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Abstract 

This paper aims at the development and implementation of an algorithm for the treatment of 
damage and fracture in smooth particle hydrodynamic (SPH) method, where free surface, crack 
opening, including its propagation and branching is modelled by weakening the interparticle 
interactions combined with the visibility criterion. The model is consistent with classical 
continuum damage mechanics approach, but does not use an effective stress concept. It is a 
difficult task to model fracture leading to fragmentation in materials subjected to high-strain rates 
using continuum mechanics. Meshless methods such as SPH are well suited to be applied to 
fracture mechanics problems, since they are not prone to the problems associated with mesh 
tangling. The SPH momentum equation can be rearranged and expressed in terms of a particle-
particle interaction area. Damage acts to reduce this area, which is ultimately set to zero, 
indicating material fracture. The first implementation of the model makes use of Cochran-Banner 
damage parameter evolution and incorporates a multiple bond break criterion for each 
neighbourhood of particles. This model implementation was verified in simulation of the one-
dimensional and three-dimensional flyer plate impact tests, where the results were compared to 
experimental data. The test showed that the model can recreate the phenomena associated with 
uniaxial spall to a high degree of accuracy. The model was then applied to orthotropic material 
formulation, combined with the failure modes typical for composites, and used for simulation of 
the hard projectile impact on composite target. 

Keywords: Smooth particle hydrodynamics (SPH), damage modelling, plate impact test, high 
velocity impact. 

1. Introduction 

A large portion of damage evolution and crack-growth research has been conducted with the use 
of mesh based numerical methods such as the finite element method, where two main types of 
crack representation model have been adopted: inter-element separation models and arbitrary 
crack-path models. In an inter-element separation model cracks are developed along element 
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boundaries, along the element edges (Xu and Needleman, 1994). The approach overestimates the 
fracture energy when the crack-paths are not in line with the element edges and the solution is 
often dependant on a well refined mesh (Rabczuk and Belytschko, 2004). This mesh requirement 
in the vicinity of crack path assumes that one can anticipate the failure mechanism of the material. 
This problem can be circumvented by the use of remeshing techniques (Belytschko and Black, 
1999; Pandolfi et al. 1999; Ortiz and Pandolfi, 1999; Zhou and Molinari, 2004), although these 
methods tend to be very computationally expensive especially in the case of dynamic crack 
growth, where the amount of remeshing required is often substantial. 

Arbitrary crack path models are more realistic in their approach to dealing with fracture but 
prove to be quite complicated within a mesh-based framework. One such example is the extended 
finite element method (Moës et al. 1999). Crack problems have been modelled in two and three 
dimensions (Stolarska et al. 2001; Moës et al. 2002; Gravouil et al. 2002) by coupling the 
technique with a level set method (Stolarska et al. 2001), i.e. modelling the ‘crack-geometry’ 
separately from the model. For fatigue-crack growth problems, discontinuities can be modelled 
quite accurately using this approach; however, a new level-set needs to be introduced for each 
individual crack, which would become very expensive for problems dealing with fragmentation. 
A remeshing approach has been adopted in Pandolfi et al. (1999) to extend the method to 
encompass crack branching. 

‘Meshless’ methods, such as Smoothed Particle Hydrodynamics (SPH), do not require the 
use of a fixed spatial grid to provide connectivity between nodes. This eliminates the issues of 
mesh entanglement under large deformations, and allows for damage crack growth in an arbitrary 
direction, reducing the influence of the spatial discretisation on the solution. This also makes the 
meshless methods particularly suited to the application of fracture mechanics. 

Extensive work has been conducted using the Element Free Galerkin (EFG) method, for 
several different failure modes. Single discontinuities have been modelled in 2D (Belytschko and 
Tabbara 1996) and 3D (Krysl and Belytschko, 1999) and a method that makes use of level sets 
to describe multiple cracks was proposed in Ventura et al. (2002). An interesting approach to 
dealing with multiple fractures called EFG-P was given in Rabczuk and Belytschko (2004) and 
Rabczuk and Belytschko (2007) for 2D and 3D respectively. The approach is developed as a 
particle method within the EFG framework, where the cracks are represented by introducing 
discontinuities at individual particles. A continuous crack then consists of a set of contiguous 
cracked particles. 

From the literature it is clear that the technique adapted to model fracture is dependent on 
the exact failure mode that is being modelled. Cracks that develop slowly, such as those found in 
fatigue crack problems, are more suited to a global ‘crack-geometry’ approach, whilst the 
problems with multiple cracks lend themselves to a more ‘local’ description of damage. 

This paper describes development of a damage model, based on an alternative approach to 
incorporate damage effects through the definition of particle-particle interaction area. The model 
is consistent with classical continuum damage mechanics approach, but unlike most of other 
models, it does not require the use of an effective stress. The model is intended to be able to 
initiate damage via an existing damage model, propagate the damage to the surrounding 
neighbourhood in accordance with a growth criterion and allow for bifurcation of cracks which 
will lead to fragmentation. The model was implemented in the in-house developed SPH code 
(Vignjevic et al. 2006; Vignjevic et al. 2009; Vignjevic et al. 2021) and validated against a 
number of tests cases, including the uniaxial plate impact tests, which there was available 
experimental data for and hard projectile impact on composite target. 

The paper consists of six sections. Following the Introduction, an outline of the SPH method 
is provided in Section 2, with the novel approach for modelling damage described in Section 3. 
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The model implementation is subject of Section 4 and the Numerical examples for four test cases 
are given in Section 5. Section 6 outlines the conclusions and suggestions for future work. 

2. Smooth Particle Hydrodynamics (SPH) method 

In the SPH method, continuum is represented by a discrete set of particles that are assigned 
material properties and move according to the conservation laws. The method was originally 
developed for problems in astrophysics (Gingold and Monaghan 1977; Lucy 1977) and was 
updated to include solid mechanics problems by Libersky (1991). To date, the method has been 
applied to a wide spectrum of applications including hyper-velocity impact problems since 
Libersky et al. (1993). 

A set of equations that are solved in an SPH code are the conservation laws written for a 
particle as follows:  

Conservation of mass:   

 ji
i i j i ij

j j

md v v W
dt
ρ

ρ
ρ

 = − ∇ ∑  (1) 

Conservation of momentum: 

 2 2
ji i

j i ij
j i j

dv m W
dt ρ ρ

 
= − + ∇ 

  
∑

σσ
 (2) 

Conservation of energy: 

 2
i i

j i j i ij
ji

de m W
dt ρ

 = − ∇ ∑σ v v  (3) 

Where summation is calculated over all neighbourhood particles j , jm ; is the mass of the 

j th particle, σ  is a Cauchy stress tensor, iv , jv  and, iρ , jρ  are velocities and densities of 

corresponding particles; i ijW∇  is gradient of the SPH kernel function, taken with respect to the 

particle i . 

The kernel function used in this paper to approximate the derivatives is the cubic spline 
kernel (Vignjevic et al 2009) defined as: 
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where a  is the number of spatial dimensions, b  is a normalised constant which has the 

values; 2 / 3 , 10 / 7π , 1/π  in 1, 2 and 3 dimensions respectively; q r h= , r  is the position 
vector between a pair of particles and h  is the finite range of the kernel, known as the SPH 
smoothing length. 

There are several problems within the SPH method outlined in Swegle et al. (1994) such as 
the tensile instability, numerical fracture (Swegle et al. 1995) and zero energy modes (Vignjevic 
et al. 2000). The tensile instability is a numerical problem that manifests itself in the discretisation 
of the conservation equations, i.e. when the particles are under tensile stress their motion becomes 
unstable. The problem can be visualised as an unphysical clumping of the particles and, in some 
cases, leads to an early termination of the simulation. Analysis of the problem has determined 
that the instability depends on the sign of the product of the stress and the second derivative of 
the kernel function W ′′  (Swegle et al. 1995) which is mathematically expressed as: 

 σ 0W ′′ >  (5) 

As long as the inequality (5) holds, the method is unconditionally unstable. 

Severe manifestations of the tensile instability lead to another relevant problem for the basic 
SPH formulation known as a numerical fracture. Two SPH particles are considered to be 
neighbours if the distance between them is less than twice the smoothing length. Thus, all 
particles within a spherical domain are neighbours of the particle at the centre of that domain. 
This domain remains a sphere throughout the calculation, with either a fixed or variable radius. 
In the case of anisotropic deformation, two particles that should remain neighbours can move 
sufficiently far apart that they no longer influence each other. This results in a fracture that should 
not be present in the calculation. 

The tension instability and numerical fracture can be eliminated completely by the use of a 
Lagrangian kernel function (Vignjevic et al. 2006; Vignjevic et al. 2021; Reveles 2007; 
Belytschko et al. 2000; Rabczuk et al. 2004). In the Total Lagrangian approach the initial state of 
the domain is regarded as the reference state. Consequently, the solutions of the conservation 
equations are expressed in terms of the material coordinates X , instead of the spatial coordinates
x . The relation between these coordinates is given as follows:  

 ( )tφ=x X,  (6) 

Where: φ  is a mapping function and the initial conditions are usually defined for time 
0t =  as: 

 ( )0φ= =x X, X  (7) 

The deformation gradient is given as follows: 

 
∂

=
∂

xF
X

 (8) 

and the conservation of mass is: 

 0 0J Jρ ρ=  (9) 

Where: 
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 detJ = F  (10) 

All calculations are performed in the reference configuration and, therefore, the 
neighbourhood does not change. This method is valid for as long as the mapping between the 
domains exists. This cannot be achieved for the large shear deformations problems, which 
represent the limitation of this formulation. 

3. Interaction area and damage variable 

The concept of area vectors within the SPH method was introduced by Swegle (2000) in 
discussion of the tensile instability inherent in any basic SPH description. Motivated by the 
fundamental relationship between the stress tensor and a force exerted on a surface P : 

 = ⋅P σ A  (11) 

the SPH momentum equation can be rewritten in terms of an interaction area between the 
particles. Starting from Newton’s Second Law: 

 i i iP m a=  (12) 

one may rewrite equation (2) in the following form: 

 2 2
ji

i i i i j i ij
j i j

P m a m m W
ρ ρ

 
= = − + ∇ 

  
∑

σσ
 (13) 

By rearranging the equation above, the terms can be group to the form equivalent to equation 
(11): 

 ( ) ( )j i
i ij i j

j i j

P A
ρ ρ
ρ ρ

 
= − + 

  
∑ σ σ  (14) 

 ij i j i ijA VV W= ∇  (15) 

where iV  is the volume of the thi  particle and ijA  is the interaction area vector, which 

determines the interaction between the particles i  and j . The magnitude of the interaction area 
vector is equal to the area of the surface shown in Fig.1. and a direction of the vector is normal 
to the surface. 
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Fig. 1. Definition of particle – particle interaction area vector and the interaction force between 

the particles i and j 

Equation (15) defines the interaction area vector in terms of the gradient of the kernel 
function as the area of stress action to produce a force between the particles.  

Following the original work of Kachanov (1958), damage can be defined in terms of a scalar 
intrinsic damage variableω , as a surface density of microcracks or microvoids within the 
material as: 

 DA
A

δω
δ

=  (16) 

Where Aδ  and DAδ  are, respectively, total area of a representative volume element (RVE) 
and area of microcracks and microvoids (damage). The effective area which carries out the load 
in a damaged material element is, then, the total area of damaged element, reduced for the area 
of damage, i.e. DA A Aδ δ δ= − , which leads to the definition of the effective area in the 
damaged material as: 

 ( )1A Aδ δ ω= −  (17) 

In classical continuum mechanics, equation (17) was used for definition of an effective stress 
introduced by Kachanov (1958). However, the SPH method coupled with the concept of Swegle’s 
interaction area offers an alternative approach to the common effective stress method of applying 

damage (Kachanov 1958; Lemaitre 1985). The interaction area ijA  can be thought of as being 

equivalent to the section area A  defined in equation (11). Consequently, damage can be defined 

as an inter-particle variable ijω  acting to reduce ijA  by directly applying the concept of 
continuum damage from equation (17). This definition does not require any modification of the 
stress tensor and equation (14) becomes: 
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 ( ) ( ) ( )1j i
i i j ij ij

j i j

P A
ρ ρ

ω
ρ ρ

 
= − + − 

  
∑ σ σ  (18) 

Critical damage ( 1 0ijω = . ) assumes the material to have failed and the interaction area set 
to zero, causing the particles to cease being neighbours. To prevent unphysical interactions 
between fully damaged particles, once critical damage has been reached, all interpolated values 
are set to zero, by setting the gradient of the kernel function to zero, i.e. 0i ijW∇ = . 

In a standard Eulerian SPH code, a new neighbour search is competed at each time-step, 
implying a particle may gain or lose neighbours throughout the computation. This prevents the 
practical treatment of inter-particle damage, which is a material history variable and must be 
integrated in time. For this reason, we have chosen to use a Total Lagrangian description for the 
SPH interpolation i.e. the neighbourhood, where the particle-particle bonds are defined in the 
reference state and remain fixed throughout the computation. The interaction areas between 
particles can, therefore, be stored as material history variables and be updated with the damage 
variable at every time-step. 

4. Model implementation  

The model is implemented in the SPH research code (Vignjevic et al. 2009; Vignjevic et al. 2021). 
Any damage model can be used for the evolution of the damage variable ijω , as long as it 
represents a percentage of damaged material (i.e. micro-cracks/voids) for a particle-particle pair 
and is expressed in terms of local particle parameters. The failure criterion to initiate damage 
growth should also be dependent on inter-particle variables in order to correctly ‘grow’ a crack 
in the material. The method assumes that phenomena such as crack branching/bifurcation and 
crack joining are incorporated as a function of multiple bond failures in a localised region; and 
so careful selection of the failure criterion is required. 

4.1 Calculation of inter-particle bond variables 

For the calculation of the inter particle interaction/bond variables, it is necessary to calculate the 
traction between the particle pairs. Since SPH data are stored for the individual particles, the 

traction in the ( )ji →  direction, iT  and the ( )ji ←  direction, jT  must first be obtained. 

From these tractions a composite value denoted as ijT  can be calculated for the traction between 

the particle pair. iT  and jT  are, therefore, the first components of the respective traction 

vectors in the direction of ( )ji →  and ( )ji ← . These values can be obtained by rotating the 
full stress tensor to the new coordinate system for both particles in the pairs, but this is 
computationally expensive and will yield to the full stress tensors, whereas only the (1,1) values 

are required. Alternatively, one can obtain the traction vector îT  as the dot product of the unit 

vector denoted ˆin  and stress at the particle i , which projects the stress onto the ( )ji →  
direction (Malvern 1969) as: 
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 ˆ ˆi i iT n= ⋅σ  (19) 

Thus the direct stress at the i  particle, in the ( )ji →  direction is simply the traction vector 

projected onto the ˆin . The traction between the particle pair, ijT  is then calculated as the average 
value of the traction in the individual particles: 

 
( )

2
i j

ij

T T
T

+
=  (20) 

Von Mises stress for each particle-particle bond is simply the average of the Von Mises stress 
at both particles: 

 
2

i jσ σσ +
=  (21) 

4.2 Damage and failure models 

The model is currently implemented combined with Cochran-Banner model for modelling a spall 
in metals and modified Chang-Chang modelling for modelling impact on composites, as 
described in the following subsections. 

4.2.1 Cochran-Banner  

The modelling of spall failure is relevant for impact problems. An established damage model for 
this type of material failure is Cochran-Banner model (1977), which is used for damage evolution 
in the current model implementation, whist the damage initiated is controlled by a critical direct 

stress between particles. Damage initiation occurs when the direct stress ijT  between a pair of 

particles i  and j , defined in equation (20), exceeds a user defined spall criterion Σ . After this 
point damage will begin to grow for that ( i j− ) pair. The Cochran-Banner damage growth model 
(Kachanov 1958) accounts for all positive changes in volume loaded above the material spall 
strength, including micro-crack and void growth: 

 ( )
0

t
x t dV Aω = ∫,    for   0dV >  (22) 

A three-dimensional version of this model is given in Mirkovic (2004) and it is this version 
that has been adapted for use with the interaction area outlined in the previous section. 

The current change in volume for a particle may be calculated from the strain rate and the 
current time-step. More specifically, the change in volume for the area between the particles pair 
under consideration is defined as a mean value of the change in volume for the two particles: 

 
3 3

1 12 n n

pl pl
ij i i j j

n n

dtdV V Vε ε
= =

 
= + 

 
∑ ∑   (23) 
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where plε  is the effective plastic strain-rate. The cross-sectional area which the damage applies 

to is taken to be the magnitude of the interaction area ijA , given in equation (15), so the Cochran-
Banner damage parameter is simply: 

 
ij

CB
ij

dV

A
ω = ∫  (24) 

The sign of ijdV  will depend on whether the force between the particles is compressive or 
tensile and the damage evolves only for a positive change in volume, i.e. void growth. It is clear 
that in a real continuum, compressive forces act to close the voids and the material can therefore 
regain some strength, but subsequent void re-growth under tension would be more rapid. 
However, current model implementation keeps the damage parameter constant for the time 

increments when the ijdV  is negative.  

The inter-particle damage variable is updated using the following equation: 

 
( )1

2 3

n n

CB
ij ij

crit

ωω ω
ω−

 
= +  

 
 (25) 

where critω  represents material parameter for critical damage. Total failure of the material is 

reached when 1.0ijω = , so that the total damage of the material at time t  is calculated as: 

 MIN 1 0ij ijω ω =  , .  (26) 

In a real solid, localised damage would have an influence on the surrounding material, i.e. 
the damage of the model on a global scale. In an attempt to capture this phenomenon, a multiple 
bond-break criterion has also been added to the damage model. 

4.2.2 A failure model used for composite materials  

For the failure types other than the spall, damage initiation can be defined in terms of either stress 
or strain-based parameters. The Von Mises stress is typically used for isotropic damage models 
for ductile materials, whist the individual stress components or principal stresses are used for 
brittle materials, including Chang-Chang and Hashin failure criteria for composite materials. In 
the current implementation, the Chang-Chang failure criteria are used as criteria for the onset of 
damage of the inter-particle bonds (Chang and Chang 1987a; 1987b). Three criteria given from 
equation (27) to (29) are used for modelling fibre failure, matrix failure and delamination, 
respectively. The failure starts when the expressions reach a value of one; below one the material 
remains undamaged.  

 

2 42

2
4

3
4 1.0

3
2 4

ab ab
aa

fibre
ct

c
ab

f
SX S
G

σ ασσ

α

+ 
= + ≤ 
  +

 (27) 
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= + ≤ 
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2 2 2

1.0cc bc ca
delamination

n bc ca

f
S S S
σ σ σ     

= + + ≤     
     

 (29) 

When one of these failure criteria is met, inter-particle bonds of that particle are allowed to 
accumulate damage. The bonds that can accumulate damage are restricted to one side of the 
particle, leaving the other half of the bonds intact. This creates a damage area, and subsequent 
crack, in the direction perpendicular to the loading direction. This is illustrated in Fig. 2 for the 
case of fibre failure. The fibre direction is indicated by the blue lines, and the particles that can 
accumulate damage are shown in red. Although the Chang-Chang criteria are used in the current 
model implementation, the concept presented is completely general and any other criteria to 
evaluate the onset of damage and the damage growth model can be adopted with this modelling 
approach. 

 
Fig. 2. Orthotropic damage formulation concept 

5. Numerical examples  

For the sake of numerical verification and validation and demonstration of the capability of the 
model based on the interactive area, a number of numerical test problems were run in our in-
house developed SPH code (Vignjevic et al. 2006; 2009; 2021), including: flyer plate impact test 
with spall failure, tensile test of unidirectional composite based on ASTM3039 standard (2009) 
and hard projectile impact on flat composite plate. The simulation results are presented in the 
following subsections. 
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5.1 Flyer plate impact test with spall failure 

The plate impact test used for validation is an experiment in which a 10 mm thick target plate 
was impacted by a 5 mm thick flyer plate at a velocity of 304 m/s, as illustrated in Fig. 3. 
Experimental data and material parameters for the plate impact test were obtained from Steinberg 
(1996). To record longitudinal stress data, a Manganin stress gauge was used on the rear surface 
of the target, supported with a 12 mm block of Polymethylmethacrylate (PMMA). The geometry 
of the flyer and the target were chosen so that the stress wave reflected from the free ends interact 
in the centre of the target plate, which is denoted as spall location in Fig. 3. This type of 
experiment is extremely useful for damage model validation purposes, since the experiment is 
designed to yield a uniaxial strain state inside the target plate. 

The simulation of the experiment was conducted with an Elastic-Plastic-Hydrodynamic 
material model with a Grunaisen equation of state for the target and the PMMA. The one-
dimensional model consisted of 540 particles: 100 in the flyer plate, 200 in the target plate and 
240 in the PMMA. The SPH smoothing length was taken to be 1.3 times the initial inter-particle 
spacing. The spall strength for the target material was taken to be 1.2 GPa and the value of critical 
damage critω , required for the Cochran-Banner damage model, was taken to be 0.007 . 

 
Fig. 3. Schematic representation of the plate impact: a cross section of a segment of the set up 

used for modelling (left) and 3D geometry (right) 

In the plate impact test, the initially compressive waves generated at the contact between the 
flyer plate and target plan propagate through the material, reaching the free surfaces where they 
reflect as the tensile release waves. The tensile waves reflected from the back of the target plate 
and the back of the flyer plate then propagate through the material and superpose in the middle 
of the target plate causing high-tensile stress. When this tensile stress exceeds the spall strength 
of the material, the material fails, micro-voids form and coalesce in this region, ultimately leading 
to the generation of a new free surface. This free surface reduces the tensile stress in the material 
to zero and results in the reflection of the remainder of the release wave as a compressive wave. 
The same phenomena is expected in the simulations, since a new free surface should be generated 
when the bonds between a particle and its neighbours was broken. Initially, the damage growth 
in particle-particle bonds was developed independently of any other bonds in the neighbourhood 
of the thi  particle. Fig. 4 shows longitudinal stress history curve obtained at the back of the target 
plate (stress gauge location in Fig. 3.) from the experimental and simulation data. A plot of the 
simulation data without damage is also included to establish the tensile behaviour of the material 
and illustrate the spall effects. Note that in the simulation results, the stress data was plotted for 
the third particle into the PMMA to avoid noise in the simulation results originating from the 
material contact algorithm. 
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Fig. 4. Experimentally observed and numerically obtained stress traces at the back of the target 

plate; model with a single bond failure 

It is clear from the results shown in Fig. 4 that the model predicted a failure of the particle 
bonds in the region of the expected spall plane, as a tensile reloading was obtained at the back of 
the target. However, the exact shape of the reload signal was not captured. 

Following a discussion at the end of the previous section, local damage is likely to have an 
effect on the global behaviour of the material. This can be included in this model via a bond-
break visibility criterion. Such a criterion is simple to implement in one-dimensional models, 
since any particle that is at least 2h from a free surface, will have an equal number of neighbours 
either side of it, as illustrated in Fig. 5. The criterion states that given that either of the bonds 
between the - particle and its first neighbour or the - particle and its second neighbour (on one 
side) have failed, then whichever bond is still active also fails. In the one-dimensional simulation 
case, a particle may have a maximum of four neighbours, two on each side. Consequently, if one 
bond fails, the other bond on that side also fails. 
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Fig. 5. Interaction of the ith particle with its neighbours in one dimensional problem 

The effects of the activated bond break criterion are shown in Fig. 6, where three criteria for 
influence of multiple neighbours were considered: 

1. if 1st neighbour failed then 2nd neighbour also failed; 

2. if 2nd neighbour failed then 1st neighbour also failed; 

3. If one failed, then the other bond also failed. 

 
Fig. 6. Stress traces at the back of the target plate obtained with three criteria for interparticle 

interactions compared to the experimental data 

Fig. 6 shows that the reload signal obtained with criterion two and three agree well with the 
experimental data. The remaining of the signal observed in this experiment is not a concern, since 
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the behaviour after the reload depends on the specific set-up of the experiment for which the data 
are not available. This set-up may not be represented in the simulation model and therefore it is 
unclear if a correlation should be observed.  

Numerical validation was also performed with three-dimensional model of the plate impact 
tests shown in Fig. 7, with appropriate symmetry boundary conditions applied. The numerical 
results obtained with this model agree well with the experimental data as shown in Fig. 8.  

 
Fig. 7. 3D model of the plate impact test with appropriate symmetry conditions 

 
Fig. 8. Stress traces obtained at the back of the target plate with 3D model and compared to the 

experimental data 
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5.2 Tensile test with brittle failure model 

A second test performed is a tensile test with a test sample geometry based on the ASTM3039 
standard, used for characterisation of the tensile properties of polymer matrix composite 
materials. The initial configuration is shown in Fig. 9. The velocity is initialised as a linear 
velocity field distributed from zero at the fixed grip to the loading velocity (1.8m/s) at the moving 
grip, which largely eliminates the propagation of stress waves in the sample and is to a steady 
state test. 

 
Fig. 9. Initial configuration for tensile test 

The material used is linear elastic with brittle failure. The failure model sets the bond strength 
to zero once a critical stress has been reached.  

Two symmetry planes of the tests, parallel to y and z plane in the middle of the sample, 
allowed for the reduction of the model size from ASTM3039 standard sample size to a quarter of 
the model. Consequently, thickness, width and the length of the model were respectively: 1mm, 
5mm and 50mm + grips.  

One particle at the middle of the sample length was assigned a failure stress of 95% of the 
nominal value, which triggers the failure at the centre of the sample, in the absence of any 
geometric or material property perturbations. Once failure has started, it propagates into a 
complete fracture and results in an unloading wave propagating through the sample, see Fig. 10. 
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Fig. 10. Unloading wave travelling through the tensile test sample after a complete fracture 

developed in the centre 

5.3 Hard projectile impact on a flat plate with brittle failure model 

A third test performed is a ballistic impact on a flat plate. This test setup is inspired by the EASA 
CS-52 regulations for debris impact on fuel tank access covers. The test consisted of a flat plate 
and a cubical projectile with edge length of 9.5mm and a mass of 6.9g. The plate had a thickness 
of 3.175mm. Making use of the symmetry in the test configuration, a quarter model was used. 
The steel projectile was assigned elastic material properties, and the target material was defined 
as elastic with brittle failure. At failure, the particle-particle bond strength was set to zero. The 
initial state for an impact velocity of 240m/s is shown in Fig. 11. The evolution of failure and 
fragment generation is shown in Fig. 12. A number of large fragments developed as well as a 
series of smaller fragments and radial cracks. The modelling approach for treating damage at the 
inter-particle bonds is clearly reliable in this case. 
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Fig. 11. Initial velocity field for cube impact model 

 

 
Fig. 12. Development of fragment and cracks in projectile impact on brittle plate 

5.4 Spherical projectile impact on composite target plate 

To demonstrate the use of an inter-particle damage model for composite materials, the approach 
described in Section 4.2.3 is applied to a hard projectile impact on a composite plate test. The test 
setup consists of composite panel with dimensions 200x200x6mm and spherical projectile, 12 
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mm in diameter, made of hardened steel with a nominal weight of 7 g. The composite panel 
consists of 23 unidirectional plies, which are 0.26mm thick, arranged in the stacking sequence [-
45/0/+45/90]3S. 

The model uses an elastic material for the projectile, and for the composite an elastic material 
with failure treated using the inter-particle damage model based on the Chang –Chang failure 
criteria described in Section 4.2.3. The model setup is shown in Fig. 13. The side view of the 
initial, intermediate state for the 138m/s impact is shown Fig. 14, with the front and back face 
deformations shown in Fig. 15. The projectile does not penetrate the sample, as observed in the 
test. 

 
Fig. 13. SPH model of the hard projectile impact modelled with interaction area approach 
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Fig. 14. Kinematics of deformation at maximum deflection in the simulation of the hard 

projectile impact at 138m/s 

 
a)       b) 

Fig. 15. Damage distribution obtained at the front (a) and back face of composite panel (b) 

6. Conclusions and future work 

A damage modelling approach for high strain-rate loading has been developed based on the 
definition of the interaction area vector. The model is consistent with classical continuum damage 
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mechanics approach, but unlike the majority of other models, it does not require the use of an 
effective stress to incorporate the damage. The SPH momentum equation was rearranged in a 
way that it contained a particle-particle interaction area, so that damage or failure was defined to 
reduce this area until failure (critical damage), when the area was set to zero. 

A number of different damage/failure initiation and growth criteria has been developed and 
tested:  

1. Damage is initiated when the direct stress between particle pairs exceeds a spall 
criterion. A simplified Cochran-Banner damage growth model was implemented, to evolve the 
damage parameter, and coupled with a criterion for multiple neighbour particle bonds failure 
when one reached critical damage. 

2. Immediate failure is initiated when Von Mises or Maximum stress criterion is met. 

3. Orthotropic formulation with composite failure modes. 

The model was used for simulation of three different tests with different failure modes: 

1.  Uniaxial plate impact tests were obtained with 1D and 3D models and they compared 
well with available experimental data. 

2. ASTM 3039 tensile test; 

3. Cube shaped projectile impact on a flat composite plate; 

4. Sphere projectile impact on the composite target; 

Future work on this development is integration of developed algorithms with the other 
damage models. 
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