
Transient Analysis and Synthesis of Linear Circuits using Constraint Logic
Programming

Archana Shankar, David Gilbert, Michael Jampel

{shankar,drg,jampel}@cs.city.ac.uk

Department of Computer Science, City University

London, UK

In this paper describes the design of a transient analysis program for linear circuits and its implementation
in a Constraint Logic Programming language, CLP(R). The transient analysis program parses the input
circuit description into a network graph, analyses its semantic correctness and then performs the transient
analysis. The test results show that the program is at least 97% accurate when run at two decimal
places. We have also compared the performance of our program with a commercial package implemented
in an imperative language. The advantages of implementing the analysis program in a CLP language
include: quick construction and ease of maintenance. We also report on the synthesis of generation of a
circuit with given transient characteristics.

1. INTRODUCTION

Electrical circuit analysis is done in order to allow the designer to verify his design and to predict the
response of the system under varying conditions of load and excitation.

A circuit can be analysed at different points in time. Whenever a switch is closed in a circuit, the voltages
and currents in the circuit take some time to settle down to their final values; the components of voltages
and currents that die down are called as transients. Transient analysis of a circuit is done at the time of
switching to study the effects of the transients as well as to determine the time taken by the system to
settle down.

The behaviour of the circuit as a function of time is studied under transient analysis. The inductors in the
circuit are replaced by their equivalent current sources and resistances, and the capacitors in the circuit
are replaced by their equivalent voltages sources and resistances. The circuit voltages and currents are
calculated at the time of switching (usually at t = 0); this is the initial condition solution. The voltages
across the capacitors and the currents across the

Inductors are used to calculate the circuit voltages and currents at each time step; this is done repeatedly
for a designated amount of time and the results are then plotted. Constraints provide an elegant means of
stating relationship among objects that should be maintained by the underlying system.

2. BACKGROUND

Electrical circuits consist of electrically (and sometimes magnetically) connected building blocks.
Examples of building blocks are resistors, inductors, capacitors, voltage sources and current sources.

The calculation of voltages and currents in a circuit and its response to input excitations form the basis for
analysing a network. The mathematical tools involved in analysis are the basic voltage-current
relationships for the circuit elements, rules for generating simultaneous equations, and solution
procedures for these equations. The tools involved in analysis are the basic voltage-current relationships
for the circuit elements, rules for generating simultaneous equations, and solution procedures for these
equations.

2

Circuits in which radiated electromagnetic energy may be assumed negligible are called lumped circuits
and they are obtained by interconnecting lumped component circuit elements. The lumped component
circuit elements are idealised models of physical elements. The circuit analysed is therefore not the
physical circuit, but its mathematical model.

The node method consists of summing the currents at each node in the network with unknown voltages at
the nodes and solving the resultant equations for the voltages.

The basic relations for circuit analysis are the first two laws of Kirchoff :

1. The sum of all currents entering a node must equal the sum of all currents leaving it (current law or
KCL).

2. The sum of all voltages in a given loop must be equal to zero (voltage law or KVL).

One or the other of the above laws is applied to every independent node or independent loop of the
network in analysis. The voltage-current relationships for passive elements in a linear circuit are
characterised by i= y.v with y = 1/R for a resistor, 1/L for an inductor, or C for a capacitor where R is
the resistance, L is the inductance, C is the capacitance, and y is the admittance; in the AC analysis, i and
v are complex valued phasor representations for the current and voltage.

3. ANALYSIS OF A NETWORK

The elements that are used in this analysis is a minimum subset of elements that are present in a network
; those used in our program comprise passive elements - resistance (R), inductance (L), capacitance (C),
and active elements (Sources) - independent voltage sources (V) and independent current sources (I).

In our analysis we will consider only accompanied voltage sources as unaccompanied sources present
difficulties when forming the branch admittance matrices. Since the accompanying resistance R is zero,
the admittance (1/R), becomes infinite and the current through the branch becomes indeterminate.

The voltage-current relationships for the passive elements lead to the matrix equation

Ie = Ye.Ve

where Ye is a diagonal matrix of M rows and M columns if the network consists solely of resistors,
inductors and capacitors.

3.1. THE INDUCTOR MODEL

The voltage-current relationship for an inductor of value L is

i t
L

v t dt i
t

t

() () ()= +
=
∫

1
0

0

where i(0) is the current in the inductor at time t=0. The voltage values are calculated at equally spaced
time intervals t0, t1 ... tk-1, tk

The integral can be replaced by trapezoid approximation

v t dt t v v
t

t

k k() ()≈ +
=
∫ −

1

20

1∆

with ∆t being the time step. The current is now a linear relationship

ik = ik-1 + ½ ∆t (vk-1 + vk)

The last equation is of the form

i = I + g.v

The value of g will not change during the entire calculation. However, the value of I must be readjusted
at every new time value.

3

3.2. THE CAPACITOR MODEL

The voltage-current relationship for a capacitor C is

i(t) = Cdv(t)/dt

The current at time t = tk is

ik = C dv/dt  t=tk

The slope of the voltage vs. time curve may again be approximated. Once such approximation is

dv/dt  t=tk ≈ 1/∆t (vk - vk-1)

Hence the capacitor current is approximated by

ik = C/∆t (vk - vk-1)

The last equation is of a conductance of value C/∆t in series with a voltage source vk-1 .

Since each branch contains only one component, the element currents Ie and element voltages Ve may be
separated as follows:

IL VL

Ie = IR Ve = VR

IC VC

where IL, VL refer to the currents and voltages across the inductors in the network; IR, VR refer to those
across the resistors in the network and IC, VC refer to those across the capacitors in the network.

This derivation assumes that the branches in the network graph are numbered such that the inductors are
in a group of branches followed by the resistors and then by branches containing the capacitors.

The currents and voltages of the various elements are related as follows:

IR = [1/R] VR

IC = [C] 1/∆t (VCi - VCi-1)

ILk = [L] -1∆t/2 VLk + [L]-1∆t/2 VLk-1 + ILk-1

Hence the element currents at time tk are given by

Iek= Ye .Vek + Ipk-1

The vector Ipk-1 contains all the past history of the inductors and capacitors in the circuit.

At time t = 0, the
vector Ipk-1 does
not exist. For
this, the initial
condition, the
inductor is
replaced by a
very small
conductance in

parallel with the current source denoted by I0, the initial current across the inductor. The capacitor is

(∆t/2)[L] -1 0 0 VLK (∆t/2) [L] -1 *VLK +I LK-1

 Iek = 0 [1/R] 0 VRK + 0

0 0 (1/∆t)[C] VCK -(1/∆t)[C] * V ck-1

4

replaced by a small resistance in series with the voltage source V0, the initial voltage across the capacitor.
Then, the capacitor voltages and inductor currents are solved, and these form the basis for calculating the
first Ip, so that normal circuit equations may be formed for t = ∆t.

4. DESIGN

The transient analysis program is implemented as an analytical tool (an interpreter) to simulate the
behaviour of an electrical circuit. Nodal analysis of the network (i.e. calculation of the currents and
voltages at different nodes (location) in the network) is carried out and the results are output to the user.
Nodal analysis is based on the algebraic manipulations of matrices.

Therefore any input given by the user has to be suitably transformed before the actual analysis can take
place. In this program, one of the inputs is a file containing a description of the circuit topology and the
other inputs are the analysis time, the nodes at which output voltages should be calculated and the file to
which CLP(R) should write the output. The transformations take place in the parser and the analyser, the
voltages and currents are calculated in the interpreter, and the results are displayed as output.

The interpreter is the process which does the actual transient analysis of the given circuit. It requires as
inputs, the circuit topology the time scale for which the simulation should run and the desired output from
the program. The circuit topology is described using a Circuit Definition Language defined by us for this
purpose. A parser checks the inputs and reports any syntactic errors back to the user and the output
from the parser is in the form of a network graph.

The network graph is then passed on to the analyser. The analyser performs a semantic analysis of the
network, reporting any errors back to the user. It also converts the network graph into matrices and
passes them on to the interpreter. The interpreter has access to CLP(R) and to a purpose built library
implementing various matrix operations as an abstract data type. The interpreter calculates and outputs
the dynamic behaviour of the circuit (i.e. the change of node voltages over a period of time as specified by
the user).

Apart from the circuit description, the user has to input other information such as the time step, the start
time and end time of analysis, the output nodes which are of interest as well as a file name to which
CLP(R) can write the output.

5

 CDL FILE σ
 LOGIC TERMS

 PARSER
 PARSE TREE

 ANALYSER

 USER σ ANNOTATED ERROR σ
 INPUT PARSE TREE MESSAGES

 INTERPRETER

 LIBRARY σ USER σ
 OUTPUT

 - PROCESS

 σ - FILE

Figure 1 Transient analysis program structure

4.1. CIRCUIT DEFINITION LANGUAGE

The circuit details must be presented in a specific manner and in this program, this is done using a
language called the circuit definition language which will be defined in this section.

The language has to represent in a unique way all the circuit elements and has to distinguish between the
active elements such as the current source and the voltage source (the drivers), and the passive elements
such as the inductors, the capacitors and the resistors.

The connection of each element in the network is indicated by the two nodes to which it is connected. A
node is represented by the letter n followed by a digit. Numbering of the nodes starts from 0. In electrical
engineering, voltages are measured as the potential difference between two any two nodes. When one
of such nodes is at zero potential it is called as the ground and is represented as n(0). All voltages are
measured relative to the ground. An example is:

circuit([voltage_source(v1,30,5,n(0),n(1))],

[inductor(l1,10,1,n(2),n(1)),

resistor(r1,10,n(0),n(2)),

resistor(r2,10,n(2),n(0))]).

6

4.2. PARSER

The parser reads the input file and converts it into a network graph. The network graph we use is
represented by two sets: the set of independent nodes in the circuit and set of branches or arcs in the
circuit. Each branch in the circuit is given a number by the parser. This number is used later on by the
analyser to form the network matrices and then by the interpreter to manipulate the matrices. The
branches containing inductors in the circuit are numbered first, followed by the resistors, the capacitors,
the voltage sources and finally the current sources. The output of the parser is a positionally ordered set
of arcs and an ordered set of nodes. The parse is not unique for the arcs as the ordering in the set of arcs
depends on the ordering in the input file. However, the time taken to parse the file does not depend on
the ordering of the input file.

4.3. ANALYSER

The analyser transforms the inputs i.e. the set of arcs and the set of nodes into matrices. In addition it
also does a semantic analysis of the network, reporting errors back to the user. The matrices form the
foundation for the nodal analysis of the network and so the analyser plays an important part in the
program.

The outputs of the analyser are the incidence matrix (A), the admittance matrices (Yb and Yb0), the
independent current matrix (Ig) and the independent voltage matrix (Vg). The product of the incidence
matrix and the branch current matrix represents the network graph at the end of the analysis process. In
the semantic analysis, the analyser checks to see if the circuit is connected properly and detects open
circuits. The analysis is done by checking that the number of elements in the arc list is greater than the
number of elements in the node list. If the node list is the larger list, the incidence matrix is used to locate
which of the branches are open. The results of the semantic analysis are output to the user.

4.4. SEMANTIC ANALYSIS OF THE NETWORK

The circuit definition file is context sensitive due to the inclusion of the nodes in the language. Therefore,
the file has to be checked to ensure that it is correct semantically. In semantic analysis, the network is
checked to ensure that it is connected properly i.e. the branches are all connected to one another and
there are no open circuits. The incidence matrix and the network graph are used in the check. In a
properly connected circuit, the number of nodes is always less than or equal to the number of elements.
Hence, the first check is made on the number of arcs and the number of nodes in the network graph. If
the nodes are greater in number than the arcs, it implies that the circuit is not properly connected. If the

 1 A
 n1 n2

 10 h

 5Ω
 10Ω 10Ω

 30 V

 n0

7

network is open, the incidence matrix is used to determine which of the branches are open. This can be
found out from the fact that every node has at least two connections to it. In other words, every row in
the incidence matrix should have more than one non-zero column in it. If a row has just one entry that is
non-zero, then that node is the open node.

4.5. INTERPRETER

The interpreter is the process that performs the actual transient analysis. The matrices from the analyser
and the time input by the user are the inputs to this process. The interpreter steps through the analysis,
one time step at a time from the initial time Tini to the final time Tfin calculating the currents and voltages
required by the next iteration. The time step is represented by δt. The past history of the capacitors and
the inductors are represented by the matrix Ip. At each iteration, the output voltages and currents are
accumulated and at the end of the analysis, are sent to the output process. The interpreter makes use of
the operations defined in the matrix library to calculate the voltages and currents. The output process is
used to output the results of the analysis. The node voltages of interest to the user are by default printed
on to the screen for each time step. A copy of the output is also written to an output file at the request of
the user.

4.6. MATRIX LIBRARY

To implement the abstract data type of matrices, operations such as multiplication, addition, subtraction,
transpose, determinant and inverse have been defined. The definition of matrix inverse is: if A is the
matrix to be inverted, I is a unit matrix, and AxB = I , then B is the inverse of A. This can be
implemented very elegantly and economically in CLP(R) by making use of the multi-directionality of
logic programs. Since matrix multiplication has already been defined, it can be used to find the inverse
and a separate predicate need not be defined. This is also very efficient.

5. TESTING

The transient analysis program was tested using the examples given in Staudhammer [STAU75]. For the
analysis, the inductors and capacitors in the circuits are replaced by their equivalent models as discussed
in Section 2. The calculations start with the determination of the initial conditions existing in the
network, prior to the application of the time-iterations. The initial conditions should be consistent to gain
a meaningful result: for example, if we replace a 0.5 farad capacitor by two 1 farad capacitors, we would
expect the initial voltage across the two separate capacitors to be equal.

As an example, let us consider the RL circuit of Fig. 3-2. The inductor connected between node 1 and
node 2 has an initial current of 1 ampere flowing through it. The solution to this network is given by the
following equations in [STAU75]:

V1(t) = 15 + 10e-T/τ

V2(t) = 15 - 10e-T/τ

with τ = L/RT = 1 since, RT, the total resistance that exists in the current loop of the network is equal to
10 ohms.

The analysis was carried out with an initial time of 0, a time step of 0.1, and a final time of 5 seconds.
Table 1 shows a comparison between the expected results (V1 and V2) and the actual results obtained
(n(1) and n(2) represent the voltages at node 1 and node 2 respectively) for selected values, presented at
time intervals of 0.5 seconds for reasons of clarity.

Time

(sec)

V1

(volts)

n(1)

(volts)

V2

(volts)

n(2)

(volts)

8

Time

(sec)

V1

(volts)

n(1)

(volts)

V2

(volts)

n(2)

(volts)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

25.00

21.06

18.68

17.23

16.35

15.82

15.50

15.30

15.18

15.11

15.07

25.00

21.06

18.68

17.23

16.35

15.82

15.50

15.30

15.18

15.11

15.07

5.00

8.94

11.32

12.77

13.65

14.18

14.50

14.70

14.82

14.90

14.93

5.00

8.94

11.32

12.77

13.65

14.18

14.50

14.70

14.82

14.89

14.93

Table 1- Comparison of expected results with actual results
Comparison of the expected results with the actual results shows that the program is 99.99% accurate at
2 decimal places; the only discrepancy occurring when time is equal to 4.5 seconds. See [SHAN95] for
detailed results of this and other examples, where the minimum accuracy is 97%.

The test results show that CLP(R) can be used to perform transient analysis of circuits with accuracy and
ease. The response time of CLP(R) is very fast. For example, in the test, CLP(R) had to solve 700
equations and this was done within 2 seconds.

6. BACKWARD EVALUATION

One of the main benefits of implementing the transient analysis program in CLP(R) is that in addition to
the analysis, we can use the same program for design. For example for the circuit in Fig 3-2, we can
query the program as to what should be the value of the voltage source and the initial current across the
inductor so that the node voltages at n1 and n2 are 25 and 5 respectively.

circuit([voltage_source(v1,V,5,n(0),n(1))],
 [inductor(l1,10,I,n(2),n(1)),
 resistor(r1,10,n(0),n(2)),
 resistor(r2,10,n(2),n(0))]).

The program comes out with the answer V = 30 and I = 1. To accomplish the same result in an
imperative language either a different program has to be written or the simulation has to be run several
times with different values of V and I and the answer to the question found by trial and error. We note
that due to the fact that the transient analysis maps inductors and capacitors to resistors, the generation of a circuit
given an expected transient behaviour requires the provision of a skeleton circuit which describes what type of
components are in it. Our method then is able to generate values for the skeleton components.

Currently we are extending the system to permit the description of transient behaviour as constraints within ranges
rather than absolute values. At the same time we are enhancing our Circuit Definition Language to permit the
description of circuits using constraints in the form of ranges and relationships between values. In this way we
permit the synthesis of circuits with constrained values from a required constrained description of its behaviour.
This will permit circuit designers to select the tolerances of circuit components, and thus potentially to ensure that
circuit components used have only the required level of tolerance, thus potentially saving manufacturing costs.

9

7. COMPARATIVE TEST

The time taken by the transient analysis program to evaluate a 13 element circuit was compared against
the time taken by PSPICE to evaluate the same circuit. A larger example was used in order to get better
precision in comparison. See [SHAN95] for full details.
PSPICE is designed to be the micro computer version of SPICE, the acronym for Simulation Program
with Integrated Circuit Emphasis, developed by the University of Berkeley, California.

PSPICE took about 5 seconds to analyse the circuit while our program took about 16 seconds. The tests
were run on a 486 DX machine and the time taken by the two programs is the total time and not CPU
time alone. The reasons for the slower response time could be as follows: firstly our program being a
prototype, is not optimised for efficiency and speed while PSPICE is an optimised commercial package.
Secondly, our program is not compiled, but is interpreted by the CLP(R) interpreter while PSPICE is an
compiled executable. There could also be a penalty for calculating inverses at each time step. Since our
matrix library is a standalone module, it can be replaced by other faster more efficient library routines.

8. RELATED WORK

CLP(R) has been used to in the design and analysis of circuits by [HEIN92] and also used by [FATT94]
to model dynamic systems in general.

In [HEIN92], CLP(R) was used for the analysis of circuits such as RLC circuits, transistor circuit design
etc. Steady state, or static analysis, is done on RLC circuits containing voltage sources, current sources,
resistors, inductors and capacitors.
A general purpose approach has also been adopted by [FATT94] to model dynamic systems using bond
graphs and CLP(R). The structure of the dynamic system is described using a bond graph language. The
circuit is analysed using state space analysis and the resulting differential equations are solved using a
relational differential equations solver implemented in CLP(R).
In [HONG94] a solver for differential equations described, included an example program to solve simple
relationships over electrical circuits. We believe that this system could provide a good implementation
platform for extensions to our work.

9. FURTHER WORK

Our work has demonstrated that CLP(R) and its multi-directional capabilities can be used in a particular
application domain which is generally considered to be more suitable for imperative languages. We
concentrated on the DC analysis of linear RLC networks and as it stands can be used as a teaching aid for
undergraduates. To make it a commercially viable package the following have to be added:

• Providing an integrated windows environment for the program

• Addition of further circuit elements to the basic set considered here.

• Adding constraints to the circuit definition language (the circuit description) used in the program.

Adding constraints to the input and output and implementing the program in an integrated graphics
environment will be of great use to the designer since the cost of circuit components is related to the
tolerances (i.e. constraints) to which they are manufactured.

10. SUMMARY AND CONCLUSIONS

This paper investigates the implementation of transient analysis of linear circuits in constraint logic
programming, and provides a declarative alternative to the procedural approach usually adopted to model
electrical circuits.

The start time, end time and time step of the analysis are user-provided, and the nodes for which the
voltages and currents are calculated. The parser converts the circuit description into a network graph

10

represented by two sets - the set of arcs and the set of nodes. The analyser checks the network graph for
open connections and converts the network graph into matrices required by the interpreter. The
interpreter steps through the analysis calculating the required voltages and currents and then informs the
user about the results of the analysis. The tests conducted show that the accuracy of the program was
99% at two decimal places.

We have also shown that implementing the analysis package in CLP(R) enables us to use the same
package for designing a circuit as well. Using the desired output as the constraint, the necessary inputs
to the circuit were calculated. Multi-directionality of CLP(R) was also used to define the inverse of a
matrix in terms of multiplication alone, thereby avoiding the task of defining a new predicate to calculate
the inverse.

Future work should include additional elements such as transformers and dependent sources, thereby
extending the range of circuits that can be analysed. Another important extension would be the inclusion
of constraints as part of the circuit description itself.

The process of implementing the program in CLP(R) has enabled us to reason about the circuit itself as
well as the analysis, thereby increasing our understanding of the problem. The declarative language used
has proved to be very useful in the implementation. Backward evaluation makes the analysis tool a
design tool as well. Given a known output, the program was able to deduce the values of the input
excitation. The same technique was used to find the inverse of a matrix. Coding of the entire program
was followed easily from the logical design. The code is readable and hence maintenance is easy. Given
that our system was a interpreted prototype, its performance compares very well with a commercial
package which has been implemented in a compiled imperative language.

Finally, an advantage of our approach is that we are able to generate instances of circuits from general
schemas and descriptions of their required behaviour.

11. REFERENCES

[BOUT88] Boute Raymond T., ‘Systems Semantics : Principles, Applications, and Implementation’ in
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988, pp. 118-
155.

[FATT94] El Fattah Y. and Holzbaur C., ‘Constraint Logic Programming for Modelling and Simulation
of Dynamic Systems’, in ‘Proceedings ILPS ‘94 workshop on Constraint Languages/Systems & their use
in Problem Modelling’, Vol 1, Nov 1994.

[HONG94] Hoon Hong, ‘RISC-CLP(CF) Constraint Logic Programming over Complex Functions’,
LPAR94

[JAFF87] Jaffar J. and Lassez J.L., ‘Constraint Logic Programming’, in Proceedings of the Fourteenth
ACM Principles of Programming Languages Conference, Munich, January 1987.

[JAFF92] Jaffar J., Michaylov S., Stuckey P., and Yap R., ‘The CLP(R) Language and System’ in ACM
Transactions on Programming Languages and Systems, Vol 14 No 3, July 1992, pp. 339-395.

[HEIN92] Heintze N., Michaylov S., Stuckey P., ‘CLP(R) and Some Electrical Engineering Problems’
Journal of Automated Reasoning, Vol 9, 1992, pp 231-260.

[NERI70] Nering E.D., Linear Algebra and Matrix Theory, John Wiley and Sons Inc., New York, 1970.

[NILS93] Nilsson J.W., and Riedel S.A., Introduction to PSPICE, Addison-Wesley Publishing Company
Inc., 1993.

[STAU75] Staudhammer John, Circuit Analysis by Digital Computer Prentice-Hall Inc., 1975.

[SESH63] Seshu S., and Balabanian N., Linear Network Analysis, John Wiley & Sons, Inc., New York,
1963.

[SHAN95] Shankar A., Gilbert D., Jampel M., Transient Analysis of Linear Circuits using Constraint
Logic Programming, Technical Report TCU/CS/95/17, City University Computer Science Department,
London,

