

[384] J. Oelund and S. Kim, “ILAFD: Accuracy-Configurable Floating-

Point Divider Using an Approximate Reciprocal and an Iterative

Logarithmic Multiplier,” in Proceedings of the Great Lakes

Symposium on VLSI 2023, in GLSVLSI ’23. New York, NY, USA:

Association for Computing Machinery, Jun. 2023, pp. 639–644. doi:

10.1145/3583781.3590262.

[385] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z. Navabi,

“TruncApp: A truncation-based approximate divider for energy

efficient DSP applications,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017, Mar. 2017, pp. 1635–1638.

doi: 10.23919/DATE.2017.7927254.

[386] A. Shriram, A. Tiwari, U. Anil Kumar, B. Ravi Teja Karri, S.

Veeramachaneni, and S. Ershad Ahmed, “Power Efficient

Approximate Divider Architecture for Error Resilient Applications,”

in 2022 IEEE 6th Conference on Information and Communication

Technology (CICT), Nov. 2022, pp. 1–6. doi:

10.1109/CICT56698.2022.9997960.

[387] S. Behroozi, J. Li, J. Melchert, and Y. Kim, “SAADI: a scalable

accuracy approximate divider for dynamic energy-quality scaling,” in

Proceedings of the 24th Asia and South Pacific Design Automation

Conference, in ASPDAC ’19. New York, NY, USA: Association for

Computing Machinery, Jan. 2019, pp. 481–486. doi:

10.1145/3287624.3287668.

[388] P. Malík, “High throughput floating point exponential function

implemented in FPGA,” 2015 IEEE Computer Society Annual

Symposium on VLSI, 2015, doi: 10.1109/ISVLSI.2015.61.

[389] O. I. Bureneva and O. U. Kaidanovich, “FPGA-based Hardware

Implementation of Fixed-point Division using Newton-Raphson

Method,” in 2023 IV International Conference on Neural Networks

and Neurotechnologies (NeuroNT), Jun. 2023, pp. 45–47. doi:

10.1109/NeuroNT58640.2023.10175844.

[390] Z. Ebrahimi, M. Zaid, M. Wijtvliet, and A. Kumar, “RAPID:

Approximate Pipelined Soft Multipliers and Dividers for High

Throughput and Energy Efficiency,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 42,

no. 3, pp. 712–725, Mar. 2023, doi: 10.1109/TCAD.2022.3184928.

[391] H. Wang, K. Chen, B. Wu, C. Wang, W. Liu, and F. Lombardi,

“HEADiv: A High-accuracy Energy-efficient Approximate Divider

with Error Compensation,” in Proceedings of the 17th ACM

International Symposium on Nanoscale Architectures, in

NANOARCH ’22. New York, NY, USA: Association for Computing

Machinery, May 2023, pp. 1–6. doi: 10.1145/3565478.3572324.

[392] C. Jha and J. Mekie, “Design of Novel CMOS Based Inexact

Subtractors and Dividers for Approximate Computing: An In-Depth

Comparison with PTL Based Designs,” in 2019 22nd Euromicro

Conference on Digital System Design (DSD), Aug. 2019, pp. 174–181.

doi: 10.1109/DSD.2019.00034.

[393] W. Liu, T. Xu, J. Li, C. Wang, P. Montuschi, and F. Lombardi,

“Design of Unsigned Approximate Hybrid Dividers Based on

Restoring Array and Logarithmic Dividers,” IEEE Transactions on

Emerging Topics in Computing, vol. 10, no. 1, pp. 339–350, Jan. 2022,

doi: 10.1109/TETC.2020.3022290.

[394] Y. Wu et al., “An Energy-Efficient Approximate Divider Based on

Logarithmic Conversion and Piecewise Constant Approximation,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol.

69, no. 7, pp. 2655–2668, Jul. 2022, doi:

10.1109/TCSI.2022.3167894.

[395] L. Chen, J. Han, W. Liu, P. Montuschi, and F. Lombardi, “Design,

Evaluation and Application of Approximate High-Radix Dividers,”

IEEE Transactions on Multi-Scale Computing Systems, vol. 4, no. 3,

pp. 299–312, Jul. 2018, doi: 10.1109/TMSCS.2018.2817608.

[396] D. Hendrycks and K. Gimpel, “Gaussian Error Linear Units

(GELUs),” arXiv.org. Accessed: Aug. 29, 2023. [Online]. Available:

https://arxiv.org/abs/1606.08415v5

[397] “Apply Gaussian error linear unit (GELU) activation - MATLAB

gelu.” Accessed: Aug. 30, 2023. [Online]. Available:

https://www.mathworks.com/help/deeplearning/ref/dlarray.gelu.html

[398] “Papers with Code - GELU Explained.” Accessed: Aug. 29, 2023.

[Online]. Available: https://paperswithcode.com/method/gelu

[399] P.-T. P. Tang, “Table-driven Implementation of the Exponential

Function in IEEE Floating-point Arithmetic,” ACM Trans. Math.

Softw., vol. 15, no. 2, pp. 144–157, Jun. 1989, doi:

10.1145/63522.214389.

[400] H. de Lassus Saint-Geniès, D. Defour, and G. Revy, “Exact Lookup

Tables for the Evaluation of Trigonometric and Hyperbolic

Functions,” IEEE Transactions on Computers, vol. 66, no. 12, pp.

2058–2071, Dec. 2017, doi: 10.1109/TC.2017.2703870.

[401] A. G. M. Strollo, D. De Caro, and N. Petra, “Elementary Functions

Hardware Implementation Using Constrained Piecewise-Polynomial

Approximations,” IEEE Transactions on Computers, vol. 60, no. 3,

pp. 418–432, Mar. 2011, doi: 10.1109/TC.2010.127.

[402] P. Nilsson, A. U. R. Shaik, R. Gangarajaiah, and E. Hertz, “Hardware

implementation of the exponential function using Taylor series,” in

2014 NORCHIP, Oct. 2014, pp. 1–4. doi:

10.1109/NORCHIP.2014.7004740.

[403] B. Xiong, Y. Sui, Z. Jia, S. Li, and Y. Chang, “Utilize the shift-and-

add architecture to approximate multiple nonlinear functions,”

International Journal of Circuit Theory and Applications, vol. 49, no.

7, pp. 2290–2297, 2021, doi: 10.1002/cta.2994.

[404] B. Lakshmi and A. S. Dhar, “CORDIC Architectures: A Survey,”

VLSI Design, vol. 2010, p. e794891, Mar. 2010, doi:

10.1155/2010/794891.

[405] J. E. Volder, “The CORDIC Trigonometric Computing Technique,”

IRE Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330–

334, Sep. 1959, doi: 10.1109/TEC.1959.5222693.

[406] A. M. Dalloo, A. J. Humaidi, A. K. Al Mhdawi, and H. Al-Raweshidy,

“Low-Power and Low-Latency Hardware Implementation of

Approximate Hyperbolic and Exponential functions for Embedded

System Applications,” IEEE Access, pp. 1–1, 2024, doi:

10.1109/ACCESS.2024.3364361.

[407] Y. Liu and K. K. Parhi, “Computing hyperbolic tangent and sigmoid

functions using stochastic logic,” in 2016 50th Asilomar Conference

on Signals, Systems and Computers, Nov. 2016, pp. 1580–1585. doi:

10.1109/ACSSC.2016.7869645.

[408] K. K. Parhi and Y. Liu, “Computing Arithmetic Functions Using

Stochastic Logic by Series Expansion,” IEEE Transactions on

Emerging Topics in Computing, vol. 7, no. 1, pp. 44–59, Jan. 2019,

doi: 10.1109/TETC.2016.2618750.

[409] L. Huai, P. Li, G. E. Sobelman, and D. J. Lilja, “Stochastic computing

implementation of trigonometric and hyperbolic functions,” in 2017

IEEE 12th International Conference on ASIC (ASICON), Oct. 2017,

pp. 553–556. doi: 10.1109/ASICON.2017.8252535.

[410] L. Chen, F. Lombardi, J. Han, and W. Liu, “A fully parallel

approximate CORDIC design,” in 2016 IEEE/ACM International

Symposium on Nanoscale Architectures (NANOARCH), Jul. 2016, pp.

197–202. doi: 10.1145/2950067.2950076.

[411] S. Rai and R. Srivastava, “FPGA Realization of Scale-Free CORDIC

Algorithm-Based Window Functions,” in Recent Trends in

Communication, Computing, and Electronics, A. Khare, U. S. Tiwary,

I. K. Sethi, and N. Singh, Eds., in Lecture Notes in Electrical

Engineering. Singapore: Springer, 2019, pp. 245–257. doi:

10.1007/978-981-13-2685-1_24.

[412] L. Chen, J. Han, W. Liu, and F. Lombardi, “Algorithm and Design of

a Fully Parallel Approximate Coordinate Rotation Digital Computer

(CORDIC),” IEEE Transactions on Multi-Scale Computing Systems,

vol. 3, no. 3, pp. 139–151, Jul. 2017, doi:

10.1109/TMSCS.2017.2696003.

[413] R. K. Yousif, I. A. Hashim, and B. H. Abd, “Low Area FPGA

Implementation of Hyperbolic Tangent Function,” in 2023 6th

International Conference on Engineering Technology and its

Applications (IICETA), Jul. 2023, pp. 596–602. doi:

10.1109/IICETA57613.2023.10351345.

[414] F. Ortega-Zamorano, J. M. Jerez, G. Juárez, J. O. Pérez, and L. Franco,

“High precision FPGA implementation of neural network activation

functions,” in 2014 IEEE Symposium on Intelligent Embedded

Systems (IES), Dec. 2014, pp. 55–60. doi:

10.1109/IN℡ES.2014.7008986.

[415] S. Sorayassa, M. Ahmadi, S. Sorayassa, and M. Ahmadi, “A Memory

Based Approach for Digital Implementation of Tanh using LUT and

RALUT,” Computer Science & Information Technology (CS & IT),

vol. 12, no. 22, Art. no. 22, Dec. 2022, doi: 10.5121/csit.2022.122204.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

67 VOLUME XX, 2017

[416] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE

Transactions on Computers, vol. 54, no. 3, pp. 319–330, Mar. 2005,

doi: 10.1109/TC.2005.54.

[417] A. Raha and V. Raghunathan, “qLUT: Input-Aware Quantized Table

Lookup for Energy-Efficient Approximate Accelerators,” ACM Trans.

Embed. Comput. Syst., vol. 16, no. 5s, p. 130:1-130:23, Sep. 2017, doi:

10.1145/3126531.

[418] Y. Xie, A. N. Joseph Raj, Z. Hu, S. Huang, Z. Fan, and M. Joler, “A

Twofold Lookup Table Architecture for Efficient Approximation of

Activation Functions,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 28, no. 12, pp. 2540–2550, 2020, doi:

10.1109/TVLSI.2020.3015391.

[419] Z. Hajduk and G. R. Dec, “Very High Accuracy Hyperbolic Tangent

Function Implementation in FPGAs,” IEEE Access, vol. 11, pp.

23701–23713, 2023, doi: 10.1109/ACCESS.2023.3253668.

[420] R. yousif, I. Hashim, and B. Abd, “Implementation of Hyperbolic Sine

and Cosine Functions Based on FPGA using different Approaches,”

Engineering and Technology Journal, vol. 41, no. 8, pp. 1091–1106,

2023, doi: 10.30684/etj.2023.139756.1440.

[421] T.-K. Luong, V.-T. Nguyen, A.-T. Nguyen, and E. Popovici,

“Efficient Architectures and Implementation of Arithmetic Functions

Approximation Based Stochastic Computing,” in 2019 IEEE 30th

International Conference on Application-specific Systems,

Architectures and Processors (ASAP), Jul. 2019, pp. 281–287. doi:

10.1109/ASAP.2019.00018.

[422] M. Osta, A. Ibrahim, and M. Valle, “FPGA Implementation of

Approximate CORDIC Circuits for Energy Efficient Applications,” in

2019 26th IEEE International Conference on Electronics, Circuits and

Systems (ICECS), Nov. 2019, pp. 127–128. doi:

10.1109/ICECS46596.2019.8964758.

[423] A. Changela, Y. Kumar, M. Woźniak, J. Shafi, and M. F. Ijaz, “Radix-

4 CORDIC algorithm based low-latency and hardware efficient VLSI

architecture for Nth root and Nth power computations,” Sci Rep, vol.

13, no. 1, p. 20918, Nov. 2023, doi: 10.1038/s41598-023-47890-3.

[424] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, L. Pozzi, and S.

Reda, “Approximate Logic Synthesis: A Survey,” Proceedings of the

IEEE, vol. 108, no. 12, pp. 2195–2213, Dec. 2020, doi:

10.1109/JPROC.2020.3014430.

[425] G. Liu and Z. Zhang, “Statistically certified approximate logic

synthesis,” 2017 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), 2017, doi: 10.1109/ICCAD.2017.8203798.

[426] W. Zeng, A. Davoodi, and R. O. Topaloglu, “Sampling-Based

Approximate Logic Synthesis: An Explainable Machine Learning

Approach,” in 2021 IEEE/ACM International Conference On

Computer Aided Design (ICCAD), Munich, Germany: IEEE Press,

Nov. 2021, pp. 1–9. doi: 10.1109/ICCAD51958.2021.9643484.

[427] I. Scarabottolo, G. Ansaloni, and L. Pozzi, “Circuit carving: A

methodology for the design of approximate hardware,” in 2018

Design, Automation & Test in Europe Conference & Exhibition

(DATE), Mar. 2018, pp. 545–550. doi:

10.23919/DATE.2018.8342067.

[428] J. Castro-Godínez, H. Barrantes-García, M. Shafique, and J. Henkel,

“AxLS: A Framework for Approximate Logic Synthesis Based on

Netlist Transformations,” IEEE Transactions on Circuits and Systems

II: Express Briefs, vol. 68, no. 8, pp. 2845–2849, Aug. 2021, doi:

10.1109/TCSII.2021.3068757.

[429] L. Witschen, T. Wiersema, M. Artmann, and M. Platzner, “MUSCAT:

MUS-based Circuit Approximation Technique,” in 2022 Design,

Automation & Test in Europe Conference & Exhibition (DATE), Mar.

2022, pp. 172–177. doi: 10.23919/DATE54114.2022.9774604.

[430] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler,

“Approximation-aware rewriting of AIGs for error tolerant

applications,” in 2016 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), Nov. 2016, pp. 1–8. doi:

10.1145/2966986.2967003.

[431] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “EvoApprox8b:

Library of Approximate Adders and Multipliers for Circuit Design and

Benchmarking of Approximation Methods,” in Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2017, Mar. 2017,

pp. 258–261. doi: 10.23919/DATE.2017.7926993.

[432] S. Hashemi, H. Tann, and S. Reda, “BLASYS: Approximate Logic

Synthesis Using Boolean Matrix Factorization,” in 2018 55th

ACM/ESDA/IEEE Design Automation Conference (DAC), Jun. 2018,

pp. 1–6. doi: 10.1109/DAC.2018.8465702.

[433] M. Rezaalipour, M. Biasion, I. Scarabottolo, G. A. Constantinides, and

L. Pozzi, “A Parametrizable Template for Approximate Logic

Synthesis,” in 2023 53rd Annual IEEE/IFIP International Conference

on Dependable Systems and Networks Workshops (DSN-W), Jun.

2023, pp. 175–178. doi: 10.1109/DSN-W58399.2023.00049.

[434] G. Ammes, W. L. Neto, P. Butzen, P.-E. Gaillardon, and R. P. Ribas,

“A Two-Level Approximate Logic Synthesis Combining Cube

Insertion and Removal,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 5126–

5130, Nov. 2022, doi: 10.1109/TCAD.2022.3143489.

[435] Y. Wu and W. Qian, “ALFANS: Multilevel Approximate Logic

Synthesis Framework by Approximate Node Simplification,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 2020, doi: 10.1109/TCAD.2019.2915328.

[436] M. Barbareschi, S. Barone, N. Mazzocca, and A. Moriconi, “A

Catalog-Based AIG-Rewriting Approach to the Design of

Approximate Components,” IEEE Transactions on Emerging Topics

in Computing, vol. 11, no. 1, pp. 70–81, Jan. 2023, doi:

10.1109/TETC.2022.3170502.

[437] C. Meng, W. Qian, and A. Mishchenko, “ALSRAC: Approximate

Logic Synthesis by Resubstitution with Approximate Care Set,” in

2020 57th ACM/IEEE Design Automation Conference (DAC), Jul.

2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218627.

[438] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda, “Automated

High-Level Generation of Low-Power Approximate Computing

Circuits,” IEEE Trans. Emerg. Topics Comput., vol. 7, no. 1, pp. 18–

30, Jan. 2019, doi: 10.1109/TETC.2016.2598283.

[439] M. T. Leipnitz and G. L. Nazar, “Constraint-Aware Multi-Technique

Approximate High-Level Synthesis for FPGAs,” ACM Trans.

Reconfigurable Technol. Syst., vol. 16, no. 4, p. 61:1-61:28, Oct. 2023,

doi: 10.1145/3624481.

[440] J. Castro-Godínez, J. Mateus-Vargas, M. Shafique, and J. Henkel,

“AxHLS: design space exploration and high-level synthesis of

approximate accelerators using approximate functional units and

analytical models,” in Proceedings of the 39th International

Conference on Computer-Aided Design, in ICCAD ’20. New York,

NY, USA: Association for Computing Machinery, Dec. 2020, pp. 1–

9. doi: 10.1145/3400302.3415732.

[441] R. Ranjan, S. Ullah, S. S. Sahoo, and A. Kumar, “SyFAxO-GeN:

Synthesizing FPGA-Based Approximate Operators with Generative

Networks,” in Proceedings of the 28th Asia and South Pacific Design

Automation Conference, in ASPDAC ’23. New York, NY, USA:

Association for Computing Machinery, Jan. 2023, pp. 402–409. doi:

10.1145/3566097.3567891.

[442] Y. Wu, C. Shen, Y. Jia, and W. Qian, “Approximate logic synthesis

for FPGA by wire removal and local function change,” 2017, doi:

10.1109/ASPDAC.2017.7858314.

[443] G. Pasandi, S. Pratty, and J. Forsyth, “AISYN: AI-driven

Reinforcement Learning-Based Logic Synthesis Framework,” Feb.

07, 2023, arXiv: arXiv:2302.06415. doi: 10.48550/arXiv.2302.06415.

[444] G. Pasandi, M. Peterson, M. Herrera, S. Nazarian, and M. Pedram,

“Deep-PowerX: a deep learning-based framework for low-power

approximate logic synthesis,” in Proceedings of the ACM/IEEE

International Symposium on Low Power Electronics and Design, in

ISLPED ’20. New York, NY, USA: Association for Computing

Machinery, Aug. 2020, pp. 73–78. doi: 10.1145/3370748.3406555.

[445] C.-T. Lee, Y.-T. Li, Y.-C. Chen, and C.-Y. Wang, “Approximate

Logic Synthesis by Genetic Algorithm with an Error Rate Guarantee,”

in Proceedings of the 28th Asia and South Pacific Design Automation

Conference, in ASPDAC ’23. New York, NY, USA: Association for

Computing Machinery, Jan. 2023, pp. 146–151. doi:

10.1145/3566097.3567890.

[446] R. Kalkreuth, Z. Vašíček, J. Husa, D. ́ . Vermetten, F. Ye, and T. Bäck,

“Towards a General Boolean Function Benchmark Suite,” in

Proceedings of the Companion Conference on Genetic and

Evolutionary Computation, in GECCO ’23 Companion. New York,

NY, USA: Association for Computing Machinery, Jul. 2023, pp. 591–

594. doi: 10.1145/3583133.3590685.

[447] L. Sekanina, Z. Vasicek, and V. Mrazek, “Automated Search-Based

Functional Approximation for Digital Circuits,” in Approximate

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

68 VOLUME XX, 2017

Circuits: Methodologies and CAD, S. Reda and M. Shafique, Eds.,

Cham: Springer International Publishing, 2019, pp. 175–203. doi:

10.1007/978-3-319-99322-5_9.

[448] Z. Vasicek and L. Sekanina, “Evolutionary Approach to Approximate

Digital Circuits Design,” IEEE Transactions on Evolutionary

Computation, vol. 19, no. 3, pp. 432–444, Jun. 2015, doi:

10.1109/TEVC.2014.2336175.

[449] S. Su, Y. Wu, and W. Qian, “Efficient batch statistical error estimation

for iterative multi-level approximate logic synthesis,” 2018, doi:

10.1145/3195970.3196038.

[450] S. Su et al., “VECBEE: A Versatile Efficiency-Accuracy

Configurable Batch Error Estimation Method for Greedy Approximate

Logic Synthesis,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pp. 1–1, 2022, doi:

10.1109/TCAD.2022.3149717.

[451] M. Rezaalipour, L. Ferretti, I. Scarabottolo, G. A. Constantinides, and

L. Pozzi, “Multi-Metric SMT-Based Evaluation of Worst-Case-Error

for Approximate Circuits,” in 2023 53rd Annual IEEE/IFIP

International Conference on Dependable Systems and Networks

Workshops (DSN-W), Jun. 2023, pp. 199–202. doi: 10.1109/DSN-

W58399.2023.00055.

[452] Z. Vasicek, “Formal Methods for Exact Analysis of Approximate

Circuits,” IEEE Access, vol. 7, pp. 177309–177331, 2019, doi:

10.1109/ACCESS.2019.2958605.

[453] G. Ammes, P. F. Butzen, A. I. Reis, and R. Ribas, “Two-Level and

Multilevel Approximate Logic Synthesis,” Journal of Integrated

Circuits and Systems, vol. 17, no. 3, pp. 1–14, Dec. 2022, doi:

10.29292/jics.v17i3.661.

[454] P. Choudhary, L. Bhargava, V. Singh, and A. Kumar Suhag,

“Approximate Computing: Evolutionary Methods for Functional

Approximation of Digital Circuits,” Materials Today: Proceedings,

vol. 66, pp. 3487–3492, Jan. 2022, doi: 10.1016/j.matpr.2022.06.386.

[455] A. Raha and V. Raghunathan, “Approximating Beyond the Processor:

Exploring Full-System Energy-Accuracy Tradeoffs in a Smart Camera

System,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 26, no. 12, pp. 2884–2897, 2018, doi:

10.1109/TVLSI.2018.2864269.

[456] S. Hashemi, H. Tann, F. Buttafuoco, and S. Reda, “Approximate

Computing for Biometric Security Systems: A Case Study on Iris

Scanning,” in 2018 Design, Automation & Test in Europe Conference

& Exhibition (DATE), Mar. 2018, pp. 319–324. doi:

10.23919/DATE.2018.8342029.

[457] B. S. Prabakaran, V. Mrazek, Z. Vasicek, L. Sekanina, and M.

Shafique, “Xel-FPGAs: An End-to-End Automated Exploration

Framework for Approximate Accelerators in FPGA-Based Systems,”

Aug. 08, 2023, arXiv: arXiv:2303.04734. doi:

10.48550/arXiv.2303.04734.

[458] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized

Neural Network Inference,” in Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, in

FPGA ’17. New York, NY, USA: Association for Computing

Machinery, Feb. 2017, pp. 65–74. doi: 10.1145/3020078.3021744.

[459] N. R. Shanbhag, N. Verma, Y. Kim, A. D. Patil, and L. R. Varshney,

“Shannon-Inspired Statistical Computing for the Nanoscale Era,”

Proceedings of the IEEE, vol. 107, no. 1, pp. 90–107, Jan. 2019, doi:

10.1109/JPROC.2018.2869867.

[460] H. Kim and N. Shanbhag, “Enhancing the Accuracy of 6T SRAM-

based In-Memory Architecture via Maximum Likelihood Detection,”

IEEE Transactions on Signal Processing, pp. 1–13, 2024, doi:

10.1109/TSP.2024.3394656.

[461] A. Pantazi, B. Rajendran, O. Simeone, and E. Neftci, “Editorial:

Neuro-inspired computing for next-gen AI: Computing model,

architectures and learning algorithms,” Front. Neurosci., vol. 16, Jul.

2022, doi: 10.3389/fnins.2022.974627.

[462] A. Mehonic and A. J. Kenyon, “Brain-inspired computing needs a

master plan,” Nature, vol. 604, no. 7905, pp. 255–260, Apr. 2022, doi:

10.1038/s41586-021-04362-w.

[463] S. Yu, “Neuro-inspired computing with emerging nonvolatile

memorys,” Proceedings of the IEEE, vol. 106, no. 2, pp. 260–285,

Feb. 2018, doi: 10.1109/JPROC.2018.2790840.

[464] S. Sen, S. Venkataramani, and A. Raghunathan, “Approximate

computing for spiking neural networks,” in Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2017, Mar. 2017,

pp. 193–198. doi: 10.23919/DATE.2017.7926981.

[465] A. R. Nasser et al., “IoT and Cloud Computing in Health-Care: A New

Wearable Device and Cloud-Based Deep Learning Algorithm for

Monitoring of Diabetes,” Electronics, vol. 10, no. 21, Art. no. 21, Jan.

2021, doi: 10.3390/electronics10212719.

[466] S. K. Ghosh, A. Raha, and V. Raghunathan, “Energy-Efficient

Approximate Edge Inference Systems,” ACM Trans. Embed. Comput.

Syst., vol. 22, no. 4, p. 77:1-77:50, Jul. 2023, doi: 10.1145/3589766.

[467] M. Fabjančič, O. Machidon, H. Sharif, Y. Zhao, S. Misailović, and V.

Pejović, “Mobiprox: Supporting Dynamic Approximate Computing

on Mobiles,” Mar. 16, 2023, arXiv: arXiv:2303.11291. doi:

10.48550/arXiv.2303.11291.

[468] V. Pejović, “Towards Approximate Mobile Computing,” GetMobile:

Mobile Comp. and Comm., vol. 22, no. 4, pp. 9–12, May 2019, doi:

10.1145/3325867.3325871.

[469] W. B. Qaim et al., “Towards Energy Efficiency in the Internet of

Wearable Things: A Systematic Review,” IEEE Access, vol. 8, pp.

175412–175435, 2020, doi: 10.1109/ACCESS.2020.3025270.

[470] A. Das, S. K. Ghosh, A. Raha, and V. Raghunathan, “Toward Energy-

Efficient Collaborative Inference Using Multisystem

Approximations,” IEEE Internet of Things Journal, vol. 11, no. 10,

pp. 17989–18004, May 2024, doi: 10.1109/JIOT.2024.3365306.

[471] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang, and L.

Chang, “Compensated-DNN: Energy Efficient Low-Precision Deep

Neural Networks by Compensating Quantization Errors,” in 2018 55th

ACM/ESDA/IEEE Design Automation Conference (DAC), Jun. 2018,

pp. 1–6. doi: 10.1109/DAC.2018.8465893.

[472] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K.

Roy, “Energy-Efficient Neural Computing with Approximate

Multipliers,” J. Emerg. Technol. Comput. Syst., vol. 14, no. 2, p. 16:1-

16:23, Jul. 2018, doi: 10.1145/3097264.

[473] Z. Peng et al., “AXNet: approximate computing using an end-to-end

trainable neural network,” in Proceedings of the International

Conference on Computer-Aided Design, in ICCAD ’18. New York,

NY, USA: Association for Computing Machinery, Nov. 2018, pp. 1–

8. doi: 10.1145/3240765.3240783.

[474] N. Ashar, G. Raut, V. Trivedi, S. K. Vishvakarma, and A. Kumar,

“QuantMAC: Enhancing Hardware Performance in DNNs With

Quantize Enabled Multiply-Accumulate Unit,” IEEE Access, vol. 12,

pp. 43600–43614, 2024, doi: 10.1109/ACCESS.2024.3379906.

[475] X. Sui et al., “A Hardware-Friendly Low-Bit Power-of-Two

Quantization Method for CNNs and Its FPGA Implementation,”

Sensors, vol. 22, no. 17, Art. no. 17, Jan. 2022, doi:

10.3390/s22176618.

[476] X. Sui et al., “A Hardware-Friendly High-Precision CNN Pruning

Method and Its FPGA Implementation,” Sensors, vol. 23, no. 2, Art.

no. 2, Jan. 2023, doi: 10.3390/s23020824.

[477] M. P. Véstias, R. P. Duarte, J. T. de Sousa, and H. C. Neto, “Fast

Convolutional Neural Networks in Low Density FPGAs Using Zero-

Skipping and Weight Pruning,” Electronics, vol. 8, no. 11, Art. no. 11,

Nov. 2019, doi: 10.3390/electronics8111321.

[478] S. Jang, W. Liu, and Y. Cho, “Convolutional Neural Network Model

Compression Method for Software—Hardware Co-Design,”

Information, vol. 13, no. 10, Art. no. 10, Oct. 2022, doi:

10.3390/info13100451.

[479] M. Zhang, L. Li, H. Wang, Y. Liu, H. Qin, and W. Zhao, “Optimized

Compression for Implementing Convolutional Neural Networks on

FPGA,” Electronics, vol. 8, no. 3, Art. no. 3, Mar. 2019, doi:

10.3390/electronics8030295.

[480] J. Bai, S. Sun, W. Zhao, and W. Kang, “CIMQ: A Hardware-Efficient

Quantization Framework for Computing-In-Memory Based Neural

Network Accelerators,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, pp. 1–1, 2023, doi:

10.1109/TCAD.2023.3298705.

[481] M. Hafezan and E. Atoofian, “Mixed-Precision Architecture for GPU

Tensor Cores,” 2023 IEEE Smart World Congress (SWC), pp. 1–8,

Aug. 2023, doi: 10.1109/SWC57546.2023.10448789.

[482] S. Tabrizchi, A. Nezhadi, S. Angizi, and A. Roohi, “AppCiP: Energy-

Efficient Approximate Convolution-in-Pixel Scheme for Neural

Network Acceleration,” IEEE Journal on Emerging and Selected

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

69 VOLUME XX, 2017

Topics in Circuits and Systems, vol. 13, no. 1, pp. 225–236, Mar. 2023,

doi: 10.1109/JETCAS.2023.3242167.

[483] S. A. K. Gharavi and S. Safari, “Performance Improvement of

Processor Through Configurable Approximate Arithmetic Units in

Multicore Systems,” IEEE Access, vol. 12, pp. 43907–43917, 2024,

doi: 10.1109/ACCESS.2024.3380912.

[484] H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Algorithmic-Level

Approximate Tensorial SVM Using High-Level Synthesis on FPGA,”

Electronics, vol. 10, no. 2, Art. no. 2, Jan. 2021, doi:

10.3390/electronics10020205.

[485] I. D. Mienye and N. Jere, “A Survey of Decision Trees: Concepts,

Algorithms, and Applications,” IEEE Access, vol. 12, pp. 86716–

86727, 2024, doi: 10.1109/ACCESS.2024.3416838.

[486] K. K. Pandey and D. Shukla, “Stratification to Improve Systematic

Sampling for Big Data Mining Using Approximate Clustering,” in

Machine Intelligence and Smart Systems, S. Agrawal, K. Kumar

Gupta, J. H. Chan, J. Agrawal, and M. Gupta, Eds., Singapore:

Springer Nature, 2021, pp. 337–351. doi: 10.1007/978-981-33-4893-

6_30.

[487] J. Liu et al., “Secure Cloud-Aided Approximate Nearest Neighbor

Search on High-Dimensional Data,” IEEE Access, vol. 11, pp.

109027–109037, 2023, doi: 10.1109/ACCESS.2023.3321457.

[488] K. V., S. Khan, S. Singh, H. V. Simhadri, and J. Vedurada, “BANG:

Billion-Scale Approximate Nearest Neighbor Search using a Single

GPU,” 2024, doi: 10.48550/ARXIV.2401.11324.

[489] D. Vanderkam, R. Schonberger, H. Rowley, and S. Kumar, “Nearest

neighbor search in google correlate,” Google, Inc., Mountain View,

CA, USA, Tech. Rep, 2013.

[490] F. Regazzoni, C. Alippi, and I. Polian, “Security: The Dark Side of

Approximate Computing?,” in 2018 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), Nov. 2018, pp. 1–

6. doi: 10.1145/3240765.3243497.

[491] P. Yellu, L. Buell, M. Mark, M. A. Kinsy, D. Xu, and Q. Yu, “Security

Threat Analyses and Attack Models for Approximate Computing

Systems: From Hardware and Micro-architecture Perspectives,” ACM

Trans. Des. Autom. Electron. Syst., vol. 26, no. 4, p. 32:1-32:31, Apr.

2021, doi: 10.1145/3442380.

[492] P. Yellu and Q. Yu, “Securing Approximate Computing Systems via

Obfuscating Approximate-Precise Boundary,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 42,

no. 1, pp. 27–40, Jan. 2023, doi: 10.1109/TCAD.2022.3168261.

[493] S. A. Islam, “On the (In)security of Approximate Computing

Synthesis,” arXiv.org. Accessed: Jul. 08, 2023. [Online]. Available:

https://arxiv.org/abs/1912.01209v1

[494] D.-E.-S. Kundi, A. Khalid, S. Bian, C. Wang, M. O’Neill, and W. Liu,

“AxRLWE: A Multilevel Approximate Ring-LWE Co-Processor for

Lightweight IoT Applications,” IEEE Internet of Things Journal, vol.

9, no. 13, pp. 10492–10501, Jul. 2022, doi:

10.1109/JIOT.2021.3122276.

[495] B. Miller and R. Pozo, “Java SciMark 2.0.” Accessed: Mar. 13, 2024.

[Online]. Available: https://math.nist.gov/scimark2/

[496] S. Che et al., “Rodinia: A benchmark suite for heterogeneous

computing,” in 2009 IEEE International Symposium on Workload

Characterization (IISWC), Oct. 2009, pp. 44–54. doi:

10.1109/IISWC.2009.5306797.

[497] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-

Kamran, “AxBench: A Multiplatform Benchmark Suite for

Approximate Computing,” IEEE Design Test, vol. 34, no. 2, pp. 60–

68, Apr. 2017, doi: 10.1109/MDAT.2016.2630270.

[498] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxLib: Library of

FPGA-based Approximate Multipliers,” in 2018 55th

ACM/ESDA/IEEE Design Automation Conference (DAC), Jun. 2018,

pp. 1–6. doi: 10.1109/DAC.2018.8465845.

[499] L. Witschen, M. Awais, H. Ghasemzadeh Mohammadi, T. Wiersema,

and M. Platzner, “CIRCA: Towards a modular and extensible

framework for approximate circuit generation,” Microelectronics

Reliability, vol. 99, pp. 277–290, Aug. 2019, doi:

10.1016/j.microrel.2019.04.003.

[500] M. V. Bordin, D. Griebler, G. Mencagli, C. F. R. Geyer, and L. G. L.

Fernandes, “DSPBench: A Suite of Benchmark Applications for

Distributed Data Stream Processing Systems,” IEEE Access, vol. 8,

pp. 222900–222917, 2020, doi: 10.1109/ACCESS.2020.3043948.

[501] M. Bakhshalipour, M. Likhachev, and P. B. Gibbons, “RTRBench: A

Benchmark Suite for Real-Time Robotics,” in 2022 IEEE

International Symposium on Performance Analysis of Systems and

Software (ISPASS), May 2022, pp. 175–186. doi:

10.1109/ISPASS55109.2022.00024.

[502] H. C. Prashanth and M. Rao, “SOMALib: Library of Exact and

Approximate Activation Functions for Hardware-efficient Neural

Network Accelerators,” in 2022 IEEE 40th International Conference

on Computer Design (ICCD), Oct. 2022, pp. 746–753. doi:

10.1109/ICCD56317.2022.00114.

[503] M. Item, J. Gómez-Luna, Y. Guo, G. F. Oliveira, M. Sadrosadati, and

O. Mutlu, “TransPimLib: A Library for Efficient Transcendental

Functions on Processing-in-Memory Systems,” Apr. 03, 2023, arXiv:

arXiv:2304.01951. doi: 10.48550/arXiv.2304.01951.

[504] “OpenBenchmarking.org - Cross-Platform, Open-Source Automated

Benchmarking Platform.” Accessed: Mar. 13, 2024. [Online].

Available: https://openbenchmarking.org/

[505] “Papers with Code - The latest in Machine Learning.” Accessed: Mar.

13, 2024. [Online]. Available: https://paperswithcode.com/

[506] Y. Guan et al., “FP-DNN: An Automated Framework for Mapping

Deep Neural Networks onto FPGAs with RTL-HLS Hybrid

Templates,” in 2017 IEEE 25th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), Apr.

2017, pp. 152–159. doi: 10.1109/FCCM.2017.25.

[507] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo, “An automatic RTL compiler

for high-throughput FPGA implementation of diverse deep

convolutional neural networks,” in 2017 27th International

Conference on Field Programmable Logic and Applications (FPL),

2017, pp. 1–8. doi: 10.23919/FPL.2017.8056824.

[508] “FINN,” finn. Accessed: May 15, 2024. [Online]. Available:

https://xilinx.github.io/finn/

[509] M. T. Arafin and Z. Lu, “Security Challenges of Processing-In-

Memory Systems,” in Proceedings of the 2020 on Great Lakes

Symposium on VLSI, in GLSVLSI ’20. New York, NY, USA:

Association for Computing Machinery, Sep. 2020, pp. 229–234. doi:

10.1145/3386263.3411365.

[510] S. Lee and A. Gerstlauer, “Approximate High-Level Synthesis of

Custom Hardware,” in Approximate Circuits: Methodologies and

CAD, S. Reda and M. Shafique, Eds., Cham: Springer International

Publishing, 2019, pp. 205–223. doi: 10.1007/978-3-319-99322-5_10.

[511] T. Alan, A. Gerstlauer, and J. Henkel, “Runtime Accuracy-

Configurable Approximate Hardware Synthesis Using Logic Gating

and Relaxation,” in 2020 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Mar. 2020, pp. 1578–1581. doi:

10.23919/DATE48585.2020.9116272.

[512] W. Liu, F. Lombardi, and M. Shulte, “A Retrospective and Prospective

View of Approximate Computing [Point of View,” Proceedings of the

IEEE, vol. 108, pp. 394–399, Mar. 2020, doi:

10.1109/JPROC.2020.2975695.

[513] R. Zhao et al., “A framework for the general design and computation

of hybrid neural networks,” Nat Commun, vol. 13, no. 1, p. 3427, Jun.

2022, doi: 10.1038/s41467-022-30964-7.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

70 VOLUME XX, 2017

Ayad Dalloo is a Ph.D. candidate in the Electrical

Engineering Department of the University of

Technology, Iraq. He has a B.Sc. and M.Sc. degrees

in Electronic and Communication Engineering, and

his research interests include approximate computing

and machine learning. He currently works as a faculty

member in the Communication Engineering

department at the University of Technology, Iraq.

Amjad Jaleel Humaidi is a Professor in Engineering

College, University of Technology, Iraq. He received

his B.Sc. and M.Sc. degrees in Control engineering

from Al-Rasheed College of Engineering and Science

in 1992 and 1997 respectively. He received his Ph.D.

degree in 2006 with specialization in control and

automation. His fields of interest include adaptive,

nonlinear and intelligent control, optimization and real-time image

processing.

Ammar K. Al Mhdawi is a lecturer at the school

of engineering and sustainable development at De

Montfort University, UK. He obtained his PhD in

Electronic and Electrical Engineering from Brunel

University London and his postdoc from

Newcastle University, UK. He is a freelance

consultant engineer with 15+ years of experience

in control engineering and robotics. Moreover, he

is a guest editor at MDPI Actuators special session.

His research interest includes control systems,

(AUV, AGV, UAV) robotic systems, intelligent and automatic control, and

interconnected systems.

Hamed Al-Raweshidy is a renowned professor of

Communications Engineering with degrees from the

University of Technology in Baghdad and advanced

qualifications from Glasgow and Strathclyde

Universities in the UK. He has a rich career,

including roles at the Space and Astronomy

Research Centre in Iraq, PerkinElmer in the USA,

Carl Zeiss in Germany, British Telecom in the UK,

and various universities such as Oxford, Manchester

Metropolitan, and Kent University. Currently, he directs the Wireless

Networks and Communications Centre and Postgraduate Studies in

Electronic and Computer Engineering at Brunel University, London. He has

published over 370 papers and edited the first book on Radio over Fibre

Technologies for Mobile Communications Networks. Professor Al-

Raweshidy is also a consultant for global telecom companies and a principal

investigator for significant research projects. His current research focuses

on advanced technologies in communications engineering, including 5G

and 6G developments, Quantum computing, AI, and IoT applications.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

