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ABSTRACT The unprecedented progress in computational technologies led to a substantial proliferation 

of artificial intelligence applications, notably in the era of big data and IoT devices. In the face of exponential 

data growth and complex computations, conventional computing encounters substantial obstacles pertaining 

to energy efficiency, computational speed, and area. Due to the diminishing advantages of technology scaling 

and increased demands from computing workloads, novel design techniques are required to increase 

performance and decrease power consumption. Approximate computing, nowadays considered a promising 

paradigm, achieves considerable improvements in overhead cost reduction (i.e., energy, area, and latency) at 

the expense of a modest (i.e., still acceptable) deterioration in application accuracy. Therefore, approximate 

computing at different levels (Data, Circuit, Architecture, and Software) has been attracted by the research 

and industrial communities. This paper presents a comprehensive review of the major research areas of 

different levels of approximate computing by exploring their underlying principles, potential benefits, and 

associated trade-offs. This is a burgeoning field that seeks to balance computational efficiency with 

acceptable accuracy. The paper highlights opportunities where these techniques can be effectively applied, 

such as in applications where perfect accuracy is not a strict requirement. This paper presents assessments of 

applying approximate computing techniques in various applications, especially machine learning algorithms 

(ML) and IoT. Furthermore, this review underscores the challenges encountered in implementing 

approximate computing techniques and highlights potential future research avenues. The anticipation is that 

this survey will stimulate further discourse and underscore the necessity for continued research and 

development to fully exploit the potential of approximate computing. 

 
INDEX TERMS Approximate Computing, Approximate programming language, Approximate Memory, 

Circuit-level, Approximate Machine Learning, Deep Learning, Approximate logic synthesis, Statistical and 

Neuromorphic Computing, and Cross Layer and End-to-End Approximate computing 

I. INTRODUCTION 

Since 1974, Moore's law and Dennard scaling have 

projected that the transistor would become smaller and the 

transistor density would double, resulting in a 40% increase 

in clock rate while the power density remained constant 

with each generation [1]. As transistors shrink with 

technological advancements, it becomes more costly for 

designers and manufacturers to maintain transistors that 

behave deterministically, even under typical operating 

conditions. Verifying the correct operation of digital 

integrated circuits is becoming more and more costly as 

technology scales down. Both intrinsic (such as varying 

dopant concentrations) and extrinsic (such as temperature) 

factors are drastically increasing the variability of 

transistors and interconnects [2], [3], [4] as well as reducing 

energy-delay advantages via CMOS scaling. This 

nondeterministic phenomenon impedes the constant 

development of technology. According to ITRS and Intel's 

technical data, at the 8 nm node, the area of dark silicon 

exceeds 50% of the chip's area [3], [5]. 

In 2007, the rate of Dennard scaling slowed dramatically, 

and by 2012, it had almost stopped completely [6], [7], as 

shown in Figure 1. Therefore, the scaling of the threshold 

and supply voltages slowed down due to concerns with 
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leakage currents resulting from increasing on-chip power 

density. To prevent the chip from overheating, the clock 

frequency was gradually increased [1], [8], [9]. Due to these 

limitations and requirements for future applications, novel 

design techniques are required to handle ever-increasing 

amounts of data at ever-increasing performance and ever-

decreasing power consumption. This is propelling us 

towards the multi-core era [10]. Despite multi-core system-

on-chips (SoCs) aiming to augment throughput while 

minimizing power consumption, this objective has only been 

partially achieved due to the inherent challenges in 

parallelizing certain sequential workloads and existing 

power constraints [1], [9], As a consequence, the number of 

active cores is restricted (a phenomenon termed “dark 

silicon”), resulting in a gradual scaling-up of cores in 

contemporary SoCs. As a result, thermal dissipation power 

(TDP) is a limiting factor for multicore CPUs [1], [11], as 

shown in Figure 2. Overheating problems were solved by 

reducing processor clock speeds and powering down unused 

cores in the “dark silicon” era, which followed the TDP 

constraint [11].  

The days of Dennard scaling are over, Amdahl's Law is 

nearing its end, and keeping up with Moore's Law is 

becoming difficult and expensive, particularly when the 

benefits in terms of power and performance begin to 

diminish [6], [11]. In many computer systems, especially 

mobile devices, clusters, and server farms, energy efficiency 

has become a primary design requirement. Saving energy on 

a mobile phone may lengthen battery life and improve 

mobility [12]. At nanometer age, the circuits become more 

sensitive to parameter variations and faults. Reducing the 

feature size of CMOS technology below 7 nm can lead to 

deteriorating reliability [13]. This is due to the increased 

difficulty in controlling and preventing parameter variations 

and faults at such advanced nanoscales. At these smaller 

dimensions, physical and quantum effects become more 

pronounced. All these challenges have changed the 

dynamics for designing and producing far faster, lower-

power circuits and haven't diminished the possibilities for 

achieving that. For instance, manufacturers implement 

various techniques such as strained silicon, high-k/metal 

gates, and FinFET structures to tackle challenges like 

leakage currents, variability, and other reliability concerns. 

Furthermore, the percentage of computations for many 

applications in the runtime represents 83% [14], as shown in 

Figure 3. These challenges compel both the industry and the 

academic communities to investigate feasible alternatives 

and strategies for sustaining the conventional scaling of 

performance and energy efficiency. In an era marked by the 

explosive growth of data and the increasing complexity of 

computations, the traditional methods of computing face 

significant challenges in terms of energy efficiency, 

computational speed, and resource utilization. 

Approximate computing is one of the promising 

techniques in this trend that has attracted significant traction 

from both academic and industry communities [15], [16]. 

Major corporations such as IBM, Google, Intel, and ARM 

are actively engaged in pioneering research and the 

development of commercial offerings that incorporate 

approximate computing strategies. An illustrative case is 

FIGURE 2. An abstract illustration of the Dark Silicon phenomenon 
which prevents powering-on more cores due to high power density and 
thermal hotspots, where the white C represents the active cores and 
the black C represents the idle cores [11]. 

FIGURE 1. 42 years of microprocessor trend data [6], [7] 
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Google's Tensor Processing Units (TPUs), which employ an 

approximate computing technique known as reduced 

precision to lower energy usage [17]. Parallel paradigms, 

such as stochastic computing, neuromorphic computing, and 

quantum computing, have also garnered considerable 

interest [18]. Table 1 shows a general comparison of these 

four paradigms, where approximate computing can provide 

a good balance between latency, accuracy, power 

consumption, and reliability compared to others. The table 

compares different computing paradigms, highlighting their 

trade-offs. Approximate computing is fast but less accurate, 

while stochastic computing is power-efficient but may not be 

fast and accurate. Neuromorphic computing excels in power 

efficiency but might lack in reliability, whereas quantum 

computing could offer speed and precision but is not yet fully 

developed. The ideal choice for a computing paradigm 

depends on the application's specific accuracy needs, which 

might lead one to choose stochastic computing, whereas 

power constraints might favor neuromorphic computing. 

This comparison is critical when selecting a suitable 

computing approach for a given task.  

 Approximate computing offers large power and 

performance improvements in digital systems by relaxing the 

numerical equality for implementing error-tolerant 

applications [19]. In approximate computing, error metrics 

emerge as a novel design parameter that can be traded off to 

enhance performance or reduce power consumption. 

Although computational faults are never desirable, 

applications tolerant to errors confer additional advantages 

due to their inherent resistance to inaccuracies, attributable 

to several factors [19], [20]. Firstly, these algorithms handle 

real-world, noisy input and redundant data, typically output 

from diverse sensor types. Secondly, they exhibit a 

probabilistic nature, often evident in iterative algorithms. 

Lastly, a minor degree of imprecision in their results is 

generally acceptable, largely due to the limitations of human 

sensory capabilities. 

Typical paradigms of approximate computing 

applications range from big data to scientific applications, 

such as image processing, machine learning, and data mining 

domains. The multifaceted nature of approximate computing 

results in unique trade-offs. Techniques can be implemented 

at various levels, from transistor design to software; each 

approach impacts hardware integrity and output quality in 

different ways. For example, leveraging acceptable error 

margins, as high as 10%, in a typical error-resilient image 

processing algorithm can significantly enhance energy 

efficiency and computational performance [21]. Another 

example is that varying memory refresh rates or adopting 

different data storage and representation precisions are 

viable strategies to achieve such improvements. However, 

these techniques might not be suitable for critical 

applications like medical and military applications [22]. 

At the heart of approximate computing are four different 

levels: data, software, architecture, and circuit (hardware). 

One of its main issues is that the consequences of certain 

approximations are far-reaching on efficiency and accuracy 

for different applications; thus, there is no one-size-fits-all 

solution. This paper will delve into the evaluation of 

approximate computing at these four levels. 

• Data-level: The importance of these techniques cannot 

be underestimated in the quest for lower power 

consumption and improved performance. Sampling, 

quantization, and compression are some of the 

techniques that allow us to manage quality vs. 

efficiency issues for smaller or simpler data 

representations. 

• Software Level: There are approximate approaches 

such as code optimizations like loop perforation, 

which handle software code to have optimized code, 

using approximate functions to construct approximate 

algorithms, or using relaxed synchronization. This 

aims to show valuable efficiency with a slight 

degradation in output quality. 

• Architecture Level: The approaches at this level for 

increasing efficiency and saving power are more 

complicated because we need to rethink the design of 

specialized approximate processing units and memory 

systems. Furthermore, it is necessary to expand and 

 

TABLE 1. Comparison of Features of the Existing Computing Paradigms 

Computing Approach Exact Approximate Stochastic Neuromorphic Quantum 

Latency Low Low to Medium High Low Low (compared to the complexity of problem) 

Accuracy High Medium to High Low to Medium Medium to High High (theoretically) 

Power Consumption High Low to Medium Low Low High (due to cooling requirements) 

Reliability High Medium to High Medium High Low to Medium (due to qubit instability) 

Memory Usage High Low to Medium Low Medium to High Low (due to qubit superposition) 

 
FIGURE 3. Intrinsic application resilience [9], [14] 
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enhance instruction sets and use different precisions to 

contribute to increasing efficiency. 

• Circuit level: the approaches are the cornerstone of 

improved efficiency in power consumption; here we 

need to rethink to approximate logic gates, optimize 

transistor behavior, and redesign arithmetic unit 

circuits, but they come with different degrees of 

inaccuracy. 

This multi-level analysis opens up further exploration of 

how different approximations combine in real systems. 

Understanding interactions between levels will guide the 

development of robust, highly optimized hardware and 

software designs for approximate computing. However, 

cross-layer approaches to approximate computing have 

emerged as a powerful tool for intelligently combining 

approximation techniques across hardware, architecture, 

software, and data levels. Through strategic coordination 

across these layers, researchers aim to maximize efficiency 

gains while adhering to user-specified quality constraints. 

These are critical elements for the field's progress. Despite 

its relative youth, this field demonstrates highly promising 

results [23], [24], [25]. These early successes underscore the 

potential of cross-layer techniques to push the boundaries of 

resource efficiency without sacrificing the functionality of 

computing systems. 

This review tackles the fragmented nature of approximate 

computing with a comprehensive approach, covering 

techniques from circuit to architecture levels. It explores how 

strategies like voltage scaling and selective precision 

optimize energy efficiency and speed while carefully 

balancing accuracy, making it ideal for domains like 

machine learning where slight imprecision is acceptable. We 

also aim to address the future directions of this promising 

field, highlighting the potential research avenues and 

emerging trends. This paper is intended to serve as a primer 

for researchers and practitioners interested in exploring 

approximate computing at different levels, providing 

insights into its potential and limitations. 

The subsequent sections of this manuscript unfold in the 

following manner: Initially, Section II delves into prior 

surveys to identify the main gaps to be filled by this present 

survey. Section III presents the scope of this survey and the 

review methodology. Section IV offers an overview of the 

general framework for approximate computing. Section V 

elaborates on the techniques of approximate computing at 

the data level. Section VI delves into the methodologies 

employed in approximate computing within the software 

domain, focusing specifically on the nuances of 

programming languages designed for approximation. 

Section VII furnishes an in-depth examination of 

approximate computing at the architectural stratum, with a 

particular emphasis on approximate memory systems. 

Following this, Section VIII elucidates the methodologies of 

approximate computing at the circuit level, providing 

detailed insights into their implementation and applications. 

Section IX provides an overview of frameworks and 

approaches in approximate logic synthesis. Section X 

explores three emerging computing frameworks of: cross-

layer and comprehensive end-to-end methodologies and 

statistical and Neuromorphic Computing. Section XI 

explores the impact of applying approximate computing 

strategies across diverse applications. Section XII provides 

the benchmarks, tools, and libraries. Section XIII discusses 

our perspectives of Future Directions. Section XIV presents 

the remaining challenges in approximate computing at the 

different levels, open research questions, and future research 

directions. Finally, Section XV concludes this review paper. 

II. Exiting and Current Surveys 

In this section, we delve into an examination of extant 

literature specifically oriented towards the realm of 

approximate computing at different levels. As of the writing 

of this paper, a limited number of surveys probing the 

domain of approximate computing have been identified. 

Hence, we have compiled the most significant surveys on 

approximate computing up to the end of 2023, arranging 

them in chronological order according to their publication 

years in Table 2. Additionally, we directed attention to 

comprehensive surveys that delve into and concentrate on 

specific subjects within each broader topic, aiding readers in 

their exploration. Table 2 provides a comparative analysis of 

various surveys with regards to the topics addressed, namely 

approximate techniques, applications, hardware and 

software, and challenges. Furthermore, the table provides an 

overview of the extent to which each topic was addressed, 

indicating whether it was fully covered, only partially 

covered, or not covered at all. The review paper encompasses 

the number of pages and references cited, as well as the range 

of years covered. Typically, a review paper should 

concentrate on the various general aspects pertaining to the 

implementation of approximate computing. 

In the scholarly landscape, there are a modest number of 

surveys that have embarked on the exploration of 

approximate computing [19], [26], [27], [28], [29], [30], 

[31], [32], [33], [34], [35]. These studies, while valuable, 

primarily offer a cursory overview of the subject, often 

focusing on specific facets and, consequently, leaving certain 

aspects underexplored. The granularity of detail and 

comprehensive understanding of the topic that these surveys 

provide is, therefore, somewhat limited. Recognizing these 

gaps in the existing literature, the present survey endeavors 

to redress these shortcomings. For example, Zervakis et al. 

[29] concentrated on a limited range of approximate 

computing techniques. They presented a survey that covers 

approximate multipliers and approximate high-level 

synthesis for implementing CNN. Furthermore, they focused 

on the reconfigurable approximation for neural network 

inference. Damsgaard and colleagues [33] presented a 

review paper that touched upon various AxC techniques at 

the architecture and circuit levels, albeit with brief 
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explanations. Their work distinctively highlights the 

exploration of approximate wired and wireless network-of-

chips, an area frequently neglected in other reviews. Leon 

and their colleagues [34], [35] presented a two-part review 

that offers valuable insights and a comprehensive overview 

of the field.  

Recent literature on approximate computing (AxC) has 

enriched the field with key insights but often lacks the scope 

and depth our research intends to cover, particularly in 

exploring the nuances of AxC techniques. This observation 

underscores the necessity for continued research and 

discussion to fill these gaps and provide a more detailed 

exploration of AxC methodologies and applications. 

However, our review delves deeply into the most 

approximate techniques and applications, ranging from 

mobile to cloud computing. Our review expands upon Leon's  

work by offering a more nuanced analysis, breaking down 

topics into detailed subtopics, and updating the discourse 

with research from the last eight years. We also explore areas 

not covered by Leon, such as approximate elementary and 

activation functions, the impact on communication and 

security. Moreover, we providing a broader and more 

updated perspective in this area by presenting a 

comprehensive list of influential review papers in the field of 

approximate computing. We aim to enrich our understanding 

of this sophisticated domain and lay a robust groundwork for 

future research by filling the knowledge gaps left by previous 

surveys to ensure more inclusive coverage of the topic. This 

review paper covers the important key points as follows: 1) 

the benefits; 2) techniques; 3) the cases used for each 

technique; 4) frameworks; 5) hardware circuits and 

accelerators; 5) programming languages 6) tools, including 

compilers and logic synthesis; 7) security; and 8) challenges 

and a future roadmap.  

This survey underlines the transformative potential of 

approximate computing in a variety of domains, particularly 

machine learning and IoT, and aims to enrich the research 

community by offering a valuable reference for researchers. 

III. Survey methodology 

This literature review provides a solid foundation for 

understanding the evolution of this field. By tracing 

TABLE 2. Comparative Analysis of Approximate Computing Surveys Across the Full Computing Stack 

References Ours [19] [36] [27] [28] [29] [30] [32] [37] [34], [35] 

Year of publication 2024 2016 2016 2017 2018 2021 2022 2023 2023 2023 

Pages 70 10 33 34 32 8 10 22 49 69 

References 513 59 82 70 183 38 83 62 186 717 

Range of Years 2017-2024 - - - - - - - - - 

Data-level Approximation   ~  ~ ~ ~ ~ ~ ~ 

Approx. Data      ~  ~   

Approx. structure           

Software level       ~ ~ ~  

Code Optimization        ~   

Approximate Compiler           

Algorithm Approx.           

Approx. Parallelism           

Relaxed Synchronization           

Programming Frameworks and Tools           

Architectural level     ~  ~ ~  ~ 

Approximate Memory      ~  ~  ~  

Approximate processors           

Energy-Memory Management     ~    ~ ~ 

Circuit Level     ~ ~     

Approximate Adders  ~ ~  ~    ~  

Transistor Level  ~ ~     ~   

Gate Level  ~ ~     ~ ~  

Approximate Multiplier   ~  ~   ~ ~  

Approximate divider        ~   

Elementary and Activation Functions         ~  

Approximate Logic Synthesis      ~     

Application Level     ~ ~ ~ ~   

AI/ML           

IOT           

Data mining            

Security           

Cross Layer and End-to-End Approx.           

Statistical and Neuromorphic 

Computing 
          

Benchmarks, Tools and Libraries           

Challenges and Future directions           

 discussed,  not discussed, ~ shortly discussed, - undefined years 
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developments from early foundational works to the most 

influential recent publications (2017-2024), we identify key 

trends and breakthroughs. Publications from established 

publishers (IEEE, ACM, Elsevier, Nature, Springer, MDPI, 

etc.) were carefully considered, supplemented by insights 

from select ArXiv preprints. Five hundred and two studies 

encompassing various techniques in approximate computing 

have been examined. The review includes 20 articles from 

2024, 94 from 2023, 77 from 2022, 59 from 2021, 58 from 

2020, 57 from 2019, 52 from 2018, 36 from 2017 and 62 

from the preceding years. The focus of this research was 

primarily on contemporary literature within the field of 

Approximate Computing (AxC). An analytical review of 

selected papers was conducted with several objectives in 

mind: firstly, to catalog and elucidate the various AxC 

methodologies; secondly, to enumerate and describe notable 

AxC architectures that have been documented; thirdly, to 

discuss the hurdles associated with AxC while proposing 

feasible solutions; and lastly, to assess how AxC is applied 

in practice. Figure 4 presents a visual representation of the 

distribution of selected papers, categorized by their 

publication years and the publishers involved.  

IV. General Framework of Approximate Computing 

Approximate computing represents a paradigm in 

computational methodology that willingly sacrifices a 

degree of precision in exchange for enhanced performance 

and improved energy efficiency. This strategy proves 

particularly advantageous for applications that can 

accommodate a certain measure of inaccuracy without a 

significant impact on the overall outcome. As delineated in 

Figure 5, the framework for approximate computing 

encompasses a multitude of stages and components. 

The overarching structure of the approximate computing 

framework is primarily composed of three integral 

components: the selection of error-tolerant applications, the 

implementation of approximate-aware design at compile-

time (offline), and the execution of approximate tuning at 

run-time (online). The framework is segmented into finer 

elements, each vital for the effective deployment of 

approximate computing. These subdivisions collectively 

contribute to enhancing the computational performance and 

energy efficiency of the overall system. The process begins 

by choosing one or more approximate levels (employing a 

cross-layer approach) to implement an application. To 

successfully leverage approximate computing, a critical first 

step is to identify the non-critical computation units of the 

application, which allow for relaxation in accuracy without 

degrading the overall output quality. This step is called “non-

critical unit identification,” which requires thoughtful 

analysis. Once these units are identified, the next step is 

“Approximate Design”, which is performed both at compile-

time (offline) and runtime (online). Compile-time 

Approximate design transforms these application units by 

strategically introducing approximate computations. This 

process can require specialized tools and compilers to 

optimize the trade-off between accuracy and efficiency. To 

maximize efficiency while maintaining accuracy, systems 

must reconfigure themselves at runtime to change the degree 

of approximations. This process involves the following 

steps: monitor conditions, readjust approximation levels, and 

continuously assess adherence to system goals. Intelligent 

runtime management is crucial for realizing the full potential 

of approximate computing. Developing systems that can 

autonomously and rapidly select the optimal degree of 

approximation in response to fluctuating requirements and 

conditions remains a complex and active area of research. 

To achieve approximate computation, researchers and 

practitioners employ a toolbox of diverse techniques. These 

span hardware components (approximate adders), software 

frameworks, system-level strategies (sampling), and 

programming language and logic synthesis features. 

However, the error analysis and quality evaluation help us in 

the selection and dynamic adjustment of these techniques. 

The approximate computing framework reflects a 

comprehensive strategy. The process begins to help us define 

and identify the candidate parts or units of the application to 

apply a suitable approximate technique. After integrating 

approximated units or parts into the application's design, the 

compilation and error analysis phases begin. Another critical 

aspect of this framework is the runtime management of the 

application through an ongoing assessment of the quality of 

the results. This methodology facilitates more efficient 

computing, especially in scenarios where some inaccuracy is 

acceptable. The next subsequent sections will delve into each 

component in detail. 

  

FIGURE 4. The Distribution of Selected Papers, Categorized By their 
Publication Years and the Publishers Involved. 
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V. Data-Level Approximations 
A. APPROXIMATE DATA TYPES AND STRUCTURES  

One straightforward way to incorporate approximation into 

hardware and software is to use approximate data types and 

structures. To save computing resources, data types and 

structures allow for certain imprecision in storage and 

manipulation. For example, we know that precision scaling 

(e.g., using fixed-point) can accelerate computations and 

reduce storage. Likewise, approximate data structures (such 

as Bloom filters or Count-Min sketches) are also useful to 

save more resources and time by providing probabilistic 

functionality. Furthermore, approximate data representation 

focuses on approximating the input data to allow for more 

efficient computation. Unfortunately, the applications in 

image processing and neural networks offer a certain 

inherent level of error tolerance and this provide us the 

opportunities for concrete enhancements in both 

performance and energy efficiency. This section delves into 

the specifics of approximate data types and structures and 

discusses their implementation, benefits, and potential 

drawbacks. 

1) APPROXIMATE DATA REPRESENTATION 

Approximate data representation involves strategically 

employing techniques like sampling or simplified 

representations to reduce the complexity or volume of 

datasets. These methods see wide adoption in domains such 

as data analysis, machine learning, and other 

computationally demanding fields. Approximate data types 

prove advantageous in three key scenarios: 

• Resource Constraints: When hardware limitations 

(memory, storage) are present, data-level 

approximations enable operation on datasets that 

would be otherwise infeasible, trading some precision 

for efficiency gains. 

• Real-Time Processing: In streaming or sensor data 

scenarios, approximate techniques allow for rapid 

insight extraction and decision-making, prioritizing 

responsiveness over exhaustive analysis. 

• Inherent Imprecision: Many real-world datasets (e.g., 

weather data, image data) contain natural variability. 

In these cases, absolute accuracy may be less critical, 

justifying the benefits of approximate representations. 

This makes approximate methodologies suitable for 

effective data handling, as the natural variability and 

uncertainty in data sources make exact precision less critical. 

a) Data Sampling 

One common technique for approximate data 

representation is data sampling [38], [39], [40], [41], [42], 

[43], [44], [45], [46], [47]. Instead of analyzing the entire 

dataset, a representative subset of the data with error 

bounds is selected for applications such as database 

search, stream analysis, and model training. This can 

reduce the computational complexity of the analysis and 

speed up the processing time. The selection of data can be 

done based on various criteria such as random, 

systematic, adaptive, stratified, multistage (clustering), 

FIGURE 5. Overall framework of Approximate Computing 
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reservoir Sampling, Sampling-Over-Joins, Bucketing 

Strategy, Coreset etc. The inclusion of sampling operators 

in leading database products (e.g., Oracle, Microsoft SQL 

Server, IBM Db2) highlights their importance in 

extracting insights from large datasets. This capability 

proves crucial in many areas, including exploratory 

analysis, predictive modeling, and hypothesis testing. The 

most basic approach to random sampling is known as 

uniform random sampling, in which every item in the full 

data set (also referred to as the “population”) has an equal 

chance of being selected. Despite its simplicity, uniform 

random sampling can potentially result in significant 

variability in the resulting estimates. 

One strategy for overcoming this obstacle is to provide 

the developer with abstractions to identify, reduce, and 

reshape resilient and best-effort computations to be more 

parallelizable or run on unstable hardware components 

[9], [48]. There are many frameworks that provide the 

developer with these abstractions and the capabilities of 

distributed computing and data processing, such as 

Hadoop MapReduce [49], ApproxHadoop [50], Apache 

Spark, Apache Flink, Apache Storm, Apache Tez, 

Apache Beam, etc. For example, Apache Beam, an open-

source framework, simplifies batch and stream processing 

with its high-level API, compatible with various 

execution engines like Apache Flink, Spark, and Google 

Cloud Dataflow. Initiated by Google and developed with 

partners such as Cloudera and PayPal, it transitioned from 

Google Cloud Dataflow in 2014 to Apache Beam in 2016 

under the Apache Software Foundation. 

Data sampling is a technique used in various 

frameworks to improve the efficiency and speed of 

processing large datasets, especially in decision-making 

and analytical applications. In this paper, we provide an 

overview of how some frameworks utilize data 

sampling. Laptev [49] proposed enhancing Hadoop with 

statistics-based uniform sampling for efficient analysis 

of massive datasets, addressing time and resource limits. 

This extension, EARL on Hadoop, accelerates 

processing when preliminary results suffice, 

maintaining high accuracy with small samples and using 

bootstrapping for accuracy estimates. Goiri et al. [50] 

introduced an approximate Hadoop version using 

strategies like data sampling and task dropping for large 

datasets. This approach, allowing for both precise and 

approximate MapReduce operations, can significantly 

cut runtimes by up to 32 times with a tolerable error 

margin of 1% at 95% confidence. Hu et al. [51] explored 

sampling as a way to speed up decision-making queries 

on large data sets by introducing a sampling framework 

in Spark that allows for approximate computing with 

error estimates. ApproxSpark supports various sampling 

methods, such as partition versus data item sampling and 

stratified sampling, to provide fast results with estimated 

error bounds. The findings indicate that ApproxSpark 

can notably enhance speed while retaining accuracy to 

optimize for different applications.  

Sampling techniques play a crucial role in addressing 

the challenges of stream analytics. Quoc et al. [52] 

developed StreamApprox, an approximate computing 

system for stream analytics that provides significant 

speedups and throughput gains (1.15x−3x) over native 

Spark Streaming and Flink. This is achieved through 

selective sampling, while still maintaining high 

accuracy levels. StreamApprox outperforms a 

competing Spark-based sampling system with 

comparable accuracy. Zhenyu et al. [53] proposed a 

system called ApproxIoT that employed approximate 

analytics for high throughput edge computing. The 

authors used online hierarchical stratified reservoir 

sampling to gather data in a decentralized manner, but the 

aforementioned systems [52] are designed to handle the 

task of processing input data streams in a centralized 

datacenter. The authors also employed an extended 

stratified reservoir sampling to select data from multiple 

sub-streams, ensuring no individual sub-stream is 

ignored. It generates approximate output with defined 

error bounds, making effective use of edge computing 

resources. ApproxIoT surpassed traditional sampling 

with 1.3x to 9.9x faster processing across 10%-80% 

sampling rates, showing slight accuracy decreases (0.07% 

at 10% sampling). In tests with NYC taxi data, it offered 

improved data throughput, balancing efficiency and 

quality. However, it's limited to linear queries and needs 

manual sampling adjustments. Trong et al. [39] 

introduced S-VOILA, a stratified random sampling 

algorithm designed for efficient and representative data 

stream handling. The algorithm was evaluated using real-

world datasets, including the OpenAQ dataset, and 

compared with other methods such as Reservoir, ASRS, 

and Senate sampling. It achieves a lower variance than 

ASRS and approximates VOILA allocation. Empirical 

results on real-world data demonstrate its superiority over 

Neyman allocation. This makes S-VOILA valuable for 

reducing computational overhead in machine learning 

model training. Park et al. [54] developed BlinkML, a 

system that enables error-sample size trade-offs for 

machine learning training, efficiently estimating the 

needed sample size for desired accuracies. BlinkML 

outshone traditional methods by training 961 models in 

30 minutes and finding the best model in 6 minutes, but 

the traditional methods failed within an hour. It achieved 

up to 95% accuracy in various models, using only 0.16% 

to 15.96% of the usual training time, and employed 

uniform random sampling for large datasets with a 

memory-efficient approach. Anderson et al. [55] focused 

on optimizing the time-consuming process of feature 

engineering in machine learning. They proposed a 

system, ZOMBIE, that treats feature evaluation as a query 

optimization problem, thus accelerating the feature 
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evaluation loop. They employed a variation of active 

learning for data sampling. The system was tested using 

different learning tasks and index group creation 

methods, and the results showed that ZOMBIE 

significantly outperformed conventional methods, 

reaching the accuracy plateau for a task nearly eight times 

faster. The authors conclude that ZOMBIE can reduce 

engineer wait times from 8 to 5 hours in some settings. 

Sampling frameworks offer compelling advantages 

when dealing with massive datasets. By intelligently 

reducing the volume of processed data, they lead to 

faster execution times and improved scalability. Current 

research is investigating improvements in sample 

techniques to reduce errors and customize them for 

certain analytical purposes. 

Researchers commonly approximate data at the software 

and hardware levels using three approaches: precision 

scaling, quantization, and relaxed precision. These 

techniques can reduce the complexity of computational 

applications. 

b) Relaxing Precision 

The design methodology of approximate computing 

involves sacrificing computational precision in exchange 

for enhanced power efficiency and performance. A 

prevalent approach is the relaxation of precision, which 

involves reducing the bit count employed in representing 

data or performing computations. However, the 

compromise lies in the potential occurrence of errors or 

imprecisions in calculations. Error-tolerant algorithms, 

error compensation techniques, and error-aware design 

can be used to alleviate the deleterious effects of precision 

relaxation. The appropriateness of relaxing precision is 

contingent upon the application's capacity to 

accommodate errors, and a judicious evaluation is 

necessary to achieve equilibrium between the advantages 

of minimizing precision and the requisite degree of 

exactness for a particular application. This involves 

reducing the precision of numerical calculations, such as 

using single-precision floating-point numbers instead of 

double-precision. The floating-point data type is a 

common target for approximation. By reducing the 

precision of floating-point numbers, computations can be 

performed more quickly and with less energy. This can 

significantly reduce the computational cost of the 

algorithm at the expense of reduced accuracy. Zachariah 

et al. [56] explore low-precision numeric formats (fixed-

point, floating-point, and posit) at ≤8-bit precision for use 

in DNN accelerators. Static analysis tools [57] play a key 

role in enabling such precision reduction techniques. 

c) Quantization  

This technique refers to the process of reducing the 

precision of numerical data in a program by mapping the 

values to a smaller set of discrete values. This is typically 

done in machine learning models to reduce the memory 

requirements and computation costs of the model, which 

is especially important for deployment on edge devices 

with limited resources. As a result, the majority of recent 

studies on quantization have concentrated on inference 

[58]. One common method of quantization is fixed-point 

quantization, where each numerical value is represented 

as an integer or fixed-point number with a limited number 

of bits. Quantization can be done during the training or 

inference of a machine learning model. In post-training 

quantization, the weights and activations of a pre-trained 

model are quantized to a lower precision [59], while in 

quantization-aware training [58], [59], [60], [61], [62], 

the model is trained with the quantization process in 

mind, often with the use of special quantization-aware 

algorithms and techniques. The choice of quantization 

method and the level of precision to use depend on the 

specific requirements of the application and the trade-off 

between accuracy and resource usage. This can save 

memory and computational resources, but it can also 

introduce some errors [63]. In the depicted training 

workflow as shown in Figure 6, Novac et al. [61] 

employed floating-point quantization to strike a balance 

between computational efficiency and precision. Prior to 

performing computations within each neural network 

layer, the inputs, weights, and biases are quantized to 

lower precision while retaining their floating-point 

nature. Post-computation, the outputs are similarly 

quantized before they proceed to the subsequent layer. 

This approach ensures a consistent precision level 

throughout the network's forward pass. The precise 

methodology for quantization is outlined in [61]. Notably, 

during Training, certain processes, such as the system 

dynamically reassess the value range and updates the 

scale factor before performing layer computations. 

However, during inference, the scale factor remains fixed. 

Also, Guowei et al. [64] tackled the challenge of 

deploying accurate crop disease recognition models onto 

resource-constrained hardware. Their multi-pronged 

approach combines pruning, knowledge distillation, and 

ActNN compression with INT8 quantization. 

Remarkably, this significantly reduced model size (by 

88%) and inference time (by 72%) while achieving an 

impressive 94.24% accuracy. Their contribution 

demonstrates the feasibility of accurate real-world image 

analysis on smaller devices. Real-time ECG analysis at 

the edge is challenging due to device limitations. 

Mohammed's work [65] addresses this with a lightweight 

model that uses quantization and pruning to achieve up to 

99.1% and a 95% F1-score for edge-based deployment. 

Due to hardware improvements and privacy 

considerations, machine learning (ML) is moving towards 

edge devices. Federated learning (FL) shines here, 

improving privacy and network efficiency. To support 

this trend, Diogo et al. [66] proposed L-SGD, a 

lightweight version of SGD optimized for 
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microcontrollers (MCUs). Their implementation is 4.2x 

faster than standard SGD while consuming significantly 

less memory (2.8%). It boasts both a floating-point and a 

quantized version for fine-tuning, showing promise for 

quick model updates and fairness fixes in FL scenarios. 

d) Precision Tuning or Scaling 

This technique involves adjusting the numerical precision 

of calculations to improve both accuracy and efficiency. 

It entails fine-tuning data and computations to maximize 

efficiency and accuracy while using as few resources as 

possible. Precision scaling or feature scaling approaches 

(e.g., half-precision (16-bit) and mixed-precision 

training) are both techniques used in deep learning that 

aim to improve training efficiency and reduce 

computational resources while maintaining or even 

improving model performance [56], [67], [68]. These 

breakthroughs have become particularly relevant with the 

advent of powerful hardware accelerators such as GPUs 

and TPUs, which can effectively leverage the benefits of 

reduced precision arithmetic. Nevertheless, achieving 

precision below half-precision has presented a 

considerable challenge that requires extensive fine-

tuning. Numerous cutting-edge software-level 

approaches [69], [70] have been developed to tackle 

various challenges associated with precision scaling, 

including scaling degree, scaling automation, mixed 

precision, and dynamic scaling.  

To handle the complexity and non-intuitive nature of 

round-off errors in floating-point, Wei-Fan et al. [71] 

addressed this issue using formal analysis with 

FPTUNER, an automated tool that optimizes precision 

through symbolic expansions. FPTUNER efficiently 

manages precision modifications and was tested on 

various benchmarks, showing significant energy savings 

with mixed-precision code despite some compiler-related 

challenges. For a detailed study on these quantization 

techniques, the review paper [58] offers extensive 

insights.  

The utilization of graphics processing units (GPUs) has 

become widespread in accelerating various emerging 

applications, including but not limited to big data 

processing and machine learning. Although GPUs have 

demonstrated their effectiveness, one prevalent approach 

to enhancing performance is approximate computing, 

which involves sacrificing accuracy in exchange for 

improved performance. The technique of approximating 

high-precision values into lower-precision values with 

precision scaling has become increasingly popular on 

GPUs, with support for half-precision at the hardware 

level. The issue with GPU-side kernel-level scaling is that 

the overall improvement in program performance is often 

limited due to the combination of data transfer, type 

conversion, and kernel execution. To address this issue, 

several solutions can be employed: optimizing data 

transfer, kernel fusion [69], adaptive precision techniques 

[72], memory hierarchy optimization, compiler and 

runtime support, and advanced code analysis and 

optimizations. By implementing these solutions, the 

performance of GPU-side kernel-level scaling can be 

significantly improved. Kotipalli et al. [72] addressed the 

limitations of precision selection for applications with 

strict accuracy requirements, neglect of performance 

concerns in GPGPU accelerators, and insufficient 

optimization techniques in existing approaches. It 

provides a comprehensive solution, AMPT-GA, that 

optimizes performance while satisfying accuracy 

requirements in high-performance computing 

applications. To face the scalability limitations of 

FIGURE 6. Quantization-Aware Training architecture [61]. 
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precision tuning techniques due to the wide search space, 

Guo et al. [73] presented a scalable hierarchical search 

algorithm for precision tuning, which was implemented 

in the tool HiFPTuner. The results showed the proposed 

algorithm reduce the search time by 59.6%. compared to 

the state-of-the-art. 

The concept of “dynamic precision scaling” pertains to 

the modification of numerical precision in real-time, 

which is contingent upon the particular demands of a 

given computation or system [70], [74]. Deep neural 

networks demand extensive linear operations, impacting 

speed. George et al. [75] introduce a dynamic-mixed-

precision inference scheme to address this problem. Their 

results show a significant execution time reduction (55%) 

for linear operations while maintaining model accuracy. 

Effective mixed-precision tuning demands tailored 

hardware and software. William et al. [76] presented a 

roadmap for this co-design. Their roadmap, informed by 

recent advances, strives to maximize mixed-precision 

benefits (performance and energy efficiency) for diverse 

applications.  

e) Compression  

This technique involves reducing the size of data or files 

through various compression techniques. The goal is to 

store or transmit data in a more efficient way, thus 

reducing storage or bandwidth requirements and 

potentially improving performance and energy efficiency 

[55], [56]. There are two main categories of data 

compression: lossless and lossy. Lossless compression is 

a type of compression that uniquely guarantees the ability 

to recover the exact original data from its compressed 

form. Examples of lossless compression techniques 

include Huffman coding, Run Length Encoding, LZ77, 

ZIP, GZIP, and RAR, which are used to compress text, 

images, and other types of data [77]. There are also lossy 

compression algorithms such as JPEG, MP3, and MPEG, 

which eliminate unnecessary or less important 

information where a certain amount of data loss will not 

be detected by most users. These types of compression are 

used to compress multimedia files like images, audio, and 

video. For instance, JPEG, MP3, and MPEG-4 are used 

for images, audio, and video, respectively [77], [78], [79], 

[80], [81], [82]. Lossy compression formats, such as MP3 

or MPEG4, achieve smaller file sizes in comparison to 

lossless formats, albeit with a trade-off of reduced output 

fidelity. Data compression plays a dual role in machine 

learning and big data contexts. Lossy techniques (MP3, 

MPEG4) aren't the only way to reduce the size of a file. 

Dimensionality reduction techniques like Principal 

Component Analysis (PCA) and t-Distributed Stochastic 

Neighbor Embedding (t-SNE) hold particular 

significance. These techniques streamline processing by 

extracting high-level features from vast datasets while 

potentially mitigating issues like the curse of 

dimensionality.  

Classical dimensionality reduction (PCA, t-SNE) 

excels at finding linear structure in data but can have 

difficulties capturing complex, nonlinear relationships 

that often exist in high-dimensional datasets. Beyond 

Linear Compression, Autoencoders [83] and generative 

models (including Variational Autoencoders (VAEs) [84] 

and Generative Adversarial Networks (GANs) [85]) use 

deep neural networks inherently adept at nonlinear 

patterns. These can encode richer, more expressive 

representations of data. Auto-Encoder (AE) [86] is a 

neural network architecture that specializes in encoding 

and decoding data. The encoder component compresses 

the input data x into a condensed representation known as 

the latent variable z, following the function qϕ(z∣x), as 

shown in Figure 7 (a). The decoder then attempts to 

reconstruct the original input from this latent variable, 

outputting x as per the function pθ(x∣z). The AE is 

generally trained without supervision to minimize the 

reconstruction error between x and 𝑥̂. Variations of AEs, 

including Variational Auto-Encoders (VAEs) and their 

derivatives, extend this basic framework to serve more 

complex purposes like data generation and denoising, 

adapting the architecture to a range of applications, as 

shown in Figure 7(b). 

For example, Duan et al. [84] introduced a 

Quantization-aware ResNet VAE (QARV) for lossy 

image compression, combining hierarchical VAEs design 

with quantization optimizations for efficient entropy 

coding and fast decoding. QARV is characterized by 

using variable compression rates, which outperforms 

existing methods in rate-distortion metrics. However, 

choices like PCA's number of components or an 

autoencoder's bottleneck size directly influence 

information loss.  

The choice of data compression technique depends on 

the specific requirements of the application, such as the 

FIGURE 7. Architectures of (a) Autoencoder, and (b) Variational 
Autoencoders (VAEs) [86]. 
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need for lossless reconstruction, the acceptable level of 

data loss, and the computational resources available. 

Wiedemann et al. [87] introduced DeepCABAC, a novel 

neural network compression method based on Context-

based Adaptive Binary Arithmetic Coder (CABAC), 

achieving high compression rates without compromising 

accuracy. They demonstrate that DeepCABAC can 

compress the VGG16 ImageNet model by a factor of 

63.6, reducing the network's memory footprint to a mere 

9 MB without compromising its accuracy.  

In conclusion, although compression methods provide 

notable advantages in minimizing data volume and 

enhancing storage and communication efficiency, they 

present a set of challenges that need to be addressed. The 

low performance and high complexity of compression 

and decompression algorithms can offset the benefits, 

especially for low-power devices and real-time scenarios 

(video streaming). The data types and compression ratio 

also specify the type of compression algorithm to be used. 

Therefore, being careful when making the decision to 

select and implement compression techniques is crucial. 

2) APPROXIMATE DATA STRUCTURES  

Data structures offer a strategic approach to data storage and 

retrieval, incorporating mechanisms for approximation or 

lossy compression to curtail memory and computational 

demands. This efficiency extends to supporting decrement 

operations and managing negative counts, further enhancing 

system performance. For example, in data analytics, 

approximate data structures such as Bloom filters and 

HyperLogLog can be used to estimate the cardinality of a set 

without storing all the elements of the set [88], [89]. There 

are some examples of approximate data structures: 

a) Bloom filter  

The Bloom filter's core strength lies in its space efficiency 

and fast membership queries. However, its probabilistic 

nature introduces the possibility of false positives 

(indicating an element is present when it isn't actually in 

the set) [90]. Despite this limitation, Bloom filters find 

wide adoption in scenarios where some inaccuracy is 

tolerable and space is a major constraint [91]. They are 

widely used in various domains such as IOT, networking, 

databases, and bioinformatics. Burton [92] introduced 

Bloom filters in the 1970s. There are many categories of 

Bloom filters based on practical measurements, namely, 

Standard, Counting, Dynamic, Hierarchical, Loglog, 

Spectral, Multidimensional, Fingerprint-based, Shifting, 

Compressed Bloom Filters, etc. In general, designing 

Bloom filters presents several key challenges: a trade-off 

between false positive rate and space, no false negative 

control, optimal hash function choice, predefining size, 

and scalability. The predefined size of the Bloom Filter, 

which cannot be changed later, poses challenges for large 

or growing datasets. The rate of false positives can be 

reduced by increasing the size of the Bloom filter or using 

more hash functions. There are many proposed 

approaches to reduce the rate of false positives. However, 

both solutions require more computational resources. For 

applications where false positives are absolutely 

unacceptable within known data size constraints, EGH 

filters provide a valuable solution, as demonstrated by 

Sándor et al. [93]. This has potential implications for 

areas like network security and data validation. For 

providing control over false negatives, Bloom filters can 

handle the deletion of elements, thus providing control 

over false negatives. 

Bloom filter is a little more memory-intensive hashing 

method. BF's compute cost comes from hash function 

computation and query judgment. MD5, SHA-1, and 

other computation-intensive hash algorithms are needed 

for BF. Perfect and locality-sensitive hashes are 

considerably harder to compute. Determining the ideal 

number of hash functions in a Bloom filter depends on 

several factors: the filter's size, the expected dataset size, 

and the most importantly, the relative cost of the hash 

function itself. Modern optimization balances these 

factors. Bloom filters exhibit either the capability to 

delete data while incurring supplementary memory usage, 

or the ability to expand data while incurring a higher rate 

of false positives and a reduction in query speed. 

Therefore, Yuhan W. [94] addressed and solved the two 

shortcomings: no deletion and no expansion, by 

proposing a new Bloom Filter, called Elastic Bloom 

Filter. 

The classic Bloom filter, while remarkably space-

efficient, faces inherent trade-offs between accuracy, 

query speed, and memory usage. Recent work by 

Gebretsadik et al. [95] presented the enhanced Bloom 

filter (eBF), a novel design specifically tailored to the 

challenges of intrusion detection in IoT networks. Their 

experimental evaluation reveals the eBF as a significant 

step forward, demonstrating considerable memory 

savings (15.6x, 13x, 8x) over standard Bloom filters, 

Cuckoo filters, and robust BFs, while maintaining fast 

and accurate performance. Seymen et al. [96] proposed a 

lightweight Bloom filter for IOT applications and 

implemented it using the Murmur3 hash on a Nexys A7 

FPGA board. 

In summary, Bloom filters are celebrated for their 

compactness and proficiency in membership 

determination, despite their computational and memory 

demands [97], [98]. Future efforts will aim at refining 

these structures to lower false positives, enhance 

scalability, and conserve computational resources, 

thereby bolstering their effectiveness and efficiency for 

expansive datasets.  

b) Sketching data structures  

This structure is a family of data structures used to 

summarize large data sets in a small amount of space. 

They can be used for approximate query answering and 
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data compression [99]. Particularly, sketch-based data 

structures, such as the traditional Count sketch (CS), 

Count-Min Sketch (CMS) [7], Count-Mean-Min Sketch 

(CMMS) [100], and many more, are a frequent technique 

for frequency estimation. The efficiency and reasonable 

accuracy make sketch-based approaches compelling for 

network measurement. However, the ongoing need to 

balance accuracy with memory constraints creates an 

active research area. Developing more versatile sketches 

or techniques for dynamically adjusting sketch 

parameters is crucial. New sketch data structures, 

including the Count Min Log Sketch (CMLS) [101], 

Switch Sketch [102], Elastic Sketch [103], HBL (Heavy-

Buffer-Light)-Sketch [104], or Diamond Sketch [105], 

have emerged in recent years [106]. For example, faced 

with the challenge of counting item frequencies in huge 

datasets where exact storage is impossible, the Count-Min 

Sketch emerges as a powerful solution. With a 

probabilistic approach, it intelligently trades some 

accuracy for a significantly reduced memory footprint 

[107]. It is used in various applications like compressed 

sensing, networking, databases, NLP, security, machine 

learning, etc.  

One of the challenges of the Count-min sketch 

algorithm is overestimation of the frequency of events 

due to hash collisions [108], and to mitigate the issue of 

overestimation, one could use a variant of the Count-Min 

Sketch known as the Count-Mean-Min Sketch [100]. The 

accuracy of the CMS depends on the quality of the hash 

functions used [109]. The quality of the hash functions 

can be improved by using independently universal hash 

families [110]. Khan A. et al. [109] introduced an 

enhanced approach to sketch-based hashing, diverging 

from direct full-key hashing. Their methodology involves 

the use of multiple independent hash functions, each 

targeting different segments and combinations of a key, 

thereby establishing a composite hashing framework for 

improved accuracy. The fact that the accuracy of CMS 

improves with more space (i.e., more hash functions and 

larger arrays) is another challenge leading to a trade-off 

between the two. In addition, it should be noted that CMS 

lacks support for decrement operations and negative 

counts. Count-Sketch is a viable alternative to Count-

Min-Sketch for accommodating negative counts. CMS 

can provide frequency estimates, and a combination of 

data structures could be used to support exact queries; for 

example, one could use a hash map for exact queries [111] 

and Count-Min Sketch for frequency estimation. Another 

challenge is that the CMS data structure cannot be resized 

once it's created. This issue was addressed by Zhu et al. 

[112] by proposing a dynamic variant of Count-Min 

Sketch that allows for resizing, called Dynamic Count-

Min Sketch. The Count-Min Sketch is widely used in data 

stream analysis, network monitoring, database size 

estimation, and other areas where processing massive 

amounts of data is required. 

In 2018, a team from Tsinghua University and 

Microsoft Research [93] proposed Elastic Sketch 

algorithm, which would consume less memory and 

provide a more precise estimation of item frequencies. It 

is considered a solution for network-wide measurements, 

which is a critical function for network management and 

security. It is designed to adapt to different traffic 

distributions and measurement tasks. Elastic Sketch 

outperforms contemporary benchmarks with a speed 

increase of 44.6 to 45.2-fold and a reduction in error rates 

ranging from 2.0 to 273.7 times. This algorithm was 

enhanced by Keyan [104], known as Heavy-Buffer-Light 

(HBL) sketch. By comparing it to its predecessor, such as 

the elastic sketch, and other conventional methods, HBL 

manages to decrease the average relative error rate by 

55% to 93% under identical memory constraints.  

c) HyperLogLog (HLL)  

HLL is a probabilistic data structure that is a very 

powerful approximate algorithm used for estimating the 

cardinality of a set. It's particularly useful when dealing 

with large datasets because it provides acceptable 

accurate estimation with significantly less memory [82], 

[89]. It is used in various applications like network 

monitoring, web analytics, data analysis, and databases. 

HLL is a probabilistic algorithm that provides 

approximate estimation, and one can improve the 

accuracy of HLL [114] by increasing the number of 

registers used or using high-quality hash functions. There 

are also improved versions of the algorithm, such as 

HyperLogLog++ [115], HyperLogLogLog [116], or 

HLL-Tailcut [117], that offer better accuracy and less 

memory usage. Unfortunately, HyperLogLog doesn't 

support the deletion of elements; therefore, the sliding 

HyperLogLog algorithm [118] was proposed to support 

deletions. HyperLogLog sketches [119] are proposed to 

extend the HyperLogLog algorithm to support estimating 

the cardinalities of union, intersection, or relative 

complements of two sets. Another issue is that 

understanding privacy-related attributes of datasets, such 

as re-identifiability and joinability, is crucial for data 

governance. However, large datasets and organizations 

require more efficient strategies, as brute force methods 

are inefficient due to their massive systems and data 

volume. Pern et al. [89] introduced an extension of the 

HyperLogLog algorithm, KHyperLogLog (KHLL), an 

algorithm based on approximate counting techniques for 

estimating re-identifiability and joinability risks in large 

databases. KHLL's joinability analysis helps distinguish 

between pseudonymous and identified datasets. This 

leads to reduce reliance on expert judgment and manual 

reviews. It uses less memory and linear runtime. 
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d) MinHash  

MinHash is a probabilistic data structure used to estimate 

the similarity between two sets. It can return approximate 

answers with high probability [90]. The utilization of 

MinHash and HyperLogLog sketching algorithms has 

become an essential practice in the realm of big data 

applications for the purpose of set summarization. 

HyperLogLog is a technique that enables the counting of 

distinct elements using small fraction of storage space. On 

the other hand, MinHash is a method that is well-suited 

for rapid set comparison, as it permits the estimation of 

Jaccard similarity and other related measures. Therefore, 

Otmar et al. [121] introduced a novel data structure named 

SetSketch, which effectively bridges the gap between the 

two aforementioned use cases. In numerous instances, it 

exhibits superior performance compared to the 

corresponding state-of-the-art estimators. Also, Yun et al. 

[122] introduced a novel compressed sketch known as 

HyperMinHash, which is based on the HyperLogLog 

framework and can serve as a seamless substitute for 

MinHash. The HyperMinHash algorithm preserves the 

fundamental characteristics of MinHash, including the 

ability to perform streaming updates, unions, and estimate 

cardinality. 

e) T-digest 

T-digest is an algorithm that is used for real-time 

operations and constructing concise representations of 

data that are capable of approximating rank-based 

statistics with a high degree of accuracy, especially in the 

vicinity of the distribution's extremities [123]. It was 

introduced by Ted Dunning in 2013. This novel form of 

sketch exhibits resilience in the face of non-normal 

distributions, multiple iterations of sampling, and 

arranged data sets. The integration of independently 

computed sketches can be achieved with minimal or 

negligible compromise in precision. The t-digest 

algorithm is extensively utilized within prominent 

corporations and is additionally incorporated into 

commonly used software applications such as Postgres, 

ElasticSearch, Apache Kylin, and Apache Druid. The t-

Digest has the property that the error is smaller around the 

median and larger at the extremes, which makes it 

particularly useful for applications that require accurate 

estimates of quantiles for skewed data [91]. 

Overall, approximate data structures can be a useful 

tool for handling large amounts of data efficiently while 

sacrificing some level of accuracy. Each of those 

techniques offers unique advantages and can be applied 

in different scenarios depending on the specific 

requirements of the application. However, they also have 

their own challenges and limitations, such as ensuring that 

the introduced approximations do not significantly 

degrade output quality or lead to unacceptable errors. The 

choice among these techniques, therefore, requires a 

careful understanding of both the application's 

characteristics and the capabilities of the approximation 

technique. 

VI. Software-level Approximations 

Approximate computing is a technique used in computer 

engineering to reduce the computational complexity and 

energy consumption of computing systems while relaxing 

the accuracy of the computations. This approach can be 

particularly useful for applications where accuracy is not 

critical or where the computations are too complex or time-

consuming to be performed exactly. The complexity of these 

applications is ever-increasing since they must constantly 

adapt to provide new services and process a large amount of 

data. The growing cost of developing such systems, 

including the target cost, power consumption, execution 

time, and memory space for software development, is 

directly proportional to the increasing complexity of 

systems. The idea behind approximation computing at the 

software level is to minimize processing complexity, which 

is represented by the number of processing operations and 

memory accesses, in order to reduce implementation costs. 

Therefore, there are many approximate techniques at the 

software level proposed in the literature in order to reduce 

the computation and the time-execution of a program by 

introducing inaccuracies or approximations in certain parts 

of the computation while producing an acceptable accuracy 

of results. The task of identifying and selecting computations 

for approximation that have less influence on the quality of 

the results is one of the most difficult aspects of approximate 

computing. Software-level approximation techniques refer 

to the methods used to simplify the design and analysis of 

software platforms. These techniques aim to reduce the 

complexity of software systems while maintaining 

acceptable levels of performance and functionality. They can 

be applied at various stages of the software development 

process, including design, implementation, and testing. 

A. CODE OPTIMIZATION-BASED APPROXIMATE 
METHODS  

These methods focus on modifying the code to optimize for 

approximate computation while maintaining an acceptable 

level of accuracy [124]. These methods can be applied 

manually by the programmer or automatically by a compiler 

or another tool. Approximation-enabled compilers are 

another important avenue for software-level approximate 

computing. These compilers introduce approximations into 

programs automatically or semi-automatically. They analyze 

the source code to identify parts of the program where 

approximations can be introduced without significantly 

affecting the overall output quality. Techniques employed by 

these compilers include loop perforation (skipping some 

iterations of a loop), operator approximation (replacing exact 

operators with approximate ones), and task skipping 

(skipping some non-critical computations). These techniques 

modify the compiler to generate approximate code that 
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trades off accuracy and performance. Examples of such 

techniques include AutoTuning and Knowledge distillation, 

matrix approximation, numerical optimization, rounding, 

truncation, statistical sampling, Taylor series approximation, 

linearization, neural networks, and piecewise linear 

approximation. There are several different techniques for 

optimizing code using approximate methods. 

1) COMPUTATION SKIPPING  

Computation skipping is a technique used in computer 

programming to improve the performance and efficiency of 

code by reducing the number of computations that need to be 

performed [125]. This technique involves the exclusion of 

code blocks based on predetermined criteria such as 

acceptable levels of Quality-of-Service degradation, 

constraints established by the programmer, and/or 

predictions made regarding the accuracy of the output at 

runtime. It involves skipping unnecessary computations that 

would not change the outcome of the program. Skipping 

computations in Convolutional Neural Networks (CNNs) 

has been the subject of numerous studies. CNNs excel in 

many recognition tasks, but their computational complexity 

limits their use on power-constrained platforms. Therefore, 

Lin Y. et al. [126] introduced PredictiveNet, a method for 

reducing the computational complexity of CNN without 

significant accuracy loss. It predicts sparse outputs from non-

linear layers, bypassing most computations. It skips many 

CNN convolutions during runtime without changing the 

CNN structure or needing additional branch networks. When 

tested, PredictiveNet reduced computational cost by a factor 

of 2.9 compared to a standard CNN, with minimal accuracy 

degradation. There are several different techniques for 

computation skipping, including: 

a) Loop Perforation (Skipping) 

This technique involves selectively skipping iterations of 

a loop that are not critical to the output in a software 

program to provide performance and energy gains in 

exchange for QoS loss. There are several skipping 

approaches for a different set of iterations based on 

different criteria, such as skipping every other iteration, 

skipping based on a condition, or skipping until a certain 

threshold is met. Loop tiling involves breaking a loop into 

smaller sub-loops to reduce the memory access pattern 

[127], [128], [129], [130]. Figure 8 shows a loop that 

iterates over a set of data. For each iteration, the loop 

checks a perforation condition. If the condition is true, the 

iteration is skipped. Otherwise, the iteration is executed. 
Loop perforation is a powerful technique that can be used 

to improve the performance and accuracy of loops. 

However, traditional loop perforation, which only 

considers the number of instructions to skip, overlooks 

the significant influence of differences between 

instructions and loop iterations on performance and 

accuracy. To address this issue, Li et al. [128] advanced 

loop perforation with their Sculptor system, introducing 

selective dynamic loop perforation to enhance 

performance and accuracy by skipping specific 

instructions within loop iterations. Despite challenges in 

instruction analysis and strategy optimization, they 

proposed compiler improvements for selective and 

adaptive perforation. Testing across eight applications 

showed this method outperforms traditional loop 

perforation, achieving speedups of 2.89x and 4.07x with 

5% and 10% error tolerances, proving its effectiveness in 

boosting both speed and accuracy. 

The graph algorithms are widely used in high-

performance and mobile computing. The performance of 

these algorithms can vary due to input dependence, i.e., 

changes in the input graph. Omar H. et al. [130] proposed 

an input-aware loop perforation predictive model called 

GraphTuner, which allows graph algorithms to 

systematically trade off accuracy for performance and 

power benefits. In this approximate computing 

circumstance, they examine the consequences of input 

dependence on graph algorithms. This helps to identify 

the requirement for adaptation of inner and outer loop 

perforations depending on input graph features such as 

graph density or size. The outcomes indicate an average 

performance improvement of approximately 30% and a 

power utilization improvement of about 19% at a program 

accuracy loss limit of 10% for NVidia® GPU. 

The loop perforation technique has also been used in 

approximation frameworks for optimizing embedded 

GPU kernels. Daniel et al. [129] proposed a new memory-

aware perforation approach for GPU kernels, optimized 

for embedded GPUs, and a framework for automatic loop 

nest approximation based on polyhedral compilation. 

This framework introduces new multidimensional 

perforation schemes and generalizes existing ones. To 

enhance result accuracy, a reconstruction technique is 

incorporated, and a pruning method is proposed to 

eliminate low-quality transformations in the large 

transformation space. 

b) Memory Access Skipping (MAS)  

MAS is a new approach that tries to optimize storage and 

memory access by skipping unnecessary for uncritical 

 
 
FIGURE 8. Flowchart illustrating the concept of loop perforation 
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data. To achieve this technique, we need to statistically 

analyze and profile the code in offline and real-time to 

figure out unnecessary memory access. The main goals of 

this technique are to save energy on memory access, 

ineffective utilization of bandwidth, and the overall 

performance of the system. MAS boosts performance 

mainly for memory-bound applications. However, the 

implementation of MAS faces two challenges: the 

complexity and managing the overheads of accurate skip 

detection. However, this area has significant potential for 

improving performance and power consumption. 

Due to the growth of dataset sizes and multi-level cache 

hierarchies, memory performance in data mining 

applications is a significant problem being addressed by 

the current research. The important methods in data 

mining applications are recursive partitioning methods 

such as decision trees and random forest learning. To 

address this issue, Kislal et al. [131] introduced a 

framework to optimize performance in recursive 

partitioning applications while managing accuracy loss. 

Their key components include a data access skipping 

module (DASM) guided by user-defined strategies and a 

heuristic to predict the impact of skipping data accesses 

for accuracy preservation. This proposed framework 

leverages the inherent flexibility in these applications to 

enhance performance with minimal accuracy losses. 

Experimental evaluations show that this method can 

enhance performance by up to 25% with minor accuracy 

losses of up to 8%. The authors also prove the 

framework's scalability under different accuracy needs 

and its potential for memory performance improvement 

in NoC/SNUCA systems. Also, Raparti et al. [132] 

introduced two innovative solutions for memory 

bottlenecks in many-core GPGPU (NoC) architectures. 

They introduced an approximate memory controller 

(AMC) to lower DRAM latency and optimize scheduling, 

and a low-power NoC (Dapper) to enhance 

communication efficiency. Experiments show the 

architectures boost NoC throughput by 21% and cut 

latency and power use by 45.5% and 38.3%, respectively. 

Certain researchers have directed their attention 

towards the deliberate skipping of costly data accesses. 

Researchers must be aware of three critical questions. 

What is the upper limit of skipping data accesses while 

maintaining a specified level of inaccuracy? The 

significance of architectural awareness in discerning 

which data accesses to eliminate is a pertinent inquiry. Is 

it always the case that two executions, which both skip 

the same number of data accesses, will yield identical 

output quality? Karakoy et al. [133] attempt to answer 

these critical questions through proposing a program 

slicing-based approach that identifies the set of data 

accesses to skip. 

 

2) ITERATIVE REFINEMENT  

Iterative refinement is a method used when we are dealing 

with ill-conditioned systems, where small changes in the 

input can lead to large changes in the output. The technique 

involves starting with an initial estimate of the solution and 

then iteratively refining the estimate until a desired level of 

accuracy is achieved. Iterative refinement can be used in 

various fields, including computer graphics, machine 

learning, and scientific computing. Recent research has 

shown that iterative refinement can be particularly effective 

in certain domains, such as optimization and machine 

learning [134], [135], [136], [137], [138]. Recently, Yang et 

al. [135] highlighted the effects of applying iterative 

refinement in machine learning. They introduced a compact 

deep neural network and applied learned gating criteria 

during the training phase to figure out if the weight-sharing 

cycle would work. This mechanism gives adaptive behavior 

to the model. However, iterative refinement may not always 

be best. It may converge slowly or not at all for ill-

conditioned systems. 

3) EARLY STOPPING  

Early Stopping is a technique used to improve performance 

and prevent poor generalization in machine learning models 

by stopping the training process before the maximum 

number of iterations or epochs is reached. The primary goal 

of early stopping is to prevent overfitting, reduce 

computational costs, and enhance the efficiency of the 

training process. Early stopping can be achieved by 

monitoring various metrics during the training process when 

certain criteria are met. Datasets are divided into three 

subsets: training, validation, and test subsets. The training 

dataset is utilized for modeling and assessing accuracy, 

whereas the validation subset measures model 

generalization. A threshold is set so as to decide the early 

stopping condition and the ideal number of epochs for 

training when the error on the validation subset drifts from 

that on the training subset. As seen in Figure 9, during the 

early training of a model showing high bias and low 

FIGURE 9. The importance of early stopping approach in the machine 
Learning. 
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complexity, both training and validation errors tend to drop. 

This is evident in the underfitting area, where bias and 

generalization are included. In this area, the behavior is that 

of a model that has not been trained enough to recognize the 

patterns in the data. In the overfitting area, the variance or 

error increases as a result of the model being trained for too 

long. This is evident in the growing divergence between 

training and validation errors and the loss of generalization. 

There are a couple of techniques for mitigating overfitting, 

such as early stopping, regularization techniques like L1/L2 

regularization, data augmentation, and ensembling. 

However, the early stopping approach is a simpler and easier 

way than the others. 

Recent research has shown that early stopping can be 

particularly effective in deep learning models, which are 

often computationally expensive and require large amounts 

of data for training [139], [140]. Early stopping can be 

applied to various types of algorithms, including search 

algorithms, optimization algorithms, and machine learning 

algorithms. Together, early stopping and the validation set 

help to find that ideal balance to establish the optimal 

capacity for a model's training, as shown in Figure 9. There 

are several types of early stopping techniques that can be 

used in machine learning to stop the training process before 

it reaches the maximum number of iterations or epochs. 

There are some common types, such as Fixed early stopping 

[141], [142], Adaptive early stopping [143], Noisy early exit 

[142], [144], Early stopping with patience [145], and 

Gradual unfreezing [146], [147], [148]. 

Another recent study that uses early stopping is “Early 

Stopping without a Validation Set” by Maren et al. [140]. 

The authors proposed a validation-free early stopping 

approach that depends on the statistics of locally accessible 

computed gradients. This method increases a little in 

computation complexity, delay, and memory. The method 

achieved comparable or better performance compared to 

traditional methods that use a validation set. 

4) FUNCTION APPROXIMATION  

Function approximation is a technique used in mathematics 

and computer science to estimate an unknown function using 

a set of input-output pairs or data points. The purpose of this 

technique is to figure out a function that approximates the 

true underlying function as closely as possible. There are 

many methods for function approximation, including 

polynomial interpolation, the CORDIC algorithm, 

regression analysis, spline interpolation, and neural networks 

[149], [150], [151]. The implementation of approximate 

functions within complex systems is facilitated by the 

utilization of neural networks in software-hardware co-

design. This approach involves converting traditional 

approximable codes into equivalent neural networks, 

resulting in improved execution time performance at the 

expense of reduced output accuracy [152], [153]. These 

techniques are also used at the circuit (hardware) level, and 

we will discuss them in detail later. 

5) PRUNING 

Pruning is a technique used a lot in deep learning and 

machine learning models to make models smaller and 

simpler. The goal is to remove redundant or unnecessary 

parameters from the model, which can lead to better 

generalization performance and faster inference times. There 

are several types of pruning techniques that can be used 

depending on the specific application and model architecture 

[154], [155], [156], [157], [158]. The goal of pruning is to 

generate a more compact and efficient model that can be 

implemented on resource-constrained devices or used in 

real-time applications without reducing accuracy or 

performance. This can be done through a variety of methods, 

including magnitude-based pruning [159], where weights 

with small absolute values are removed, and iterative 

pruning [160], where weights are gradually removed over 

multiple iterations of training. Pruning methods can be 

broadly categorized into unstructured pruning [159], 

[160], [161], and structured pruning [81], [162], [163], 

[164], [165]. For example, in deep learning, Neuron or 

Weight pruning can be used to remove neurons or 

connections that do not contribute significantly to the final 

output. This can reduce the computational complexity of the 

model and speed up the training process [166]. Another 

example is that in a convolutional neural network, filter 

pruning can be used to remove filters that have low 

activation values or are redundant, which can help to 

decrease the computational cost and memory requirements 

of the model [165], [154], [167], [168], [169]. For example, 

Jian-Hao [170] proposed a filter pruning algorithm called 

ThiNet, which considers the interdependence of filters in a 

layer and prunes them in a way that preserves accuracy. The 

findings indicate that ThiNet achieves a significant reduction 

in computational resources for VGG-16, including over 3 

times fewer FLOPs and over 16 times compression, with a 

minimal accuracy loss of 0.52%. Additionally, ThiNet cuts 

parameters and FLOPs by over half, with a slight accuracy 

decrease of about 1%. 

6) SPARSITY 

Sparsity is a crucial concept in modern data processing and 

machine learning to optimize energy, memory, and 

computation in algorithms, all without significant loss of 

accuracy. Sparsity is a technique employed to ensure that a 

large proportion of the elements in a dataset or matrix are 

zero or have values that will not significantly impact a 

calculation. There are many techniques to achieve sparsity: 

pruning, regularization, dimensionality reduction 

techniques, and matrix factorization methods. We discussed 

pruning techniques in the previous subsection. We can use 

regularization techniques like L1 regularization to handle 

sparsity in neural network model parameters. To reduce the 
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dimensionality of datasets and extract features, we can use 

dimensionality reduction techniques like Principal 

Component Analysis (PCA) and t-Distributed Stochastic 

Neighbor Embedding (t-SNE), and Matrix Factorization 

methods like Singular Value Decomposition (SVD) and 

Non-negative Matrix Factorization (NMF). We discussed 

dimensionality reduction techniques in the compression 

subsection. These techniques and methods are parts of low-

rank matrix factorization techniques [171], which are 

unsupervised learning methods used for data analysis tasks 

such as dimension reduction, feature extraction, blind source 

separation, data compression, and knowledge discovery. 

Recent years have seen the success of artificial neural 

networks in solving real-world problems and the rapid 

increase in their complexity and parameters. Larger 

networks are more computationally and memory-intensive, 

making them difficult to use on embedded devices [172]. To 

address this, there is growing interest in sparsifying neural 

networks. Sparse neural networks can match the 

performance of fully connected networks while using less 

energy and memory, making them ideal for resource-limited 

devices [173]. NVIDIA [174] has developed a 

straightforward and widely applicable technique for 

generating sparse deep neural networks through inference by 

utilizing a particular form of sparsity structure known as 2:4 

pattern. For example, the NVIDIA Ampere architecture's 

third-generation Tensor Cores in A100 GPUs utilize fine-

grained sparsity in their neural network weights, enhancing 

matrix multiplication speed in deep learning without losing 

accuracy. Another example, Lu et al. [175] aims to develop 

an FPGA accelerator for sparse CNNs, addressing 

inefficiencies in existing FPGA architectures designed for 

dense models. The proposed solution includes a weight-

oriented dataflow for handling irregular connections in 

sparse convolutional layers, a tile look-up table to eliminate 

runtime indexing matches, and a weight layout with a 

channel multiplexer to prevent data access conflicts. 

Experiments show the accelerator achieves 223.4-309.0 

GOP/s on Xilinx ZCU102, offering a 3.6x-12.9x speedup 

over previous dense CNN FPGA accelerators. Also, 

Tragoudaras et al. [176] used a state-of-the-art HLS tool to 

implement a MobileNetV2 model by integrating design 

methodologies with sparsification techniques, including 

sparse matrix methods and two weight pruning approaches. 

The objective is to develop hardware accelerators that 

maintain error metrics comparable to state-of-the-art systems 

while significantly reducing inference latency and resource 

utilization. 

In sum, Sparsification techniques, such as sparse matrix 

methods and weight pruning, are essential for enhancing the 

efficiency of deep neural networks. By reducing the number 

of non-zero elements, these techniques lower memory usage 

and computational demands, enabling faster and more 

resource-efficient inference. Additionally, they help 

maintain model accuracy while optimizing hardware 

performance. The challenges of implementing sparse 

algorithms can be more complex compared to their dense 

counterparts. However, sparsification is a crucial strategy for 

advancing the practicality of real-time AI applications. 

7) APPROXIMATE MEMOIZATION 

Memoization is a technique employed to store the outcomes 

of computationally expensive operations for subsequent 

utilization in cases where identical operations and input data 

are encountered [177]. Different levels of accuracy can be 

used to compute many algorithms. Approximate computing 

exploits this to decrease execution time by determining the 

tradeoff between performance and accuracy. Approximate 

memoization extends this concept by providing approximate 

results for new input data that correlate with previously 

computed and stored data. This approach, which relies on 

software frameworks, compilers, and programmer's 

decisions, is particularly useful in optimizing computational 

efficiency. Real programs often contain redundant 

computations due to factors like repetitive inputs, pattern 

repetitions, repeated function calls, and poor programming 

practices [178]. There are many works that achieve the 

functions or tasks memoization either at compile-time or at 

runtime. Although, Large Language Models (LLMs) train on 

extensive datasets, they can potentially expose sensitive 

information. Data preprocessing and differential privacy 

techniques are designed to prevent data memorization and 

face the challenge of reliance on data structure assumptions 

that might lead to false privacy concerns. 

Performance enhancement is a critical requirement in 

high-performance and embedded computing applications, 

often relying on the expertise of performance engineers to 

optimize their efficiency by leveraging both manual work 

and numerous analysis and optimization tools. Pedro et al. 

[177] introduced a methodology that automates code 

analysis and memoization to simplify the application of 

memoization. It aims to assist developers without 

optimization expertise and provide customizable analysis for 

performance engineers. This approach caches the results of 

computations for efficiency and is tailored for both novice 

developers and expert performance engineers. Also, Arjun S. 

[179] introduced a compile-time technique for function 

memoization, extended its scope to user-defined functions, 

and enabled transparent application to dynamically linked 

functions. 

High-performance and energy-efficient memoization 

approaches face drawbacks like high runtime overheads and 

limited applicability, while conventional hardware 

techniques use specialized caches that consume excessive 

area and energy. Guowei [180] introduced MCACHE, a 

hardware technique that utilizes data caches for memoization 

while sharing cache memory with regular program data. This 

method boosts performance by 21x and outperforms 

software memoization by 2.2x in runtime efficiency. The 

need to improve computing efficiency by reducing function 
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call overhead through approximate function memoization 

[181]. Therefore, Priya A. et al. [182] introduced a software 

approach to function memoization that bypasses the 

execution of functions implemented using approximate 

computing techniques. A decision-making rule utilizing the 

Bloom filter and Cantor's pairing function is proposed to 

determine whether to search the look-up table (LUT) or 

perform the actual computation. Additionally, a simple 

approximation technique is proposed to search in the LUT to 

find an approximate one. Evaluation conducted using 

benchmarks from the AxBench suite demonstrates the 

effectiveness of the proposed technique. To memoize a block 

of code, Liu [183] proposed a hardware-compiler Codesign 

framework, AxMemo. The goal of AxMemo is to memoize 

code blocks with many inputs. In other words, AxMemo tries 

to replace long instruction sequences with a few hash and 

lookup operations. Brumar et al. [178] introduced 

Approximate Task Memoization (ATM), a novel approach 

to memoizing functions or tasks at runtime. Memoization of 

previously executed tasks enables predictions of future 

results without actual execution, preserving accuracy. The 

runtime system also incorporates task similarity 

measurement and correctness assessment to automatically 

determine the feasibility of task approximation. The method 

results in a 1.4x speed increase with memoization alone and 

a 2.5x boost when adding task approximation, with a 

negligible average accuracy drop of 0.7% (up to 3.2%). 

Contrary to the aforementioned techniques, researchers 

from Microsoft, in collaboration with researchers from the 

Weizmann Institute [184], introduced a new training 

procedure for ReLU networks that utilizes complex 

recombination of neurons to achieve approximate 

memorization. This approach aims to address the 

shortcomings of previous constructions and achieve efficient 

memorization with an almost ideal number of neurons and 

weight magnitudes. 

In relation to Large Language Models (LLMs), LLMs 

train on massive amounts of text, including sensitive 

information. LLM can potentially expose this sensitive 

information, including personal information. Previous 

research concentrated on literally preventing data 

memorization using data preprocessing and differential 

privacy techniques. This process faces the challenge of 

reliance on data structure assumptions that might lead to 

false privacy concerns and impact the model's overall 

quality. Current research treats this issue of approximate 

memorization in LLMs by using Reinforcement Learning. 

For example, Kassem [185] proposed a novel framework that 

employs a reinforcement learning approach, specifically 

Proximal Policy Optimization (PPO). This framework uses a 

negative similarity score, such as BERTScore or 

SacreBLEU, to measure how close the LLM's output is to the 

memorized data. If it's too similar, that's a negative reward.  

 

8) ARCHITECTURE SEARCH 

This technique is a process in machine learning where a 

computer algorithm searches for the optimal architecture, or 

configuration, of a neural network (NAS) for a specific task 

[186]. There are several approaches to architecture search, 

including reinforcement learning, evolutionary algorithms, 

and Bayesian optimization. These methods can be used to 

explore the vast space of possible network architectures and 

identify those that are most likely to perform well on a given 

task.  

9) KNOWLEDGE DISTILLATION 

Knowledge distillation is an approach using machine 

learning to transfer knowledge from a large, sophisticated 

teacher model to a simpler, faster, and smaller student model. 

The student model mimics the teacher's behavior efficiently, 

using limited resources. It makes this model adequate for 

implementing on resource-constrained devices and using in 

real-time applications. For example, in natural language 

processing, a large language model can be distilled into a 

smaller and faster model that can be deployed on mobile 

devices [187], [188]. The soft targets produced by the teacher 

model can be seen as a compressed representation of the 

knowledge learned by the teacher model, and by 

incorporating them into the student model training process, 

the student model can effectively learn from the teacher's 

knowledge. Knowledge distillation has been applied to a 

variety of tasks and has been shown to be effective in 

minimizing the scale and computational intricacy of deep 

neural networks without compromising their effectiveness 

[189], [190], [191], [192], [193], [194], [195], [196]. For 

example, Hongxu et al. [197] proposed a new method called 

DeepInversion. This technique reverses a trained network to 

create class-specific images from random noise, refining the 

input and using batch normalization data for regularization. 

Adaptive DeepInversion enhances image variety by 

leveraging differences between teacher and student network 

outputs. The method has been applied to network pruning, 

knowledge transfer, and continual learning without needing 

original data. Existing knowledge distillation techniques 

used to train student networks typically rely on task-specific 

data. However, the availability of such data may be limited 

due to privacy or confidentiality considerations. Several 

techniques involve generating training samples from the 

teacher network. Nevertheless, the generated images often 

exhibit discrepancies when compared to authentic ones, 

thereby imposing limitations on the performance of the 

student network. Therefore, Tang et al. [190] proposed an 

approach for building training datasets based on proposed 

web crawling (ICCD). They proposed a pseudo-

classification strategy and frequency-domain supervision 

(PCFS) to enhance performance by reducing the divergence 

between the generated ICCD and target dataset. The findings 

show the proposed PCFS surpasses the existing data-free 

methods. The code is available online. 
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B. APPROXIMATE PARALLELISM AND RELAXED 
SYNCHRONIZATION  

The relaxed synchronization technique removes 

synchronization points that represent one of the major 

bottlenecks in parallel applications, as synchronization 

points can cause threads or processes to spend a lot of time 

waiting [198]. The efficient execution of concurrent 

applications on multicore systems necessitates the 

implementation of synchronization mechanisms that 

consume significant amounts of time, either to enable access 

to shared data or to fulfill data dependencies. In general, 

developers often use synchronization to prevent undesirable 

interactions like data races when multiple parallel threads 

access shared data. However, there are several drawbacks 

associated with standard synchronization mechanisms: 

synchronization overhead (time and space costs), parallelism 

reduction (threads waiting), and failure propagation 

(unperformed synchronization operations can cause threads 

to hang indefinitely). Every synchronization point, acting as 

a serialization point, can potentially impede parallel 

scalability [199]. Therefore, researchers are indeed exploring 

the concepts of relaxed synchronization and approximate 

parallelism to mitigate these issues with trading minor 

computational errors for enhanced performance and 

efficiency. The synchronization error has higher 

performance compared with mixed precision but produces 

more errors. In particular, synchronization errors introduce 

non-deterministic errors that are complex to handle. Loading 

data into local memory requires a synchronization point to 

ensure that all threads in a block have the same view of the 

local memory. To decrease the time lost during 

synchronization, SYprox was proposed by [200], which 

provides a synchronization elimination mechanism that 

defines a way to handle the number of synchronization 

points. Lee et al. [201] introduced a novel algorithm for 

solving large-scale quadratic programming problems in 

parallel computing systems. They proposed “lazy 

synchronization,” which reduces the synchronization rate 

while improving processor utilization and convergence 

speed. Tested on Amazon's 40-node distributed system, the 

algorithm achieved speedup by 160x and reduced 

communication overhead by 99.65% using the relaxed 

synchronization technique compared to conventional 

methods. To convert inherently sequential code to parallel 

approximations, Greg S. et al. [202] introduced an automatic 

parallelizing approximation-discovery framework, 

PANDORA, based on  symbolic regression machine 

learning. The findings show the code accelerated by 2.3x to 

81x with maintaining acceptable accuracy. The framework's 

capabilities are further demonstrated through FPGA 

experiments and by eliminating loops from the code. The 

authors defined some limitations of PANDORA framework 

and suggested some solutions. For example, PANDORA 

faces difficulty handling complex problems due to its 

reliance on symbolic regression, and consumes a lot of time 

for discovering approximations, etc. 

The majority of these works were noticed by Luis [203], 

who applied the aggregate elimination of all synchronization 

points without accounting for output quality variations due 

to varying input data. Therefore, Luis [203] proposed a novel 

strategy by using supervised learning methods to relax 

synchronization in parallel applications that allow trade-offs 

between quality and execution time. Also, the authors 

proposed the relax factors to be applied to the input, 

application, and execution environments together. The 

results show this proposed technique enhanced the K-means 

algorithm by a gain factor of 3.5x for video processing while 

maintaining an acceptable quality rate. 

Overall, applications like image processing and neural 

networks can tolerate some errors, offering potential for 

significant improvements in execution time and energy use. 

Key software approximation techniques include mixed 

precision, which uses lower precision data representation; 

perforation, which skips instruction blocks, loop iterations, 

or data assuming nearby values are similar; and relaxed 

synchronization, which removes synchronization points, a 

major bottleneck in parallel applications. These approaches 

vary in performance and error. Typically, perforation and 

synchronization elimination offer higher performance but 

produce more errors than mixed precision. Synchronization 

elimination also introduces complex, non-deterministic 

errors. 

C. PROGRAMMING FRAMEWORKS AND TOOLS 
1) PROGRAMMING FRAMEWORKS FOR AXC 

Approximate programming frameworks are considered 

tools and mechanisms that help developers integrate 

approximations into their programs in a controlled way to 

manage the trade-off between accuracy and resource usage. 

Approximate programming languages are particularly 

advantageous in scenarios where computational efficiency is 

of paramount importance and minor inaccuracies in the final 

output do not significantly impact the overall result. Such 

scenarios are commonplace in domains such as machine 

learning, signal processing, and big data analytics, where 

computations can be computationally intensive. 

Programming languages with approximate features offer 

novel constructs and abstractions that empower developers 

to clearly define specific portions of a program where 

approximations are deemed acceptable. The compiler and 

runtime system utilize these specifications to enhance the 

program's performance, energy efficiency, or other 

measurable factors, while also guaranteeing that the ultimate 

outcome falls within acceptable margins of error. 

Approximation-enabled compilers provide a powerful means 

of exploiting the error resilience of applications. By 

automatically introducing approximations, they can 

significantly improve performance and energy efficiency 

without requiring extensive manual intervention. However, 
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they also face several challenges. One key challenge is 

ensuring that the approximations do not significantly 

degrade the quality of the program's output. This requires 

careful analysis of the program's behavior and the impact of 

different approximation techniques. Another challenge is 

managing the trade-off between accuracy and performance, 

which can require sophisticated heuristics and tuning 

mechanisms. For example, ACCEPT compiler was 

developed by Bornholt et al. [204], which uses a combination 

of static and dynamic program analysis to automatically 

determine the approximable regions of a program. It then 

applies a variety of approximation techniques to these 

regions, such as loop perforation and task skipping. 

Approximate programming languages can be classified 

based on their approach to approximation: 

a) Language Extensions 

These are conventional programming languages 

augmented with new syntax and semantics to support 

approximation [205]. Examples of this category include 

EnerJ, Rely [206], and Chisel. EnerJ [207] is a Java 

extension with a design applicable to languages where 

data types are explicitly declared by programmers. 

FlexJava [208] streamlines approximate programming by 

automating annotations, making energy-efficient coding 

simpler and safer. FlexJava matches EnerJ's energy 

savings by reducing the number of annotations by 2x to 

17x and annotation time by up to 12x in user studies. 

Typically, the foundational elements of language 

extensions manifest in three primary stages: 

• Introduction of Data Types: Extensions such as EnerJ 

in Java incorporate novel data types like approx int or 

approx float, which, though less precise in 

calculations, yield benefits in performance and energy 

efficiency. 

• Modification of Overloaded Operators: Arithmetic 

operations such as addition, subtraction, 

multiplication, and division may undergo alterations 

for approximate data types, facilitating the 

management of error propagation or enabling more 

relaxed calculations. 

• Implementation of Annotations: These serve as 

directives for the compiler, delineating the contexts in 

which approximations are viable and specifying the 

acceptable threshold for errors, (e.g., 

@approx_tolerance (0.05) for a function). 

Introducing language extensions for approximate 

computing faces key challenges: rigorous error tracking to 

control compounded inaccuracies, ensuring type safety to 

avoid mixing data types, and overcoming user resistance by 

offering clear benefits and easy integration to encourage 

widespread adoption. 

b) Probabilistic Programming Languages 

These languages incorporate uncertainty directly into the 

language and employ statistical methods to compute 

approximate results. PPLs are designed to express 

probabilistic models and perform inferences over them 

[209]. They provide constructs to define random 

variables, specify dependencies between variables, and 

encode probabilistic algorithms. PPLs often incorporate 

advanced inference techniques like Markov chain Monte 

Carlo (MCMC) and variational inference. FACTORIE 

[210], FlexJava [208], Venture [211], BiiP [212], Stan 

[213], SlicStan [214], Gen [215], Hakaru10 [216], 

HackPPL [217] Anglican [218], Infergo [219], Aloe 

[220], PyMC3 (Python), and Pyro [221] are 

representative examples of this category. In addition, 

there are many studies [222], [223] developing 

operational semantics as a basis for probabilistic 

programming languages such as Anglican, Venture, and 

Church. For example, Sandra et al. [224] introduced a 

library for probabilistic programming in the functional 

logic programming language Curry. Another example, 

Gen is a probabilistic programming language embedded 

in Julia, designed by Marco [215], which offers sufficient 

expressiveness and performance for general-purpose use. 

Gen automatically optimizes custom inference strategies 

for specific probabilistic models using static analysis. The 

findings indicate that Gen's prototype matches Stan's 

speed [213], is only about 1.4 times slower than a custom 

Julia sampler, and is roughly 7,500 times quicker than 

Venture, another probabilistic language allowing custom 

inference. FACTORIE [210] is a Scala toolkit for 

probabilistic models, providing tools for building factor 

graphs, parameter estimation, and inference, developed 

by McCallum and his colleagues. FACTORIE offers 

learning and optimization tools for classification and 

prediction, plus NLP features like segmentation and 

tokenization. UMass Amherst offers tutorials and 

downloads for more information [225].  

c) Stochastic Programming Languages 

These languages incorporate randomness directly into 

their computations. Statistical programming languages 

focus on expressing statistical models and performing 

data analysis. They provide a wide range of statistical 

functions and libraries for tasks such as data 

manipulation, regression analysis, hypothesis testing, and 

visualization. While they may not explicitly deal with 

uncertainty, they often support probability distributions 

and statistical techniques for uncertainty estimation. They 

are often used in simulations, optimization, and machine 

learning [226]. Examples include AMPL, GAMS, 

SimJulia, StochasticPrograms.jl and SimPy.  

d) Bayesian programming languages 

These languages combine probabilistic modeling with 

Bayesian inference to generate a library of functional 

programming languages for Bayesian modeling and 

inference [227], [228]. Bayesian programming aims to 

substitute traditional languages with a probabilistic 
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approach that accounts for uncertainty and 

incompleteness. One popular example of a Bayesian 

programming language is “JS” (Just Another Gibbs 

Sampler), which is specifically designed for Bayesian 

analysis of complex statistical models. JAGS provides a 

high-level syntax for creating and manipulating 

probabilistic graphical models and supports a wide range 

of built-in probability distributions and statistical 

functions. Stan [213] is a probabilistic language 

optimized for Bayesian inference with Hamiltonian 

Monte Carlo methods, automating model specification 

and inference. Such languages are valuable in fields like 

machine learning and data analysis, where probabilistic 

reasoning is crucial. By providing a dedicated framework 

for Bayesian modeling, these languages make it easier for 

developers to build applications that incorporate 

sophisticated probability [229]. 

2) APPROXIMATION COMPUTING FRAMEWORKS 
a) Approximate computing frameworks 

There are several frameworks and libraries that have been 

developed to support software-level approximate 

computing, such as TensorRT, TVM, and FlexFlow. 

These frameworks provide tools and APIs for optimizing 

and deploying approximate computations on different 

hardware platforms, such as CPUs, GPUs, and FPGAs. 

They can also support different levels of approximation 

and error metrics and can be used to automate the process 

of tuning and optimizing the approximate computation 

[230], [231], [232], [233], [234]. The challenge of 

optimizing applications requires intensive resources and 

flexibility in precision. For example, ApproxTuner [235] 

is an automatic framework to address this issue. 

ApproxTuner optimizes tensor-based applications for 

accuracy-awareness, requiring just broad quality goals. It 

integrates approximations across algorithmic, software, 

and hardware levels through a unique three-phase tuning 

method encompassing development, installation, and 

operation stages, ensuring adaptability across devices. 

The framework introduces predictive approximation-

tuning for faster autotuning by estimating the accuracy 

effects of approximations analytically. Tested on 10 

CNNs and a CNN-image processing mix, it achieved up 

to 2.7x speedup on GPUs and 1.9x on CPUs with minimal 

accuracy loss. ApproxTuner's novel tuning method 

outpaced traditional tuning, offering similar advantages 

more efficiently. Liu et al. [236] introduced an adaptive 

program graph that allows for customizable quality at the 

user level, based on criteria set by developers. 

Approxilyzer framework [237] used both static and 

dynamic analysis methods to help find opportunities for 

approximation in software applications at the binary 

level. This makes sure that certain computations can be 

approximated without losing accuracy. 

The rising power needs of DNN accelerators have led 

to the use of approximate multipliers in modern solutions. 

However, the accuracy assessment of these approximate 

DNNs presents a challenge due to the insufficiency of 

approximate arithmetic support in existing DNN 

frameworks. To mitigate this, Danopoulos et al. [238] 

proposed AdaPT, a rapid emulation framework that 

augments PyTorch, enabling it to support both 

approximate inference and retraining aware of 

approximation. AdaPT, designed for seamless 

deployment, is compatible with a majority of DNNs. 

AdaPT notably enhanced error recovery and reduced 

inference time by up to 53.9x across different DNN 

models and applications compared to conventional 

approximations. 

b) Application-aware Framework 

This framework involves identifying the computations 

that are critical to the functionality of the application and 

ensuring that these computations are not approximated. 

This involves analyzing the application and identifying 

the critical computations that must be executed with high 

accuracy to ensure the overall functionality of the 

application [231], [239]. It is also called approximate-

aware design framework [240], [241]. ApproxHadoop is 

a framework for implementing approximate computing in 

big data applications. It provides a way to automatically 

identify opportunities for approximation and selectively 

apply them to reduce the computational cost of data 

processing [50]. Hanif et al. [242] introduced a 

framework to systematically analyze the error resilience 

of deep CNN and identify parameters for applying 

approximate computing techniques. 

c) Dynamic Approximation Framework 

This framework involves dynamically identifying the 

computations that can be approximated based on the input 

data and the current state of the application. This involves 

monitoring the application and identifying the 

computations that can be approximated based on the 

current state of the application [243], [244], [245], [246]. 

For example, Wang et al. [247] introduced the Runtime 

Machine Learning-based Identification Model (RMLIM) 

to highlight noncritical segments within a software 

program's data flow graph. Trained offline with a 

designated dataset, RMLIM is subsequently applied at 

runtime for individual inputs. This simplifies the 

identification process and enhances its applicability to 

real-time scenarios. Preliminary results indicate that 

RMLIM retains comparable energy efficiency and 

accuracy to prevailing runtime AC techniques. It notably 

reduces the execution time by 40 to 61 percent. 

Recently, Soni et al. [248] introduced “As-Is,” an 

innovative Anytime Speculative Interruptible System, 

designed to enhance the adoption of approximate 

computing by addressing the lack of hardware support 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3467375

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

23 VOLUME XX, 2017 

and real-time accuracy guarantees. They proposed this 

system to leverage approximate computing to deliver 

early outputs that improve over time, ensuring eventual 

full accuracy. It merges approximate and speculative 

computing to repurpose existing architectures for 

efficient approximation, offering a solution that adapts to 

real-time needs and allows users to choose between 

immediate results and waiting for complete accuracy. 

d) Data/input-ware Approximate Framework 

The framework aims to identify the data that can be 

reasonably approximated without causing substantial 

disruption to the system's output. This is achieved through 

the introduction of intentional faults into the variables, 

followed by an analysis of the resulting impact on the 

output quality [249], [250].  

The approximation-based programming approach is 

well-suited for error-tolerant applications on constrained-

resource devices, as it allows for efficient computation 

and storage of program data. This is especially important 

for devices like smartphones and tablets, where battery 

life is crucial. However, implementing this paradigm 

requires source code annotations and type qualifiers, 

which can be problematic for large, real-world 

applications with limited access to source code. Pooja et 

al. [250] and Bernard et al. [249] present an innovative 

sensitivity analysis framework which facilitates the 

generation of annotations for programs designed for 

approximate computing. The framework facilitates the 

extraction of information pertaining to the sensitivity of 

output, enabling the identification of a crucial subset of 

data that requires precise computation and storage, while 

the remaining data can be approximated. 

e) Profiling framework for approximate computing 

It is a tool designed to analyze and measure the 

performance and accuracy of algorithms that use 

approximation techniques. These algorithms are often 

used in modern applications that require rapid processing 

of large data sets. This tool trades off result accuracy with 

faster execution or less memory use. The profiling 

framework, such as AXPROF [251], provides developers 

with the necessary support to implement these algorithms 

effectively and automatically. Based on the desired 

accuracy specified by developers, this framework begins 

to generate code for statistical analysis and models for 

analyzing accuracy, memory use, and timing. For 

verification and assessment, this framework conducts 

suitable statistical tests for implementation to be sure the 

implementation meets the specification. This type of 

framework is crucial in identifying bugs and performance 

optimizations in the implementation of approximate 

algorithms. AXPROF profiled 15 applications across data 

analytics, numerical linear algebra, and approximate 

computing, effectively detecting bugs and providing 

various performance optimizations. The tutorials and 

examples for this framework are available online. 

VII. Architectural-Level Approximate Computing 
Techniques 

A. APPROXIMATE MEMORY TECHNIQUES 

The constant communication between processors and off-

chip memory causes memory subsystems to be the largest 

consumers of time and energy in modern computer 

architectures, from servers to mobile devices. The escalating 

disparity in speed between the CPU and the external 

memory, known as the “Memory Wall”. This problem is a 

significant bottleneck in computer system performance. In 

order to overcome the memory wall and narrow the gap 

between processors and memories, designers have 

experimented with a wide variety of circuit and architectural 

advances, including 3D integration [252], bigger on-chip 

caches, memory-level parallelism [253], [254], faster off-

chip interconnects [255], new memory hierarchies, near-

memory processing or in-memory computing [256], [257], 

and more [258]. Figure 10 shows the classification of 

computing systems based on where they process data [259]. 

They are still not satisfied with reducing memory energy 

consumption for many developing algorithms, such as 

machine learning, that pose increasing demands on the 

memory chip. Consequently, there is a need for the 

development of novel methodologies to enhance both energy 

efficiency and performance.  

A common trait among the majority of emerging 

applications that heighten memory consumption involves the 

ability to endure approximations within the foundational 

computations or data. Despite this, these applications 

continue to generate outputs that meet an acceptable level of 

quality. Approximate computing is one of the techniques that 

improves energy and performance by leveraging the inherent 

resilience of many developing applications using techniques 

on memories. A key element of this methodology is the 

application of approximate memories. These are 

intentionally designed memory circuits known to 

demonstrate imperfect data retention, a characteristic that 

may be attributed to either the inherent tendency of these 

circuits to slowly lose data over time or to errors that 

transpire during read/write operations [9], [19]. Typical 

approximate techniques that have been proposed for 

developing circuits for approximation memory include, for 

example, voltage scaling in the case of SRAMs [260], 

lowering the refresh rate below the nominal value in DRAMs 

[261], and compressing or encoding the data [258], [262]. To 

lay the groundwork for understanding these concepts, the 

rest of this section will offer a brief overview of dynamic and 

static random-access memories. These two essential types of 

memory hold significant relevance in the field of 

approximation memories.  

Dynamic random-access memories (DRAMs) have long 

been the cornerstone of memory storage in embedded 
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systems. Due to its high-capacity, durability, and 

affordability, DRAM remains the major choice for primary 

memory in numerous embedded systems. A DRAM is 

organized into channels, modules, ranks, chips, banks, 

subarrays, rows, and columns, as shown in Figure 11(a) 

[263]. Manufactured in various capacities and featuring data 

bus widths ranging from 4 to 16 pins, DRAM chips exhibit a 

degree of diversity [264]. For the creation of a wider data 

bus, numerous DRAM chips are typically amalgamated into 

a single module, forming what is referred to as a rank. A 

closer examination of each DRAM chip reveals a 

composition of numerous banks. Each of these banks 

contains a series of two-dimensional arrays, or subarrays, 

composed of individual DRAM cells. DRAM operations can 

concurrently retrieve data from multiple chips within the 

same rank. The chips in DRAM direct requests towards a 

specific bank, row, and column location [264]. There are four 

commands to achieve the DRAM access operations: the read 

(RD) command, the write (WD) command, the activation 

(ACT) command, and the precharging (PRE) command. The 

Activation (ACT) command opens a row, transferring its 

contents to the row buffer for read (RD) or write operations. 

This is followed by cell charging through the Precharging 

(PRE) command. Figure 11(b) presents an illustration of the 

instructions associated with DRAM, namely ACT, RD or 

WR, and PRE. Moreover, it delineates the associated timing 

parameters, namely the delay from row address to column 

address (tRCD), the active time of the row (tRAS), and the 

precharge time of the row (tRP) [264], [265], [266]. 

While traditional DRAMs have been instrumental in 

memory storage, there has been a growing interest in 

optimizing power consumption without significantly 

compromising performance. This leads us to the concept of 

Approximate Dynamic Random-Access Memories 

(AxDRAMs). Approximate DRAMs refer to the subset of 

DRAM systems in which power conservation methodologies 

have been instituted at the expense of an increased bit-cell 

error rate. These entities hold a critical position as 

fundamental components within the broader domain of 

approximation computing. By embracing a trade-off 

between power efficiency and accuracy, approximate 

DRAMs open new avenues for energy-conscious design in 

embedded systems and beyond [267]. 

Memory occupies a disproportionate amount of real estate 

on an on-chip computer's integrated circuit and system 

layout. SRAM cell architecture is the most popular kind of 

memory architecture due to its speed and reliability [256]. 

While the popularity of SRAM is well-established, 

optimizing its performance is an ongoing challenge. Various 

methodologies have been explored to enhance the efficiency 

of SRAM cells, including supply voltage scaling. The 

method of supply voltage scaling aims to reduce the power 

consumption of SRAM cells. However, when a substantial 

number of cells are in standby mode, this can increase the 

leakage power across the entire semiconductor chip [257], 

[268]. Nevertheless, a significant degradation in stability is 

observed when the supply voltage decreases, which causes 

an increase in the occurrence of read, write, and hold errors 

[258], [262]. To minimize the occurrence of failures, we 

need to design a circuit considering the necessary device 

capabilities. 

In sum, the pursuit of innovative techniques to design 

approximate memories propels a new wave of research in 

hardware optimization. and steps forward in developing 

energy-saving memory technologies to trade off power 

consumption and a tolerable error. For example, Enrico et al. 

[269] applied the approximate computing (AxC) methods to 

analyze hardware accelerator components for deep neural 

networks, focusing on computation, communication, and 

memory subsystems. It examines performance enhancement 

FIGURE 10. Categorizes computing systems by where they process data: (a)-(c) earlier CPU-centric models move data to the core, (d) newer models 
use near-memory processing, and (e) computation-in-memory (by using memories with built-in processing capabilities (e.g., phase change memory, 
memristors)) [259]. 
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aspects, including approximate multipliers, link voltage 

swing reduction, voltage over-scaling, and lossy 

compression methods for internal SRAM memory. The 

investigation aims to improve computing systems' efficiency 

and effectiveness. Numerous methodologies and techniques 

have been explored and developed in the scientific 

community for the design and implementation of 

approximate memories, reflecting the complexity and 

multifaceted nature of this field of study. In the next 

subsections, these approaches will be explained in detail, and 

some of their key considerations as well as benefits will be 

highlighted. 

1) APPROXIMATE MEMORY BASED ON REFRESH 
RATE 

Periodic refreshes of DRAM are required, and these 

procedures may use up to half of the memory's entire power 

[261]. During the refresh mode, the memory cannot serve 

any memory access, and this increases the memory access 

latency, consequently reducing the throughput of total 

memory. Increasing the refresh period beyond the typical 64 

milliseconds utilized by the majority of DRAM-integrated 

circuits (ICs) nowadays is an effective method for lowering 

DRAM power consumption [261]. 

Flikker [12] pioneered one of the initial methods in the 

domain of approximate memory, specifically targeting low-

power mobile DRAM. This approach begins by partitioning 

an application into two distinct segments: critical and non-

critical, as shown in Figure 12. By employing a suboptimal 

refresh rate, errors are intentionally injected into the non-

critical portion, thereby achieving refresh power savings. 

Consequently, Flikker introduced a software technique that 

facilitates two refresh controls, allowing for the segregation 

of DRAM into accurate and approximate sections, a feature 

particularly applicable to LPDDR DRAM. 

A hardware-based method has been developed for 

approximating DRAM for generating high and low refresh 

rates for the most and least significant bits of the operand, 

respectively [270]. This method allows for the partitioning 

of DRAM pages into more than two parts, with the 

possibility of suboptimal refresh rates. Raha et al. [261] 

depended on different quality parameters for partitioning 

DRAM pages. These parameters are: error characteristics, 

frequency, critical data percentage, and location. In a specific 

study conducted by [271], extensive tests were performed on 

8 chips of GC-eDRAMs. The results show this approach can 

save energy, reaching 55% and 75% with an acceptance error 

rate of 10-3 and 10−2, respectively. The authors used refresh 

rates ranging from 11 to 24 ms.  

For a more in-depth look at how DRAM defects affect 

error-tolerant applications, we recommend seeing the 

proposed works in Table 3. The approach developed by Enerj 

[207] allows developers to mark parts of an application that 

may tolerate errors and be moved into near-primitive RAM 

(SRAM) or direct-access memory (DRAM). This approach 

is very important for approximate memories. The concept of 

approximating non-critical data allows a loosening of 

accuracy against energy efficiency for these types of 

applications. 

2) APPROXIMATE MEMORY BASED ON APPROXIMATE 
LSB OR COMPRESSION 

The second strategy emerges from investigating the 

relationship between output quality and the bit error rate of 

LSB [267], [272], or the degree of compressing data in not-

critical regions [258]. Using such techniques can reduce 

energy consumption. The output quality is little impacted by 

dropping the LSBs of a data word and setting them to a 

constant value (i.e., 0). This method requires simple circuits. 

You can power down or remove bit cells to save a lot of 

FIGURE 11. Illustration the Dynamic Random-Access Memories (DRAMs) (a) structures organization, (b) Instructions of DRAM access operations 
[263]. 
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energy [272]. Within memory system technologies, selective 

ECC has been applied to SRAM and DRAM to reduce MSB 

errors. Many methods are focused on enhancing the memory 

word size in traditional ECC memory configurations. For 

example, a technique has been proposed that extends a 32-

bit memory word to 36-bit, incorporating a 4-bit ECC [273]. 

Reducing the number of ‘1’bits in data can lower power use 

in both DRAM and SRAM, as DRAM power is tied to ‘1’-

bit quantity and SRAM power to switch probability and 

voltage squared [274]. Another approach to enhancing 

memory efficiency involves the utilization of 

encoding/decoding [274] or compressing/decompressing 

techniques [258], [262], [275] for the data written to or read 

from the memory. These methods can be applied to error-

tolerant applications such as machine learning and video and 

image processing, where slight imprecision is acceptable, to 

significantly improve memory usage and power 

requirements. This represents a strategic alignment with 

contemporary computational demands, offering a pathway to 

more sustainable and responsive memory management. 

Machine learning algorithms often don't fit IoT devices 

like sensors due to their complexity, high memory, and 

energy needs. The growth of the IoT has given rise to a new 

subfield of machine learning known as “tiny machine 

learning” (TinyML) (IoT). TinyML relieves these challenges 

and makes the deployment of these algorithms on IoT 

possible. For example, Raha et al. [276] introduced the 

foundational concepts of an approximate TinyML system, 

including input-adaptive approximations [277]. Among 

these limitations are the technology scaling and memory 

technologies, which are major challenges in the application 

of deep learning systems in IoT devices. As technology 

scales below 20 nm, DRAM cells have shorter retention 

times, increasing their refresh power. This is especially 

problematic in memory-intensive applications, where 

DRAM's refresh power significantly impacts total system 

power [278]. Innovative solutions are being explored to 

address this challenge. For instance, a novel approach to 

enhancing memory efficiency was introduced by Nguyen et 

al. [278]. They developed a zero-cycle bit-masking (ZEM) 

technique integrated with ECC within the controller, 

specifically targeting the asymmetry of retention failures in 

DRAM. By applying this method, they were able to 

eliminate the need for DRAM refresh across various 

applications. The approach was tested on Tiny DNN 

architectures like AlexNet, DCGAN, and RNN using the 

Gem5 simulator. The results were promising, with 

performance improvements of 10.4%, 11.27%, and 17.31%, 

and total energy reductions of 30.2%, 34.38%, and 43.03% 

for LPDDR3, DDR4, and HBM, respectively.  

3) APPROXIMATE MEMORY BASED ON VOLTAGE 
SCALING  

Another technique to lower energy usage at the expense of 

decreased frequency is voltage scaling. In the power 

management strategy known as dynamic voltage scaling, the 

voltage that is applied to a component may either be raised 

or lowered, depending on the conditions that are present. The 

purpose of voltage scaling (reducing voltages) is to reduce 

energy consumption. SRAM is more sensitive and begins 

encountering mistakes at a lower operating voltage than 

logic parts. As voltage is scaled down, SRAMs become more 

susceptible to malfunction [99], [260]. For instance, a study 

conducted by Denkinger et al. [260] focused on evaluating 

the robustness of artificial intelligence (AI) methods, 

specifically convolutional neural networks (CNNs), to 

SRAM errors in edge devices. By operating at reduced 

voltages and employing quantization, they explored ways to 

enhance efficiency. Their findings revealed that quantization 

emerged as the most effective strategy, yielding energy 

savings as high as 61.3%. This was achieved with only a 

minimal accuracy loss of 7.1%. Further efficiency was 

FIGURE 12. Memory allocation scheme (a) represents the baseline DRAM module, (b) module with sorting Data allocated in pages based on 
different refresh rates, (c) Flikker Approach [12], and (d) QCA-DRAM Approach [261].  
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gained through voltage scaling, leading to an additional 

reduction of up to 11.0%. However, these benefits were 

accompanied by a total accuracy loss of 13.6%.  

In IoT nodes, the 6T Static Random-Access Memory 

(SRAM) cell, known for its compactness and minimal area, 

is widely used for data processing, as referenced in [268]. 

However, this cell suffers from several inherent limitations 

that need to be considered when using it. Inherent limitations 

of this cell include reliability issues at low voltage 

conditions, potential conflicts during read/write processes, 

data can be disturbed during reads, high data retention 

voltage, and half-select problems [279]. To address these 

challenges, several design strategies at the cell and 

architecture levels have been introduced. These strategies 

focus on reducing power usage in write, read, and leakage 

states, improving stable data retrieval and write efficiency, 

and addressing half-select problems [268]. One approach to 

enhancing the performance and stability of the 6T SRAM 

cell is to increase the number of transistors within the cell. 

This modification can lead to improved control and 

functionality, although it may also impact the cell's 

compactness [268], [279]. A novel approach to reducing read 

and hold power in SRAM architecture was proposed by 

Gupta et al. [29], utilizing a reconfigurable VDD scaling 

technique (R-VDD). This method significantly minimizes 

power consumption. To implement this R-VDD scaled 

architecture, they employed a “data-dependent low-power 

10T” SRAM cell (D2LP10T). 

4) APPROXIMATE MEMORY BASED ON APPROXIMATE 
READ/WRITE OPERATIONS 

Emerging non-volatile memory based on memristor 

technology is proposed as the solution for approximate 

computing, which can balance performance and power 

consumption. When used for compute acceleration, 

approximation-augmented processing combines each 

processor with a tiny amount of controllable associative 

memory [280]. Emerging STT-MRAM (Spin Transfer 

Torque Magnetic Random Access Memory) memories, 

which offer higher density and lower static power 

consumption compared to SRAM, face challenges of high 

energy usage in read/write operations. QuARK [281] and 

Cast [282] are hardware and software approaches introduced 

for STT-MRAM caches. These approaches allow tradeoffs 

in reliability for saving energy in the on-chip memory 

hierarchy of multi-core systems operating approximate 

applications.  

5) MEMORY REDUCTION BASED ON APPROXIMATE 
COMPUTING TECHNIQUES  

AxC techniques for memory reduction are commonly 

implemented at the design stage, often in conjunction with 

specific memory handling methods [283]. While these 

strategies may be tailored to particular applications [284], 

they necessitate a comprehensive understanding of the data's 

computation and handling. This requirement can be time-

consuming and often serves as a barrier to quick 

implementation. For instance, memory reduction can be 

achieved by reducing buffer sizes [284], memory reuse 

methodologies [285], and/or pruning and quantization 

approaches [286], [287], with the cost of sacrificing accuracy 

or throughput. In the context of Approximate Buffer (AxB) 

techniques, one innovative approach presented in [288] 

focuses on the reduction of buffer size. This method involves 

the concatenation of data into buffers using the fixed-point 

format with a chosen bit-width, where all data within an AxB 

adheres to the same format. The primary goal of this 

technique is to minimize the memory footprint, achieving 

reductions ranging from 27% to 68% in applications such as 

the full SKA SDP signal processing computing pipeline and 

wavelet transform. Remarkably, this reduction is 

accomplished without substantial degradation in output 

quality. However, it does come with the drawback of 

requiring manual and labor-intensive Design Space 

Exploration (DSE). To further simplify this process, an 

application DSE for buffer-sizing was proposed by [289]. 

This additional approach aims to reduce the memory 

footprint while ensuring that the output quality remains 

above a specified threshold. 

6) EMERGING MEMORY DESIGN TECHNOLOGIES 
PROCESSING- IN-MEMORY (PIM) 

PIM is a computing paradigm that enhances data processing 

efficiency by integrating processing capabilities closer to 

storage units. Traditional architectures store data in memory 

and make CPUs to move it between components, leading to 

time-consuming and performance bottlenecks. PIM 

integrates processing elements directly into memory cells or 

controllers, allowing data to be processed in place without 

transferring it to a separate unit. This results in significant 

speedup and energy efficiency improvements, particularly 

for data-centric workloads. There are different approaches to 

implementing PIM: Processing in DRAM (P-DRAM), 

Processing in NAND Flash (P-NAND) [290], Processing in 

3D Stacked Memory [291], [292], and Near-Memory 

Computing/Processing (NMC/NMP). Instead of integrating 

processing into the memory cells themselves, the last 

approach (NMC) places specialized processing units near the 

memory, reducing data movement overhead.  

Processing-In-Memory (PIM) technology is widely used 

in image and neural network processing which consist of two 

main types: analog-based PIM and digital-based PIM. In 

analog-based PIM, the arithmetic operations can be achieved 

using resistance networks. In digital-based PIM, the 

execution the additions and multiplications can be through 

basic operations like NOR which needs multiple clock 

cycles. The analog PIM is known for its high speed, but it 

encounters accuracy problems and demands a significant 

area footprint to accommodate the required analog-to-digital 

converter (ADC) and digital-to-analog converter (DAC) 
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interface modules [293]. Byun et al. [293] proposed the 

analog processor-in-memory filter within a CNN setup, 

which features a 16x4 SRAM, 16 DACs, and 4 ADCs, as 

depicted in Figure 13. It includes a controller for SRAM, 

DAC, and ADC timing optimization and power reduction, 

alongside a main controller overseeing all operations. Inputs 

flow from the AI controller to the DAC controller, utilizing 

a charge sharing method. Power efficiency is achieved by 

activating components only as required. 

On the other hand, the digital-based PIM excels in 

accuracy but experiences higher latency due to the multiple 

clock cycles required for computations, particularly with 

multiplications. Through the strategic utilization of the 

intrinsic parallelism present within application algorithms, 

the acceleration of the computational process can be 

effectively achieved.  

Memristor, also referred to as Resistive Random Access 

Memory (ReRAM), is a well-known technology in 

Processing-In-Memory (PIM) architectures due to its 

capability of analog computing that speeds up matrix-vector 

multiplications, which are essential for the systems. 

Nonetheless, convolutional neural network training using a 

high-precision backward propagation phase presents 

difficulties on account of the poor resolution of these analog 

PIM accelerators. Hai et al. [294] addressed this challenge 

by introducing a novel hybrid PIM accelerator for CNN 

training on ReRAM arrays. ReHy combines analog PIM 

(APIM) for performance in the feedforward propagation 

phase (FP) and digital PIM (DPIM) for accuracy in the 

backpropagation phase (BP), offering a comprehensive 

solution for CNN training. The study reveals that ReHy 

markedly improves CNN training efficiency, outpacing 

standard CPU/GPU architectures (baseline) and FloatPIM by 

48.8 and 2.4 times, respectively, while also reducing energy 

usage by 35.1 and 2.33 times compared to each. 

This involves integrating processing capabilities into 

memory storage to reduce the data movement between the 

CPU and memory. In the fields of image processing and 

computer vision, convolutional neural networks (CNNs) 

have emerged as a prevalent tool. While Graphics Processing 

Units (GPUs) are commonly employed to enhance the 

acceleration of CNNs, this approach is constrained by the 

substantial computational costs and memory demands 

associated with the convolution process. This limitation has 

led to a focus on approximate computing, a method explored 

in numerous studies to mitigate computational expenses 

[269]. The introduction of the Approximate Data 

Comparison processing-in-memory (ADC-PIM) solution by 

Choi et al. [291] marks a significant advancement in 

addressing the performance bottleneck caused by increased 

memory bandwidth intensity. Implemented in 3D-stacked 

memory, ADC-PIM strategically compares data for 

similarity before it is loaded onto the GPU, unlike 

conventional post-loading methods. This approach results in 

the transfer of only essential data to the GPU, reducing data 

movement and computational requirements. The application 

of ADC-PIM has led to a 43% boost in processing speed and 

a 32% reduction in energy use, with minimal accuracy loss 

below 1%. 

The limitations inherent in processing-using-DRAM are 

primarily characterized by its limited support for a limited 

range of basic operations, including logic functions and 

addition. Such constraints have impeded the complete 

exploitation of the capabilities inherent in processing-using-

DRAM, thereby necessitating the investigation of strategies 

to enable the execution of more complex and user-specified 

operations. Addressing this challenge, Nastaran et al. [295] 

proposed SIMDRAM, an extensive framework explicitly 

crafted to empower processing-using-DRAM that supports 

complex functions and efficiently handles sophisticated and 

user-defined functions without hardware changes. They 

evaluated its performance, showing its superiority over 

traditional CPUs and GPUs in throughput and energy 

efficiency, especially with 16 DRAM banks. SIMDRAM 

performed well in real-world applications with minimal 

overhead. This marks a significant advancement in 

processing-using-DRAM technology. 

Within the field of Processing-In-Memory (PIM) or In-

memory computing (IMC), the predominant focus of 

research has been the optimization of energy efficiency, 

specifically within a limited voltage range. This 

concentration on a narrow voltage spectrum has 

consequently restricted the applicability of IMC in scenarios 

characterized by dynamic workloads, where optimization 

across a wide dynamic voltage range (WDVR) is 

necessitated. In response to this limitation, a recent 

innovation has been introduced by Hongtu et al. [296]. They 

have implemented a novel IMC-based Binary Neural 

Network (BNN) accelerator. This innovative development 

addressed a previously unmet need within the IMC domain 

by supporting energy-efficient operations over a broad 

voltage range.  

FIGURE 13. the architecture of the Convolutional Neural Network (CNN) 
implemented within an Analog Processor-In-Memory framework [293]. 
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Processing-in-memory (PIM) represents a paradigm shift 

in computing architecture that takes advantage of the 

distinctive physical characteristics of emerging memory 

systems to boost data processing. These systems include 

resistive random-access memory (ReRAM), spin-transfer 

torque magneto-resistive random-access memory (STT-

MRAM), and phase-change memory (PCM) [297]. The 

principal merits of PIM lie in its ability to minimize data 

movement and reduce latency. The inherent characteristics 

of Processing-In-Memory (PIM) architectures significantly 

enhance performance and energy efficiency, especially in 

tasks that are data-intensive. However, the adoption of PIM 

is not devoid of challenges. These challenges include 

heightened design complexity, the imperative of efficient 

thermal management, and the need to maintain data integrity. 

Ongoing research in the development of advanced PIM 

circuits and systems remains a key area of focus, with 

potential for continued innovation in the domain. 

7) APPROXIMATE CONTENT-ADDRESSABLE 
MEMORIES 

In the field of Content-Addressable Memory (CAM), this 

memory system is notable for enabling data retrieval by 

content instead of location, enhancing parallel search 

capabilities essential for high-speed, memory-intensive 

systems. CAM's adaptability is evident in its application 

across network routing, digital signal processing, and 

microprocessor design. Recent advancements in CAM 

design have focused on improving efficiency in comparison-

driven tasks. However, challenges remain in creating CAM 

systems that are cost-effective, energy-efficient, and capable 

of similarity searches. The use of approximate CAM is 

limited by factors like similarity, accuracy, speed, 

complexity, and cost. The exploration of Approximate 

Content-Addressable Memory (CAM) in computer memory 

systems reveals significant benefits and drawbacks. Its rapid 

associative searching capabilities are advantageous for 

applications like network routing and data retrieval. 

However, CAM faces challenges including high costs, 

power consumption, limited scalability, and issues with data 

integrity. Additionally, its read and write speeds may not 

align with conventional RAM, its design complexity 

demands careful implementation, and its static nature 

complicates data updates, potentially leading to higher 

latency during certain write operations [298]. Despite its 

limitations, CAM is valuable for rapid associative searches, 

but a thorough analysis of its trade-offs is crucial for its 

effective integration in computing systems. Yinjin et al. 

[299] introduced CARAM, a novel hybrid PCM and DRAM 

primary memory system, to address Phase-Change 

Memory's (PCM) limitations like slow memory write speed 

and limited robustness, despite its high read throughput and 

low standby power. CARAM, addressing the challenges of 

limited primary memory capacity in modern DRAM-PCM 

combinations, improves memory efficiency through 

deduplication, line sharing, and optimized memory use. It 

reduces write traffic and duplicate line writes, thereby 

enhancing PCM wear-leveling and expanding memory 

capacity. CARAM also maintains high data access 

performance, which is essential for memory system 

optimization. Experimental results demonstrate CARAM's 

effectiveness, showing a 15%–42% reduction in memory 

usage, a 13%–116% increase in I/O bandwidth, and 31%–

38% energy savings compared to existing hybrid systems. In 

conclusion, CARAM marks notable progress in memory 

technology, addressing PCM challenges effectively through 

its innovative design and deduplication strategy, making it a 

promising area for future exploration. 

In contemporary computational systems, Hardware 

Search Engines (HSEs) represent a paradigm shift from 

traditional software search algorithms, offering enhanced 

location access and data association capabilities. Hardware 

Search Engines (HSEs), particularly Content Addressable 

Memory (CAM), mark a significant advancement in 

computational systems, offering improved data retrieval and 

association. However, CAM's high energy use, especially in 

cells and matchlines during searches, poses a challenge, 

notably in the energy-efficient multi-port CAM used in 

modern superscalar processors [300]. To overcome this, 

research has focused on low-energy alternatives like 

precharge-free CAM, which balances speed and power 

efficiency in associative memory [300]. Additionally, 

innovations include high-speed, energy-efficient single-port 

CAM designed for dual-port functionality, improving search 

performance, and addressing multi-port CAM limitations 

[301]. 

8) FRAMEWORKS AND SIMULATORS FOR 
APPROXIMATE MEMORY  

An important role for approximate memory may be found in 

error tolerant applications, where sacrificing perfect 

accuracy in data processing in favor of saving energy is 

acceptable. It is possible to introduce probabilistic errors into 

read/write access in approximate memory. In most cases, 

energy-saving circuitry or architectural changes (such as 

reduced refresh rates or reduced voltages) are at blame for 

these malfunctions. Since the degree of error that may be 

accepted varies from application to application, the capacity 

to simulate these systems is crucial [273], [302]. Through 

simulation, one may examine an application's behavior and 

test its robustness against real-world error rates, thereby 

identifying the optimal trade-off between reduced energy use 

and improved product quality. Menichelli et al. [273], Stazi 

et al. [302], and Yayla et al. [303] proposed emulators to 

reveal the effects of errors introduced by approximate 

memory circuits and architectures on the hardware platform 

and software. Yarmand et al. [304] introduced a 

methodology for identifying suitable approximation degrees 

for approximable memories within a memory hierarchy for 

executing error-tolerant applications. 
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B. VOLTAGE-FREQUENCY-POWER MANAGEMENT 
TECHNIQUES 

One of the main trade-offs in system-level approximate 

computing is between the accuracy of the computation and 

its performance (i.e., speed and energy consumption). In 

general, increasing the level of approximation can lead to 

faster and more energy-efficient computation, but it can also 

reduce the accuracy of the results. Reducing processing 

complexity in real-time systems provides for more idle 

(slack) time. The slack time, as shown in Figure 14, is the 

period between the task's end and its deadline. Exploiting 

time slack refers to utilizing periods of idle time or low 

activity in a system to reduce power consumption without 

compromising performance [307]. Voltage-Frequency-

Power Management Techniques are strategies used in 

electronic systems, particularly in processors, to optimize 

TABLE 3. Comparative Analysis of Various Approximate Memory Implementation Strategies 

Ref/Year Platform Design Approach Application  Improvement  Quality loss  

[281]/2017 Gem5+  

STT-MRAM cache+ 

Multicore 

Different levels of 

reliability for different 

cache +Approximate 

Read/write operation  

recognition, mining 

and synthesis (RMS) 

benchmarks 

40% write energy saving Acceptable  

[261]/2017 Altera Stratix IV GX FPGA-

based Terasic TR4-230 with 

1GB DDR3 DRAM 

+ µC/OS-II 

Refresh rate reduction 5 machine learning 

and 3 image 

processing 

algorithms 

73% reduction in 

DRAM refresh power 

Lossless-7% 

[282]/2019 Gem5+ STT-MRAM cache+ 

Multicore 

Different levels of 

reliability for different 

cache + full-

Approximate write 

operation 

Image processing+ 

Network+ 

Security+ 

Financial analysis 

energy savings full-

approximate, 57%+ 

mixed-criticality, 34%+  

full-accurate 

applications 21% 

Acceptable 

[258]/2020 Stratix-IV FPGA  

+ Intel UniPHY-DDR3 

memory controller 

+ NIOS-II processor 

+ Hynix DDR3 DRAM or 

LPDDR3 DRAM or 

STT-MRAM 

 

Approximate memory 

Compression 

8 machine learning 

benchmarks 

applications 

Energy reduction  

1.18x DDR3 DRAM 

1.52x LPDDR3 DRAM 

2.0x STT-MRAM 

 

Execution time 

reduction 

5.2% DDR3 DRAM 

5.4% LPDDR3 DRAM 

9.3% STT-MRAM 

 

0.3% 

[270]/2020 PC-Linux 

Virtex 7 VC707FPGA 

DDR3-D RAM 

 

Bit Truncation 

+ Refresh rate reduction 

Deep learning- 

AlexNet, VGGNet, 

GoogLeNet 

Refresh Energy saving 

69.1%+ 

Total energy saving 26% 

negligible 

[275]/2021 Xilinx Zynq 

XC7Z045FFG900-2 

+TSMC 28nm 

DCT +Quantization + 

Sparse matrix 

compression 

CNNs 403GOPS peak 

throughput and 

+1.4x~3.3x interlayer 

feature map reduction 

+2.16 TOPS/W energy 

efficiency 

0.18%-0.45% 

[305]/2022 Xilinx Artix 7 (XC7A35T-1C) 

Python API  

Different levels of 

reliability for different 

cache + full-

Approximate write 

operation 

JPEG encoding + 

KNN 

write energy saving 

~47.5% 

<5% 

[264]/2022  decrease the DRAM 

supply voltage+ 

quantized weights to 

reduce the DRAM 

access energy 

Spiking Neural 

Networks (SNNs) 

84.9% of DRAM energy 

saving + 

 

4.1x speed-up of DRAM 

data t 

BER ≤ 10−3 

[274]/2023 Simulation 

DRAM and SRAM 

encodes the image to 

effectively reduce the 

number of bit-‘1’ in the 

original pixel data 

Discrete Cosine 

Transform (DCT) 

+quantization 

+inverse 

quantization and 

inverse DCT (IDCT) 

39.8% power reduction 

for DRAM  

 

25.9% write power 

reduction for SRAM 

average 3.36 dB 

losses in (PSNR) 

[306]/2023 Xilinx ZC702 FPGA Model compression 

through data 

quantization on 

convolutions 

Lightweight and 

Energy-Efficient 

Deep Learning 

1.25× and 4.27× smaller 

logic and BRAM size, 

respectively 

10.37× reduction in 

power consumption at 

100MHz 

93.1% accuracy 
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power consumption and performance. These techniques 

dynamically adjust the operating voltage and frequency of a 

system based on the workload, power budget, and thermal 

conditions. There are some approaches that can be used to 

exploit time slack and reduce power consumption: Dynamic 

Voltage and Frequency Scaling (DVFS), Thermal Design 

Power Management (TDP), Dynamic Memory Management 

(DMM), Dynamic Power Management (DPM), Task 

Migration, Adaptive Voltage Scaling (AVS), Frequency 

Scaling, Voltage Scaling, Clock Gating, Power Gating, 

Energy-Efficient Scheduling, Near-Threshold Voltage 

(NTV) Operation, Sub-Threshold Operation, etc. These 

techniques are energy-efficient approaches at the 

architecture or system level and have been widely adopted in 

the Internet of Things (IoT). We will discuss shortly some of 

these techniques:  

1) DYNAMIC VOLTAGE AND FREQUENCY SCALING 
(DVFS) 

DVFS is a technique where the processor's voltage and 

frequency are dynamically altered based on the according to 

the workload. When the workload is low, the voltage and 

frequency can be scaled down to reduce the power 

consumption [308]. This technology is most effective in 

dynamic power environments and is widely supported by 

chip manufacturers, often referred to as “turbo mode” in 

some contexts. 

2) VOLTAGE OVERSCALING (VOS)  
VOS is a method that reduces the supplied voltage of circuits 

to improve energy efficiency. This can lead to increasing the 

computation errors or failures due to insufficient voltage 

provided to the transistors to switch states robustly. To 

balance the energy gains with reliability, systems might need 

error management strategies. VOS is especially useful in 

energy-sensitive devices like battery-operated gadgets or IoT 

sensors, where longer battery life is crucial.  

 

 

3) DYNAMIC POWER MANAGEMENT (DPM)  

DPM is a technique that involves dynamically adjusting the 

power consumption of a system based on the workload. This 

can be done by selectively turning off or reducing the power 

to different components of the system [309]. In idle time, the 

system enters a deep sleep state. During this state, the total 

energy can be dramatically reduced using power-gating and 

clock-gating. 

4) DYNAMIC MEMORY MANAGEMENT (DMM) 

DMM is a technique used to optimize the memory usage by 

dynamically allocating and deallocating memory of a system 

based on the workload. For example, a portion of the 

memory can be turned off when it is not being used to save 

power [310]. This technique is particularly useful in systems 

with varying memory requirements and limited memory 

resources, such as embedded systems and mobile devices.  

5) DYNAMIC THERMAL MANAGEMENT (DTM)  

DTM are technique used to manage the heat generation of a 

system [311]. They monitor the temperature of the system 

and dynamically adjust the voltage, frequency, or workload 

distribution to prevent overheating. This can include 

techniques like thermal throttling, where the system reduces 

its performance to decrease heat generation when it detects 

that it's getting too hot. 

6) ADAPTIVE CLOCKING 

This technique involves adjusting the clock frequency of a 

processor based on the workload [312]. For example, the 

clock frequency can be reduced during periods of low 

activity to save power [313]. Li et al. [312] introduced a rapid 

and power-saving SNN processor that supports online 

learning. The researchers used various techniques, such as 

adaptive clocking and event-driven to reduce the power 

consumption and accelerate computation. 

7) NEAR-THRESHOLD VOLTAGE (NTV) 

This technique offers significant energy efficiency 

improvements by operating processors close to the threshold 

voltage of the CMOS transistors [314]. While this approach 

reduces energy consumption, it also presents challenges such 

as increased latency and sensitivity to transistor variability. 

Techniques like massive parallelism and temporary voltage 

boosts are proposed to mitigate these issues, and advanced 

semiconductor technologies like finFETs help reduce 

variability concerns. Operating near this threshold minimizes 

energy consumption while still maintaining a higher degree 

of reliability and lower error rates compared to VOS. NTV 

strikes a balance between energy efficiency and 

computational reliability. NTV computing requires careful 

design and technological choices to fully harness its energy-

saving potential. NTV is particularly suited for IoT 

applications, such as wireless audio hearables, which require 

FIGURE 14. Optimization of slack intervals for energy efficiency in real-
time system operations [307]. (a) Preliminary computation, (b) DPM 
technique, (c) DVFS technique  
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continuous operation but are not necessarily at full 

performance all the time [314]. 

8) TASK MIGRATION 

Task migration involves moving tasks from high-power 

devices to low-power devices when the high-power device is 

not being fully utilized. For example, tasks that are not 

compute-intensive can be moved from a CPU to a low-power 

GPU [315]. 

By utilizing these approaches, systems can reduce power 

consumption during periods of idle time or low activity 

without impacting performance. Agostino et al. [316] 

provided an encouraged information about energy-effect 

computing in hardware and software. 

C. APPROXIMATE PROCESSORS 

As computing tasks become increasingly complex, there's a 

rising demand for new paradigms like approximate 

computing that enhance efficiency. However, the majority of 

existing hardware-based approximation solutions have been 

tailored to specific applications or limited to smaller 

computing units, necessitating significant engineering work 

for full system integration [317]. Approximate processors 

and accelerators are integrated approximate computing units 

consisting of the co-design of hardware and software. They 

were designed to enhance computational efficiency by 

allowing for controlled inaccuracies, which are particularly 

useful in error tolerance applications.  

Research interest is growing in ARM processors, which, 

due to their low-power architecture and supporting by 

various tools., are prevalent in mobile devices. Furthermore, 

there are available open-source instruction set architectures 

(ISA) for processors, which are represented by open, royalty-

free RISC-V architectures, supported by major tech firms 

[317], [318]. Aponte-Moreno et al. [318] proposed a fault 

tolerance approach to reduce the execution time by using 

approximate computing at the software level. The 

researchers used the ARM and RISC-V microprocessor 

architectures for testing the proposed approach. In another 

work, Baroughi and his colleagues [317] introduced AxE, the 

first general-purpose, heterogeneous RISC-V MPSoC 

platform that combines exact and approximate cores. This 

multiprocessor was supported by the capability of hardware 

approximation exploration across various applications 

through software instructions. The proposed task mapping 

method tested on AxE achieved a 32% speed-up and 21% 

energy savings while maintaining 99.3% accuracy across 

three mixed workloads. However, MPSoC architectures are 

becoming increasingly popular for demanding workloads in 

low-power devices like wearables and IoT sensors due to 

their high performance and exceptional QoS. Therefore, Ali 

et al. [309] introduced a comprehensive review of MPSoC 

architectures and explored that scheduling approaches and 

voltage-frequency-power management techniques are the 

most commonly used to reduce power consumption in 

MPSoC. 

The growth of IoT has led to an increase in demand for 

low-cost, resource-constrained devices that have the 

capability of power budgets. To increase these capabilities, 

we need to plan new approaches, like approximate 

computing techniques, to build a new generation of low-

power IOT devices. Therefore, Taştan et al. [319] proposed 

an approximate IoT processor using the RISC-V ISA, which 

was designed specifically for machine learning tasks like 

classification and clustering. The proposed processor 

achieves up to 23% power savings in ASIC implementations, 

maintaining over 90% top-1 accuracy on trained models and 

test datasets. The integration of IoT in smart cities has 

necessitated advanced solutions for processing mixed 

workloads, combining real-time data with historical records 

for enhanced analytics. Jawarneh et al. [320] introduced 

SpatialSSJP, an adaptive system that efficiently manages 

stream-static joins, optimizing for Quality of Service (QoS) 

and geo-statistical accuracy. SpatialSSJP was implemented 

on Spark Structured Streaming and tested on large datasets. 

Consequently, SpatialSSJP showed significant performance 

improvements over existing methods and achieved high 

accuracy levels, with notable gains in optimal scenarios. 
Deep learning tasks require optimized memory bandwidth 

due to their intense resource and memory requirements. The 

requirements make them suitable for parallel computing 

architectures like TPUs, which feature deeply pipelined 

networks of processing elements for efficient dataflow and 

high performance [17], [321]. Google's Tensor Processing 

Units (TPUs) are specialized ASICs that accelerate machine 

learning by using less precise formats like bfloat16 instead 

of 32 bits floating-point format significantly cutting 

computation time and memory use while preserving 

accuracy for many tasks  [17]. TPUs were  used to implement 

the NN applications (MLPs, CNNs, and LSTMs) in 

datacenters. Elbtity et al. [321] proposed an approximate 

tensor processing unit (APTPU) consisting of two key 

components: approximate processing elements (APEs) with 

low-precision multipliers and approximate adders, and pre-

approximate units (PAUs) that pre-process operands for the 

APEs within the APTPU's systolic array. However, Systolic 

array DNN accelerators are known for their cost efficiency 

but struggle with high energy use, limiting their use in low-

power devices. Approximate computing offers a solution at 

the expense of slight accuracy losses, which could, however, 

make DNNs more prone to disturbances like permanent 

faults, already a concern in accurate DNNs especially in 

critical applications like autonomous driving where 

reliability is paramount. Ensuring the reliability of DNN 

hardware often requires extensive fault injection testing 

[322], [323]. Siddique et al. [322] and Ahmadilivani et al. 

[323] addressed the challenge of exploring approximation 

and fault resiliency of DNN accelerators. Siddique et al. 

[322] conducted a detailed analysis of fault resilience and 
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energy consumption in various AxDNNs on a layer and bit 

level, using the Evoapprox8b signed multipliers. Their 

findings reveal that a single permanent fault in AxDNNs 

could result in as much as a 66% drop in accuracy, while the 

same fault might cause just a 9% accuracy reduction in a 

conventional DNN accelerator. At similar work, 

Ahmadilivani et al. [323] focused on enhancing DNN 

accelerators' fault resilience and approximation, using AxC 

arithmetic circuits for error emulation and a GPU-based 

framework for swift evaluation. It also delves into analyzing 

fault propagation and masking in networks. 

TPUs enhance deep learning efficiency through optimized 

dataflow and low-precision support, but at the cost of 

potential accuracy drops and fault vulnerability. 

Advancements in approximate computing show promise in 

mitigating these issues, crucial for applications demanding 

high performance and reliability. 

There are many interesting approximate processors and 

accelerators that have gained importance in different 

applications, such as energy-efficient IoT devices, real-time 

video processing, and machine learning inference tasks, 

where trade-offs between precision and performance can 

yield significant benefits. Some of these processors and 

accelerator will be mentioned in applications section.  

VIII. Circuit-Level Approximations 

The concept of approximating logical functionality is 

sufficiently generic that it is applicable to both software 

[150] and hardware [15]. When multiplication and division 

based on logarithms, were first being developed, the early 

1960s marked the beginning of the acceptance of 

approximation computing [324]. The considerable research 

interest in designing approximate circuits has been propelled 

by the substantial potential for power consumption 

reduction. Approximate computing focuses primarily on 

arithmetic units, e.g., adders and multipliers, at the level of 

custom hardware, as these constitute the fundamental 

components of numerous error-tolerant applications and all 

computations. The current research in VLSI design focuses 

heavily on real-time DSP and machine learning for 

applications like surveillance and wearable technology. 

These areas need quick, accurate data analysis for pattern 

recognition. IoT and edge processing emphasize immediate, 

local processing over cloud computing due to latency and 

connectivity issues. However, local processing requires 

solutions that are low-power, accurate, fast, and cost-

effective. Many algorithms in this field use basic functions 

like trigonometric and logarithmic functions. Calculating 

transcendental functions on computers typically involves 

software, leading to delays. Thus, hardware implementations 

have become vital due to their performance benefits over 

software. Numerous publications detail these hardware 

implementations for arithmetic units and elementary 

functions.  

A. APPROXIMATE ADDERS 

Approximate computing is an emerging paradigm that aims 

to optimize power consumption, area, and delay. This 

approach involves the strategic redesign of a system's logic 

circuit to allow for controlled imprecision in calculations by 

allowing for some degree of inaccuracy in the results. The 

computing error is generally undesirable, but there are some 

applications that can tolerate imprecise computation. 

A critical focus within this domain has been on the design 

of arithmetic circuits, particularly adders. Adders represent a 

fundamental element in these arithmetic units that have 

received special attention from researchers and play an 

important role in error-tolerant applications. Accurate adders 

may suffer from high delays, complexity, or power 

consumption. A Ripple Carry Adder (RCA) works by adding 

the bits of the two numbers one by one, starting from the least 

significant bit (LSB) to the most significant bit (MSB) in a 

chain-like manner. The critical path of an adder is defined by 

its whole carry chain. Although the RCA is relatively slow, 

it is a simple and commonly used circuit for small addition 

operations. For larger additions, other types of adders, such 

as carry-lookahead adders or carry-select adders, are used, 

which have faster carry-propagation but suffer from 

overhead and higher power consumption. Approximate 

computing is becoming increasingly important as the 

demand for more efficient computing grows, as it allows for 

the same task to be completed with fewer resources. For 

computationally intensive processes like machine learning, 

this speeds up and improves outcomes. 

In digital circuit design, the approximation computing 

technique provides a potential solution for decreasing power, 

area, and latency. This is accomplished by redesigning the 

logic circuit using many different implementing approaches 

that permit a decrease in accuracy [15]. Approximate 

computing can be applied to circuits at different levels: 

transistor level, logic gate level, and architecture level. In the 

literature, a wide variety of approximation adders [15], [16], 

[325], [326], [327], [328], [329], [330], [331] have been 

reported: segmented adders, where an n-bit adder is 

partitioned into k-bit subadders [15], [325], [326]; an 

approximate full adder, in which a single full adder can be 

approximated at the logic or transistor level [16], [327], 

[328]; carry-select adders, which are multi-stage subadders 

are utilized [329], [330]; and speculative adders, reimagining 

traditional designs, optimize performance by bypassing the 

infrequently used critical path [331], [332]. 

A more in-depth look at the many different kinds of 

approximation adders (and, more generally, approximate 

units) reveals that the many techniques now in use adopt one 

of three different methodologies towards inaccuracy [15], 

[333]: 1) insignificant and frequently errors, 2) significant 

and improbable errors, or 3) a combination of 2 and 3. In the 

first methodology, the designers engineer and approximate 

the lower significant bits of the arithmetic unit to obtain a 

small magnitude of errors that are frequent. The quality of 
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the application is not substantially diminished by these 

errors, as they are overshadowed by the system's intrinsic 

truncation and noise errors. For instance, Optimized 

Feedback Lower-part Constant-OR Adder [15] and Lower-

part OR Adder (LOA) [327] follow the first methodology. In 

the second methodology, the designers engineer the more 

significant bits of the arithmetic unit to appear as infrequent 

errors but large in magnitude. The thinking behind this is that 

applications are resilient enough to recover from occasional 

errors. Examples of this methodology are the Almost Correct 

Adder (ACA) [325], the Feedback Approximate Adder 

(FAA) [15], and the Generic Accuracy Configurable Adder 

(GeAr) [326]. In the third methodology, the designers 

engineer the arithmetic unit, including the two previous 

methodologies, to enhance the existing approximate adders, 

for example, the enhanced [15] and hybrid [333] 

approximate adders. Combining the best features of both 

previous principles is the preferred and sometimes necessary 

choice for real-world applications. The primary purpose of 

this work is to survey the current research and development 

status of various approximation approaches. 

1) APPROXIMATE FULL ADDER AT THE TRANSISTOR 
LEVEL 

As the one-bit full adder (OBFA) is the primary circuit for 

implementing an n-bit adder, the fundamental arithmetic 

circuit of any digital system, it plays a crucial role in the 

calculation process [334]. A full adder is a type of 

combinational logic circuit designed to add together three 

bits: two input bits and a carry bit from a previous stage. But 

an approximate hybrid full adder is a modified version of a 

full adder that uses a combination of two or more logic styles 

together to reduce power consumption and area overhead 

while maintaining reasonable accuracy [334]. 

There are seven different full adder cells based on static 

logic styles, which are: the Complementary Metal-Oxide 

Semiconductor (CMOS), Complementary Pass-transistor 

(CPL), pass-transistor logic (PTL), single-rail pass transistor 

(LEAP), double pass transistor (DPL), pseudo-NMOS 

(Ratioed logic), gate diffusion input (GDI), and hybrid full 

adders. As a result, a great deal of thought and care must be 

invested into selecting a particular topology of OBFA at the 

transistor level and designing the associated circuit to affect 

the overall performance and energy of the system. Also, we 

recommend to read these papers [334], [335]. 

The CMOS Full Adder is a widely used circuit for binary 

addition of two 1-bit numbers, employing NMOS and PMOS 

transistors. This logic style is widely used in digital circuits 

due to its high noise immunity, low power consumption, and 

reliable operation at low voltages. Despite its benefits, it has 

drawbacks like the presence of bulky PMOS transistors, 

increased transistor count, high input impedance, and high 

delay. The CMOS full adder is usually designed using 

multiple stages of CMOS inverters and transmission gates 

[336], [337]. For example, a 14-transistor (14T) CMOS 

complete adder cell which boasts a 50% reduction in the 

threshold loss issue and an increase in the output voltage 

swing, but has significant delays. 

Pass-Transistor Logic (PTL) is a digital logic circuit 

design method that uses pass transistors to implement logic 

functions. It offers greater efficiency and energy savings 

compared to traditional static CMOS logic. PTL achieves 

smaller circuit sizes and lower production costs due to fewer 

transistors in its gates, leading to less power use and reduced 

propagation delays. However, PTL can face signal 

degradation from parasitic capacitances, especially in 

complex circuits, which may impact performance. 

Hybrid logic circuits offer a balance between speed and 

power consumption, attracting increasing attention due to the 

proliferation of hybrid-based topologies in recent years 

[334], [335], [338], [339], [340], [341], [342]. The purpose 

of this review is to provide the designer with a sample but 

effective method for discovering which topologies are 

optimal in terms of power consumption, throughput, or a mix 

of these metrics. 

This survey considers hybrid architectures and includes 

the most current topologies. Several requirements are traded 

off to attain distinct benefits in full adder designs. In this 

context, the number of transistors, delay time, power 

consumption, and output voltage swing are crucial [338]. In 

contrast to the typical CMOS full adder, which requires 24 

transistors, the Mirror adder requires 28 transistors. Both 

provide precise output voltage levels, which results in a large 

area and significant energy use. In order to reduce the 

number of transistors required while maintaining the entire 

output voltage swing, several different designs have been 

proposed. Unfortunately, many designs have reduced the 

number of transistors to achieve low power consumption; 

however, this comes at the expense of a diminished output 

voltage swing [339], [343]. For example, the proposal in 

[339] employs just 8 transistors, based on two XNOR gates, 

each with three transistors and an inverter, making it a 

simpler architecture in terms of transistor count. However, 

this lower-transistor-based circuit has an issue with threshold 

loss, which causes the logic voltages ‘1’ and ‘0’ to be slightly 

off from Vdd and 0, respectively. Many designs have 

implemented solutions to this problem, often by expanding 

the allowed range of the output voltage or by increasing the 

voltage at each of the outputs. When operating at low supply 

voltages (i.e., Vdd=1.8 volts), the deteriorated output might 

lead the circuit to give incorrect outputs for certain input 

combinations, making it all the more crucial to minimize 

threshold loss [338]. In order to reduce the threshold loss 

problem and increase output voltage swing, Hassani et al. 

[338] proposed a 16-transistor accurate full adder (16T FA) 

design using a 10T CMOS FA. This design serves as a 

foundational element for proposing a Lower-part-OR (LOA) 

approximate adder [327]. This design reduces power 

consumption by 53% compared to the LOA adder, at the cost 

of a 12% drop in accuracy and increased delays. 
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Diverse methodologies for designing XOR-XNOR 

circuits have been published in recent years and are used to 

prevent glitches in the complete adder's output nodes. 

Kandpal et al. [342] proposed a 10-transistor XOR-XNOR 

circuit to provide full swing outputs with improvements in 

power consumption and performance. The outcomes show 

the power delay product (PDP) is 7.5% higher than that of 

the available XOR-XNOR modules in 2020. They used this 

XOR-XNOR circuit to design a 1-bit full adder (OBFA) 

called high-speed hybrid full adder design-4 (HSHFA-D4) 

using 20 transistors. The results show a 28.13% 

improvement in terms of PDP compared to other 

architectures. Another hybrid full adder design is called 

scalable low-power hybrid full adder (SLPHFA) which 

proposed by Hasan et al. [341]. Without resorting to an 

intermediary propagate signal, the carry signal and summing 

operation are generated via a novel AND-OR module and 

two XOR modules, respectively, utilizing transmission gates 

and CPL logic styles. Both HSHFA-D4, SLPHFA and HFA-

22T [344] characterize by no driving capability. Figure 15 

shows different classical and hybrid FA adders based on 

various logic styles.  

The Gate Diffusion Input (GDI) method is an efficient 

technique for designing full adders, reducing transistor count 

and power consumption while offering compact design, but 

faces limitations in voltage scaling and operating speed. The 

GDI-10T full adder is proposed by Nirmalraj et al. [345], 

which consists of one 4T XOR gate and two 2:1 

multiplexers. Combining the GDI and PTL logic styles 

produced a novel twist on the conventional full adder circuit; 

as a result, the design only required 10 transistors to perform 

addition. 

The shrinking of MOSFETs leads to challenges like 

increased leakage current and higher manufacturing costs. 

To address these, feature size scaling in digital circuits is key 

for reducing power-delay product (PDP) and power 

consumption. Carbon nanotube field-effect transistors 

(CNFETs), including p-type and n-type, are emerging as 

alternatives to MOSFETs, offering higher switching speeds 

and similar mobility for equivalent sizes [346]. There is a 

substantial amount of published material that describes the 

circuit implementation using CNFETs. For example, 

Bhargav et al. [346] proposed 10T and 13T approximate 

adders, based on 32 nm CNFET technology. 

2) APPROXIMATE FULL ADDER AT GATE LEVEL 

In an effort to lessen the critical path and hardware 

complexity of precise adders, a number of approximation 

approaches have been developed. Approximate adders are 

based on the idea that they can complete the addition faster 

than precise adders by breaking the carry propagation chain. 

This kind of approximate adder separates the adder into two 

separate segments: an exact adder is used for the higher 

significant segment, while approximate full adders are used 

for the less significant ones. This group has a basic truncation 

method [15], [16], [327], [347], [348]. The Lower-part OR 

Adder (LOA) [327] is the most well-known design in this 

class, which proposed in 2010, where consists of two 

subadders: an accurate subadder and an approximate 

subadder. The higher significant (accurate) subadder 

achieves the error-free calculation by using a conventional 

precise adder like the ripple carry adder (RCA) or the carry-

lookahead adder (CLA). The lower significant (approximate) 

subadder is constructed by only OR gates to approximately 

obtain LSB summations. Moreover, the accurate subadder's 

precision is enhanced by using the carry from the MSB input 

pair of the inaccurate subadder through AND gate. However, 

the precise subadder size determines the LOA critical path 

delay, and LOA has positive and negative errors. 

In 2012, Albicocco et al. [349] proposed LOAWA, a 

modified version of LOA adder, by removing AND gate that 

provides a carry from inaccurate part to accurate part, and 

this design has only positive errors. After a year, Gupta et al. 

[328] proposed an approximate adder, APPROX5, where an 

inaccurate part is composited by one of the input pairs. In 

2018, Dalloo et al. [16] studied, analyzed, and systematically 

designed the approximate adder called Optimized Constant 

Lower-part OR Adder (OLOCA), where the inaccurate part 

is constructed by ones and OR gates. Dalloo et al [15], [16] 

showed that the number of OR gates must not be less than 

two. In the same year, Dalloo [15] systematically designed 

an approximate adder segment (cell) called Feedback 

Approximate Adder Cell (FAA), which constructs an 

accurate adder segment with a unique logic circuit as shown 

in Figure 15. This cell has the capability of smoothly error-

correction, which means it composites partly errors produced 

by the inaccurate subadder through returning carry feedback 

to the inaccurate subadder. The cell feeds an accurate 

subadder by carrying the MSBs of the inaccurate subadder. 

The authors pointed out that the cell can be repeated and 

connected through OR gate. Furthermore, Dalloo [15] 

modified OLOCA, called OFLOCA, to construct the 

inaccurate subadder with ones, two OR gates, and two bits 

of the cell. The cell can be repeated to lessen the critical path. 

OFLOCA outperforms the state-of-the-art architectures such 

as OLOCA, LOA, etc. 

In 2019, Balasubramanian et al. [350] proposed a 

modified OLOCA by using a 2-to-1 multiplexer (MUX21) 

FIGURE 15. Architecture of Feedback approximate adder cell [15] 
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in the MSB of an inaccurate subadder, and the carry of the 

MSB of the inaccurate subadder (denoted as Ck) is used to 

control the multiplexer and feed the accurate subadder. The 

multiplexer is fed the carries of Ck and Ck-1 and generates the 

MSB’s sum of inaccurate subadders. This adder is called 

Hardware Optimized and Error Reduced Approximate 

Adder (HOERAA), which cannot correct the error that 

occurs when the carries Ck and Ck-1 are “01” and the inputs 

Xk and Yk are ““X0” or “0X”. To partly solve the issue, the 

same authors [351] modified HERLOA by adding OR gate 

after the multiplexer, as shown in Figure 16. The modified 

design is proposed in 2021 as a hardware-optimized 

approximate adder with a near normal error distribution 

(HOAANED). 

In 2020, Seo et al. [352] proposed an approximate adder 

called Hybrid Error Reduction LOA (HERLOA) 

approximate adder. This design is a modified LOA with a 

similar structure to OFLOCA in using carry feedback to 

lower significant bits of inaccurate subadder through OR 

gates and the two-bit feedback cell, but with modifications. 

Lee et al. [347], 2021, proposed a new approximate adder 

called Error Reduced Carry Prediction Approximate adder 

(ERCPAA), which aims to reduce error metrics while 

increasing cost metrics.  

Figure 16 shows the architectures of the aforementioned 

gate-level approximate adders, where n, k, and n-k refer to 

the size of the approximate adder, inaccurate subadder, and 

(a) LOA (2010) 
(b) LOAWA (2012) 

(c) APPROX5 (2013) (d) OLOCA (2018) 

(e) OFLOCA (2018) (f) HOERAA (2019) 

(g) HERLOA (2020) 

(h)  
(i) HOAANED (2021) 

FIGURE 16. Block schematics of some approximate gate-level adders, (a) LOA [327], (b) LOAWA [349], (c) APPROX5 [328], (d) OLOCA [16], (e) OFLOCA 
[15], (f) HOERAA[350], (g) HERLOA [352], and (i) HOAANED [351] 
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accurate subadder, respectively. X and Y are the inputs to the 

approximate adder, but SUM refers to its output. 

Furthermore, the Parallel-Prefix Adders (PPA) are among 

the fastest adders, and their process of binary addition is 

segmented into three distinct stages [353], [354]: pre-

processing, prefix-processing, and post-processing. The pre-

processing stage calculates generate and propagate signals, 

The heart of the PPA, the prefix-processing stage, leverages 

the prefix operator for accelerated computation of carry. The 

nature of the prefix operator allows for the flexibility of 

executing individual operations in any sequence, which has 

led to the development of various parallel-prefix 

architectures. Lastly, in the post-processing stage, the sum 

bits are calculated adding the previous carries and propagate 

signals. Researchers have paid special attention to being 

approximated; for example, recently, Rosa et al. [346] 

proposed approximate parallel prefix adders (PPAs) using 

proposed approximate prefix operators (AxPOs), which 

consist of carry operator nodes. They used four well-known 

PPA adder architectures: Kogge-Stone, Brent-Kung, Ladner-

Fischer, and Sklasky, to apply approximate AxPOs. 

Advanced digital design requires parallel prefix circuits like 

adders or priority encoders, which conventional design 

techniques often struggle to balance between area and delay 

effectively. Therefore, the NVIDIA Applied Deep Learning 

Research group [354] proposed a reinforcement learning-

based method with a specialized environment and 

representation for efficiently designing parallel prefix 

circuits. There are interesting review papers [355], [356] on 

gate-level architectures of approximate adders. 

To minimize the critical path and complexity of precise 

adders, numerous alternative approximation schemes have 

been proposed. These approximate schemes are the 

speculative adders such as Carry Cut-Back adder [357], 

Reverse Carry Propagate adder [358], VASP adder [332], 

and segmented adders such as Feedback adder [15] and a 

low-latency generic accuracy configurable adder (GeAr) 

[326]. 

In conclusion, the characteristics and performance of 

segmented and speculative adders diverge significantly from 

those of approximate full adders. Segmented adders split the 

carry chain, leading to larger but infrequent errors. In 

contrast, speculative adders offer high accuracy but at the 

cost of complex circuits. This creates a trade-off: speculative 

adders are less favorable due to their complexity compared 

to segmented and approximate full adders. The design of 

adders thus requires balancing efficiency with precision. 

C. APPROXIMATE MULTIPLIER 

Multipliers exhibit high complexity, which tends to consume 

energy and cause increased delays in computational 

operations. Multipliers are essential to microprocessors, 

digital signal processors, and embedded systems. Their 

applications vary from fundamental filtering operations to 

advanced convolutional neural networks [359]. This is 

especially important in large-scale machine learning tasks 

because convolution operations depend heavily on 

multiplication-accumulation processes. Consequently, there 

has been a notable shift in research focus towards developing 

low-power, high-performance approximate multipliers. This 

development stems from the need to optimize energy 

efficiency and processing speed in such tasks, addressing the 

inherent limitations of multipliers in comparison to simpler, 

more energy-efficient adders. The operational structure of a 

multiplier comprises three stages: partial product generation, 

partial product reduction (accumulation), and final addition. 

Approximations can be introduced in any of these stages, but 

the accumulation stage, in particular, is a focus of research 

for its significant power and delay consumption, highlighting 

the importance of designing low power and delay 

approximate multipliers. The Wallace tree, Dadda tree, and 

carry-save adder array are primary structures for partial 

product accumulation in multipliers. The Wallace tree uses 

parallel-operating full or half adders (FAs/HAs) without 

carry propagation, leading to a logarithmic delay 

(𝑂(𝑙𝑜𝑔(𝑛))). Its FAs, acting as (3:2) compressors, can be 

replaced by other compressors, like (4:2), to reduce delay. 

The Dadda tree is similar but uses fewer adders. In 

contrast, the carry-save adder array passes carry and sum 

signals from one row of FAs/HAs to the next, operating in 

series, resulting in a linear delay (𝑂(𝑛)), which is longer than 

the Wallace tree's. For example, Sabetzadeh et al. [360] 

proposed a new approximate multiplier which produced the 

least significant half of the product using an approximate 

multiplier with error compensation capability and the other 

half using an accurate multiplier. The proposed design 

enhances the energy-delay product by 77% over exact 

designs and 54% compared to existing approximate designs, 

on average. 

1) TRUNCATED MULTIPLIERS 
In the quest for efficient computational operations, the 

design of approximate multipliers is a key area of focus, 

particularly for applications that demand a balance between 

accuracy and power consumption. Among the various 

strategies employed, truncated multiplication, simplifies 

operations by discarding the least significant bits of input 

operands or removing the partial products (AND gates) or 

Full adder cells, thus reducing the silicon area and speeding 

FIGURE 17. The structure of 7x7 BAM multiplier [327]. 
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up the multiplier, but with a manageable loss in precision. 
By employing appropriate correction functions, the 

truncation error can be effectively minimized. For example, 

Broken-Array Multiplier (BAM) [327] is a variant of 

truncated array multipliers. This design shares foundational 

similarities with the conventional array multiplier but 

introduces a distinctive modification: the strategic omission 

of Carry-Save Adder (CSA) cells in both horizontal and 

vertical orientations. This alteration, as depicted in Figure 

17, is not arbitrary but is governed by two critical 

parameters: the Horizontal Break Level (HBL) and the 

Vertical Break Level (VBL). These parameters determine 

the specific cells to be omitted, as marked by hatching in the 

figure. The primary advantage of this design lies in its 

compact and expedited circuitry, achieved at the expense of 

precision. Then, Farshchi et al. [361] modified BAM 

multiplier using booth encoding. Then, Roy and his 

colleagues realized the needs of computational applications 

in real-time precision demands through designing 

approximate and reconfigurable circuits, ensuring power 

consumption aligns with computational accuracy. Therefore, 

Roy et al. [362] proposed an accuracy reconfigurable version 

of approximate Broken-Array booth multiplier. This design 

incorporates partial error correction by adding sign bits to a 

Broken-Array multiplier. This new reconfigurable multiplier 

design significantly reduces power consumption compared 

to traditional and modern multipliers. 

2) COMPRESSOR-BASED MULTIPLIERS 
Another approach, compressor-based designs, which stand 

out for their ability to streamline the accumulation stage. 

These designs utilize various compressor configurations, 

such as 7:3, 5:2, 4:2, and 3:2 compressors [363], [364]. 

Among these, the 4:2 compressor is often favored for its 

structural regularity, particularly when implemented in 

cascading configurations. This preference is also reflected in 

its widespread application in the design of Dadda multipliers 

[363], [364]. For example, Edavoor and colleagues [364] 

introduced an innovative 4:2 compressor design. This 

approximation-based approach yields significant 

improvements. Specifically, it achieves a 56.80%, 57.20%, 

and 73.30% reduction in area, power consumption, and 

delay, respectively. These improvements are in comparison 

to a conventional, accurate 4:2 compressor. However, this is 

balanced by an error rate of 25% and a maximum error 

distance of ±1. The 4:2 compressor efficiently executes four 

additions at once, enhancing parallelism which in turn 

minimizes the critical path and dynamic power dissipation. 

Dornelles et al. [365] proposed two topologies based on 

CMOS+ gates to decrease the power, area, and delay of the 

4:2 compressor. 

3) BOOTH ENCODING MULTIPLIER  

The ever-growing demand for efficient and compact digital 

circuits has fueled the development of approximate 

computing techniques. In the domain of multiplication, 

Booth multipliers represent a popular choice due to their 

versatility and ease of implementation. The use of modified 

Booth encoding significantly streamlines the multiplication 

of large numbers by reducing partial products. The modified 

Booth encoding (MBE) can reduce the number of PPs by half 

[366]. Zhu et al. [367] introduced a novel approach to 

designing Approximate-Truncated Booth Multipliers 

(ATBMs). These ATBMs are crafted using a combination of 

Modified Radix-4 Booth Encoders (AMBEs), Approximate 

4:2 compressors (ACs), and a technique of gradually 

truncating partial products. A key feature of this design is its 

ability to adjust accuracy levels. This adjustability is 

achieved by varying the number of AMBEs and ACs 

incorporated into the system, thereby allowing for a 

customizable balance between precision and computational 

efficiency.  

However, traditional Booth multipliers suffer from high 

hardware complexity, limiting their applicability in resource-

constrained scenarios. Haider and colleagues [368] 

addressed this challenge by introducing an innovative 

approximation approach to enhance the efficiency and 

reduce the hardware complexity of Booth multipliers while 

maintaining negligible error rates. The new approach 

requires only N/4 Booth decoders, reducing the Normalized 

Mean Error Deviation (NMED) and Power-Area-Product 

(PAP) in the 16-bit BD16.4 approximate Booth multiplier 

compared to existing advanced multipliers. 

4) SEGMENTED (RECURSIVE) MULTIPLIERS 

Approximate segmented (recursive) multipliers offer another 

way of dividing the multiplication process into smaller 

multiplier blocks. The simplest method in this category 

involves using smaller, approximate multipliers to develop 

larger multipliers, leading to the generation of approximated 

partial products [369], [370]. The low-power approximate 

techniques are applied more aggressively to the segments 

dealing with less significant bits. The research teams focus 

on developing approximate 2x2 or 4x4 multipliers, utilizing 

near-exact half (HA) and full (FA) adders, or alternatively, 

employing approximate counters or compressors for this 

purpose. In 2011, Kulkurani et al. [369] proposed under-

designed approximate multiplier (UDM) based on the 

proposed approximate 2x2 multiplier block. The 

approximate 2x2 multiplier produced the output error only 

when the inputs are one where the output is “111” instead of 

the accurate output is “1001”, reducing the accumulating 

stage. In 2016, Rehman et al. [371] also proposed a 2x2 

approximate multiplier block with a lower magnitude of 

maximum error. After a year, Venkatachalam et al. [372] 

used the statistical analysis to transform the partial products 

am,n and an,m , to form propagate pm,n and generate gm,n signals 

as follows: 

𝑝𝑚,𝑛 = 𝑎𝑚,𝑛 + 𝑎𝑚,𝑛 
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                𝑔𝑚,𝑛 = 𝑎𝑚,𝑛 . 𝑎𝑚,𝑛                             (1) 

In comparison, the chances of 𝑔𝑚,𝑛 being one are 

substantially lower at 1/16, unlike 𝑎𝑚,𝑛, which has a higher 

probability of 1/4. On the other hand, the probability for 

𝑝𝑚,𝑛 to be one is 7/16, exceeding the likelihood for 𝑔𝑚,𝑛. 

Using this transform concept, Venkatachalam and his 

colleagues proposed approximate 4x4 multiplier blocks and 

a 4x2 compressor using the proposed approximate half and 

full adders. Furthermore, they used the proposed blocks and 

compressor to build higher approximate multipliers, which 

characterize a high error rate and cost. But Waris et al. [370] 

achieved similar methodology to transform the partial 

products to form propagate- and generate-signals and design 

NOR based two approximate HF (NxHA) and one FA 

(NxFA) adders. The authors used these adder cells to build 

two 4x4 approximate multiplier blocks (more-approximated 

(MxA) and less-approximated (LxA) multipliers) and then 

larger multipliers. Waris and his colleagues designed the 

multiplier with a lower error rate (approximately half), lower 

cost, and higher performance than Venkatachalam’s design. 

5) FPGA BASED DESIGNED MULTIPLIER 

FPGA provided high-speed multipliers, which are 

characterized by their flexibility of reconfiguration and 

different precision formats to optimize performance for a 

specific task. FPGA has a limited number of depicted 

multipliers; therefore, we need to design this operation using 

FPGA LUTs. The designers will face the challenge of design 

complexity, and then creating efficient FPGA designs 

requires specialized knowledge. For example, Ullah et al. 

[373] introduced a new approximate multiplier architecture 

tailored for FPGA-based systems, offering a methodical 

design approach and an accessible online library. This 

innovation outperforms traditional ASIC-based 

approximations in terms of area, latency, energy efficiency, 

and accuracy. Specifically, it surpasses Xilinx Vivado's 

multiplier IP, showing up to 30% area, 53% latency, and 

67% energy improvements with minimal accuracy 

compromise. The provided open-source library aims to spur 

further research within the FPGA community, marking a 

significant shift towards optimized reconfigurable 

computing. 

6) LOGARITHMIC MULTIPLIER 

Logarithmic multipliers (LM), especially the base-2 

logarithm, offer a highly efficient approach for converting 

multiplication to addition and shifting operations. They 

significantly improve the hardware efficiency of error-

tolerant applications [374], [375]. The implementation of 

these multipliers comes with accuracy and design 

complexity bottlenecks, and it requires a dedicated circuit to 

compensate for errors and improve both hardware and 

accuracy. For example, Pilipovi´c et al. [376] proposed a 

two-stage approximate logarithmic multiplier that uses less 

area and energy. Makimoto et al. [377] proposed two-

segment piecewise-linear compensation to Mitchell’s 

logarithmic multiplier to improve its accuracy. Yu et al. 

[378] proposed an approximate LM, named HEALM, that 

integrates error compensation with mantissa truncation, 

using a lookup table to enhance accuracy and efficiency. 

7) HYBRID MULTIPLIER 

Lastly, hybrid techniques that combine two or more of these 

methods can offer a balanced solution, optimizing both 

accuracy and power consumption. For example, Ansari et al. 

[379] proposed and developed a new 4x4 and higher 

approximate multipliers using a combination of booth input 

encoding and a proposed approximate (4:2) compressor. The 

proposed design achieved a 52% reduction in the PDP-

MRED product and outperformed other similar-accuracy 

approximate Booth multipliers. Choudhary et al. [380] 

introduced an automated method for generating approximate 

circuits with formal worst-case relative error (WCRE) 

guarantees using Look-Up Tables (LUTs) and SAT-based 

techniques. The proposed 8-bit approximate multiplier 

reduced the power consumption and delay by 83.33% and 

25.3%, respectively, with only a 1.2 dB SNR degradation in 

a Finite Impulse Response (FIR) filter. 

D. APPROXIMATE DIVIDER 

There are many exact algorithms that have been proposed for 

implementing division operations. Digit recurrence, which is 

a trusted and exact division algorithm and offers simple logic 

but faces latency and space inefficiencies, is therefore 

limiting its use in high-speed applications [381]. The digit 

recurrence is an iterative algorithm including Rostering, 

Non-Rostering, and SRT dividers (as a sub-branch of non-

restoring). For example, Patankar et al. [381] introduced the 

exact USP-Awadhoot divider, as a digit recurrence design 

can be adaptable as restoring or non-restoring and optimized 

for space-efficient electronic applications.  

Designing an efficient divider necessitates using an 

inexact computation to address the inherent issues of high 

latency, large area, and significant power consumption in 

typical traditional division circuits [382]. Piso et al. [383] 

showed that a 1% improvement in a division circuit block 

can boost system performance by up to 20%. An 

approximate divider is a computational unit designed to 

perform division with a trade-off between accuracy and 

efficiency and used in various error-tolerant applications, 

including image processing, machine learning, wearable 

electronics, etc. Recent research on approximate dividers 

focuses on finding effective trade-offs by reducing the 

complexity, such as employing approximate subtraction or 

reciprocal [384], [385], [386], [385], logarithmic [384], 

truncating [385], reducing the number of iterations [387], 

using lookup tables, or applying other approximate 

techniques). Furthermore, the researchers focus on 
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developing new methods for error analysis and management 

to minimize errors. 

1) FLOATING, FIXED POINTS, AND FPGA DIVIDERS 

The floating-point divider is a complex component in 

arithmetic-heavy digital designs, categorized into 

combinational and sequential types, with a focus on the 

latter. Peter Malik [388] implemented three iterative division 

algorithms, including Newton-Raphson, Goldschmidt, and 

combined Goldschmidt and binomial divisions. The key 

principle of these algorithms is that the implementation of 

the division operation depends on an inverse process of the 

multiplication operation, where the denominator is 

iteratively subtracted from the numerator. The accuracy 

depends on the number of iterations and the computation 

complexity of the iteration. Bureneva et al. [389] proposed a 

fixed point version of Newton-Raphson division. Recently, 

Ebrahimi et al. [390] proposed RAPID, the tunable accuracy 

multiplier and divider architectures, customized for FPGAs. 

2) TRUNCATED, APPROXIMATE RECIPROCAL AND 
DYNAMIC ITERATION STOPPING DIVIDERS  

Approximate floating-point (FP) multipliers have been 

extensively explored in recent applications, which 

overwhelm the study and development of approximate FP 

dividers, despite their significant utility [384]. We noticed 

that a number of significant research efforts have been 

dedicated to developing approximate dividers using different 

approximate computing techniques. For example, Oelund et 

al. [384] proposed an approximate floating-point divider 

using an approximate hardware-friendly reciprocal and 

iterative logarithmic multiplier. The authors corrected the 

errors by storing them in a lookup table. The accuracy of this 

design can be configured in real-time. Vahdat et al. [385] 

also used the approximate reciprocal multiplied by the 

truncated value of the dividend for designing the 

approximate divider. Truncated dividers are a basic approach 

to approximate division by limiting calculations to a certain 

number of bits, offering speed and simplicity at the cost of 

potential errors, which vary by application. Behroozi et al. 

[387] introduced SAADI, an approximate divider design 

which boosts energy efficiency in error-tolerant applications 

by allowing dynamic adjustments in accuracy for energy-

quality balance. SAADI can dynamically balance the 

accuracy, speed, and energy in a division circuit by adjusting 

iteration counts for reciprocal approximation, diverging from 

traditional fixed-accuracy designs. It achieves 92.5% to 

99.0% accuracy in divisions while providing flexibility in 

latency scaling, showcasing its potential in low-power signal 

processing. Wang et al. [391] introduced an approximate 

divider called “HEADiv” based on the truncated Taylor 

series, and the induced error is compensated by carefully 

considering the associated hardware complexity. 

 

3) APPROXIMATE SUBTRACTOR-BASED DIVIDER 

Designing approximate dividers can be achieved by 

employing an approximate subtractor. This method is 

characterized by the ability to fine-tune error management 

through adjustable approximation levels in the subtractors, 

but it may influence the overall efficiency. The subtractor is 

a common unit in the class of division algorithms called digit 

recurrence algorithms. For example, Jha et al. [392] 

proposed inexact restoring-array dividers (IRADs) using 

four different proposed approximate subtractors based on 

CMOS technology. The authors also in-depth analyze the 

designs based on PTL and CMOS technologies. 

4) APPROXIMATE LOGARITHMIC DIVIDERS 
Approximate Logarithmic Dividers operate on the principle 

of logarithmic computation to perform division, which is a 

fundamentally different approach from traditional division 

algorithms. When multiplication and division based on 

logarithms were first developed by Mitchell in the early 

1960s, it marked the beginning of the acceptance of 

approximation computing [324]. Logarithmic Dividers 

(LDs) introduced significant errors, which makes them 

unsuitable for applications where high precision is required. 

However, LDs are characterized by low complexity, low 

power consumption, and high speed. This makes them well-

suited for use in error-tolerant applications such as digital 

signal processing, image and video processing, and machine 

learning algorithms, where they contribute to more energy-

efficient designs [393], [394]. Liu et al. [393] addressed the 

issue of high errors by combing restoring-array and 

logarithmic dividers to design approximate hybrid dividers. 

Also, Wu et al. [394] introduced a low-power, high-

performance approximate divider using logarithmic 

operation and piecewise constant approximation. The design 

was optimized using a heuristic algorithm to minimize 

errors. 

5) APPROXIMATE HIGH-RADIX DIVIDERS 
The importance of high-radix dividers is their ability to 

significantly improve computing speed and efficiency, but 

they also need careful consideration of hardware complexity, 

power consumption, and precise control. For example, Chen 

et al. [395] proposed a high radix divider and analyzed and 

compared this design with other different approximate 

dividers. They showed that the approximate radix-2 divider 

is particularly beneficial in constrained-resource 

applications, but the high-radix divider is useful for 

applications requiring high-speed computations. The 

decision to implement a high-radix divider should be based 

on a comprehensive analysis of these factors (computational 

efficiency, precision, latency, scalability, and circuit 

complexity) in the context of the intended. 
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E. APPROXIMATE ELEMENTARY AND ACTIVATION 
FUNCTIONS 

The importance of elementary and activation functions in 

various computational paradigms cannot be overstated. 

Elementary functions such as trigonometric, exponential, 

and logarithmic forms are the bedrock of numerous 

applications in science and engineering. However, the 

complexity of these functions often poses challenges in real-

time or high-performance computing environments. The 

need for rapid calculations in applications like signal 

processing and control systems makes it imperative to find 

efficient ways to implement these functions, often leading to 

a trade-off between speed and accuracy. 

On the other hand, activation functions are the linchpin of 

deep learning algorithms, particularly in the architecture of 

neural networks. These specialized functions introduce the 

necessary non-linearity that enables the network to learn 

from data and adapt to various complexities. They are crucial 

in applications that require pattern recognition, such as 

image and speech recognition, natural language processing, 

and even in complex game theory problems. However, the 

choice of an activation function and its implementation can 

significantly impact the learning efficiency and operational 

complexity of a neural network. The challenges here are 

multifold, including but not limited to, the vanishing and 

exploding gradient problems, computational cost, training 

convergence and the risk of overfitting. Therefore, 

understanding the mathematical properties and 

computational complexities of these functions is crucial for 

both academic research and practical implementations. 

These characteristics collectively ensure that activation 

functions can effectively support the diverse needs of neural 

network training. For instance, the Gaussian Error Linear 

Unit (GELU), the Rectified Linear Unit (RELU), the Leaky 

RELU, the Sigmoid, and the Hyperbolic Tangent (Tanh) are 

all examples of popular activation functions. GELU is 

known for its smoothness and is often used in transformer 

models like GPT-3, BERT, and most other Transformers 

[396]. For models like BERT and GPT-2 that employ the 

tanh approximation, utilizing this method to approximate the 

GELU activation function is advisable for model 

reproduction. However, it's worth noting that this approach 

generally yields less accurate results and can be slower for 

large input sizes compared to directly computing the 

accurate GELU function [397]. RELU, characterized by its 

simplicity and computational efficiency, is widely used in 

convolutional neural networks but suffers from the “dying 

RELU” problem where neurons can sometimes become 

inactive. Leaky RELU addresses this issue by allowing a 

small, non-zero gradient when the input is less than zero. 

Sigmoid and Tanh functions are among the earliest used 

activation functions and are particularly useful in scenarios 

where the output needs to be scaled between specific ranges; 

however, they are less popular in deep networks due to the 

vanishing gradient problem. Each of these activation 

functions has its own advantages and disadvantages, and the 

choice often depends on the specific requirements of the 

neural network architecture and the problem being solved. 

Figure 18 shows the most used activation functions over the 

last six years [398]. 

Typically, five prevalent computing techniques are used 

to implement these functions, including look-up table (LUT) 

approach [399], [400], the polynomial approximation 

methodology [401], [402], Piecewise linear, nonlinear and 

polynomial approximation, shift-and-add algorithms [403] 

like the coordinate rotation digital computer (CORDIC) 

algorithm [404], [405] and Hybrid Approaches [406]. The 

approximate and stochastic computing approaches [407], 

[408], [409], [410], [411], [412] have also garnered a 

considerable interest in recent years.  

There are benefits and drawbacks of strategies mentioned 

above [406]. The LUT method, known for its simplicity and 

speed in computing elementary functions, demands 

significant silicon space due to its memory-based accuracy. 

While it's computationally simple and fits stable functions, 

its accuracy hinges on memory size [413]. Recent 

advancements have focused on enhancing LUT methods 

through techniques like linear interpolation [414], range 

addressable LUTs (RALUT) [415], table-lookup-and-

addition methods like multipartite methods [416], input-

aware quantized table lookup [417] and twofold lookup 

methods [418] though these also introduce challenges in 

terms of hardware complexity. Polynomial approximation, 

used for finer estimates, necessitates numerous multipliers, 

adders, and coefficient-storing LUTs, making it area-

inefficient and slow [419]. The CORDIC algorithm is a cost-

effective iterative method using adders, shift operations, and 

registers. However, it's limited by serial multiplier-like 

delays and a narrow input range, making it slower for 

exponential and hyperbolic functions. Despite this, 

enhancements over the past two decades show promise for 

efficient real-time computing solutions. Function 

 
FIGURE 18. The most popular activation functions are used in over the last six years [398]. 
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approximation varies in complexity and suitability [420]. 

Piecewise Linear Approximation (PLA) is basic, offering 

low computational needs and ease of use, ideal for simple 

control systems and initial data analysis but struggles with 

complex functions. Piecewise Nonlinear Approximation 

(PNA) addresses this by using nonlinear functions for better 

complexity handling, useful in machine learning and 

financial models but with higher computational demands. 

Piecewise Polynomial Approximation (PPA) uses 

segmented polynomials for function approximation, 

common in signal processing and scientific computing but 

can have boundary issues. Hybrid methods mix various 

techniques to enhance accuracy or efficiency [406]. 

Recently, there's been significant interest in approximation 

and stochastic computing, known for high speed, fault 

tolerance, and low cost. While stochastic computing offers 

low power usage, it faces challenges like reduced precision 

and longer latency [421]. Approximate computing, on the 

other hand, balances hardware cost and accuracy, showing 

potential for improving integrated system performance 

[412], [422]. 

For example, Dong et al. [43] introduced a piecewise 

linear approximation computation (PLAC) method for 

nonlinear unary functions, which includes an optimized 

segmenter and quantizer, enhancing the universal and error-

flattened piecewise linear approximation approach. Then 

Lyu et al. [44] developed PLAC without a multiplier, later 

optimized by Yu et al. [45] to minimize segment count and 

reduce the maximum absolute error (MAE). For their circuit 

designs, all authors focused on the [0,1) interval. However, 

this approach requires the use of the exponential function's 

scaling property for processing inputs and outputs. Recently, 

Dalloo et al. [406] proposed hybrid approach for 

implementing exponential and hyperbolic functions with 

input range [-10,10]. Hajduk et al.[419] proposed a simple 

FPGA-based method for implementing the hyperbolic 

tangent function using ordinary or Chebyshev polynomial 

approximations. The authors examined different 

implementation configurations to show their effects on 

FPGA resources and calculation time. For more details, we 

recommend two references [406] which provides a valuable 

literature review about methods of implementing these 

functions. For designing Nth root and power operations, 

Changela et al. [423] proposed a low-complexity VLSI 

architecture using three classes of radix-4 CORDIC 

algorithms. They computed logarithms, division, and 

exponential operations using the radix-4 of the modified 

hyperbolic vectoring, linear vectoring, and the modified 

scaling-free hyperbolic rotation CORDICs, respectively. 

In our analysis, we found that although there have been 

significant improvements in these techniques, challenges 

persist in attaining balance among energy efficiency, latency, 

accuracy, and hardware complexity. Specifically, certain 

existing systems face constraints in terms of scalability, 

adaptability, and performance, especially when confronting 

the rigorous demands of real-time digital signal processing 

(DSP) and artificial intelligence tasks. We believe 

addressing these challenges demands innovative approaches 

that can effectively achieve the trade-offs of hardware 

designs in elementary and activation function computations. 

 

 

IX. Approximate Logic Synthesis and Frameworks 

Approximate logic synthesis (ALS) is an automated design 

approach to approximate digital circuits that can achieve a 

balance between accuracy and efficiency in terms of power, 

area, and performance. It automates combinational and 

sequential circuits and accelerator design to be adapted to 

various applications and technological and user constraints 

[424]. In real-world applications, the current challenge that 

faces ALS is how to adapt to different accuracy needs while 

managing power and delay variations. To accomplish that, it 

requires the design of quality-configurable circuits that can 

adjust to varying accuracy levels in real time. Furthermore, 

it must not only focus on gate-based netlists or Boolean 

circuit representations but also on inexact operators.  

There are two main approaches to ALS: deterministic and 

stochastic. Deterministic ALS uses predictable techniques to 

design approximate digital circuits, making definitive and 

predictable modifications to enhance efficiency. Stochastic 

ALS uses probabilistic algorithms to randomly simplify or 

modify digital circuits, leading to varied outcomes in 

different iterations [425], [426]. Furthermore, ALS can be 

categorized into four main categories, each of which has 

unique methodologies and applications: structural netlist 

transformation, Boolean rewriting, approximate high-level 

synthesis (AHLS), and evolutionary synthesis. 

A. STRUCTURAL NETLIST TRANSFORMATION 

Structural netlist transformation involves the optimization of 

a given logic circuit by transforming its netlist structure. This 

can be achieved through various techniques such as gate 

replacement, reordering, or removing [357], [424], [425], 

[427]. Several Approximate Logic Synthesis (ALS) methods 

function by manipulating the circuit netlist. For instance, 

Gate-Level Pruning (GLP) [357] and Circuit Carving 

[427]achieve this through the removal of gates from a circuit. 

Conversely, SASIMI [5] employs a different approach by 

altering the circuit's wiring. The primary goal is to reduce the 

overall complexity of the circuit without significantly 

affecting its functionality. The AxLS framework [428] is an 

open-source tool dedicated to the exploration and testing of 

existing netlist transformation techniques, serves as a pivotal 

resource in the field of Approximate Logic Synthesis (ALS). 

This ALS converts Verilog netlist to synthesized netlist (in 

XML format) based on standard-cell library and then applied 

the approximate techniques under user and application 

constraints. Finally, AxLS uses external synthesis and 

simulation tools for analyzing and evaluating the 
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approximate netlist. Figure 19 shows the simplified version 

of the AxLS framework.  

In another work, Witschen [429] introduced an innovative 

methodology for ALS called MUSCAT, which generates 

valid approximate circuits by inserting cutpoints into the 

netlist. It utilizes formal verification engines to identify 

minimally unsatisfiable subsets, ensuring optimal cutpoint 

activation without violating quality constraints. MUSCAT 

outperformed the state-of-the-art methods, including AIG-

rewriting [430] and EvoApproxLib [431], achieving up to 

80% higher savings in circuit area with lower computation 

times. 

B. BOOLEAN REWRITING 

Boolean rewriting focuses on the manipulation of Boolean 

functions to achieve a more efficient representation. This can 

involve the use of approximation techniques to simplify 

complex Boolean expressions. The main objective is to 

reduce the computational complexity of the function while 

maintaining an acceptable level of accuracy. For example, 

Hashemi et al. [432] introduced BLASYS, a novel paradigm 

that uses Boolean matrix factorization (BMF) to synthesize 

approximate circuits. This method allows for a balance 

between accuracy and circuit complexity. This approach 

saved the power up to 63%, with a cost of 5% of the average 

relative error. 

Recently, Rezaalipour et al. [433] proposed a new 

algorithm named XPAT, which is designed for creating 

approximate circuits through Boolean rewriting. The XPAT 

algorithm uses an SMT solver to customize circuits based on 

a sum of products template. It outperforms existing methods 

(MUSCAT and BLASYS) in reducing circuit areas by 9.85% 

on average, with up to 60.4% improvement in some cases. 

Figure 20 shows the test results which indicate savings in 

area for different error thresholds (ET). However, XPAT has 

longer runtimes for larger benchmarks, potentially 

addressable by using multi-level templates or applying 

XPAT iteratively to circuit parts. 

Ammes et al. [434] introduced a two-level approximate 

logic synthesis method using cube insertion and removal, 

demonstrating scalability for large circuits with high error 

thresholds. The method achieved literal number reductions 

ranging from 38% to 93%, depending on the error rate, 

ranging from 1% to 5%. The authors provided the codes 

online. While the authors made significant strides with their 

two-level synthesis method, it's essential to recognize the 

broader landscape of research in this domain. Diverse 

methodologies have been introduced, each with its own 

unique approach and emphasis. Among these, the work of 

Wu et al. [435] stands out, offering a multilevel perspective 

on the problem by proposing ALFANS as an advanced 

multilevel approximate logic synthesis framework, utilizing 

the Boolean network representation of circuits. Central to 

ALFANS is its capability for node simplification in Boolean 

networks. Another approach, Barbareschi et al. [436], 

introduced an open-source systematic approximate design 

approach tailored for combinational logic circuits. The 

authors potentially minimized hardware resource needs by 

using the non-trivial local rewriting of and-inverter graphs 

(AIG) to reduce the AIG-node count. Through multi-

objective optimization, the approach judiciously balances 

approximation with optimal error and hardware trade-offs 

and includes the synthesis of Pareto-optimal configurations 

to ascertain tangible benefits. Meng et al. [437] introduced 

ALSRAC, an open-source simulation-based Approximate 

Logic Synthesis (ALS) flow, employing approximate re-

substitution with an approximate care set. Utilizing logic 

simulation, the authors recommend approximating the care 

set in ALSRAC by identifying external don't-cares (EXDCs) 

through the maximum error distance constraint. They 

translated the proposed care patterns to internal nodes rather 

than primary inputs (PIs) to enhance scalability. Also, they 

noticed that in the larger circuits, the number of PIs increases 

exponentially with increasing EXDCs. Experimental 

outcomes indicate that the proposed approach results in an 

FIGURE 19. The simplified version of the AxLS framework [428]. 
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area reduction of 7%−18% in comparison to existing state-

of-the-art methods. 

C. APPROXIMATE HIGH-LEVEL SYNTHESIS (AHLS) 

In contrast to traditional approximate logic synthesis (ALS) 

techniques, which focus on gate-based netlists or Boolean 

circuit representations, Approximate High-Level Synthesis 

(AxHLS) aims to utilize inexact operators. AxHLS is a 

strategy that aims to efficiently implement designs in high-

level languages such as behavioral Verilog or C language. It 

focuses on the design and synthesis of hardware at a high 

abstraction level. The strategy involves transforming high-

level descriptions, like C/C++ code, into hardware 

descriptions, like VHDL or Verilog. The main goal is to 

create hardware that meets specific performance, power, and 

area constraints while often sacrificing accuracy. 

One of the early works in this field, Nepal et al. [438], 

introduced an advanced ABACUS methodology for the 

autonomous generation of approximate designs from 

behavioral RTL descriptions, expanding potential 

approximation avenues. The Automated Behavioral 

Approximate CircUit Synthesis (ABACUS) methodology is 

an approximate logic synthesis tool that transforms RTL 

descriptions into ASTs through applying various operators, 

such as data type simplifications, arithmetic operation 

approximations, and loop modifications. It utilizes a design 

space exploration technique for identifying optimal designs 

on the Pareto frontier, considering accuracy and power 

balance. ABACUS focuses on optimizing critical paths post-

synthesis for additional power savings through voltage 

scaling. This tool, featuring a recursive stochastic 

evolutionary algorithm, generates optimal approximate 

hardware variants from high-level Verilog inputs, with the 

codes accessible online.  

Recently, Leipnitz and colleagues [439] developed an 

AHLS design framework for FPGAs capable of 

autonomously determining the most effective combinations 

of multiple approximation techniques. This approach could 

be suitable for specific applications and constraint design. 

The proposed method outperformed single-technique 

approaches in various benchmarks, reducing mean squared 

error by up to 30% and increasing accuracy by up to 6.5%. 

Additionally, Castro-Godínez et al. [440] developed a new 

approximate high-level synthesis framework for 

approximate accelerators based on a library of approximate 

functional units. Furthermore, this framework addresses the 

challenge of optimizing resources while meeting accuracy 

constraints. It features “AxME,” which represents analytical 

models for resource estimation, and “DSEwam,” which 

represents a methodological approach for the exploration of 

design space in applications that exhibit a tolerance for 

errors. These tools enable the automatic generation of 

optimal approximate accelerators from C language 

descriptions. The framework is released as open-source to 

advance research in approximate accelerator generation. 

D. EVOLUTIONARY SYNTHESIS 

Evolutionary synthesis employs evolutionary algorithms, 

such as genetic algorithms, to optimize digital circuits. It 

involves iterative processes of selection, crossover, and 

mutation to explore the design space and find optimal or 

near-optimal solutions. Evolutionary algorithms are heuristic 

and metaheuristic search algorithms such as the genetic 

algorithm (GA), genetic programming (linear and cartesian 

genetic programming), machine learning, deep learning, etc. 

For example, Ranjan et al. [441] proposed a novel approach 

that leverages state-of-the-art AI generative networks to 

synthesize constraint-aware arithmetic operator designs to be 

optimized specifically for FPGA. 

Despite the focus of the most existing approximate logic 

synthesis methods primarily on ASIC designs, there are not 

many works of ALS for FPGA design. For example, Wu et 

al. [442] introduced a novel method specifically tailored for 

FPGA design. They used the adaptability of lookup tables 

and developed a technique that combines wire removal and 

local function alteration. 

One of the evolutionary synthesizers was the development 

of a reinforcement learning-based logic synthesis framework 

known as AISYN by Pasandi et al. [443]. This study 

advocated for the incorporation of Artificial Intelligence 

(AI), particularly Reinforcement Learning (RL), into logic 

synthesis procedures. The hypothesis is that AI and RL can 

aid in increasing Quality of Results (QoR) by avoiding local 

minima, thereby transforming logic synthesis optimization 

into an AI-guided process. Experimental evaluations show 

AI-guided logic synthesis can significantly improve key 

metrics like area, delay, and power. A RL-aided rewriting 

algorithm improved total cell area by 69.3%, highlighting the 

transformative potential of AI and RL in enhancing logic 

synthesis efficiency. Furthermore, Pasandi et al. [444] 

developed Deep-PowerX, a framework combining deep 

learning, approximate computing, and low-power design for 

logic optimization at the synthesis level. It significantly 

reduces the dynamic power consumption and area of digital 

CMOS circuits with acceptable error rates. Compared to 

exact solutions, it achieves up to 1.47× and 1.43× reductions 

FIGURE 20. Comparison of areas of Multiply-add obtained by XPAT, 
MUSCAT, and BLASYS [433]. 
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in power and area, respectively, and surpasses current 

approximate logic synthesis tools by 22% and 27%, with 

much lower run-times. 

Within the field of Genetic Programming (GP), the 

absence of a Boolean function benchmark suite for logic 

synthesis (LS) has been recognized as a significant issue 

[445], [446]. Roman K. et al. [446] developed a benchmark 

suite for logic synthesis, encompassing various Boolean 

functions used in evaluating genetic programming systems. 

They presented baseline results from previous studies and 

their own experiments using Cartesian genetic programming 

(CGP). To automate the functional approximation of 

combinational circuits at many levels, including gate and 

register-transfer levels, Sekanina et al. [447] proposed a 

genetic programming-based approach structure. 

E. ERROR ESTIMATION AND EVALUATION 
FRAMEWORKS 

Error Estimation Frameworks offer structured 

methodologies for evaluating potential inaccuracies in 

computational systems. Tailored for contexts employing 

approximations, these frameworks leverage sophisticated 

algorithms to balance accuracy and efficiency trade-offs, 

thereby serving as benchmarks for assessing computational 

result reliability. In the ALS process, as depicted in Figure 

21, integration with error modeling and Quality of Results 

(QoR) evaluation is fundamental [424]. The process 

commonly starts with an error-modeling phase, which is 

designed to evaluate the effects of removing individual gates 

on the circuit's accuracy and give annotating them with the 

error percentage. This step can guide ALS methods in 

identifying the least error-prone transformation. Then, it is 

followed by a post-synthesis error estimation phase, or QoR 

evaluation. This evaluation is significant for ensuring that the 

resultant circuit complies with specified demands [424]. 

Monte Carlo sampling methods are commonly used in ALS 

approaches to determine the actual error introduced by 

approximations in the process, making it a prevalent 

technique in error evaluation in approximate computing. 

This method is notably utilized in Approximate Logic 

Synthesis (ALS) methods, including BLASYS [432] and 

Vasicek [448] for Quality of Result (QoR) evaluation, as 

well as in Su's approach [449] for error modeling. However, 

a significant constraint inherent to Monte Carlo sampling is 

the absence of definitive guarantees, as its worst-case error 

only reflects the highest error within a limited sample space, 

thus providing a limited exploration scope. Error Estimation 

Frameworks, for example, VECBEE [450], is a key 

framework in Approximate Logic Synthesis (ALS), 

combining Monte Carlo simulation with signal propagation 

for error estimation. It's adaptable to various error metrics 

and circuit representations, balancing accuracy with 

efficiency. This approach was integrated into the open-

source ALS methods, which significantly contribute to 

optimizing circuit approximations. 

Recently, Rezaalipour et al. [451] proposed a novel SMT 

and SAT solver-based algorithm for error evaluation in 

approximate computing, adaptable to any circuit and error 

metric. This approach significantly outperforms traditional 

methods, including AIG-rewriting [430] and [452], by 

efficiently and systematically navigating the error space, 

ensuring more accurate and reliable design validations. 

In sum, Approximate Logic Synthesis (ALS) techniques, 

essential in digital circuit design, are categorized into four 

main types: structural netlist transformation, Boolean 

rewriting, approximate high-level synthesis (AHLS), and 

evolutionary synthesis. These categories utilize unique 

methods for introducing approximations in circuits to 

enhance efficiency and performance. Key insights into these 

techniques are also provided by review papers such as [453], 

[454]. These works highlight ALS's significance in 

optimizing digital circuits, especially in applications that 

balance computational accuracy with efficiency. 

X. Emerging Computing Frameworks 
A. CROSS-LAYER AND END-TO-END AXC 

FRAMEWORKS 

The cross-layer approximation approach, aimed at 

leveraging the error resilience of applications across various 

abstraction layers, is becoming popular. This approach 

involves several approximation techniques from circuit to 

application level. FPGA approximate computing 

frameworks harness the flexibility of FPGAs to optimize 

computational tasks by trading off accuracy for improved 

performance, energy efficiency, or reduced resource usage 

[455]. They support adaptable precision for diverse tasks, 

making them efficient for applications requiring high 

computational power. 

Efforts to enhance program efficiency and error tolerance 

have led to SIMD use in FPGAs, facing issues like limited 

approximation operations, isolated kernel adjustments 

without thorough evaluation, and a lack of targeted 

optimization strategies. Furthermore, a comprehensive 

multi-level approach is essential across all layers from 

application to circuit [24]. To address these challenges, 

Ebrahimi et al. [24] proposed a cross-layer methodology for 

multi-kernel applications using toolchains across layers of 

abstraction. For designing hardware with runtime-adjustable 

accuracy, Alan et al. [23] introduced a unique cross-layer 

approach that reduces energy use with sightly increasing 

area. Also, Hanif et al. [25] tried to facilitate DNN 

FIGURE 21. overview of the standard ALS process with the error 
modeling and quality of results (QoR) evaluation [424]  
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implementing on resource-constrained devices through 

introducing a cross-layer approach using various 

optimization techniques across the computing stack's layers. 

Several research studies have shown that applying the 

principles and techniques of approximate computing, 

initially designed for the ASIC platform, yields different 

advantages when implemented on FPGA platforms [456]. 

Another challenge is that it is time-consuming to explore 

numerous approximate accelerator variants due to the vast 

architecture space required for simple applications like 

Gaussian filters. Therefore, Ullah et al. [373] developed a 

method to systematically create various effective 

approximate multiplier designs for FPGA platforms. 

Subsequently, the authors deployed a range of machine 

learning models to assess and choose configurations that 

meet the specific accuracy and performance requirements of 

the application. Furthermore, Prabakaran et al. [457] 

introduced a novel end-to-end automated framework named 

Xel-FPGAs, aimed at enhancing the efficiency of exploring 

FPGA-based approximate accelerators integrated with 

advanced statistical and machine learning methodologies. 

This approach is designed to significantly cut down on the 

traditionally lengthy exploration time, making the process 

more efficient and effective. The Xel-FPGAs framework 

reduced FPGA-based accelerator exploration time by 95%, 

boosting efficiency with minimal performance impact. It's 

open-source and available online. 

Developed primarily by Xilinx Lab researchers [458], 

FINN is an open-source tool designed for building fast and 

flexible deep learning inference on FPGAs. Unlike general 

DNN accelerators, FINN provides an end-to-end flow that 

emphasizes co-design and exploration to optimize 

quantization and parallelization for specific resource and 

performance requirements. On a ZC706 FPGA platform 

consuming less than 25 W, FINN delivers record-breaking 

image classification speeds up to 12.3 million classifications 

per second at 0.31 microseconds latency with 95.8% 

accuracy on MNIST, and 21,906 classifications per second 

at 283 microseconds latency with over 80% accuracy on 

CIFAR-10 and SVHN datasets. 

B. SHANNON-INSPIRED STATISTICAL COMPUTING 

In 1948, Shannon established information as a statistical 

quantity and introduced a theory of communication over 

noisy channels. He defined channel capacity based on noise 

statistics and demonstrated that reliable communication is 

possible if the transmission rate is below this capacity. 

Shannon also showed that error control codes can approach 

this channel capacity. Shanbhag et al. [459] inspired to 

Shannon theory to design and develop principles and 

fundamental limits for realizing statistical information 

processing systems using stochastic components.  

The Shannon-inspired Statistical Computing framework 

[459] leverages the statistical properties of both application 

data and nanoscale hardware to create robust, energy-

efficient, and scalable computing systems. By integrating 

computation within memory (DIMA) and sensor arrays 

(DISA), and employing statistical design techniques like 

Data-driven Hardware Resilience (DDHR), Statistical Error 

Compensation (SEC) and Hyperdimensional Computing 

(HD), it ensures high reliability even in the presence of 

significant hardware noise and errors. This framework is 

particularly advantageous for data-centric applications, 

offering enhanced performance and energy savings by 

minimizing data transfer and adapting dynamically to errors. 

Furthermore, this framework allows circuits to operate at 

lower SNR levels, significantly saving energy. However, it 

comes with complexities in design and implementation, 

requiring sophisticated error-aware models and initial 

training overheads. This framework is used in advanced 

machine learning accelerators, low-power medical devices, 

and large-scale sensor networks, where traditional 

deterministic computing falls short due to increasing 

stochasticity at the nanoscale level. 

Another example, Kim et al. [460] introduced a maximum 

likelihood (ML)-based statistical error compensation 

(MLEC) technique to enhance the compute signal-to-noise 

ratio (SNR) in 6T SRAM-based analog in-memory 

computing (IMC) architectures. These architectures, known 

for their energy efficiency and compute densities in machine 

learning, are limited by device variations and noise. The 

proposed MLEC technique improves the accuracy of binary 

dot-products (DPs) in these systems. 

By integrating Shannon-inspired Statistical Computing 

with Approximate Computing, we can significantly enhance 

the robustness, adaptability, and energy efficiency of 

approximate computing systems. Leveraging information-

theoretic principles allows for precise error management, 

optimal design, and dynamic adaptation, making it possible 

to exploit the benefits of approximation without sacrificing 

reliability or performance. This hybrid approach provides a 

powerful framework for developing advanced computing 

systems capable of meeting the demands of modern data-

centric applications and nanoscale technologies. 

C. BRAIN-INSPIRED COMPUTING 

Astounding progress in several tasks has been driven 

primarily by advances in deep learning, which form the 

backbone of today's Artificial Intelligence (AI) 

developments. The rapid development of artificial 

intelligence (AI) demands the rapid development of domain-

specific hardware specifically designed for AI applications. 

Neuro-inspired computing (Neuromorphic computing) chips 

integrate a range of features inspired by neurobiological 

systems and could provide an energy-efficient approach to 

AI computing workloads. Neuromorphic computing refers 

specifically to the design of hardware systems that emulate 

the neural architecture of the brain. It aims to create physical 

circuits and devices that operate similarly to biological 

neurons and synapses. Neuromorphic computing, inspired 
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by neuroscience, is key to next-generation AI. It focuses on 

three levels: computing models, architecture, and learning 

algorithms [461]. Spiking Neural Networks (SNNs), with 

more realistic neuronal dynamics than Artificial Neural 

Networks (ANNs), serve as the computing model. 

Architecturally, SNNs enable efficient in-memory 

computing. Neuro-inspired learning paradigms, including 

online, learning-to-learn, and unsupervised learning, allow 

continuous adaptation and form the basis for low-power, 

accurate, and reliable neuromorphic systems. This includes 

designing and fabricating neuromorphic chips that replicate 

the brain's parallel processing capabilities. Neuromorphic 

systems often use spiking neural networks (SNNs), where 

information is processed in discrete spikes, similar to neural 

spikes in the brain. This leads to event-driven, as opposed to 

clock-driven, computation, which can be more energy-

efficient [462]. Neuromorphic computing can be 

implemented by combining analog and digital circuits to 

replicate the analog nature of biological processes. This can 

involve using memristors, specialized transistors, and other 

nanoscale components to build artificial neurons and 

synapses [463]. 

To further enhancement, Sen et al. [464] introduced 

AxSNN, an approach applying approximate computing to 

enhance the efficiency of Spiking Neural Networks (SNNs) 

by selectively skipping low-impact neuron updates, utilizing 

static and dynamic parameters to identify approximable 

neurons. They implemented AxSNN in both hardware 

(SNNAP, synthesized in 45nm technology) and software (on 

a 2.7 GHz Intel Xeon server) to achieve 1.4–5.5x reduction 

in scalar operations across six image recognition 

benchmarks, demonstrating significant improvements in 

computational efficiency and energy savings with minimal 

quality loss. 

XI. Applications 
A. APPROXIMATE INTERNET OF THINGS (IOT) 

The widespread use of smart devices and sensors has led to 

a demand for intelligent computing to handle vast amounts 

of data. Conventional exact computing is commonly used in 

these devices which suffer of high-power consumption and 

low performance [465]. To address these challenges, 

approximate IoT (AxIoT) is the optimal solution and an 

emerging paradigm in this field, which depends on 

approximate computing techniques. These techniques 

manage the intensive computational processing and analysis 

demands of IoT devices. The exact results are not always 

required, this feature allows us to accept some errors. 

Approximate computing offers significant benefits in the 

resource-constrained IoT devices. Additionally, the big 

challenges that are faced by a designer are maintaining the 

quality of computations to meet specific application needs, 

reliability, and security concerns. To address these 

challenges, various strategies have been proposed, for 

example, energy of IOT can be saved using Bloom filter 

[95],[96], 6T SRAM [268], voltage-frequency-power 

management techniques [309], [314], approximate IoT 

processor [319], In-memory computing IMC-based Binary 

Neural Network (BNN) accelerator [296], DRAM Refresh 

rate [12]. For example, Ghosh et al. [466] illustrated 

synergistic approximation by utilizing a smart camera 

system that performs DNN-based image classification and 

object detection, highlighting how the sensor, memory, 

compute, and communication subsystems can all be 

effectively approximated. Adaptive approximation levels, 

which allow for dynamic adjustment based on application 

needs, can manage the accuracy-efficiency trade-off. 

Hierarchical sampling algorithms, such as stratified reservoir 

sampling, offer rigorous error bounds while enhancing 

computation efficiency, as demonstrated in the 

APPROXIOT system [53]. APPROXIOT was implemented 

based on Apache Kafka. Fabjančič et al. [467] introduced 

“Mobiprox,” a framework for on-device deep learning with 

adjustable accuracy. It features tunable tensor operation 

approximations and runtime layer adjustment, utilizing a 

profiler and tuner for optimal configuration. The results 

show Mobiprox's implementation on Android OS reduces 

energy use by up to 15% in mobile applications like activity 

recognition and keyword detection, with minimal accuracy 

loss. Mobile devices, reliant on battery power, face 

constraints that make battery life a crucial factor. Reducing 

computational energy could significantly benefit these 

systems. Therefore, exploring mobile approximate 

computing emerges as a promising research and 

development avenue for advancing approximate computing 

paradigms [466], [468]. Bin Qaim et al. [469] surveys 

energy-efficient solutions including data compression and 

approximate computing techniques for IoWT applications 

from 2010 to 2020. It categorizes these solutions, 

highlighting their pros, cons, and key performance 

parameters. The study discusses trade-offs and suggests 

future research directions to improve wearable device 

performance and address challenges. Recently,  

B. DEEP AND MACHINE LEARNING 

Strategic approximate computing reduces precision in neural 

network computations on a need basis that saves power and 

time, particularly for multiply-and-accumulate (MAC) 

operations, which dominate the energy use in DNNs [470]. 

Studies indicate that these operations are responsible for 

consuming up to 99% of the energy in Deep Neural 

Networks (DNNs) [471] .Concentrating on simplifying 

multipliers within MAC units results in huge energy savings 

with hardly any degradation in accuracy. These approximate 

designs can be customized to suit different accuracy 

specifications as they are error-configurable. Efficiency is 

further optimized through dynamic reconfigurability and 

temperature-aware methods that control chip temperatures 

while ensuring computational speed, energy savings, and 

output quality remain balanced. Sarwar et al. [472] proposed 
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an approximate multiplier and a Multiplier-less Artificial 

Neuron (MAN) to improve neural networks' energy 

efficiency by exploiting error tolerance and computation 

sharing. They also recommend retraining to offset accuracy 

losses. Evaluations show MANs significantly reduce power 

and size with minimal accuracy impact, maintaining 

consistent speed. Peng et al. [473] proposed “AXNet,” a 

unified neural network that simplifies training and improves 

efficiency by integrating approximation and prediction tasks. 

The results show a 50.7% increase in safe approximation 

rates and significant reductions in training time. The codes 

are available online. Ashar et al. [474] proposed a novel 

quantize-enabled multiply-accumulate (MAC) unit with a 

right shift-and-add computation for runtime truncation 

without extra hardware. Applying this MAC to a LeNet DNN 

model reduced resources by 42% and delay by 27%, ideal for 

high-throughput edge-AI applications. 

Balancing CNN accuracy, efficiency, and resource use 

presents challenges, exacerbated by high storage and 

computational needs and inefficient hardware deployment. 

Despite this, CNNs are crucial in computer vision, though at 

the expense of greater computational demand, as seen in 

models like VGG-16. Addressing these issues requires 

software-hardware co-optimization, including model 

compression techniques like pruning and parameter 

quantization, to enhance CNN efficiency on FPGA 

platforms.[475], [476]. For example, Sui and his colleagues 

proposed new CNN pruning [476] and Quantization [475] 

methods aimed at reducing storage requirements, 

computational load, and enhancing hardware deployment 

efficiency. The study [476] presented a new CNN pruning 

method (KRP) which combined with GSNQ quantization 

[475] to achieve a 27× reduction in model size and improving 

FPGA efficiency. There are many techniques to enhance 

deep CNN and machine learning algorithms including fixed-

point arithmetic, zero-skipping and weight pruning for 

enhancing CNN on FPGA [477], compression through 

innovative use of parallel layer processing and pipelining 

[478], Compression though using reversed-pruning, peak-

pruning and quantization [479], cross-layer approach using 

the structure pruning and inputs and network parameters 

quantization at the software and approximate arithmetic units 

at hardware level [25], quantization in PIM [480], 

approximate accelerators [457], approximate adder [422], 

approximate logarithmic multiplier [376], [29], Computation 

skipping [126], ApproxTuner [235] frameworks [238], 

[242], Approximate Memory based on Voltage Scaling 

[260], analog processor-in-memory [293], hybrid PIM 

accelerator [294], DCT, Quantization , Sparse matrix 

compression [275], and other techniques mentioned in Table 

3. 

Approximate processors and accelerators, which embody 

the synergy of hardware and software co-design in 

approximate computing, are engineered to boost 

computational efficiency through permissible inaccuracies, 

making them well-suited for applications where error 

tolerance is acceptable. There are many proposed 

approximate processors depend on approximate computing 

techniques to enhance the overall system efficiency, 

including relaxed precision in TPUs for implementing NN 

applications (MLPs, CNNs, and LSTMs) in datacenters[17], 

mixed precision for GPU Tensor Cores for Deep Neural 

Networks (DNNs) [481], processing elements (APEs) 

consisting of a low-precision multiplier and an approximate 

adder in TPU [321], parallel analog convolution-in-pixel, 

and low-precision quinary weight neural networks [482]. 

Gharavi et al. [483] proposed enhancing multicore 

performance with configurable approximate Arithmetic 

units. Their machine learning framework dynamically 

adjusted frequency and precision to optimize performance 

within TDP constraints. Experiments showed a 19% speed 

increase using a floating point approximate ALU with three 

configurations per core, all within the same TDP limit. 

Machine learning enhances IoT by analyzing vast data for 

actionable insights, crucial for applications like wearables 

and smart devices [465]. The embedded processing near the 

sensor is often preferred to cloud processing due to privacy, 

latency, and bandwidth constraints. Despite these 

advantages, sensor devices face significant challenges 

related to energy consumption, cost, throughput, and 

accuracy. Circuit designers are key to developing energy-

efficient solutions for these tasks. For example, Younes and 

his colleagues [484] published a couple of research papers 

which applied algorithmic level approximate computing 

techniques (AxCTs) to supervised machine learning 

algorithms, specifically K-Nearest Neighbor (KNN) and 

Support Vector Machine (SVM), for applications in touch 

modality and image classification. These techniques, 

including reduced sampling and precision as well as loop 

perforation, aim to decrease complexity and latency while 

maintaining a balance between speed and accuracy. 

Comparing to traditional exact implementations, the results 

in showed the proposed method achieved a 49% reduction in 

power consumption and a 3.2× speedup. Furthermore, it used 

40% fewer hardware resources and consumed 82% less 

energy for classifying touch inputs, all with a minimal 

accuracy loss of less than 5%. In addition, Mienye et al.[485] 
addressed a gap in the literature by providing a 

comprehensive overview of decision tree-based methods in 

machine learning. It explored core concepts, algorithms, and 

applications, from early development to recent high-

performing ensemble algorithms. Also, they discussed the 

methods. tree pruning to enhance the performance of model 

and reduce the overfitting. 

C. DATA MINING 

Redundant computations and data are considered as big 

challenges for algorithms in terms of speed, scalability, 

memory, and efficiency, for example, unnecessary 

computations, function calls, Redundant iterations, 
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redundant memory access, etc. These inefficiencies increase 

execution time, waste computational resources, and reduce 

the scalability of data mining analyses [486]. The core 

challenge of data miming algorithms is to extract extracting 

hidden knowledge from large datasets and mitigating use of 

redundant computations. Sampling is a data reduction 

strategy, addresses these volume-related challenges in 

environments running big data tasks like classification and 

clustering. There are several papers discussed the concept of 

approximate data mining. For example, stratified random 

sampling were used from streaming and stored data [38], 

[39]. Graph sampling [40] is a very effective method to deal 

with scalability issues when analyzing large-scale graphs. 

There are others data mining techniques such as 

memoization (storing and reusing previous computations), 

efficient data structure design, and careful algorithm 

optimization, loop perforation, iteration skipping, memory 

access skipping, Computation skipping, Function 

approximation, etc., we discussed these techniques in 

previous sections. 

The machine learning algorithms are considered common 

data mining algorithms. For example, approximate nearest 

neighbor search (ANNS) is considered as core solution in 

data-mining and is widely used in different applications such 

as computer vision, information retrieval, etc. [487]. 

Approximate nearest neighbor search algorithms are used for 

fast retrieval of relevant information. Instead of perfect 

matches, these algorithms find items that are “close enough” 

in high-dimensional data spaces and saving computational 

expense during large-scale searches [488]. For instance, 

numerous major corporations, including google, employ this 

strategy [489].  

D. SECURITY  

We know that approximate computing promises significant 

advantages but there are security implications, particularly in 

sensitive applications, require careful consideration and 

further research. Approximate computing can complicate 

reverse engineering efforts but could introduce new target 

areas for hardware Trojans, particularly in circuits 

controlling the level of approximation. Approximate circuits' 

defense against passive side-channel attacks can differ with 

voltage-frequency settings, making security assessments 

challenging. Approximate circuits, particularly at 

operational limits, may be vulnerable to fault injection 

attacks, but the full effects and countermeasure effectiveness 

are still unclear [490], [491]. Also, Processing-In-Memory 

alters security models due to factors like architecture 

changes, different programming models, side-channel risks, 

device reliability, and potential hardware Trojans. To address 

these challenges, Yellu et al. [492] proposed obfuscating the 

boundary between approximate and precise computations by 

blurring the entry point and broadening the transition zone. 

The entry-blurring scheme uses a hidden quality metric 

correlated with approximation errors to conceal the switch 

between modes, enhancing resilience to attacks. The 

boundary-broadening scheme extends the transition zone 

with dual thresholds and random AC module selection, 

further securing AC systems. Their methods significantly 

improve application quality (up to 168% over baseline) with 

minimal impact on latency, area, and power costs (increases 

limited to 6% and 8%, respectively). Another work, Sheikh 

A. Islam [493] highlighted the security risks in AC synthesis 

for implementing approximate Computing (AC). He showed 

how vulnerabilities could be exploited to insert malicious 

elements like Hardware Trojans without affecting efficiency. 

Therefore, he proposed a defense mechanism using input 

vectors and path profiling to detect such threats and 

emphasized the necessity of incorporating security into AC 

systems to prevent exploitation and suggesting future 

enhancements to synthesis tools for improved security. The 

study [487] introduced a cloud-assisted LSH scheme for 

efficient Approximate Nearest Neighbor searches. He 

tackled the high computational demands of traditional LSH, 

especially on devices with limited resources. This approach 

ensures data privacy and includes a method to verify the 

integrity of cloud-processed results. Experiments and 

analyses confirmed the scheme's effectiveness, security, and 

practical applicability, offering a viable solution for 

resource-constrained environments. The research [494] 

introduced a multilevel approximate architecture for Ring-

Learning-with-Errors (R-LWE), a quantum-resistant 

cryptographic scheme ideal for IoT due to low area and 

memory requirements. The proposed novel AxRLWE 

approach is tailored for resource-constrained IoT devices, 

achieves substantial reductions in area and energy on FPGAs 

and ASICs, with some compromise on quantum security. 

We conclude that while approximate computing offers 

significant advantages in certain applications, its security 

implications, particularly in sensitive applications, require 

careful consideration and further research. 

XII. Tools and Libraries of Approximate Circuit  

Approximate computing is an emerging paradigm that 

allows trading off design accuracy and improvements in 

design metrics such as design area and power consumption. 

This paradigm is widely used in applications across various 

abstraction layers through managing and controlling the 

error. Numerous researchers share code or plan to release 

libraries of approximate components for application use, or 

offer benchmark suites of diverse applications as open-

source to assist others in their research. Additionally, another 

group of researchers makes available free software tools to 

support scientific research. In Table 4, we present a selection 

of libraries for approximate components and established 

benchmark suites. At end of this table, we include two 

websites: one offering access to published papers with 

accompanying codes, particularly in the DL/ML fields, and 

the other hosting a comprehensive collection of open-source 

benchmark suites, along with tested and recommended 
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platforms for their use. In this review paper, we have noted 

at the conclusion of each discussed work that the authors 

have made the code available. 

There are several free software programs provided the 

teams of researchers that can be used for circuit or processor 

design at the transistor and logic levels, for example  

BLASYS tool-chain framework which is used to design 

approximate circuits through a couple of free tools. Recent 

advancements have facilitated rapid DNN deployment on 

FPGAs through automation tools. FP-DNN [506] 

streamlines converting TensorFlow DNN models into 

efficient FPGA implementations, supporting networks like 

CNNs with improved performance and flexibility. 

ARTLCNN compiler [507] streamlines FPGA hardware 

customization for CNN inference, significantly boosting 

performance by using an optimized RTL module library and 

a flexible system template. Tested on Intel FPGAs with 

complex CNNs, it achieves over double the efficiency of 

current automated solutions. Another open-source tool 

called FINN which primarily developed by Xilinx Lab 

researchers [458] for building fast and flexible deep learning 

inference on FPGAs. FINN provides an end-to-end flow and 

focuses on co-design and exploration to optimize 

quantization and parallelization tuning for specific resource 

and performance needs. It's not a general DNN accelerator 

[508]. 

The choice of the tool is determined by many factors, 

including the amount of simulation and synthesis needed, the 

complexity of the circuit, and the designer's expertise with 

the program. 

XIII. Challenges and Future Directions 

TABLE 4. Open-source libraries and benchmark suits of approximate computing techniques and applications  

Ref./Year Name AxC Units/ Benchmark Suite Platforms Source code Implementing Tools 

/libraries used 

[495]/2004 SciMark 2.0 

Fast Fourier Transform, Jacobi 

Successive Over-relaxation, Monte Carlo, 

Sparse Matrix Multiply, and dense LU 

matrix factorization 

Intel and AMD 

processors1 
C++ N/A 

[496]/2009 Rodinia_Bench 

Applications from different domains (e.g. 

Image/Video Compression, Data Mining, 

etc.) 

GPU and CPU 

Heterogeneous 

computing 

OpenMP, 

OpenCL and 

CUDA 

N/A 

[326]/2014 ApproxAdderLib 
Adders ( GeAr, ACA-I, ETAII, ACA-II 

and GDA) 
FPGA and ASIC 

MATLAB, 

VHDL/Verilog 

MATLAB R2013a and ISE 

Design Suite 14.5 

[497]/2017 Axbench 

Applications from different domains (e.g. 

Computer Vision, Data Analytics, 

Multimedia, Web Search, Finance, etc.). 

GPU, CPU, 

FPGA, ASIC 

C++, Verilog, 

CUDA 

Boost Libraries, G++, 

Python, Fast Artificial 

Neural Network Library, 

NPU compiler, CUDA 

Toolkit, Rodinia 

[431]/2017 EvoApprox8b 
8-bit approximate adders and 8-bit 

approximate multipliers 
FPGA and ASIC 

Verilog, Matlab 

and C  

multi-objective Cartesian 

genetic programming 

[498]/2018 SMApproxLib Multipliers FPGA, CPU VHDL, Matlab  Matlab, Vivado 17.1 

[499]/2019 
PaderBench 

 

Adder, FFT, Cordic, array multiplier, 

filters, MAC…. 
 Verilog N/A 

[424]/2020 BACS 
FFT, SVM classifier, Adder, Multiplier, 

filter, square  
FPGA and ASIC 

Verilog and 

python 

open-source tool ABACUS 

together with the FreePDK 

45-nm library. 

[500]/2020 DSPBench 

Distributed Data Stream Processing 

Systems: big data, data-stream, apache-

spark, etc. and different domains like 

Finance, Telecommunications, Sensor 

Networks, Social Networks and others 

Azure Cloud 

computing service 
Java N/A 

[501]/2021 RTRBench 

Benchmark suite for real-time robotics: 6 

kernels for example, Extended Kalman 

Filter, Reinforcement learning using 

Bayesian Optimization 

CPU C++ N/A 

[502]/2022 SOMALib 

Library of Exact and Approximate 

Activation Functions for Hardware-

efficient Neural Network Accelerators 

CPU, GPU, and 

FPGA, ASIC 

RTL (VHDL, 

Verilog) 
N/A 

[503]/2023 TransPimLib 

Transcendental Functions on Processing-

in-Memory Systems: CORDIC-based and 

LUT-based methods for trigonometric 

functions, hyperbolic functions, 

exponentiation, logarithm, square root, 

etc. 

PIM C N/A 

[504] 
Open-

benchmarking 

This website developed by Phoronix Media. They collected free and open-source benchmark suits, analysis and tests 

on different platforms. 

[505] paperswithcode 
This website developed by Meta AI Research team, which collect a free and open resource with Machine Learning 

papers, code, datasets, methods and evaluation tables. It also archives the analysis of the activity of works 
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A. CHALLENGES IN PROCESSING-IN-MEMORY (PIM) 
IMPLEMENTATION 

Research and development in the field of Processing-In-

Memory are ongoing, and it has the potential to play a crucial 

role in addressing the performance bottlenecks faced by 

traditional computing architectures in dealing with massive 

amounts of data in modern computing scenarios. In previous 

section, we primarily discussed approximate memory 

techniques, focusing on strategies to overcome the “Memory  

 Wall” through various circuit and architectural 

advancements, including Approximate Computing. It details 

methods such as voltage scaling, lowering refresh rates, and 

data compression or encoding to enhance energy efficiency 

in memory systems, particularly for applications like 

machine learning that can tolerate some level of errors. These  

strategies aim to balance power conservation with acceptable 

error rates, contributing to the broader field of energy-

efficient and performance-optimized memory design. 

As new memory technologies continue to evolve, future 

directions for PIM may involve the integration of processing 

logic with emerging memory technologies like resistive 

RAM (ReRAM) or phase-change memory (PCM). The 

concept of Processing-In-Memory (PIM) holds immense 

potential for revolutionizing computing architectures by 

bringing processing capabilities closer to data storage, 

thereby reducing data movement overhead and improving 

system efficiency. PIM is a nascent technology with ongoing 

advancements in materials, devices, and circuit design. 

However, the realization of PIM faces several challenges 

must be addressed to realize the full potential of PIM.  

The integration of processing logic into memory cells or 

controllers faces challenges of increasing hardware 

complexity and design. This necessitates careful design and 

using efficient power management techniques (e.g. DVFS, 

DPM, etc.) to handle unacceptable increased power 

consumption and heat dissipation that come with added 

processing capabilities in memory. As processing tasks 

move closer to the memory, ensuring data reliability and 

integrity during in-memory computation poses a critical 

challenge. Safeguarding data against errors and corruption 

during processing necessitates developing robust error 

correction techniques to ensure maintaining the integrity of 

data during the processing cycle. Furthermore, scalability 

issues arise as PIM is extended to larger memory sizes and 

higher bandwidths. These include maintaining performance 

efficiency and managing the complexities of larger PIM 

systems. To address scalability issues in PIM, we need to 

trend to use approximate computing and management 

strategies, for example by reducing precision or using 

adaptive precision scaling or lossy compression, using 

approximate memory access including partition data on 

critical important and refresh rate. 

For successful PIM implementation, developing 

appropriate programming models and software support is 

crucial. This involves creating new programming paradigms 

and tools that can efficiently leverage the PIM architecture 

to minimize data movement and maximize computational 

efficiency. As future directions, PIM shows promise in 

advancing artificial intelligence and machine learning 

workloads, big data analytics, and high-performance 

computing. The exploration of memory-centric architectures 

and emerging memory technologies, alongside 

considerations for security and privacy, can further enhance 

PIM's capabilities [509]. As new memory technologies like 

ReRAM and PCM evolve, integrating these with processing 

capabilities poses challenges in terms of compatibility, 

performance optimization, and leveraging their unique 

properties for PIM. Also, the ensuring the security and 

privacy of data processed within memory becomes an 

important consideration. This includes addressing potential 

vulnerabilities and safeguarding against unauthorized access 

or tampering. The limited precision of analog PIM 

accelerators, particularly during the high-precision backward 

propagation phase in CNN training, presents challenges that 

necessitate innovative solutions like hybrid PIM accelerators 

and Shannon-inspired statistical computing principles. 

Instead of just augmenting existing CPUs with PIM 

capabilities, future directions might involve the exploration 

of memory-centric architectures where the memory is at the 

center of computation, and traditional CPUs are reimagined 

as accelerators. Additionally, the integration of approximate 

computing techniques with PIM holds promise for 

optimizing computation in memory-intensive tasks and 

further improving energy efficiency while providing 

satisfactory output quality for specific applications. For 

example, recently, Jinyu et al. [480] introduced CIMQ, a 

quantization framework for improving neural network 

accelerator efficiency using Computing in Memory (CIM) 

architectures.  

Embracing these challenges and future directions can pave 

the way for the widespread adoption of Processing-In-

Memory and revolutionize modern computing paradigms. In 

conclusion, while challenges exist, ongoing research and 

development efforts in the field will unlock the full potential 

of Processing-In-Memory for next-generation computing 

systems. 

B. ADDRESSING DESIGN AND VERIFICATION 
COMPLEXITIES IN APPROXIMATE COMPUTING 
CIRCUITS 

In the pursuit of energy-efficient computing, a pivotal 

challenge emerges in meeting the real-time precision 

demands of various applications. Conventional circuits 

typically function at constant power levels without adjusting 

for the specific precision needs of individual tasks. This one-

size-fits-all approach to power consumption, irrespective of 

the required accuracy for distinct operations, represents a 

significant hurdle in optimizing energy efficiency across 

varied computing applications. The optimal approach for 

energy-efficient computing involves designing circuits that 
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are both approximate and reconfigurable, ensuring that 

power consumption is closely aligned with the required 

computational accuracy. Reconfigurable circuits adapt their 

configuration to the current computational needs, optimizing 

energy efficiency by alternating between high-precision and 

lower-precision modes as necessary. This combination offers 

a tailored balance between energy conservation and 

computational accuracy for various applications. 

Designing approximation circuits with the 

aforementioned features while adhering to quality 

constraints significantly extends the design cycle. This 

complexity arises as designers must ensure that circuits not 

only meet functional and optimal performance criteria but 

also operate within predefined error margins. To enhance the 

design of approximation circuits with effective error 

management, it's essential to employ advanced methods such 

as Approximate Logic Synthesis (ALS). ALS is geared 

towards meeting diverse accuracy requirements while also 

addressing power and delay variances. Integrating ALS, 

especially AHLS, and automated design exploration tools 

along with appropriate analytical or semi-analytical error 

models underscores the necessity for designing quality-

configurable circuits that adjust to different accuracy levels 

in real time. It's also important to extend approximation 

beyond traditional gate-based designs to include more 

complex functional units. Though initial research efforts, 

such as those by Lee [510] and Alan [511] and their 

colleagues, have started to address these challenges through 

proposals for approximate high-level synthesis in custom 

hardware circuit design and runtime accuracy-configurable 

circuits, respectively, this area is still in its nascent stages. 

This trend towards customized ML models requires new 

Auto-ML tools and co-design strategies that integrate 

algorithmic and hardware considerations for optimal use of 

approximate computing in advanced ML settings. 

C. ADAPTIVE ERROR REDUCTION IN 
RECONFIGURABLE APPROXIMATE CIRCUIT 

The current challenge is that each application requires a 

specific characteristic of approximations to mention the 

accuracy within acceptable level. Different approximations 

have varying effects on the performance and accuracy of 

application. Intuitively, there is no one-size-fits-all solution. 

Therefore, the future direction is to design on universal 

design with adapting itself to reduce error as possible as. 

Addressing the challenge of reducing errors in input data 

reconfigurable approximate circuits, particularly with an 

approximate adder, involves a dynamic and adaptive 

approach. In such circuits, the configuration of each full 

adder can be adjusted based on the input data and the carry 

signal. This adaptability allows the circuit to modify how it 

performs approximations in real-time, optimizing for 

accuracy in critical computations while still benefiting from 

the efficiency of approximation in less critical areas. 

For instance, if the approximate adder detects that the 

input data or the carry signal leads to a potentially significant 

error, it can reconfigure itself to reduce or eliminate the 

approximation for that specific calculation. This self-

adjusting capability ensures that the circuit maintains a 

balance between the desired efficiency of approximation 

techniques and the need for accuracy in the output, 

particularly for computations where precision is crucial. By 

dynamically adjusting the level of approximation based on 

the input data characteristics and the computational context, 

such reconfigurable approximate circuits can effectively 

minimize errors while still leveraging the benefits of 

approximate computing. 

In recent years, much of the focus in approximation 

computing was on a single-layer approach, limiting 

approximation to specific modules. However, researchers 

are now aiming to maximize the advantages of approximate 

computing by integrating various techniques across different 

design levels, including hardware or software or both, for a 

given application. This approach, known as cross-layer 

codesign, represents a significant and ongoing challenge in 

the field. For example, explores approximation strategies in 

printed circuits for machine learning, enhancing efficiency 

and reducing complexity. 

XIV. Perspectives on Future Directions 

In recent years, the field of approximate computing (AC) has 

witnessed significant advancements, positioning it as a 

potential mainstream computing approach in future systems. 

One primary reason for this shift is the diminishing returns 

on performance improvement through the scaling of CMOS 

technology. Additionally, the diversity of modern 

architectures, ranging from high-performance computing 

(HPC) to embedded systems like the Internet of Things (IoT) 

and autonomous vehicles, necessitates a balance between 

efficiency in terms of memory, performance, power 

consumption, and the quality of final outcomes. However, 

approximate computing is one of the most promising 

techniques for many future applications, especially those 

related to human perception [15], [16]. Recent trends 

indicate its increasing adoption in various domains, 

including AI-based applications and services, supported by 

industry leaders like Google and IBM. Major corporations 

such as IBM, Google, Intel, and ARM are actively engaged 

in pioneering research and the development of commercial 

offerings that incorporate approximate computing strategies. 

For example, Google's Tensor Processing Units (TPUs), 

which employ an approximate computing technique known 

as reduced precision to lower energy usage [17]. Google also 

employs approximate computing strategies in its data centers 

to optimize energy usage without compromising the quality 

of service. Another example is that IBM has developed an 

AI accelerator chip capable of achieving high performance 

(in TOPS) by integrating multiple and multi-level 

approximate techniques [512].  
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Due to these significant advancements achieved by AxC, 

this motivated other communities in electronic design 

automation (EDA) and software engineering to develop tools 

and methodologies to facilitate approximate computing 

designs. Therefore, developing specialized hardware 

architectures optimized for AxC, coupled with 

corresponding software tools and programming models, will 

be crucial for realizing its full potential. Effective error 

resilience techniques and error estimation Frameworks to 

manage and mitigate errors introduced by approximation are 

essential for ensuring the reliability and robustness of AxC 

systems. To fully realize the potential of AxC, it is crucial to 

investigate its application across multiple layers of the 

computing stack, including hardware, architecture, software, 

and algorithms. Most of the current research concentrates on 

error-tolerant applications, but we believe the next research 

area is to demonstrate the effectiveness of these AxC 

techniques in safety-critical applications. Therefore, a 

comprehensive approach to implementing AxC across 

different layers can unlock new efficiencies and capabilities 

in modern computing systems. 

One of the recent future directions is to build systems 

employing dynamic, adaptive approximation techniques that 

can adjust the level of approximation based on application 

requirements, input data characteristics, and available 

resources. This ensures optimal trade-offs between accuracy 

and performance. AxC is well-suited for machine learning 

and AI applications, where small losses in accuracy can be 

tolerated in exchange for significant performance gains. 

Research will focus on developing approximate algorithms 

and hardware accelerators tailored for these applications. 

AxC is expected to find applications in various emerging 

fields, such as IoT, edge computing, and embedded systems, 

where energy efficiency and real-time performance are 

critical. 

Recent advancements in neuromorphic computing have 

addressed the power and latency issues of traditional digital 

systems. The researchers attempt to create more efficient and 

intelligent computer systems to mimic the human brain by 

constructing sophisticated hardware architectures and 

developing new theories and brain-inspired algorithms. 

Brain-inspired computing faces several significant 

challenges, holds promising future directions, and directly 

relates to emerging non-volatile memory (eNVM). eNVM is 

attractive for implementing the synapses in the neural 

network [463]. Processing-In-Memory (PIM) is the most 

attractive architecture used in designing brain-inspired 

computing models. The brain-inspired computing model is 

based on the so-called Spiking Neural Networks (SNNs). 

Recent research highlights the potential of hybrid neural 

networks (HNNs) in various applications. The emerging 

trend of designing hybrid neural networks (HNNs) by 

combining spiking and artificial neural networks leverages 

the strengths of both. Therefore, Zhao et al. [513] proposed 

a framework using hybrid units (HUs) to link and integrate 

multiple neural network structures, especially the integration 

of spiking neural networks (SNNs) within HNNs. Overall, 

the future of brain-inspired computing lies in continuing to 

refine these hybrid models and exploring new materials and 

architectures to bridge the gap between biological and 

artificial neural systems. By integrating approximate 

computing techniques, HNNs can achieve better 

performance and energy efficiency, making them more 

viable for large-scale, real-time applications. This 

opportunity must be exploited by researchers and designers 

to align with the broader goal of creating scalable and 

sustainable AI systems that can handle increasingly complex 

tasks with minimal resources. 

We know that one of the primary concerns for 

communities is ensuring the security and privacy of data, 

especially when the data is processed using AC techniques. 

Future crucial research areas focus on developing secure and 

privacy-preserving AC methodologies. The potential of 

approximate computing extends beyond traditional AI and 

signal processing applications. Emerging areas such as 

hardware security, cryptocurrency mining, and lattice-based 

post-quantum cryptography are poised to benefit from the 

efficiency gains offered by approximate computing. These 

applications require significant computational resources and 

can tolerate a degree of error, making them ideal candidates 

for approximate computing techniques. We also believe that 

one of the challenges that faces approximate computing is 

the lack of a systematic and theoretical foundation for AC, 

including formal models for error analysis, performance 

optimization, and algorithm design. Therefore, establishing 

a strong theoretical foundation will guide future research and 

development in this field. 

While challenges remain, the ongoing research and 

development in approximate computing are paving the way 

for its widespread adoption. By leveraging approximate 

computing techniques, future systems can achieve 

significant improvements in energy efficiency and 

performance, particularly in error-tolerant applications. The 

growing demand for approximate computing will necessitate 

diverse contributions from various stakeholders, including 

hardware designers, system developers, test engineers, and 

researchers. Collaborative efforts across these disciplines 

will be essential to advance approximate computing as a 

mainstream paradigm. This interdisciplinary approach will 

help address the challenges associated with approximate 

computing, such as error management, reliability, and user 

acceptance. As the field continues to evolve, we expect to 

see more innovative applications and a growing integration 

of approximate computing into mainstream computing 

paradigms. 

XV. Conclusion 

In this paper, we explored the state-of-the-art of approximate 

computing, focusing on its application in data, software, 

hardware, and architecture, and highlighting its benefits 
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across various fields. It reviews recent progress and 

challenges in approximate computing, with a detailed 

examination of its significant impact, particularly in machine 

learning and IoT. The survey emphasizes the transformative 

potential of approximate computing in these areas and aims 

to enrich the research community, offering a valuable 

reference for researchers. We explored and discussed the 

state-of-the-art data level of approximation. We focused on 

the data sampling algorithms used in various frameworks to 

improve the efficiency and speed of processing large 

datasets. We discussed programming models and software 

frameworks (e.g., ApproxHadoop), which are used for 

processing large datasets across clusters of computers or on 

the cloud or another example, like BlinkDB, which is 

specifically designed for approximate queries on large 

datasets. We review the state-of-the-art data structures, 

which are not less important than the others because they 

offer efficiency in data storage and computation. For 

example, Boom filters are widely used in IOT and wearable 

electronics, where battery life is a major concern. In this 

review paper, we expanded our focus on approximations 

beyond the data level. We performed an extensive analysis 

of optimizing the code using approximate computing 

techniques and discussed and categorized the most important 

types of approximate programming languages. Regarding 

the architecture level, we discussed the state-of-the-art 

different approximate memories and emphasized significant 

innovation in the approximate Processing-In-Memory and 

Content-Addressable Memory (CAM). Expanding our focus 

on approximations beyond just memories to explore the last 

innovate works on processors, especially in the AI domain. 

At the circuit level, we presented and discussed the state-of-

the-art of all arithmetic units, elementary and activation 

functions, and emphasized in our discussion on approximate 

logic synthesis. 

Regarding the application level, we focused on the 

emerging IOT, DL/ML, and data mining applications and 

discussed software, hardware, cross-layer, and end-to-end 

approximations. We highlighted the traditional use of 

approximate computing techniques focusing on a single 

subsystem. The core argument is that to realize the full 

benefits of approximate computing, we need to move beyond 

these siloed approaches and focus on a full-system approach 

through applying approximations strategically across 

different system layers. There are great advantages to using 

cross-layer and end-to-end approximations (full-system 

approach): they can lead to significant improvements in 

speed, energy consumption, and overall optimization; they 

can control holistic errors through understanding the 

propagation of errors throughout the entire system, which 

enables better management of overall accuracy; and they can 

tailor the solutions where A full-system view allows for 

custom-designed approximations matching the specific 

tolerance and performance requirements of individual 

applications. We reported well-established libraries and 

benchmark suites for evaluating the quality-of-service of 

approximate designs. We presented some open-source tools 

and logic syntheses. We intended to discuss the security 

concerns of using approximate computing. Despite advances 

in approximate computing, there's a critical need for 

continued innovation to unlock its full potential in complex 

system designs. Our survey concludes with a discussion on 

these challenges and future research directions. Establishing 

standardized benchmarks and error metrics for approximate 

computing. This will enable researchers and designers to 

compare different approaches and help users select the most 

appropriate solution for their use case. 
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