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A B S T R A C T

Groundwater in coastal regions is threatened by saltwater intrusion (SWI). Beach nourishment is used in this 
study to manage SWI in the Biscayne aquifer, Florida, USA, using a 3D SEAWAT model nourishment considering 
the future sea level rise and freshwater over-pumping. The present study focused on the development and 
comparative evaluation of seven machine learning (ML) models, i.e., additive regression (AR), support vector 
machine (SVM), reduced error pruning tree (REPTree), Bagging, random subspace (RSS), random forest (RF), 
artificial neural network (ANN) to predict the SWI using beach nourishment. The performance of ML models was 
assessed using statistical indicators such as coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), 
means absolute error (MAE), root mean square error (RMSE), and root relative squared error (RRSE) along with 
the graphical inspection (i.e., Radar and Taylor diagram). The findings indicate that applying SVM, Bagging, RSS, 
and RF models has great potential in predicting the SWI values with limited data in the study area. The RF model 
emerged as the best fit and closely matched observed values; it obtained R2 (0.999), NSE (0.999), MAE (0.324), 
RRSE (0.209), and RMSE (0.416) during the testing process. The present study concludes that the RF model could 
be a valuable tool for accurate predictions of SWI and effective water management in coastal areas.

1. Introduction

Natural changes include phenomena such as sea level rise (SLR), 
which can result from climate change and the melting of polar ice caps. 
Man-made changes encompass activities like excessive groundwater 
pumping and the management of water resources. Low precipitation 
levels further compound the problem by reducing the natural recharge 
of aquifers, leading to a depletion of freshwater resources. These forces 
collectively exacerbate the issue of saltwater intrusion (SWI), where 
seawater encroaches into freshwater aquifers (Abd-Elaty et al., 2023a; 
Abdelgawad et al., 2018; Abdoulhalik et al., 2020, 2024). Saltwater 
intrusion (SWI) influences the water demands in coastal areas and 

changes the biogeochemistry and dynamic systems of coastal aquifers 
(Moore and Joye, 2021). The Intergovernmental Panel on Climate 
Change (IPCC, 2007) expected the SLR would range from 58 cm to 88 cm 
by the year 2100, whereas the IPCC et al. (2014) predicted that SLR rates 
would vary from 8 to 16 mm year− 1 by the year 2100 (Pearce et al., 
2014). The SLR increases the hydrostatic pressure of the saline water 
and thus increases the SWI in the land direction, leading to more 
freshwater contamination. Abd-Elaty et al. (2023a) demonstrated that 
SLR impacted groundwater salinity and damaged large quantities of 
freshwater bodies in these regions due to SWI.

Coastal areas often provide excellent soil and climatic conditions for 
agriculture, which has been practised for thousands of years and plays a 
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vital role in the economy of the coastal regions by providing food for 
communities and raw materials for industry (Singh, 2020). Physical 
surface barriers, in the context of controlling Saltwater Intrusion (SWI), 
represent an engineered approach involving the expansion of coastal 
shorelines into the sea or ocean through the deposition of artificial 
coastal earth-fill materials (Guo and Jiao, 2007).

Beach nourishment is a widespread coastal management technique 
that can not only counteract coastal erosion but also change coastal 
groundwater dynamics. Understanding the mechanisms and drivers of 
this subsurface flow and transport processes is key to predicting future 
groundwater resources for beach nourishment (Yu et al., 2024). Land 
reclamation, as a strategy commonly employed in coastal regions, serves 
the dual purpose of mitigating the challenges posed by increasing ur-
banisation and population growth while also establishing new areas for 
freshwater resource utilisation (Oude Essink, 2001) (see Fig. 1).

Hu and Jiao (2010) researched the physical barriers, demonstrating 
that implementing land reclamation in coastal areas leads to notable 
increases in aquifer discharge and groundwater levels. Abd-Elaty et al. 
(2023a) developed a numerical study for cost-effective management 
measures of coastal aquifers impacted by SWI and climate change; the 
study showed that placing aquifer fill along the shallow shoreline in-
creases net revenues increased agricultural production, delaying aquifer 
salinity, protecting fresh groundwater bodies, increasing agricultural 
lands, supporting surface water supplies by harvesting rainfall and flash 
flooding, and desalinating saline water using wave energy. Amrouni 
et al. (2024) showed that Southern California’s shoreline retreat rates 
for sandy beaches will increase from ~− 1.45 to − 2.12 m/year in 2050 
and to − 3.18 m/year in 2100. Moreover, the annual volume of sand 
required for beach nourishment could triple by 2050, increasing from 
the present-day amount of ~1223–~3669 m3/year per kilometre.

The machine learning algorithms (MLA) is a good tool for solving this 
problem owing to the high cost of field investigation of coastal aquifers 
salinity. Machine learning techniques hold significant promise in 
addressing intricate and non-linear engineering challenges (Zanoni 
et al., 2022). Particularly in developing countries, ML is being harnessed 
to alleviate the financial and labour-intensive burden associated with 
investigating irrigation water quality indices (IWQI) by farmers. Based 
on physical parameters, it is applied to forecast and assess IWQI in 
groundwater systems (El Bilali et al., 2021). For better management of 
the salinity problem, it is essential to be able to predict the SWI using 
MLA (Hoaiet et al., 2022). Deep learning models promise supplements to 
the existing process-based mode in estuarine salinity modelling when 
pre-trained using augmented data (Qi et al., 2023; Ahmed et al., 2024). 
Also, MLA-assisted approximation seems to be a promising surrogate for 
the high-fidelity, variable-density model and could be utilised in 
multi-fidelity water resources management (Kopsiaftis et al., 2023).

In recent years, limited studies explored machine learning (ML) 
techniques to assess and predict saltwater intrusion (SWI) (Nosair et al., 

2022; Tran et al., 2022; Taşan et al., 2023). These investigations have 
employed diverse ML algorithms, including decision trees, Artificial 
Neural Networks (ANN), and Support Vector Machine Regression Sur-
rogates (SVMr), to forecast the extent of SWI. Furthermore, these studies 
have convincingly demonstrated the potential of ML in the accurate 
prediction of SWI and concluded the most suitable algorithms and input 
variables for SWI predictive modelling (El Bilali et al., 2021; Wagh et al., 
2016; Wang et al., 2020a,b).

Wagh et al. (2016) successfully applied ANN to predict groundwater 
quality in agricultural water processes using 13 physicochemical pa-
rameters, showcasing the efficacy and precision of ANN in IWQI pre-
diction. Singh et al. (2021) used random forest (RF), k-nearest neighbour 
(k-NN), gradient boosting machine (GBM), decision tree (DT), and extra 
tree (ET) regression algorithms for short-term wind power forecasting 
and assessed them. The results show the GBM-based ensemble algorithm 
consistently demonstrated superior accuracy compared to the RF, k-NN, 
DT, and ET algorithms.

The effectiveness of ML techniques hinges on the nature and quantity 
of predictors used in the forecasting process. Lal and Datta (2018)
developed an SVMr model to predict SWI resulting from over-pumping, 
revealing that enhancing the training dataset can significantly improve 
the SVMr models’ capacity to inform the design and management of 
strategies in coastal regions. Furthermore, Shamshirb et al. (2019)
leveraged a composite model, integrating multiple wavelet-ANNs, to 
enhance the performance of individual models for addressing chloro-
phyll and salinity concerns in coastal groundwater. Hoai et al. (2022)
forecasted the SWI using ML in Vietnam. The study indicated that ANN 
outperformed the Multiple and Random Forest Regression for SWI pre-
diction. A comprehensive review of the applications of machine learning 
applications to water resources management can be found in Ahmed 
et al. (2024).

Drawing upon the comprehensive literature survey presented above, 
it is evident that there is currently a dearth of studies employing ma-
chine learning (ML) techniques to forecast the management of Saltwater 
Intrusion (SWI) within coastal regions, particularly in the context of Sea 
Level Rise (SLR). Furthermore, there exists a notable research gap con-
cerning the comparative evaluation of prominent ML models, such as 
additive regression (AR), Support Vector Machines (SVM), reduced error 
pruning tree (REPTree), bagging, random subspace (RSS), random forest 
(RF), and Artificial neural network (ANN) models, for the prediction of 
SWI dynamics.

The present investigation has been undertaken with the objectives of 
achieving precise predictions of SWI dynamics within the Biscayne 
aquifer located in Florida, USA, while accounting for the influences of 
Sea Level Rise (SLR) and groundwater decline due to over-pumping and 
reduction in rainfall. This research endeavour holds significance in the 
context of assessing groundwater salinity in coastal aquifers that are 
constrained by limited field data availability. The principal objectives of 

Fig. 1. a) Buxton Beach nourishment project, Carolina, USA (https://islandfreepress.org/outer-banks-news/25-of-buxton-beach-nourishment-project-complete-as- 
of-july-15/) and b) Schematic sketch shows SWI and land reclamation.
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this study encompass i) The utilisation of the SEAWAT model to simulate 
SWI dynamics, ii) The application of ML models to forecast SWI, 
leveraging the outcomes derived from the SEAWAT numerical simula-
tion, and iii) a comparative performance evaluation of diverse ML 
models in the prediction of SWI dynamics.

2. Material and methods

2.1. Real-world case study: Biscayne Aquifer, Florida, USA

Fig. 2a presents the main Floridan aquifer system, including the 
upper Floridan aquifer, a semi-confining unit of the middle confining 
unit located at the base of the upper aquifer, and the lower Floridan 
aquifer which lies below the middle confining unit (Upchurch et al., 
2019). The location of the Biscayne aquifer was conducted in the Cutler 
Ridge area of south-eastern Florida, USA (Fig. 2a), where the current 
research was simulated. The water depth ranges between 1.8 m and 4 
0m in the bay, except in dredged areas with depths exceeding 12 m 
(Caccia and Boyer, 2005). The aquifer was investigated for the SLR in-
fluence and over-pumping on SWI investigation and mitigation of 
aquifer salinity using land reclamation along the shoreline. The Biscayne 
aquifer is located in this region and is used in the current study. The 
aquifer has an extension of 10,000 km2; the average length is 300 m, and 
the width is 615 m from the shoreline and 33 m below mean sea level 
(MSL) (Kohout, 1960; Kohout and Kolipinski, 1964). The saline 
groundwater circulates about 12.5 % to Biscayne Bay (Langevin, 2001).

The Biscayne aquifer underlies near the shore of the Atlantic Ocean 
and the area surrounding Biscayne Bay and extends beneath. The aquifer 
consists of highly permeable interbedded limestone and sandstone and 
covers most places only with a thin layer of porous soil (Miller, 1990). 
The climate in Southeast Florida is characterised by hot and humid rainy 
summers and mild winters; the total annual precipitation average is 

1507 mm, while the average potential evapotranspiration (ETP) loss 
ranges from 1220 mm to 1320 mm per year (Alarcon et al., 2022).

2.2. Numerical model

In the Biscayne aquifer, a 3-D SEAWAT model was used to analyse 
the SWI for the baseline case, investigate the impact of SLR and over- 
pumping, and management scenarios; the mitigation was applied 
using the coastal beach nourishment (BN) effect on SWI considering fill 
precipitation, permeability, and width. The variable-density flow pro-
cess (VDF) solves the governing equation of groundwater flow that was 
published by Guo and Langevin (2002). Moreover, the integrated 
MT3DMS transport (IMT) process was developed by Zheng and Wang 
(1999) to solve the advection-dispersion equation. The miscible 
variable-density process is governed by the following coupled system of 
flow and transport equations, Eqs. (1) and (2).

The Variable-Density Flow (VDF) Process solves the following vari-
able density groundwater flow equation (Guo and Langevin, 2002): 

∇
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The Integrated MT3DMS Transport (IMT) process solves the 
following solute transport equation (Zheng and Wang, 1999): 
(
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where ρo: is the fluid density [ML− 3], ρ: is density of saline ground water 
[ML− 3], μo: is dynamic viscosity of the fresh groundwater [ML− 1T− 1], μ: 
is dynamic viscosity of saline ground water [ML− 1 T− 1], K0: is the hy-
draulic conductivity [LT − 1], h0: is the hydraulic head [L], Ss, 0: is the 

Fig. 2. Study area for (a) lithology of the principal aquifers of Florida (Upchurch et al., 2019) and (b) location at Biscayne Bay, Florida, USA (Langevin, 2001).
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specific storage [L− 1], t:is time [T]; θ: is porosity [-]; C: is salt concen-
tration [ML− 3]; and q’s:is a source or sink [T − 1] of fluid with density ρs, 
ρb: is the bulk density [ML− 3], Kd

k: is the distribution coefficient of spe-
cies k [L3 M− 1], Ck: is the concentration of species k [ML− 3], D: is the 
hydrodynamic dispersion coefficient [L2T− 1], q: is specific discharge [LT 
− 1], and Cs

k: is the source or sink concentration [ML− 3] of species k.

2.2.1. Aquifer geometry and boundary conditions
The aquifer domain was simulated using a 2D model consisting of 43 

columns and 34 layers and with 1 row. The dimensions of vertical cells 
are 50 m and 1 m for the x and z-direction, while the cells’ dimensions 
are 1 m for the y-direction, respectively. The model domains for the 
boundary conditions were set on the saline water side (right side) with a 
constant head boundary of 0.22 m above MSL and a salinity of 35,000 
mg/l. Also, at the land boundary (left side), a specified freshwater flux 
was applied using 15 m3 day− 1 m− 1 and a constant salinity of 1000 mg/l 
(Fig. 3a), the land side salinity for fresh groundwater of 0.0 mg/l an 
initial salinity of 1000 mg/l (Langevin, 2001).

2.2.2. Hydraulic parameters
Langevin (2001) published input model data for the hydrological and 

dispersion coefficients of the aquifer. Moreover, the hydraulic conduc-
tivities in vertical and horizontal directions were assigned values of 100 
and 1000 m day− 1, respectively. The porosity of porous media is 0.20, 
and the freshwater and saline water densities are 1 and 1.025 g cm− 3, 
respectively. Furthermore, precipitation flow values in the study area is 
about 380 mm.year− 1, the longitudinal (αL) and transverse (αT) disper-
sions are 10 m and 1 m, while the aquifer diffusion coefficient (D*) is 
about 0 m2 day− 1.

2.2.3. SWI in Biscayne aquifer
The Biscayne aquifer was calibrated using the SEAWAT code through 

field observation data developed by monitoring groundwater wells as 
presented and published by Langevin (2001) where the transition zone 

between saline water and the fresh groundwater was characterized using 
the monitoring wells which were installed both inland and offshore. 
Florida Geological Survey was installed the inland monitoring wells 
while the offshore monitoring wells were installed by U.S. Geological 
Survey (USGS) while the offshore wells were installed from a floating 
barge using the methods presented in Shinn and others (1994). The 
ground-water monitoring wells were located on or near the SWI line 
Langevin (2001). According to the solute transport modelling results, 
the groundwater salinity for the minimum and maximum residual 
reached − 5552 mg/l and 388.30 mg/l, the residual mean is 347.05 
mg/l, the absolute residual mean is 1738.50 mg/l, the standard error of 
estimation is 459.88 mg/l, root mean square (RMS) is 2085.70 mg/l, 
normalized RMSE is 6.13%. Also, SEAWAT results showed that the 
biscayne aquifer salinity reached 473 m for the isochore 17,500 mg/l, 
measured at the aquifer’s base, as presented in Fig. 3b.

The outcomes were derived from the SEAWAT numerical simulation, 
followed by a comparative performance evaluation of diverse ML 
models in predicting SWI dynamics based on beach nourishment 
techniques.

2.3. ML models

In this study, we employ a diverse range of ML models to address the 
prediction of SWI. Each model offers unique strengths and capabilities. 
The goal of the present study is to rigorously evaluate their performance 
and determine which model is best suited for SWI prediction. The ma-
chine learning models include additive regression (AR), support vector 
machine (SVM), reduced error pruning tree (REPTree), Bagging, random 
subspace (RSS), random forest (RF), and artificial neural network 
(ANN). By thoroughly examining these models, the study aims to make 
an informed decision about the most effective ML model for our pre-
diction endeavour.

Fig. 3. Biscayne aquifer, Florida, USA for (a) Vertical section for model boundary conditions and (b) baseline SWI.
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2.3.1. AR model
Friedman and Stuetzle (1981) proposed AR as a non-parametric 

regression approach. Unlike traditional regression, AR employs a sin-
gle smoother function to explain the predictors and predictands rela-
tionship. As a result, it overcomes the curse dimensionality problem that 
other p-dimensional smoothers. Table 1 documented the parameters 
that selected during the model development. The form of the AR model 
is as follows: 

E
[
yi
⃒
⃒xi1,…, xip

]
= βο +

∑p

j=1
fi
(
xij
)

(3) 

Where 
∑p

j=1 fi
(
xij
)

are smooth functions fitted from data and βο is the 
regression coefficient. 2.3.2 REPTree model

REPTree is a fast learning and decision-making approach introduced 
by Breiman et al. ( 1984). This learning happens in two different phases, 
i.e., constructing the tree as correctly as possible from the training 
dataset and pruning the tree to minimise the dependency of the learning 
tree on the provided dataset (Breiman et al., 1984; Salzberg, 1994). 
Moreover, by splitting instances into parts, it handles the missing values. 
The number of instances per leaf, tree depth, and training set variation 
can be set to minimum, maximum, and minimum, respectively, with an 
optimal number of pruning folds (Witten et al., 2011). It generates and 
prunes regression trees through backfitting by reducing/increasing the 
variance or error (Joseph K and Ravichandran, 2012). It is one of the 
easiest yet most popular and effective ML techniques for categorizing 
issues (Bharti et al., 2017). Table 1 presents the parameters of REPTree 
model.

2.3.2. SVM model
The SVM (support vector machine) is a kernel-based method that 

follows the Vapnik–Chervonenkis (VC) principle (Vapnik, 1998). It was 
originally introduced to classify binary problems using the concept of a 
hyperplane that divides/separates the data into suitable classes 
(Cristianini and Shawe-Taylor, 2000). However, it has evolved signifi-
cantly and is used for function approximation and different pattern 
classification (Pan et al., 2009; Singh et al., 2011). Cortes and Vapnik 
(1995) introduced standard structure and its linear SVP and hyperplane 
can be given as follows: 

x1, y1 .…...xn, yn                                                                            (4)

wTx − b = 0                                                                                  (5)

where yn will be − 1 or 1, depending on which class xn fall; x is the 
normal vector to the hyperplane.

SVMs can be mapped in feature space (Fig. 4a). Using the hyperplane 
concept, SVM can minimise the estimation error and simultaneously 
generalise (avoiding overfitting) the model with reduced dimensions. 
Table 1 presents the parameters of the SVM model development.

2.3.3. Bagging
The Bagging, an acronym for Bootstrap Aggregating, is frequently 

used as an integrated (ensemble) decision tree classifier (Halmy and 
Gessler, 2015; Miao et al., 2012) by deploying on training samples to 
reduce variance (Briem et al., 2002). This integrated technique operates 
several independent predicting parameters and combines them with 
weighting or averaging (Breiman, 1996). Bagging is similar to the 
boosting technique in terms of ensemble decision tree classifiers; how-
ever, these two differ in essential technicality (Jafarzadeh et al., 2021). 
The Bagging algorithm layout is presented in Fig. 4b. Bagging creates a 
model based on bootstrap replicates of the given learning dataset; each 
is fed into a classification algorithm. The outcomes of each iteration are 
averaged with corresponding weights (generally with equal weights) to 
get an ensembled output, and classes’ labels are assigned (Halmy and 
Gessler, 2015). Table 1 presents the parameters of the Bagging model 
used for prediction.

2.3.4. RSS model
The RSS ML method is an ensemble learning method that minimises 

correlation among predictors in an ensemble through their training via 
random sampling rather than a complete feature set (Fig. 4c). These 
representative samples are used to generate a set of decision agents (Li 
et al., 2011; Pham et al., 2018) and further aggregate the outcomes on a 
voting basis (Ho, 1998). RSS is beneficial in case of a less/limited 
number of learning points. It also generates quality decision agents 
(classifiers) when the primary dataset contains redundant points 
(Skurichina and Duin, 2002). RSS technique can be represented as 
follows:

Let X = [x1, x2, …, xn] be a set of n numbers of independent pa-
rameters, and Y = [Y1, Y2, …, Yn] is a set of corresponding dependent 
parameters in the feature dataset. For sub-setting, the feature dataset, N 
samples, each of a size of Z, are randomly selected with uniform dis-
tribution to ensure no replacement is needed. Each random sample ex-
presses a subspace of X. Each subspace is deployed in the algorithm to 
generate a decision classifier. These classifiers are tested against the 
testing dataset and further aggregated/ensembled to produce most de-
cisions. The parameters of RSS model used in the prediction are listed in 
Table 1.

2.3.5. RF model
Breiman proposed a tree-based ensemble learning model called RF, a 

supervised classification model (Breiman, 2001). RF is an improved 
version of the bagging algorithm to predict regression problems 
(Fig. 4d). To minimise the variance with maximised outcome accuracy, 
RF parallelly trains several decision trees over different subsets of the 
original learning dataset with viewpoints of sample dimension and 
feature dimension (Dong et al., 2020). For better generalisation and to 
avoid overfitting, the final decision is made via integration/aggregation 
of all individual trees’ outcomes (Misra and Li, 2020). Further details 
about RF may be found in (Feng et al., 2017; Rahman and Islam, 2019). 
The parameters of the RF model used in the prediction are listed in 
Table 1.

2.3.6. Artificial neural network (ANN)
Since the early 19th century, artificial neural network models (ANN) 

have been utilised extensively as a “black box” model for water in the 
forecasting of stream flow, groundwater, water quality, water manage-
ment strategy, rainfall forecasting, and reservoir management 
(Bagherzadeh et al., 2021b; Elbeltagi et al., 2022a; Sayadi Shahraki 
et al., 2021). Bahrami et al. (2016) and (Li et al. (2012) recently 
demonstrated that this model does not require sophisticated 

Table 1 
The ML models’ parameters used for the prediction of SWI.

Model 
name

Description of parameters

RSS Random seed = 1, Classifier = REPTree, batch size = 100, executions 
slots numbers = 1, subspace size numbers = 0. 5, and iteration = 10

AR Number of iteration = 30, batch size = 100, Classifier = Bagging, and 
shrinkage = 1,

Bagging Batch size-100, bag Size percent = 100, Classifier = REPTree, max 
depth = 0, executions slots numbers = 1, iterations numbers = 10, 
random seed = 1

RF Batch size-100, bag Size percent = 100, max depth = 0, executions 
slots numbers = 1, iterations number = 100, random seed = 1

REPTree Batch size = 100, random seed = 1, Initial count = 0, number of folds 
= 3, minimum proportion of the variance = 0.001, minimum number 
= 2, and max depth = 1

SVM Kernel = Normalized Poly, Regression Optimizer = SMO Improved, 
Filter type = Normalize training dat, batch size = 100, C = 1, and 
cache size = 250,000

ANN Batch size-100; Learning rate = 0.3, Hidden Layer = 5,6; Momentum 
= 0.2; Nominal to filter = True; Normalize attributes = True; 
Normalized Numeric Class = True
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environmental processes. Using available historical data, Ubah et al. 
(2021) examined the impact of physical characteristics on water dis-
tribution. Dutta et al. (2010) employed the ANN model to simulate 
reactive dye adsorption and photocatalysis on a TiO2 surface system. A 
simple 3-layer neural network is shown in Fig. 4e. Table 1 presents the 

parameters of developed models used in prediction.

2.4. Statistical performance criteria

The comparison between the computed datasets of SWI and the 

Fig. 4. The methods under consideration include AR, REPTree, SVM, Bagging, RSS, RF, and ANN.
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foreseen values was carried out using several statistical indicators, 
including the root mean square error (RMSE), coefficient of determi-
nation (R2), mean absolute error (MAE), root relative squared error 
(RRSE), and Nash–Sutcliffe efficiency (NSE) (Elbeltagi et al., 2022a,b; 
Kushwaha et al., 2021, 2022; Pande et al., 2022). All these indicators 
defined as follows: N is total number of data points, SWIi

A is real value, 
SWIi

P is predicted value, and SWI−A or P is the average value of reference 
or predicted samples.

The RMSE denotes the sample standard deviation of the variations 
between actual and predicted SWI values. The performance improves as 
the RMSE value decreases. A value of 0 signifies accurate prediction 
(Kushwaha et al., 2022). It is computed by: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(SWIi

A − SWIi
P
)2

√

(6) 

The MAE is a commonly measures the difference between the actual 
and predicted values in a regression problem. The formula for MAE is 
calculated as the average of the absolute differences between the pre-
dicted and actual values of SWI, over all instances in the dataset. The 
value range of MAE is from 0 to infinity, where lower values indicate 
better predictive performance. A MAE value of 0 would mean that the 
model’s predictions are perfect and exactly match the actual values 
(Kushwaha et al., 2021). It is defined as follows: 

MAE=
1
N
∑N

i=1
|SWIi

P − SWIi
A

⃒
⃒
⃒ (7) 

The RRSE is calculated by standardising the overall squared error 
(SR) between the observed and predicted SWI values, and then dividing 
it by the total SR of predicted SWI. The RRSE index ranges from 0 to 
infinity, with 0 corresponding to the ideal (Kushwaha et al., 2022). The 

Fig. 5. Biscayne aquifer Vertical distribution of 0.5 isochores (17500 mg/l).
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RRSE value is calculated as follows: 

RRSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(SWIi
P − SWIi

A
)2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(SWIi
A − SWI−A

)2
√ (8) 

The NSE is determined by subtracting the ratio of the predicted SWI 
error variance to the observed SWI variance from 1. It ranges from - 
infinity to 1, with higher values indicating better model performance 
(Pande et al., 2022). The NSE value closer to 1 is desirable for the best-fit 
model. The NSE is calculated as follows: 

NSE=1 −

[∑N
i=1

(
SWIi

A − SWIi
p

)2

∑N
i=1

(
SWIi

A − SWI−A
)2

]

(9) 

The R2 assesses the model’s capacity to predict SWI in a linear 
regression context, with its values falling within the range of 0–1. A 
value of R2 approaching 1 is considered very good, indicating a strong 
predictive ability. Conversely, an R2 value closer to 0 suggests a weaker 
predictive performance (Elbeltagi et al., 2022a,b). The R2 is estimated 
using the following equation. 

R2 =1 −

∑N

i=1

(
SWIi

A − SWIi
p

)2

∑N

i=1

(
SWIi

A − SWI−A
)2

(10) 

3. Results

3.1. SWI under SLR and over-pumping

The projected saltwater intrusion (SWI) under the expected sea level 
rise (SLR) at Biscayne Bay was investigated to reach 84.86 cm by 2060 
(Abiy et al., 2019). The numerical model was simulated for a combi-
nation of SLR of 84.86 cm and increased the abstraction rate by 30% due 
to the expected increase in population. Moreover, Fig. 5a presents the 
SWI to reach 652 m due to the isochore 17,500 mg/l measured at the 
aquifer bottom compared to 473 m for the baseline case. According to 
the findings, rising seawater levels and over-pumping enhanced the SWI 
in the aquifer.

3.2. Controlling SWI using beach nourishment

Aquifer salinity management was applied by using beach nourish-
ment to check the potential of this mechanism to control SWI, consid-
ering three cases.

I. The first case involves changing the beach nourishment width. It 
was assigned for the simulated model in SEAWAT and extended 
towards the sea by changing the width from 0 m to 600 m, 
decreasing the fill permeability to 200 m day− 1, and assigning the 
precipitation of 0 mm year− 1. The SEAWAT results showed that 
the SWI reached 29 m, which is measured from the base of the 
aquifer to the shoreline (Fig. 5b).

II. The second case is changing the precipitation of beach nourish-
ment from 0 mm year− 1 to 190 mm year− 1 at the width 600 m 
and assigned the permeability of 1000 m day− 1. The intrusion 
reached 62 m from the shoreline at the bottom of the aquifer base 
(Fig. 5c).

III. The third case is changing the beach nourishment permeability 
material from 1000 m day− 1 to 200 m day− 1 and precipitation of 
0 mm year− 1 to 190 mm year− 1 at the beach nourishment of 600 
m. The simulation of this combination case indicated that the SWI 
reached 12 m at the aquifer bottom base (Fig. 5d).

After the model simulations using different parameters of fill 

material properties, the beach nourishment width was simulated from 0 
m to 600 by a step of 5 m at a permeability of 200 m day− 1 and the 
precipitation of 190 mm year− 1 to use these results in developing the 
machine learning model. The study indicated that increasing the beach 
nourishment widths mitigated the SWI and is considered a good tool for 
managing the influence of SLR. The SEAWAT results for mitigation of 
SWI in the current study area are used to develop ML models.

3.3. Machine-learning-based SWI prediction

The seven ML models such as additive regression (AR), support 
vector machine (SVM), reduced error pruning tree (REPTree), Bagging, 
random subspace (RSS), random forest (RF), artificial neural network 
(ANN) were developed and evaluated for the prediction of SWI in Bis-
cayne aquifer, Florida, USA. To attain good performance in the training 
and testing phases, all ML models undergo extensive training using a 
trial-and-error method. Table 2 exhibits the ML statistical indices of 
model performance during training and testing. Fig. 6 depicts the scatter 
plots of observed and predicted SWI during the testing phase.

According to the performance indices, the AR model showed average 
performance during both training and testing phases and has statistical 
performance indicators viz., R2, NSE, MAE, RMSE, and RRSE as 0.965, 
0.964, 27.006, 34.041 and 18.86 %, respectively during training and 
0.960, 0.959, 30.723, 40.051 and 20.065%, respectively, during the 
testing period (Table 2). The AR model failed to capture the temporal 
pattern of observed SWI values. The scatter plot in Fig. 6 shows the 
straight dots, which means the model predicted the same or near the 
same value of SWI in various occurrences. Thus, the model performance 
is unsatisfactory even though the performance indices are in a good 
range in the training and testing phases. The SVM model performed well 
and was identical in the training and testing phases (Table 2). The plots 
in Fig. 6 show the SVM model has well captured the SWI temporal 
pattern. However, the model underpredicted the peak values in both the 
training and testing periods (Fig. 6). Like the AR model, the REPTree 
model failed to match the temporal pattern and predicted the same SWI 
values in a few occurrences in the training and testing phases (Fig. 6). 
Also, the model performance is high in the training phase compared to 
the testing phase (Table 2). It implies the over-fitting nature of the 
REPTree model, even after extensive parameter tuning. However, the 
REPTree model performance is higher than the AR model but less than 
the SVM model (Table 2).

Bagging and RSS models’ performances are excellent in predicting 
the SWI values in the training and testing periods (Table 2) and matched 
the temporal pattern of observed values well. Scatter plots of Bagging 
and RSS models in Fig. 6 revealed that the values are precisely aligned 
with the 1:1 line with few deviations in the models’ predictions. The RSS 
model performance is comparatively higher than the Bagging model in 
the training phase; however, the Bagging model performance is higher 
in the testing phase than the RSS model (Table 2). The RF model per-
formance is excellent in predicting the SWI values, and it is better than 
the Bagging, ANN and RSS models in both training and testing periods 
(Table 2). Similarly, the RF model also captured the temporal pattern of 
SWI values well. However, there are no considerable deviations from the 
1:1 line in the scatter plot of the RF compared to the Bagging and RSS 
models (Fig. 6). It recorded the values of the statistical performance 
indices as 0.999, 0.999, 0.362, 0.440, and 0.243 %, respectively, for R2, 
NSE, MAE, RMSE, and RRSE during model training and 0.999. 0.999, 
0.324, 0.416, and 0.209 %, respectively, during the model testing 
period. Furthermore, from the statistical indices like MAE, RMSE, and 
RRSE, it is evident that the model performance is high in the training 
phase compared to the testing phase. That means the RF model’s over- 
fitting nature was not eliminated entirely, even after the extensive 
parameter tuning.

Fig. 7 compares the statistical performance parameters for the 
developed models. It is clear from Fig. 7a and b that the RF algorithms 
predicted SWI precisely compared to the other algorithms, had the 
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lowest RMSE, MAE, and RRSE values, and had high values of R2 and 
NSE. However, the AR model failed to predict SWI and showed high 
error metrics.

Although the above outcomes demonstrate the performance evalu-
ation of all ML models, it is better to summarise the comparison results 
through the Taylor diagram using the most accurate input structures 
obtained from the used evaluation criteria. The Taylor diagram presents 
a high-performance model concerning the observed data in a two- 
dimensional plot, which includes standard deviation on the y-axis and 
the RMSE on the radial axis. Taylor diagrams are presented in Fig. 8a 
and b for predicting SWI values using the ML models in training and 
testing phases, respectively. Fig. 8a and b shows that the SVM, Bagging, 
RSS, ANN and RF are superior to the other ML models as they are very 
near to the reference point in both the training and testing phases. 
Although the RF model is slightly over-fitted, it is still the best out of the 
four because it closely matched observed values with the fewest 
deviations.

4. Qualification of machine learning in the prediction of SWI

4.1. Cost-effective beach nourishment

The SWI is predicted using ML for beach nourishment of 615 m with 
fill permeability 200 m day− 1 and precipitation of 190 mm year− 1, and 
the intrusion reached − 10m from the shoreline. The cost-effective of 
using the beach nourishment was discussed by Abd-Elaty et al. (2022); 
the cost of 0.50 m depth of fill reaching $ 33,387 per acre ($5081.92 per 
unit meter length), the agriculture $ 790 per acre ($120.25 per unit 
meter length), the irrigation water cost $100 per acre ($15.22 per unit 
meter length). The yield reached $1950 per acre ($296.81 per unit meter 
length), and the precipitation water harvesting by the fill reached 
116.85 m3 year− 1 For 190 mm year− 1 ($70.11 per unit meter length). 
The total revenue for using beach nourishment for a width of 615 m 
reached ($231.45 per unit meter length, as presented in Fig. 9.

4.2. Practical implications of the present study

Saltwater intrusion (SWI) is a critical issue with multifaceted im-
plications for both the environment and society. In coastal regions, SWI 
poses a substantial threat to potable water sources and ecosystems, 
making it an issue of paramount concern. The following points elucidate 
the practical significance of our findings:

Preservation of Potable Water Sources: SWI can lead to ground-
water contamination, which serves as a vital source of drinking water for 
coastal communities. As sea levels rise, the intrusion of saline water into 
freshwater aquifers becomes exacerbated. Our research, particularly the 
accuracy of the Random Forest (RF) model, equips these communities 
with a tool for early detection and proactive management of SWI. This is 
instrumental in safeguarding the quality and availability of potable 
water, reducing the risks associated with salinity for public health.

Agricultural Sustainability: Coastal regions often support 

agricultural activities that are dependent on freshwater resources. SWI 
can adversely affect soil salinity, diminish crop yields and threaten food 
security. The soil salinisation will occur by abstraction and using the 
groundwater in the irrigation process through the production wells. 
Climate change caused by rising sea levels and over-pumping from 
coastal aquifers has led to an increase in coastal groundwater salinisa-
tion and soil salinity through agricultural activities. Mazhar et al. (2022)
studied the impacts of salinisation caused by SLR on the biological 
processes of coastal soils. The study showed that the effects of SLR on C 
and N cycles and, consequently, on GHG emissions from coastal soils are 
highly variable, depending on the contrasting and concomitant effects of 
flooding and salinity. Abd-Elaty et al. (2023b) studied the impact of SLR 
on groundwater salinity of the Nile Delta, Egypt. The results showed that 
with the projected SLR of 61 cm by 2100, there was an overall salt 
volume increment of 3 %. Also, Abd-Elaty et al. (2024) showed the 
hazards of SLR and dam projects built on the downstream River Nile 
water budget and the salinity of the Nile Delta aquifer. The study showed 
that the Grand Ethiopian Renaissance Dam reservoir filling could alter 
the freshwater, in which the aquifer salinity increased by 29.99% for 
SLR by 100 cm, increasing abstraction rates by 100% and filling the 
reservoir at elevations 645 m. By employing accurate SWI predictions, 
farmers can make informed decisions regarding irrigation practices and 
crop selection, thereby enhancing agricultural sustainability and 
reducing economic losses.

Infrastructure Resilience: Infrastructure in coastal areas, including 
roads, buildings, and utilities, is vulnerable to the corrosive effects of 
SWI. Accurate SWI prediction enables better planning and design of 
infrastructure projects, considering future sea-level rise scenarios. This, 
in turn, contributes to increased resilience against the detrimental im-
pacts of saltwater on critical infrastructure components.

Environmental Conservation: Ecosystems in coastal regions are 
intricately linked to freshwater availability. SWI can disrupt these 
delicate balances, leading to habitat degradation and loss of biodiver-
sity. Informed conservation efforts contribute to the overall health and 
sustainability of coastal environments.

Policy Formulation: Accurate SWI predictions can inform decisions 
regarding land use and sustainable water management practices.

There are many practical implications of this study. Accurate SWI 
predictions are crucial for coastal communities. The RF model’s preci-
sion empowers these communities to proactively plan for and mitigate 
the impacts of salinity on agriculture, drinking water supplies, and 
infrastructure. The study also supports the effective allocation and 
conservation of freshwater resources along coastlines. This ensures 
sustainable agricultural practices and reduces risks associated with SWI, 
benefiting both the environment and local economies. Policymakers can 
leverage these findings to enact measures that address SWI. Informed 
policies on land use, agriculture, and infrastructure can enhance envi-
ronmental resilience and economic stability in coastal regions. In-
dustries reliant on freshwater resources, such as agriculture and 
aquaculture, can better plan and adapt with the knowledge provided by 
accurate SWI predictions. This reduces economic losses due to 

Table 2 
Statistical indices of ML models in training and testing phases.

Statistical Indicator AR SVM REPTree Bagging RSS RF ANN

Training
R2 0.965 0.999 0.997 0.998 0.996 0.999 0.997
NSE 0.964 0.999 0.997 0.997 0.996 0.999 0.996
MAE 27.006 2.169 6.866 4.422 3.954 0.362 3.569
RMSE (m) 34.041 2.684 8.480 6.353 5.264 0.440 4.430
RRSE (%) 18.86 1.487 4.699 3.519 2.917 0.243 2.455
Testing
R2 0.960 0.999 0.995 0.998 0.998 0.999 0.999
NSE 0.959 0.998 0.995 0.997 0.997 0.999 0.998
MAE 30.723 4.633 12.278 5.903 6.431 0.324 3.038
RMSE (m) 40.051 5.585 13.839 7.361 8.021 0.416 3.791
RRSE (%) 20.065 2.798 6.934 3.688 4.049 0.209 1.899
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Fig. 6. Scatter plots of observed and predicted SWI using the ML models during testing period.
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unexpected shifts in salinity levels.

5. Discussion

Predicting the SWI values is necessary for groundwater management 
in coastal areas. The comparative performance of additive regression 
(AR), support vector machine (SVM), reduced error pruning tree 
(REPTree), Bagging, random subspace (RSS), random forest (RF), 

artificial neural network (ANN) model revealed that the SVM, Bagging, 
RSS, ANN and RF models have a great potential in predicting the SWI 
values with the limited data in the study area. The performance ranking 
of these four models for the study area is RF > ANN > SVM > RSS >
Bagging. Furthermore, the Random Forest (RF) model emerged as the 
best-fit model out of the seven applied machine learning models in terms 
of lower values of error metrics and higher values of R2 and NSE for SWI 
prediction.

The random feature selection at each split helps diversify the 
learning process, preventing any single feature from dominating the 
model’s predictions. Additionally, the study employs thorough cross- 
validation and hyperparameter tuning, ensuring the model generalises 
well to unseen data. With a substantial and diverse dataset, RF is well- 
equipped to handle the complexity of the prediction task without 
overfitting. Its advantages include high predictive accuracy, robustness 
to non-linear relationships, interpretability through variable importance 
analysis, and resilience in handling missing data, making it an excellent 
choice for this prediction task. The AR and REPTree, models do not 
capture the temporal pattern of the observed SWI. This could be 
attributed to the unavailability of long-time series data for effective 
training. The AR and REPTree might be more sensitive to the limited 
data. From the statistical indices (Table 2) and scatter plots (Fig. 6), the 
RF model is judged as the best ML model to predict the SWI.

Based on Table 3, Pham et al. (2022) used multiple linear regression, 
RF, and ANN to predict the SWI and concluded that the ANN model is 
better than the other models. However, the reported NSE value of ANN 

Fig. 7. Radar chart for the best RMSE values (a) the training data and (b) the testing data set.

Fig. 8. Taylor diagram for (a) the training data and (b) the testing data set.

Fig. 9. Costs and revenue for beach nourishment of 615 m in the Bis-
cayne regions.
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was 0.842, which is less than the presented study. Lin et al. (2019) used 
Bayesian Model Averaging (BMA) method to ensemble the RF, SVM, and 
Elman Neural Network (ENN) models for the prediction of SWI. They 
concluded that the RF model performance is higher than the SVM model. 
These findings are consistent with the current study. Dong et al. (2010)
introduced a novel neural network model known as BP-RAGA (Back-
propagation-Real Coding Accelerated Genetic Algorithm). This model 
was specifically designed to forecast saltwater intrusion in the Ping Gang 
water source of Zhuhai City. It incorporated essential variables such as 
the tidal range of the water resources and the observed flows from the 
upstream hydrological station for the preceding day as key influencing 
factors in its predictions. To develop an integrated forecast of SWI, Lu 
et al. (2021) used the BMA approach to merge the forecasting outputs of 
the RF, SVM, and ENN models. However, the highest NSE value of the 
proposed method in forecasting is 0.78, which is less than the presented 
study.

Using input-output patterns from a numerical simulation model, Lal 
and Datta (2018) employed the SVM model to forecast SWI in a coastal 
aquifer. The SVM model performance in their study is identical to our 
model results, with an NSE value of 0.99. Another study (Bagherzadeh 
et al., 2021a) evaluated seven feature selection methods to enhance total 
nitrogen (TN) prediction using ML in wastewater treatment plants for 
efficiency and cost reduction. Random Forest (RF) and Gradient Boost-
ing Machine (GBM) outperformed Artificial Neural Network (ANN), 
with GBM excelling in generalising patterns on unseen data, showcasing 
its effectiveness for wastewater component prediction.

The present study also revealed that the RF model is superior to AR, 
SVM, REPTree, Bagging, RSS, and ANN in predicting SWI under data 
scarcity. Although we cannot directly compare the model performances 
with the existing literature due to the varying conditions of the study 
areas, the results presented in this study align with those of other studies 
for predicting SWI.

6. Conclusions

The study focuses on the importance of using beach nourishment for 
saltwater intrusion (SWI) management in the coastal areas as it affects 
the fresh groundwater especially with sea level rises and over-pumping 
in the Biscayne aquifer, USA. Therefore, the SEAWAT model was applied 
to simulate SWI dynamics and develop ML models to forecast SWI, using 
different models such as additive regression (AR), support vector ma-
chine (SVM), reduced error pruning tree (REPTree), Bagging, random 
subspace (RSS), random forest (RF), and artificial neural network 
(ANN). The results demonstrated that using beach nourishment, such as 
landfill width, permeability, and precipitation, can effectively mitigate 
SWI. Beach nourishment showed the most promising results, suggesting 
their practical application for managing SWI. The comparative 

evaluation of seven machine learning models for SWI prediction indi-
cated that the RF model emerged as the best-fit model with statistical 
measures as 0.999, 0.999, 0.362, 0.440, and 0.243, respectively, for R2, 
NSE, MAE, RMSE, and RRSE during the model training phase and 0.999. 
0.999, 0.324, 0.416, and 0.209, respectively during model testing phase. 
The ability of the RF model to capture SWI patterns and predict values 
with minimal deviations makes it a valuable tool for SWI forecasting. 
However, the performance of the ANN, SVM, Bagging and RSS models 
was found to be satisfactory. This research provides practical solutions 
for managing SWI, emphasises the importance of accurate predictions, 
and highlights the cost-effectiveness of beach nourishment measures. 
The findings have significant implications for coastal communities, in-
dustries, and policymakers dealing with the challenges of SWI.
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Ham Luong 
River, Ben 
Tre Province

Multiple Linear Regression (MLR), 
Random Forest Regression (RFR), 
Artificial Neural Networks (ANN)

NSE, RMSE, and MAE ANN model (NSE =
0.842, RMSE = 1.16, 
MAE = 0.11)

The ANN model showed better result 
rather than other algorithms

Pham et al. 
(2022)

Pearl River 
Delta

Bayesian model averaging (BMA), 
random forest (RF), support vector 
machine (SVM), and Elman neural 
network (ENN)

NSE and percentage of bias 
(Pbias)

BMA (NSE = 0.79, 
Pbias = 11.4)

The BMA approach outperformed the 
individual models (i.e., RF, ENN, and 
SVM)

Lin et al. 
(2019)

Coastal aquifer support vector machine regression 
(SVMr), genetic programming (GP)

RMSE, mean square error 
(MSE), relative error (RE), 
correlation coefficient (Cc), and 
NSE

SVMr (Cc = 0.996, 
NSE = 0.99, MSE =
0.149 and RMSE =
0.386)

The SVMr is superior to GP models Lal and 
Datta 
(2018)

Ping Gang 
water source 
of Zhuhai city

ANN, alog with Real coding based 
accelerating genetic algorithm (RAGA) 
and Back propagation (BP)

NA NA The BP-RAGA coupled neural 
network model proved to be superior 
to BP neural network model in 
precision

Dong et al. 
(2010)
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