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Abstract. This paper evaluates the capability of two state-of-the-art artificial in-
telligence (AI) models, GPT-3.5 and Bard, in generating Java code given a function
description. We sourced the descriptions from CodingBat.com, a popular online plat-
form that provides practice problems to learn programming. We compared the Java
code generated by both models based on correctness, verified through the platform’s
own test cases. The results indicate clear differences in the capabilities of the two
models. GPT-3.5 demonstrated superior performance, generating correct code for ap-
proximately 90.6% of the function descriptions, whereas Bard produced correct code
for 53.1% of the functions. While both models exhibited strengths and weaknesses,
these findings suggest potential avenues for the development and refinement of more
advanced Al-assisted code generation tools. The study underlines the potential of
AT in automating and supporting aspects of software development, although further
research is required to fully realize this potential.

1 Important Notice

It is crucial to highlight that the experiments conducted in this study took place between
the 10th and the 15th of May 2023. The AI systems analyzed—GPT-3.5 and Bard—are
continually learning and evolving systems. As they are fed more data and undergo further
training, their performance and capabilities can significantly change over time. Consequently,
the results and comparisons drawn in this study are, by their nature, temporally bound
and may not hold true in the future. Furthermore, it should be noted that Bard is an
experimental tool, as explicitly stated by the provider. Therefore, its performance, behavior,
and even availability may fluctuate. As such, readers are advised to interpret the results and
conclusions of this paper in light of these considerations.



2 Introduction

Artificial Intelligence (AI) has made significant strides in recent years, particularly in the
area of natural language understanding and generation. With the widespread proliferation
of large language models capable of performing intricate tasks, research efforts have been
undertaken to benchmark and compare the performance of these models [I]. Our analysis
focuses on two specific Al models, GPT-3.5 and Bard, investigating their capabilities to
generate Java code based on function descriptions obtained from CodingBat.com.

In previous research, the mathematical reasoning capabilities of Generative Pre-trained
Tranformers (GPTs) were assessed against state-of-the-art large language models (LLMs)
[2]. The system was presented with a set of mathematics questions taken, and the output
was rated manually to assess their performance. In [3] GPT-3.5, 4 and Bard’s performances
in answering medical questions from a neurosurgery question bank were compared, showing
that GPT models systematically outperformed Bard. GPT-3.5 and 4 were also shown to
be able to pass complex tests, such as the Bar Exam in U.S., with GPT-4 consistently
surpassing its LLMs predecessors as well as previous recorded students’ performance [4].
GPT-3 models were also tested for code vulnerability and bug detection, showing that their
capabilities were limited [B]. Similarly, GPT-3.5 and GPT-4 abilities were tested against
other LLMs on coding tasks [6], performing translation in different languages [§], and stock
return forecasting [7].

2.1 GPT-3.5

The |GPT-3.5/ model is a variant of the transformative Generative Pretrained Transformer
3 (GPT-3) model. This language prediction model utilizes a transformer architecture to
understand and generate human-like text based on given prompts. GPT-3.5 has 175 billion
parameters and has been trained on a diverse range of internet text. Its large scale allows it
to generate coherent and contextually relevant sentences over long passages. However, it is
important to note that GPT-3.5 does not have any specific knowledge or understanding of
the content; it generates responses based on patterns learned during its training.

2.2 Bard

Bard| is another advanced AI model known for its exceptional natural language generation
capabilities. While details of its architecture and training data are proprietary, Bard has
demonstrated strong performance in various natural language understanding and generation
tasks. It is particularly noted for its ability to generate creative and contextually nuanced
text. Similar to GPT-3.5, Bard does not have a conscious understanding of the content it
generates but instead identifies and follows patterns in the data it was trained on.

2.3 CodingBat.com

CodingBat| is an online platform that offers coding practice problems to help students learn
and master various programming concepts. The platform primarily focuses on Java and
Python problems. The problems on CodingBat.com cover a wide range of difficulty levels
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and programming concepts, making it an ideal resource for learners of all levels. The solutions
to problems are checked and run in real-time, providing immediate feedback to the learners.

This analysis assesses the capabilities of the GPT-3.5 and Bard Al models by feeding
them with function descriptions from CodingBat.com. The generated Java code from both
models is subsequently evaluated exclusively in terms of correctness, assessed using the real-
time code checking system of CodingBat.com. The objective of this research is to analyse
the respective strengths and weaknesses of GPT-3.5 and Bard in terms of generating correct
Java code. The insights derived from this preliminary study could be helpful in the creation
of more refined, Al-assisted code generation tools in the future.

3 Methodology

3.1 Data Collection

For this study, we selected Java function descriptions from five distinct sections of Cod-
ingBat.com, each section representing a different level of problem complexity and topic.
This selection aimed at ensuring a diverse range of problems that would challenge the code
generation capabilities of both the GPT-3.5 and Bard AI models.

The selected sections were as follows:

— Warmup: This section contains basic Java functions that are designed as warm up
on programming skills. Despite their simplicity, these problems provide a good starting
point for testing the Al models’ grasp of fundamental programming concepts.

— String-3: This section presents harder string problems that usually involve the use of
two loops. The challenges in this section test the AI models’ ability to handle more
complex string manipulation tasks and control structures.

— Array-3: This section contains harder array problems, also involving two loops and more
complex logic. These problems allow us to evaluate how well the AT models can generate
code for more advanced array manipulation tasks and complex logical operations.

— Functional-2: This section includes functional filtering and mapping operations on lists
using Java lambdas. These tasks test the Al models’ capability to generate code using
functional programming concepts in Java, which differ significantly from imperative
programming tasks.

— Recursion-2: This section contains harder recursion problems. These problems chal-
lenge the AI models to generate code that implements recursive solutions, which are
significantly different in structure from iterative solutions and can be particularly chal-
lenging to generate.

From each of these five sections, we collected all the Java function descriptions, resulting
in a total of 64 function descriptions for our study. Each of these descriptions was provided
as a prompt to both the GPT-3.5 and Bard AI models to generate the corresponding Java
code. The generated code was subsequently evaluated based on its correctness, with the
results provided by the real-time code checking system of CodingBat.com.



4 Result

In this analysis, we evaluated the Java code generated by GPT-3.5 (ChatGPT) and Bard Al
models using function descriptions from five distinct sections of CodingBat.com. Each piece
of code was evaluated for correctness, with ‘1’ denoting correct code and ‘0’ representing
incorrect code.

The results for the category WarmUp are summarized in Table [I} as shown below:

Function GPT-3.5 Bard

sleepln 1 1
diff21 1 1
parrotTrouble 1 1
makes10 1 1
nearHundred 1 1
missingChar 1 1
frontBack 1 0
front3 1 0
backaround 1 1
or3b 1 1
front22 1 0
startHi 1 1
icyHot 1 1
in1020 1 1
hasTeen 1 1
ToneTeen 1 1
delDel 1 0
mixStart 1 1
startOz 1 0
intMax 1 1
closel0 1 1
in3050 1 1
max1020 1 1
stringkl 1 1
lastDigit 1 1
endUp 1 1
everyNth 1 1

Table 1. Comparison of Java Code Correctness between GPT-3.5 and Bard for the category
WarmUp.

From these results, it can be observed that GPT-3.5 was able to generate correct Java
code for all the given function descriptions. On the other hand, Bard had a few instances
where it produced incorrect code. Specifically, Bard was unable to generate correct code for
the function descriptions frontBack, front3, front22, delDel, and startOz.

In the String-3 category, presented in Table [2] which involves more complex string ma-
nipulation problems, the GPT-3.5 model outperformed Bard. GPT-3.5 correctly generated



code for all but one of the given function descriptions. In contrast, Bard only correctly gener-
ated code for two functions, gHappy and sumDigit. Notably, both models failed to generate
correct code for the notReplace function, suggesting that this problem posed a significant
challenge.

Function GPT-3.5 Bard

countYZ 1 0
withoutString 1 0
equallsNot 1 0
gHappy 1 1
counTriple 1 0
sumDigit 1 1
sameEnds 1 0
mirrorEnds 1 0
maxBlock 1 0
sumNumber 1 0
notReplace 0 0

Table 2. Comparison of Java Code Correctness for String-3 category between GPT-3.5 and Bard.

In the Array-3 category, Table [3] which contains harder array problems requiring more
complex logic and double loops, GPT-3.5 demonstrated stronger performance compared to
Bard. GPT-3.5 correctly generated code for five out of nine function descriptions. On the
other hand, Bard struggled with these more complex tasks and was unable to correctly
generate code for any of the problems in this category. Both models, however, were unable
to generate correct code for the function descriptions £ix34, fix45, and squareUp.

Function GPT-3.5 Bard

maxSpan 1 0
fix34 0 0
fix45 0 0
canBalance 1 0
linearIn 1 0
squareUp 0 0
seriesUp 1 0
maxMirror 1 0
countClumps 1 0

Table 3. Comparison of Java Code Correctness for Array-3 category between GPT-3.5 and Bard.

In the Functional-2 category, Table [ which includes functional filtering and map-
ping operations on lists with lambdas, both GPT-3.5 and Bard demonstrated high levels
of competence and managed to correctly generate code for all the function descriptions.
These results suggest that both GPT-3.5 and Bard have robust capabilities when it comes
to handling functional programming tasks.



Function GPT-3.5 Bard

noNeg 1 1
no9 1 1
noTeen 1 1
noZzZ 1 1
noLong 1 1
no34 1 1
noYY 1 1
two2 1 1
squareb6 1 1

Table 4. Comparison of Java Code Correctness for Functional-2 category between GPT-3.5 and
Bard.

In the Recursion-2 category, Table [5] which involves harder recursion problems, GPT-
3.5 demonstrated relative strength with correct code generated for five out of the eight
function descriptions provided. Bard, on the other hand, only managed to correctly gen-
erate code for the function groupSum. Notably, both models struggled with the problems
groupSumb and splitb3, suggesting a higher level of difficulty in these problems.

Function GPT-3.5 Bard
groupSum 1 1
groupSum6
groupNoAdj
groupSumb
groupSumClump
splitArray
splitOdd10
split53 0 0

Table 5. Comparison of Java Code Correctness for Recursion-2 category between GPT-3.5 and

Bard.
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In summary, across the four categories of problems Warmup, String-3, Array-3, Recursion-
2, GPT-3.5 consistently outperformed Bard. For the category Functional-2, both tools gen-
erated correct code.

GPT-3.5 generated correct code for 90.6% of the problems, compared to Bard’s 53.1%.
These results suggest that GPT-3.5 has a stronger ability to generate correct Java code
based on function descriptions from a diverse range of problem types and complexities.
This analysis also highlights that both models have room for improvement, particularly in
handling certain types of complex problems.

Figure [ illustrates the results. The plot provides a clear visual representation of the
performance of GPT-3.5 and Bard across five problem categories, namely Warmup, String3,
Array3, Functional2, and Recursion2. For GPT-3.5, the model achieves near-perfect perfor-
mance in the Warmup and Functional2 categories, demonstrating its effectiveness in han-
dling relatively simple and functional problems. Its performance on String3 and Recursion2



problems is also good, with a slight dip observed in the Array3 category. Contrarily, Bard’s
performance varies more significantly across categories. This model performs well in the
Warmup and perfectly in the Functional2 categories but struggles with more complex cat-
egories such as String3, Array3, and Recursion2. The Array3 category proves particularly
challenging for Bard, where it fails to generate any correct code. The graph overall highlights
the superior overall performance of GPT-3.5 across four categories. However, as stated above,
the performance of both models suggests room for improvement, particularly in handling
complex problem categories.

Percentage of Correct Code Generation
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Fig. 1. Comparison of the percentage of corrected code generated respectively by GPT-3.5 (ble
line) and Bard (red line) in five different problem categories. Dashed lines represent the average
performance of GPT-3.5 (blue dashed line) and Bard (red dashed line).

Despite GPT-3.5 outperforming Bard across 4 out of 5 categories, it is evident that both
models exhibit a similar performance pattern. This trend indicates a shared difficulty in
tackling certain types of tasks, specifically those involving complex array operations and
recursion. This shared challenge underscores the complexity and intricacy of these tasks
even for sophisticated Al tools. The congruence in their performance trends suggests that
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these tasks tap into areas where both models, despite their distinct underlying architectures,
face significant difficulties. Consequently, these areas represent critical points of attention
for future enhancements in Al-assisted code generation.

We also performed a McNemar test [I0] to probe the difference between the two Al
models, GPT-3.5 and Bard, in terms of their success rates on the same set of function de-
scriptions. McNemar test is suited for this purpose as it is designed for paired nominal data,
such as our case where each function description serves as a paired observation evaluated by
both Al models. In our study, McNemar test was applied to a 2x2 contingency table, repre-
senting the success and failure rates of both AI models. The null hypothesis for McNemar
test is that the marginal probabilities of success for the two Al models are equal.

The McNemar Chi-square statistic was found to be equal to 14.062 with 1 degree of
freedom, and the associated p-value was 0.0001768. Given this p-value is substantially less
than the conventional threshold for statistical significance (0.05), we reject the null hypoth-
esis of equal success rates. This result indicates a statistically significant difference in the
success rates of GPT-3.5 and Bard in generating correct Java code. In particular, GPT-3.5
demonstrated a higher success rate compared to Bard.

This outcome underlines the differing strengths of the AT models and encourages further
investigation into the factors contributing to these differences.

4.1 Examination of Unsuccessful Code Generation

As an example, we report below the generated function front3 of the Warmup section for
which Bard provides an incorrect solution.
CodingBat asks the following:

Given a string, we’ll say that the front is the first 3 chars of the string. If the string length
is less than 3, the front is whatever is there. Return a new string which is 8 copies of the
front.

front3(“Java”) ....“JavJavJav”

front3(“Chocolate”) ... “ChoChoCho”

front3(“abe”) ... “abcabcabc”

Bard prompt produced the following code:

public String front3(String str) {
if (str.length() < 3) {
return str;
}
return str.substring(0, 3) + str.substring(0, 3) + str.substring(O,
3);
}

which produces the results on CodingBat illustrated in fig.
GPT3.5 produced the following code:

public String front3(String str) {
if (str.length() < 3) {
return str + str + str;



Warmup-1 > front3

prev | next | chance

Given a string, we'll say that the front is the first 3 chars of the string. If the string length
is less than 3, the front is whatever is there. Return a new string which is 3 copies of the
front.

front3("Java") — "Javlavlav"
front3("Chocolate") — "ChoChoCho"
front3("abc") — "abcabcabc"

Expected Run
C ) ava™ — " " [ "
Go ...Save, Compile, Run (ctrl-enter) Show Solution front3("Java") — "Javiavlav Javiaviav OK
— front3("Chocolate") — "ChoChoCho" [ "ChoChoCho" | OK
public String front3(String str) { front3("abc") — "abcabcabc” "abcabcabc” | OK
if (str.lengthQ) < 3) {
return str; front3("abcXYZ") — "abcabcabc" "abcabcabc" | OK
¥ front3("ab") — "ababab" "ab" X
return str.substring(@, 3) + str.substring(@, 3) + str.substring(@, 3); front3("a") — "aaa” v X
}
i front3("") — " o OK

Correct for more than half the tests

Your progress graph for this problem

Fig. 2. Example of incorrect code generated by Bard.

} else {
String front = str.substring(0, 3);
return front + front + front;

}
which passed all tests performed by CodingbBat.

5 Threats to Validity

As with any empirical study, several threats to the validity of our results exist.

5.1 Internal Validity

The main internal threat comes from the fact that this study assumes that the Al models
generate code that is correct based on the test cases provided by CodingBat.com. However,
it is possible that the code could behave unexpectedly with other inputs, leading to potential
overestimation of the models’ capability. Additionally, the correctness of the generated code
is determined only by the test cases from CodingBat.com. If these test cases are incomplete
and do not cover all possible cases, this could also affect the results.

5.2 External Validity

In terms of external validity, while we have strived to ensure diversity in our function descrip-
tions, they are nonetheless limited to the Java problems available on CodingBat.com. As
such, these results may not generalize to other programming languages, problem domains,
or more complex coding tasks. It is also worth noting that both AI models have been trained
on diverse datasets, and their performance in this study might not reflect their performance
in different contexts or tasks.
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5.3 Construct Validity

This study assumes that the quality of code can be measured solely in terms of its correctness.
However, other important aspects such as code efficiency, readability, maintainability, and
adherence to best practices have not been considered. The absence of these metrics limits
the comprehensive evaluation of the code quality generated by the AI models.

Despite these limitations, this study provides valuable insights into the capabilities of
current Al models in generating Java code from function descriptions. Future work could
focus on addressing these limitations by incorporating a wider range of problem types,
considering other programming languages, and including more comprehensive measures of
code quality.

6 Future Work

While this analysis provides a preliminary comparison of the code generation capabilities
of GPT-3.5 and Bard, there are several directions for future research that could provide
more comprehensive insights. One critical aspect that needs further investigation is the
complexity of the generated code. Evaluating the generated code not just on correctness
but also on factors such as its efficiency, readability, and maintainability could provide a
more nuanced understanding of the AI models’ code generation capabilities. Advanced tools
and techniques for evaluating code complexity should be utilized in future studies to assess
code quality. Furthermore, our study was restricted to Java programming language and the
function descriptions available on CodingBat.com. Future studies should consider evaluating
the Al models’ performance with other programming languages and a wider range of problem
types and complexities. This would allow for a more comprehensive evaluation of the code
generation capabilities of these Al models.

It would also be beneficial to perform a longitudinal study, tracking the progress of these
AT models over time. As these models continue to evolve and improve, it would be insightful
to understand how their code generation capabilities change with each iteration.

7 Conclusion

This analysis sought to assess the capabilities of two Al models, GPT-3.5 and Bard, in gen-
erating Java code from function descriptions. Function descriptions were collected from five
diverse categories of problems on CodingBat.com, and the Al models’ output was evaluated
based on correctness, as verified by the platform’s own test cases.

Our findings reveal that GPT-3.5 outperformed Bard across four out of five categories,
exhibiting overall a higher rate of correctly generated code. Specifically, GPT-3.5 achieved an
overall correctness rate of approximately 90.6%, compared to Bard’s 53.1%. This suggests
that, at least within the context of this study, GPT-3.5 possesses a stronger ability to
generate correct Java code based on diverse function descriptions.

However, it should also be noted that neither model was consistently correct in generating
their output. Both models demonstrated shortcomings, particularly when faced with more
complex problems such as those in the Recursion-2 category. This highlights the need for
continued development and refinement of Al code generation models.
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Despite the inherent limitations and threats to validity, we believe that this study con-

tributes valuable insights to the field of Al-assisted code generation. It provides a compar-
ative evaluation of two popular Al models, and highlights areas of strength and potential
improvement.

Looking forward, we envision that these findings will stimulate further research and ad-

vancement in the field. Specifically, we see potential for studies that explore a wider range of
problem types, include other programming languages, and incorporate more comprehensive
measures of code quality. Ultimately, this research will possibly contribute to the develop-
ment of AI models that are capable of reliably assisting humans in diverse coding tasks,
thereby enhancing productivity and fostering innovation in software development.
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