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Abstract— Industry 4.0 has increased data depth and breadth in high-tech manufacturing, 

but high-dimensionality and sparsity persist. High-dimensional space's sparsity makes 

classical learning and knowledge extraction algorithms ineffective and error-prone. 

Dimension reduction methods like feature selection seem to address this problem. This 

study addresses these challenges by conducting a comparative analysis on a real laser 

assembly industrial case of high dimensions. We explore five standalone methods—

NCFS, RReliefF, MRMR, RFE, and Lasso—applied to datasets from two laser modules (d-

serie and s-serie). Additionally, two hybrid methods—RReliefF-RFE and MRMR-RFE—are 

evaluated, broadening the scope of feature selection strategies. Time efficiency 

prioritizes RReliefF, NCFS and Lasso, while RReliefF-RFE, NCFS and Lasso excel in 

interpretability, achieving significant predictor reduction without compromising accuracy. 

The study thus provides insights into the selection of FS methods in a challenging 

industrial laser assembly setting. 

 

utomation in the industry has led to the 

accumulation of high-dimensional 

datasets, demanding increased 

computational power and storage capacity. Handling 

high-dimensional data introduces a challenge known as 

the "curse of dimensionality". This problem refers to the 

sparsity of the data in high-dimensional space and the 

negative effect it has on algorithms that are designed for 

low-dimensional space. Dimension reduction techniques 

like feature selection (FS) prove effective in mitigating 

these challenge [1]. 

In  multi-step laser assemblies, the datasets that are 

available are usually high-dimensional. This makes it 

difficult for predictive algorithms to be applied in real-

time, as the irrelevant or inconsistent data may pollute the 

state space and reduce the accuracy of the predictive 

models. Thus, efficient feature selection is essential for 

rationalizing and controlling knowledge extraction from 

the assembly process.  

This paper focuses on studying various feature selection 

methods, to decide which of those perform better in 

multi-step laser assembly processes. Two filter  methods 

(Minimum Redundancy – Maximum Relevance (MRMR) 

and RReliefF), one wrapper method (Recursive Feature 

Elimination (RFE)) and two embedded methods 

(Neighbourhood Component Feature Selection (NCFS) 
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and Least Absolute Shrinkage and Selection Operator 

(Lasso)) are tested for feature selection. Furthermore, 

combinations of filters and wrappers (MRMR-RFE and 

RReliefF-RFE) are tested. Each FS method creates a 

subset of predictors. These subsets are then fed to two 

regression methods (Artificial Neural Networks (ANNs) 

and XGBoost) with the aim to predict the output power of 

the module. Based on the performance of the regression 

methods, we can decide which FS methods created 

optimal subsets of predictors, thus performed better. 

These regression methods were chosen as they are 

considered among the most suitable algorithms in the 

field of machine learning, lending themselves to the 

problem statement. 

The FS methods are applied on two laser modules’ 

assembly datasets (d-serie and s-serie) from a laser 

manufacturing. The datasets (datasets of two different 

laser models) contain predictors from all the stages of the 

assembly processes of the laser modules. In both datasets, 

the “output” variable that needs to be predicted is the final 

power of the laser module. 

The results reveal that, RReliefF, RFE, NCFS, RReliefF-

RFE and Lasso are the five methods that create subsets of 

predictors that perform well in both datasets and their 

performance is not dependent on the choice of the 

regression model that will be used for predicting the 

output power of the module. The researcher and 

practitioner can choose the most appropriate method 

based on the industrial setting. If the computational time 

vis-à-vis the product life cycle is important, then 

RReliefF, NCFS and Lasso are the best options. If 

interpretability (as discussed in the results section) is the 

main focus, then RReliefF-RFE, NCFS and Lasso are the 

best options.  

RELEVANT WORK 
Feature selection methods are being used in many areas 

as dimension reduction techniques. Although the work 

around FS is vast, we present in this section some 

representative works where FS has been successfully 

applied to enhance interpretability, improve the accuracy 

of later-applied prediction models and, improve the 

operation speed. In [2], Recursive Feature Elimination 

(RFE) with a Random Forest (RF) classifier is used to 

analyze machining audio collected during down-milling 

operations using a single microphone. The incorporation 

of RFE facilitates straightforward feature elimination, 

producing a concise and easily interpretable set of 

analyzed dimensions (interpretability). In [3], the authors 

introduce a model-based approach for predicting the Air 

Quality Index (AQI). To optimize the model's efficacy, 

the RF–mRMR technique is employed for the selection of 

influential variables influencing AQI (accuracy 

improvement). 

In  [4], the study assessed six feature selection methods to 

estimate wind speed quantiles in Canada. LASSO and 

MRMR emerged as the most efficient algorithms, 

requiring fewer parameters with good generalization 

performance, and identified specific predictors as more 

important for distinct exceedance probabilities (accuracy 

improvement). 

In [5], the authors introduce a hybrid fault diagnosis 

method aimed at addressing challenges regarding the 

large amount of data generated during the operation of 

wind turbine and, inaccurate and untimely fault diagnosis 

for wind turbines. The proposed approach leverages 

ReliefF to efficiently extract fault-sensitive features 

accuracy improvement/ operation speed). 

In [6], NCFS was utilized to reduce the dimensionality of 

the feature space in microscopic images by selecting 

discriminative feature sets from individual as well as 

combinations of features (accuracy improvement).  

In [7], the author sought to establish a novel machine 

learning-assisted hybrid-input model for forecasting 

automobile demand, addressing research gaps related to 

input data, methodology, and the scope of demand 

forecast. The identification and verification of significant 

input features were conducted using the RReliefF 

algorithm (interpretability). 

As it can be concluded, feature selection methods play a 

vital role in various domains where dimension reduction 

is needed. 

FEATURE SELECTION 

METHODS 
There are three categories of feature selection methods: 

filter, wrapper, and embedded methods. 

Filter methods employ diverse ranking techniques, 

assigning scores to variables based on specific criteria, 

and subsequently applying a threshold to exclude less 

relevant variables [8]. This approach offers notable 

advantages: it demands minimal computational resources, 

has a negligible impact on predictive error rates [9], and 

helps prevent overfitting [8]. However, a key limitation 

lies in the potential exclusion of important variables that, 

may not individually be informative, but contribute to 

interrelationships and enhancement of general knowledge 

(state space) of the system. 

Wrapper methods necessitate a classifier (or regressor), 

helping to specify feature subsets. While these methods 

often surpass filter methods, their drawbacks include 
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heightened computational demands, as the classifier (or 

regressor) undergoes training for each feature subset. 

Applying wrapper methods in high-dimensionality 

problems can be challenging and time-consuming [10]. 

Embedded methods streamline the quest for an optimal 

feature subset as part of the learning process [11]. Distinct 

from wrapper methods, these techniques seamlessly 

integrate feature selection and modeling concurrently. 

This unique approach translates to lower computational 

requirements compared to wrapper methods, presenting a 

more efficient alternative [12]. 

RReliefF 

RReliefF [13] is a non-parametric method that selects the 

relevant features in regression based on weight vectors. 

RReliefF firstly iterates over each training instance. For 

each instance, it randomly selects another instance as a 

reference point and identifies its k nearest neighbors 

based on a specified distance metric. During the iteration 

over nearest neighbors, the algorithm updates the weights 

based on differences between instances. After 

accumulating the weights, RReliefF computes the final 

estimation for each attribute. The algorithmic form of the 

method can be seen below (as presented in [13]). 

 

Input: for each training instance a vector of attribute 

values 𝐱 and the predicted value 𝜏(𝐱)  

Output: the vector W of estimations of the qualities of 

attributes 

1. set all 𝑁𝑑𝐶  , 𝑁𝑑𝐴[𝐴], 𝑁𝑑𝐶&𝑑𝐴[𝐴], 𝑊[𝐴] to 0 ; 

where 𝑁𝑑𝐶: weights for different prediction (class), 

𝑁𝑑𝐴[𝐴]: weights for different attribute, 𝑁𝑑𝐶&𝑑𝐴[𝐴]:  

weights for different prediction & different attribute and 

𝑊[𝐴]: final estimation of each attribute 

2. for i: = 1 to m do begin 

3.    randomly select instance 𝑅𝑖; 

4.    select 𝐤 instances 𝐼𝑗 nearest to 𝑅𝑖; 

5.    for j: = 1 to k do begin 

6.              𝑁𝑑𝐶: = 𝑁𝑑𝐶 + |𝑓(𝑅𝑖) − 𝑓(𝐼𝑗)| ⋅ 𝑑(𝑖, 𝑗); 

7.           for A: = 1 to #all_attributes do begin 

8.                      𝑁𝑑𝐴[𝐴]: = 𝑁𝑑𝐴[𝐴] +

                                        diff(𝐴, 𝑅𝑖 , 𝐼𝑗) ⋅ 𝑑(𝑖, 𝑗); 

9.                        𝑁𝑑𝐶&𝑑𝐴[𝐴]: = 𝑁𝑑𝐶&𝑑𝐴[𝐴] +

        |𝑓(𝑅𝑖) − 𝑓(𝐼𝑗)| ⋅ diff(𝐴, 𝑅𝑖 , 𝐼𝑗) ⋅ 𝑑(𝑖, 𝑗); 

10.            end; 

11.    end; 

12. end; 

13. for A: = 1 to #all_attributes do 

𝑊[𝐴]: =
𝑁𝑑𝐶&𝑑𝐴[𝐴]

𝑁𝑑𝐶
−

(𝑁𝑑𝐴[𝐴]−𝑁𝑑𝐶&𝑑𝐴[𝐴])

(𝑚−𝑁𝑑𝐶)
; 

 

Minimum Redundancy – Maximum Relevance 

(MRMR) 

MRMR was introduced in [14] and is an algorithm that 

finds the optimal set of features that is mutually and 

maximally dissimilar by minimizing the redundancy and 

maximizing the relevance of a feature set to the response 

variable. MRMR iteratively selects features based on their 

relevance and redundancy. It starts by selecting the 

feature with the highest relevance and adds it to the set of 

selected features. Then, it iteratively adds features that 

have high relevance and low redundancy until 

redundancy becomes nonzero for all features. Finally, it 

incorporates features with zero relevance into the selected 

set. This process aims to create a feature set with features 

being ordered by feature importance. For more 

information on the method please refer to [14]. The 

algorithmic form of the method can be seen below (as 

presented in [15]). 

 

1. Select the feature with the largest relevance, 

max𝑥∈Ω  𝑉𝑥, where 𝑉𝑥 = 𝐼(𝑥, 𝑦) is the mutual 

information. Add the selected feature to an empty set 

𝑆. 

2. Find the features with nonzero relevance and zero 

redundancy in the complement of 𝑆, 𝑆𝑐. 

a. If 𝑆𝑐 does not include a feature with 

nonzero relevance and zero redundancy, go 

to step 4 . 

b. Otherwise, select the feature with the 

largest relevance, 𝑚𝑎𝑥𝑥∈𝑆𝑐,𝑊𝑥=0𝑉𝑥. Add the 

selected feature to the set 𝑆. 

3. Repeat Step 2 until the redundancy is not zero for all 

features in 𝑆𝑐. 

4. Select the feature that has the largest MIQ value with 

nonzero relevance and nonzero redundancy in 𝑆𝑐, 

and add the selected feature to the set 𝑆. 

max
𝑥∈𝑆𝑐

 MIQ𝑥 = max
𝑥∈𝑆𝑐

𝑉𝑥

𝑊𝑥

= max
𝑥∈𝑆𝑐

 
𝐼(𝑥, 𝑦)

1

|𝑆|
∑  𝑧∈𝑆  𝐼(𝑥, 𝑧)

 

5. Repeat Step 4 until the relevance is zero for all 

features in 𝑆𝑐. 

6. Add the features with zero relevance to 𝑆 in random 

order. 

Neighbourhood Component Feature Selection (NCFS) 

In [10], the authors introduced the Neighbourhood 

Component Feature Selection (NCFS) algorithm, a 

nearest neighbor-based feature selection method. NCFS  

was inspired by the Neighborhood Components Analysis 

(NCA) algorithm, proposed by  [16]. With a 

regularisation term, NCFS maximises the expected leave-

one-out classification accuracy using the gradient ascent 

technique. NCFS aims to iteratively update a weight 
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vector to minimize an error function. It does so by 

computing probabilities based on the current weights, 

updating the weights based on these probabilities, and 

adjusting the step length dynamically to optimize 

convergence. The algorithm continues iterating until 

convergence, at which point it returns the final weight 

vector.  The algorithmic form of the method can be seen 

below (as presented in [10], please refer to it for more 

detailed information about NCFS). 

 

1. 𝑇 : training set, 𝛼 : initial step length, 𝜎 : kernel 

width, 𝜆 : regularization parameter, 𝜂 : small positive 

constant; 

2. Initialization: 𝐰(0) = (1,1, … ,1), 𝜖(0) = −∞, 𝑡 = 0 

3. repeat 

4.    for 𝑖 = 1, ⋯ , 𝑁 do 

5.         Compute 𝑝𝑖𝑗 and 𝑝𝑖 (probabilities) using 𝐰(𝑡) 

according to the following equations  

 

                𝐷𝐰(𝐱𝑖 , 𝐱𝑗) = ∑  𝑑
𝑙=1 𝑤𝑙

2|𝑥𝑖𝑙 − 𝑥𝑗𝑙|     

  

𝑝𝑖𝑗 = {

𝜅(𝐷𝐰(𝐱𝑖,𝐱𝑗))

∑  𝑘≠𝑖  𝜅(𝐷𝐰(𝐱𝑖,𝐱𝑘))
,  if 𝑖 ≠ 𝑗

0,  if 𝑖 = 𝑗
    

   

𝑝𝑖 = ∑  𝑗 𝑦𝑖𝑗𝑝𝑖𝑗   

 

where 𝜅(𝑧) = exp (−𝑧/𝜎) is a kernel function and the 

kernel width 𝜎 is an input parameter that influences the 

probability of each point being selected as the reference 

point. 

6.    for 𝑙 = 1, ⋯ , 𝑑 do 

 

7. Δ𝑙 = 2 (
1

𝜎
∑𝑖  (𝑝𝑖∑𝑗≠𝑖  𝑝𝑖𝑗|𝑥𝑖𝑙 − 𝑥𝑗𝑙| 

                  −∑𝑗  𝑦𝑖𝑗𝑝𝑖𝑗|𝑥𝑖𝑙 − 𝑥𝑗𝑙|) − 𝜆)𝑤𝑙
(𝑡)

       

8. 𝑡 = 𝑡 + 1 

9. 𝐰(𝑡) = 𝐰(𝑡−1) + 𝛼𝚫 

10. 𝜖(𝑡) = 𝜉(𝐰(𝑡−1)) 

11.    if 𝜖(𝑡) > 𝜖(𝑡−1) then 

12.     𝛼 = constant1 ∗ 𝛼 (constant1 selected by the 

user) 

13.    else 

14.    𝛼 = constant2 ∗ 𝛼 (constant2 selected by the user) 

15. until  |𝜖(𝑡) − 𝜖(𝑡−1)| < 𝜂 

16. 𝐰 = 𝐰(𝑡) 

17. return 𝐰 

Least Absolute Shrinkage and Selection Operator 

(LASSO) 

In [17], the author introduced the least absolute shrinkage 

and selection operator (LASSO) as a method for both 

shrinking and selecting variables in regression and 

generalised regression problems. The lasso algorithm 

does not prioritise subsets, but instead implements a 

continuous shrinking process that can generate 

coefficients that are equal to zero. For a given value of 𝜆 

(positive), the aim of the algorithm is to minimise the 

following: 

(
1

2𝑁
∑  

𝑁

𝑖=1

  (𝑦𝑖 − 𝛽0 − 𝑥𝑖
𝑇𝛽)2 + 𝜆 ∑  

𝑝

𝑗=1

  |𝛽𝑗|) 

 

where: 

𝑁 is the number of observations. 

𝑦𝑖 is the response at 𝑥𝑖  

𝑥𝑖 is a vector of length 𝑝 

𝜆 is a regularization parameter 

The parameters 𝛽0 and 𝛽 are a scalar and a vector of 

length 𝑝, respectively. 

Recursive Feature Elimination (RFE) 

Recursive Feature Elimination is a greedy algorithm that 

searches for the optimal subset. The primary concept is to 

repeatedly create a model and then choose the worst 

variable. The selected variable is then eliminated, and the 

procedure is repeated until all of the remaining variables 

have been explored. To develop the regressor and assess 

the importance of predictors, the RFE algorithm requires 

a machine learning algorithm (e.g., support vector 

machine, random forest, logistic regression, or naive 

Bayes) [18]. Random Forest Regressor (RFR) technique 

was used as the RFE model's regressor in this 

investigation. The algorithmic form is presented below 

[19]. 

 

Inputs: Training set 𝐓𝐫, Set of features 𝐅 =

{𝒇𝟏 … … . . 𝒇𝜶}, Ranking method 𝐑𝐅𝐑 

Outputs: Ranked list of features 

 for  𝑖 =1:a do: 

          Rank set F based on RFR 

          𝒇∗ ← last ranked feature in F    

          𝐅 ← 𝐅 − 𝒇∗ 

end 

Return ranked list of features 

 

The stopping criteria is either a number of required 

features (specified by the user) or  performance metrics 
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(e.g. when the specified criterion value does not decrease 

anymore). 

USE CASE, DATASETS AND 

PREPROCESSING 

Use Case 

The objective function in the currently studied laser 

assemblies is to utilize the gathered information 

throughout multiple step assembly operation and to 

predict whether a product will be defective or otherwise. 

Information was gathered through sensors, actuators and 

Human Machine Interface (HMI), for the assembly of two 

laser modules (d-serie and s-serie)  which consist of 

emitters, mirrors and lenses that combine the laser beams 

of the emitters in one unified beam (output beam). For the 

d-serie laser module, there are 62 assembly steps (Fast-

Axis Collimating (FAC) placements, Slow-Axis 

Collimating (SAC) placements, Mirrors placements, 

Turning Mirror placement, Polarization and Fiber Lens 

placement) in the assembly process.  

For the s-serie laser module, there are 31 assembly steps 

(FAC, SAC, Mirrors and Fiber Lens placement). The 

assembly processes follow the same pathway with a 

number of differences. The process is automated using a 

special assembly robot.  

Noteworthy, from this section onwards the details of the 

assembly process and associated components are 

proprietary and commercially sensitive. The case is 

explained in wider context avoiding the revelation of 

sensitive information from the manufacture. 

Datasets and preprocessing 

Prior to the assembly process, the  emitters’ power is 

measured to ensure that they are working. Measuring the 

geometry of the beams, their power, and their 

convergence to the centroid is done at each stage of the 

assembly process. Each assembly stage (FAC, SAC etc.) 

introduces new variables as inputs. The width of the Fast 

Axis beam, the width of the Slow Axis beam, the centroid 

of the beam, the beam pointing and the power of the beam 

are important inputs that are measured. The response 

variable that needs to be predicted is the output power of 

the laser module. 

The data accumulated for the d-serie module reached 

1411 observations (completed assembled laser modules), 

and the input features (predictors) for the d-serie module 

are 1181. The data accumulated for the s-serie module 

reached 1628 observations, with 530 input features. The 

datasets were shuffled in order to reduce bias. 

FIGURE 1. Methodology for the current study 
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IMPLEMENTATION 
The feature selection methods applied on the provided 

datasets are RReliefF, MRMR, RFE, RReliefF-RFE, 

MRMR-RFE, NCFS and Lasso. The methodology steps 

can be seen in Figure 1. 

To create the combined methods, a filter method is 

applied to the original dataset and then a wrapper method 

is applied to the subset that was created by the filter. The 

filter is applied first, as it does not need high 

computational power, it is not as time consuming as the 

wrapper in high-dimensional datasets and it avoids 

overfitting. The wrapper is applied second, on the subset 

that was created by the filter, to reduce the size of the 

subset even more but at the same time maintain the 

predictive power. 

To create the hybrid methods, RFE was applied on the 

subsets generated by RReliefF and MRMR. However, for 

the d-serie dataset, RFE was not applied to the subset 

formed by MRMR due to MRMR identifying only five 

features as significant, which is considered a limited 

number. 

For NCFS, variables that have weight less than 0.1 are 

considered as irrelevant and are not included in the 

subset.  

To execute RReliefF, k neighbours were set to 10. 

Predictors that scored a positive importance weight were 

included in the RReliefF subset.  

For MRMR, features that had importance weight higher 

than 0.1 were considered important. 

To deploy the RFE method, RFR was chosen as the 

regressor. Based on RFR’s performance, the importance 

of the predictors was assessed. Due to the high-

dimensionality of both datasets, the step of the RFE was 

set to 10. That way, in each iteration, instead of 1 

predictor being removed, 10 were removed. This measure 

was taken in order to minimise the computational time, 

because of the high complexity of the algorithm.  5-fold 

cross-validation was also applied to avoid misleading 

results. 

Regarding Lasso, all the features that had importance that 

was not 0 were included in the subset. 

The size of the created subsets along with the 

computational time needed to create them, can be seen in 

Table 1 and Table 2 in Appendix I. 

After all the subsets were created, ANNs and XGBoost 

were applied to all of them in order to predict the output 

power of the laser module.The metrics that were used to 

evaluate the performance of ANN and XGBoost are , root 

mean square error (RMSE), mean absolute error (MAE) 

and mean absolute percentage error (MAPE). 

RESULTS 
The evaluation metrics for the training and testing sets 

can be seen in Figure 2, Figure 3 and in  Tables 1 and 2 

(Appendix I).  

It should be noted that overfitting has been observed in 

XGBoost for the s-serie module. Probably tuning of the 

applied models would solve this problem, but it should be 

emphasized that enhancing the predictive power of the 

models lies outside the scope of this research. 

d-serie module dataset 

Predictors 

All methods, except RReliefF, reduced the original 

number of predictors (1181 predictors in the original 

dataset) by more than 80% (see Table 1). RReliefF 

achieved a reduction of 17.4%. 

Evaluation metrics 

In the following results, small differences between the 

metrics of different models will not be taken into 

consideration (e.g. 𝑀𝐴𝑃𝐸 difference of 0.1%-0.2% will 

be considered insignificant).  

ANN 

RReliefF, and RFE performed similar to the original 

dataset on both training and testing sets. NCFS and 

RReliefF-RFE demonstrated  slightly inferior 

performance to the original dataset on both training and 

testing sets (but the differences are insignificant). MRMR 

performed poorly on both sets. Lasso demonstrated 

similar performance to the original dataset on the training 

set, and slightly better on the testing set.  

 

XGBoost 

RReliefF, RFE and Lasso demonstrated similar or slightly 

better performance to the original dataset on both training 

and testing sets. NCFS and RReliefF-RFE exhibited 

slightly worse performance than the original dataset on 

the training set but similar performance on the testing set. 

MRMR performed poorly on both sets. 

It can be concluded that the feature selection methods that 

performed well, regardless of the applied regression 

model, are: RReliefF, RFE, RReliefF-RFE, NCFS and 

Lasso. MRMR performed poorly with both prediction 

methods and for that reason it will not be considered 

anymore as a possible candidate for feature selection for 

the d-serie dataset. 
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Computational time 

The model can only be useful if the prediction is achieved 

before the end of assembly cycle time. Verification 

required us to to compare the computational time of the 

feature selection methods by setting one method’s 

computation time as benchmark for our calculations. This 

allows for a more comprehensive representation of the 

time factor irrespective of hardware settings. The 

computation time of RFE will be considered as the 

benchmark computational time for our calculations. The 

saving percentage in computational time is given by: 

 

𝑆𝑎𝑣𝑖𝑛𝑔 = 100𝑥
𝑡𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 − 𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑡𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

 

 

All methods, except RReliefF-RFE, achieved saving 

percentages higher than 96%. RRelief-RFE achieved a 

saving percentage of 30%. It should be noted here that the 

importance of computational time is defined by the nature 

of the problem. In cases like the one studied in this paper, 

feature selection is not a repetitive process; it takes place 

at the beginning of the research to exclude redundant 

information, and acts as a guide for researchers/experts on 

the field to understand which variables and processes 

have a higher impact on the system and the final outcome. 

Thus, the computation time in the specific case is not 

important. In cases that require real-time update of the 

models and repetitive feature selection, computational 

time is important and is a factor that the researchers 

should take into consideration to decide which feature 

selection method is the most appropriate to use. 

Conclusions for the feature selection on the d-serie 

module dataset 

RReliefF, RFE, RReliefF-RFE, NCFS and Lasso are the 

methods that perform well regardless of the applied 

regression model.  

If computational time is the most important factor, the 

ranking (from best to worst) is as follows: RReliefF, 

Lasso, NCFS, RReliefF-RFE, RFE. 

If achieving the highest reduction in the number of 

predictors whilst maintaining predictive accuracy is the 

main goal, the ranking (from best to worst) is as follows: 

RReliefF-RFE, NCFS, Lasso, RFE, RReliefF. 

Researchers may choose the method that produces the 

smallest subset for various reasons. A smaller subset of 

predictors is often easier to comprehend and 

communicate, making it more accessible to a broader 

audience, including stakeholders and decision-makers. 

This enhanced interpretability not only facilitates a 

clearer understanding of the model's behaviour but can 

also lead to more confident and informed decision-

making. Additionally, a concise subset may highlight the 

most influential predictors, shedding light on the key 

factors driving the predictions models. 

 

 
FIGURE 2. Train and Test metrics for all methods for the d-serie module. (Top ANN) (Bottom XGBoost) 
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FIGURE 3. Train and Test metrics for all methods for the s-serie module. (Top ANN) (Bottom XGBoost) 

s-serie module dataset 

Predictors 

NCFS, RRelieF-RFE, MRMR-RFE and Lasso reduced 

the original number of predictors (530 predictors in the 

original dataset) by more than 70% (see Table 2). 

RReliefF, MRMR and RFE did not reduce the original 

predictors by a high percentage, compared to the other 

methods.  

Evaluation metrics 

ANN 

RReliefF and NCFS performed similar or slightly worse 

than the original dataset on the training set and performed 

slightly better on the testing set. MRMR, RFE, RReliefF-

RFE and MRMR-RFE performed better than the original 

dataset on both training and testing sets. Lasso performed 

slightly better than the original dataset on the training set 

and slightly worse on the testing set, except the testing 

MAPE that was better (10.34% compare to the 10.40% of 

the original dataset).  

 

 

 

The best performance was demonstrated from RReliefF-

RFE and NCFS which achieved a testing MAPE of 9.96%   

and 10.08%, respectively, compared to the original 

dataset that had 10.40%. 

 

XGBoost 

RReliefF, MRMR and RFE performed similar to the 

original dataset on both training and test sets. NCFS 

performed worse on the training set and similar on the 

testing set compared to the original dataset. RReliefF-

RFE and MRMR-RFE performed slightly worse on the 

training set and similar on the testing set compared to the 

original dataset. Lasso performed worse on the training 

set and similar on the testing set.  

The best performance was demonstrated from NCFS and 

RReliefF-RFE which achieved a testing MAPE of 

10.01%  and 10.04%, respectively, compared to the 

original dataset that had 10.00%. 

Computational time 

All methods, except RReliefF-RFE and MRMR-RFE, 

achieved saving percentages higher than 97%. RRelief-
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RFE and MRMR-RFE achieved a saving percentage of 

74.26% and 38.23%, respectively. 

Conclusions for the feature selection on the s-serie 

module dataset 

All methods performed well regardless of the applied 

regression model.  

If computational time is the most important factor, the 

ranking (from best to worst) is as follows: MRMR, 

RReliefF, NCFS, Lasso, RReliefF-RFE,MRMR-RFE and 

RFE. 

If achieving the highest reduction in the number of 

predictors whilst maintaining predictive accuracy is the 

main goal, the ranking (from best to worst) is as follows: 

NCFS, Lasso, RReliefF-RFE, MRMR-RFE, RReliefF, 

MRMR and RFE. 

CONCLUSION AND FUTURE 

WORK 
The primary objective of this study was to provide 

actionable advice on selecting the most suitable feature 

selection methods for intricate industrial scenarios, 

particularly within manufacturing and assembly sectors, 

where the advent of Industry 4.0 has led to a proliferation 

of available data. 

Overall, all feature selection methods, with the exception 

of MRMR on the d-serie dataset, exhibited either similar 

or slightly better accuracy compared to the original 

datasets. This parity in performance metrics underscores 

the importance of tailoring the choice of feature selection 

method to the unique requirements of each individual 

case. 

For instance, if the main concern is the time efficiency in 

the feature selection process, methods such as RReliefF, 

NCFS, and Lasso emerge as particularly attractive options 

due to their ability to efficiently identify relevant features 

without sacrificing predictive accuracy. Conversely, if the 

primary goal is to enhance interpretability, thereby 

facilitating a deeper understanding of the manufacturing 

process and pinpointing critical areas for improvement or 

optimization, then methods like RReliefF-RFE, NCFS, 

and Lasso offer greater value. By reducing the number of 

predictors while maintaining predictive accuracy, these 

methods not only enhance interpretability but also 

provide actionable insights that can guide decision-

making in manufacturing processes. 

It's worth noting that while MRMR demonstrated poor 

generalization, especially on the d-serie dataset, its 

performance on the s-serie dataset suggests potential 

utility in specific contexts. However, its inconsistent 

performance and the limited subset size on the d-serie 

dataset render it less favorable compared to other 

methods. 

Throughout the study, evaluating the generalization of 

MRMR-RFE was rendered unfeasible due to the MRMR 

subset for the d-serie dataset containing only 5 predictors, 

rendering RFE inapplicable. 

Despite the study's focus on laser module assembly lines, 

the findings are likely applicable to a broader range of 

complex, real-time assembly processes within 

manufacturing. This suggests that the insights obtained 

from this research have the potential to inform and 

improve manufacturing processes beyond the specific 

datasets examined, indicating the broader relevance and 

applicability of the selected feature selection methods. 

The conclusions from this study also provide a validation 

for RReliefF-RFE's (which was briefly introduced in our 

prior work [20]) performance on manufacturing settings, 

proven in a laser assembly process. As future work,  

testing the proposed RReliefF-RFE  on wider applications 

and datasets (e.g. water treatment, supply chains and 

environmental impact) can further evaluate the 

generalisation of the method in wider industrial 

applications. 
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APPENDIX I 

TABLE 1. d-serie module predictors, reduction percentage, run time and evaluation metrics 

 

TABLE 2. s-serie module predictors, reduction percentage, run time and evaluation metrics 

 

Method Predictors
Reduction 

percentage

Run Time

(s)

Saving 

percentage

MAPE 

training

MAPE 

testing

RMSE 

training

RMSE 

testing

MAE 

training

MAE 

testing

Original 1181 2.02% 2.61% 2.23 2.87 1.65 2.12

RReliefF 975 -17.40% 13.46 99.80% 1.92% 2.62% 2.10 2.86 1.57 2.13

NCFS 130 -89.00% 137.73 97.93% 2.28% 2.79% 2.44 2.99 1.86 2.27

MRMR 5 -99.60% 52.1 99.22% 4.50% 4.58% 4.56 4.64 3.67 3.74

RFE 201 -83.00% 6646.69 0.00% 1.96% 2.62% 2.16 2.90 1.59 2.12

RReliefF-RFE 95 -92.00% 4650.93 30.03% 2.11% 2.74% 2.30 2.97 1.72 2.23

Lasso 148 -87.50% 43.54 99.34% 2.12% 2.50% 2.27 2.67 1.73 2.03

Original 1181 1.00% 2.64% 1.05 2.84 0.82 2.14

RReliefF 975 -17.40% 13.46 99.80% 1.02% 2.63% 1.07 2.84 0.83 2.13

NCFS 130 -89.00% 137.73 97.93% 1.24% 2.66% 1.32 2.85 1.02 2.15

MRMR 5 -99.60% 52.1 99.22% 2.88% 3.82% 2.99 3.95 2.34 3.10

RFE 201 -83.00% 6646.69 0.00% 1.12% 2.61% 1.19 2.82 0.92 2.11

RReliefF-RFE 95 -92.00% 4650.93 30.03% 1.27% 2.63% 1.35 2.83 1.04 2.13

Lasso 148 -87.50% 43.54 99.34% 1.10% 2.58% 1.17 2.79 0.90 2.08

d-serie module ANN

d-serie module XGBoost

Method Predictors
Reduction 

percentage

Run Time

(s)

Saving 

percentage

MAPE 

training

MAPE 

testing

RMSE 

training

RMSE 

testing

MAE 

training

MAE 

testing

Original 530 9.11% 10.40% 0.97 1.13 0.51 0.64

RReliefF 234 -55.85% 7.78 99.35% 9.49% 10.25% 0.99 1.12 0.51 0.61

NCFS 25 -95.28% 14.6 98.77% 8.72% 10.08% 0.98 1.14 0.52 0.59

MRMR 369 -30.38% 6.21 99.48% 8.57% 10.22% 0.93 1.14 0.47 0.61

RFE 390 -26.42% 1191.1 0.00% 8.88% 10.13% 0.93 1.08 0.47 0.58

RReliefF-RFE 124 -76.60% 306.64 74.26% 6.03% 9.96% 0.85 1.08 0.48 0.56

MRMR-RFE 139 -73.77% 735.79 38.23% 9.10% 10.12% 0.94 1.10 0.47 0.58

Lasso 78 -85.28% 15.38 98.71% 7.72% 10.34% 0.92 1.33 0.51 0.68

Original 530 2.44% 10.00% 0.39 1.11 0.27 0.54

RReliefF 234 -55.85% 7.78 99.35% 2.41% 10.06% 0.41 1.14 0.29 0.56

NCFS 25 -95.28% 14.6 98.77% 3.61% 10.01% 0.53 1.12 0.34 0.55

MRMR 369 -30.38% 6.21 99.48% 2.55% 10.17% 0.43 1.15 0.29 0.58

RFE 390 -26.42% 1191.1 0.00% 2.46% 10.05% 0.40 1.13 0.28 0.56

RReliefF-RFE 124 -76.60% 306.64 74.26% 2.73% 10.04% 0.43 1.14 0.30 0.55

MRMR-RFE 139 -73.77% 735.79 38.23% 2.61% 10.05% 0.46 1.12 0.31 0.56

Lasso 78 -85.28% 15.38 98.71% 3.64% 10.07% 0.46 1.11 0.30 0.57

s-serie module ANN

s-serie module XGBoost
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