
A Process Algebra for Synchronous ConcurrentConstraint ProgrammingLubo�s Brim�Jean-Marie Jacquetz David GilbertyMojm��r K�ret��nsk�y�AbstractConcurrent constraint programming is classically based on asynchronouscommunication via a shared store. This paper presents new version of the askand tell primitives which features synchronicity. Our approach is based on theidea of telling new information just in the case that a concurrently runningprocess is asking for it.An operational and an algebraic semantics are de�ned. The algebraicsemantics is proved to be sound and complete with respect to a compositionaloperational semantics which is also presented in the paper.1 IntroductionAs a consequence of being a generalisation of previous proposals for concurrentlogic programming languages (Concurrent Prolog, Parlog, GHC, etc.), concurrentconstraint programming has naturally inherited one of their main features: theasynchronous character of the communication. This is obtained by ask primitivesblocking when the information on the store is not complete enough to entail theasked constraints. Following these lines, a natural way of obtaining synchronouscommunication in concurrent constraint programming is to force the reduction ofask and tell primitives to synchronise. Speci�cally, our approach considers tell prim-itives as lazy producers of information and views ask primitives as consumers of thisinformation. From this point of view, a tell operation is reduced when an ask oper-ation requires the told information. Moreover, the reduction of the two primitivesis performed simultaneously. However, there is no reason to block ask and tellprimitives on information which is already present. Consequently, stress is put onthe novelty of the information and hence any tell(c) and ask(c) operations whose�Dept.of Comp.Sci., Masaryk University, Brno, Czech Republic, fbrim|mojmirg@fi.muni.czzDept.of Comp.Sci., University of Namur, Namur, Belgium, jmj@info.fundp.ac.beyDept.of Comp.Sci., City University, London, U.K., drg@soi.city.ac.uk

constraint argument c is entailed by the current store are reduced without partners.The scheme is made slightly more general by permitting the synchronisation of morethan two partners.This framework, called Scc, is presented in [3] and its expressiveness has beendemonstrated through the coding of a variety of examples. It has been argued thatone advantage over related work such as [12, 9, 8], which introduce synchronisationby special operators and not by altering the behaviour of tell and ask primitives, isthat Scc permits the speci�cation of on what information the synchronisation shouldbe made, rather than with whom. Synchronisation in Scc is thus data-oriented asopposed to process-oriented.In order to motivate its interest and to substantiate the need for novel treat-ments, it is worth stressing the behavioural di�erence of Scc with, on the one hand,traditional concurrent constraint programming, as exempli�ed in the cc family oflanguages ([12]), and, on the other hand, traditional concurrent programming mod-els, as exempli�ed by CCS ([10]).It has been argued in [6] that the main di�erence between ccp and CCS is thatcomplementary actions do not synchronise in ccp. This property is due to the factthat telling a constraint never suspends in cc. In contrast, the action of telling aconstraint may suspend until an ask can make use of it. A synchronisation similarto that in CCS is thus produced. However, this synchronisation does not hold in Sccin the case that the told or asked constraints are entailed by the current contents ofthe store. A novel kind of synchronisation is thus achieved.Major di�erences appear between the three frameworks. It is to be expectedthat these di�erences call for new treatments as well. In order to formalise ourreasoning somewhat, let us turn to the example given in [6]. There CCS and ccpare compared by interpreting the action a as telling the constraint x = a, and theco-action a as asking the constraint x = a. To keep our notations consistent, weshall use \+" for the non-deterministic choice operator and \;" for the sequentialcomposition operator.Example 1 (Di�erentiating ccp and CCS (from [6])) Let A1 = (a; b)+(a; c)+(a; d) and A2 = (a; b) + (a; (c + d)): In any compositional semantics for CCS thesetwo processes must be distinguished. Indeed, they behave di�erently under the con-text A = a; (b + c): The process A1 can deadlock, by choosing the third alternativeof the choice, while A2 cannot. However, in cc, both A1 and A2 have the samebehaviour. The process A2 can deadlock by choosing the second alternative, becauseA can independently decide to produce y = b (after x = a).Example 2 (Di�erentiating ccp and Scc) Using the processes A, A1, A2 of theabove example, the processes A1 and A2 are also distinguished by A in Scc for thesame reason as in CCS.This example illustrates the di�erence between Scc and cc. Stated in otherterms, in the ccp paradigm, since the tell operation is asynchronous, the choice

guarded by tell(a) is a local choice whereas, since the tell operation is synchronousin Scc, this choice is global in Scc.Nevertheless, synchronisation is only forced in Scc in the case that a processtries to tell information which is not already entailed by the store. Otherwise, it canproceed asynchronously. This fact is used subsequently to di�erentiate CCS andScc.Example 3 (Di�erentiating CCS and Scc) Using again the above processes A,A1, A2, let B1 = b;A1 and B2 = b;A2: In CCS, these two processes can be distin-guished by the process B = b;A for the reasons exposed in Example 1. However, inScc, both processes have the same behaviour. The process B2 can now deadlock bychoosing the second alternative because A can now independently proceed by the �rstalternative as y = b is already entailed by the store.The distinction between Scc and CCS thus appear to be more subtle than the dis-tinction between ccp and CCS. The choice guarded by tell is actually a \mixture"of global and local choice. The choice depends upon actions performed and uponthe results of the past behaviour of the system, i.e. upon the constraint containedin the store.The rest of the paper is organised as follows. Section 2 describes informallyScc and section 3 presents the basic operational semantics O. Section 4 studiesthe algebraic semantics. To prove its soundness and completeness, we introduce acompositional modelM in the section 5 and relate it with the algebraic semantics.Finally, section 6 draws our conclusions.2 The Language SccThis section presents the syntax and the informal semantics of the language un-derlying the Scc paradigm, also called Scc by abuse of language. For reasons ofsimplicity we consider a simpli�ed version of Scc which does not contain recursion.Recursion can however be treated in the standard way described in [2].As in [14], the constraint system underlying Scc consists of any system of partialinformation that supports the entailment relation. We assume a given cylindricconstraint system hC;`i over a set of variables Svar , de�ned as usual from a simpleconstraint system hD;`i. Furthermore, for the purposes of axiomatisation we willsuppose that the cylindric constraint system is embedded into a complemented anddistributive one denoted by dc(D). For detailed de�nitions we refer to [14, 7, 4].The language description is parametric with respect to hC;`i; and so are thesemantic constructions presented.In the following, we use G;H; : : : possibly subscripted to range over the setSgoal of processes c; d; : : : to range over basic constraints (i.e. constraints which areequivalent to a �nite set of primitive constraints), and X;Y; : : : to range over thesubsets of Svar .

Processes G 2 Sgoal are de�ned by the following grammarG ::=4 j � j ask(c) j tell(c) j G;G j G+G j G k G j 9XGThe constant 4 denotes a process which is only capable of terminating success-fully. The constant � is used to denote deadlocking processes.The atomic constructs ask(c) and tell(c) act on a given store in the followingway: as usual, given a constraint c, the process ask(c) succeeds if c is entailedby the store, otherwise it is suspended until it can succeed. However, the processtell(c), of a more lazy nature than the classical one, succeeds only if c is (already)entailed by the store and in this case it does not modify the store, and suspendsotherwise. It is resumed by a concurrently suspended ask(d) operation providedthat the conjunction of c and of the store entails d. In that case, both the telland the ask are resumed synchronously and at the same time the store is atomicallyaugmented with the constraint c.The sequential composition G1;G2 is executed by �rst performing G1 and, if G1terminates successfully, by performing G2.The nondeterministic choice G1 +G2 selects between the execution of G1 or G2respectively provided that the selected component can perform at least one step ofa computation (i.e. it is not immediately suspended). It is a global nondeterministicchoice since the selection of a component can be in
uenced by the (global) store andby the environment of the process as well.The parallel composition G1 k G2 represents both the interleaving (merge) ofthe computation steps of the components involved (provided they can do thesesteps independently of each other) and also synchronisation: this is the case ofthe tell and ask described above. Note that in the general case there can be aparallel composition of a �nite sets of tell's and a �nite set of ask's such that thecurrent store and a conjunction of some of the tell constraints entail the conjunctionof the ask constraints and the other tell's. In this case all the components arereduced simultaneously. This is sometimes referred to in the literature as multi-party synchronous communication.The block construct 9XG behaves like a process G with the variables in Xconsidered as local. It hides the information about variables from X within theprocess G. Let us recall that full version of Scc contains recursive procedures too(see an example below), but for ease of reasoning they are not studied here.To ilustrate some features of Scc (synchronous multi-party communication) wepresent the dining philosophers example. We have chosen to represent both philoso-phers and forks as processes; in addition communication is achieved via sharedstream variables as in classical concurrent logic programming.The inital description of the system is:- phil(L1,R1) k fork(R1,L2) k phil(L2,R2) k ... kfork(Rn,L1)and the processes are described as follows:

fork(R,L):- ask(L=[takenjL0]); ask(L0=[freejL00]); fork(R,L00)+ask(R=[takenjR0]); ask(R0=[freejR00]); fork(R00,L)phil(L,R):- tell(L=[takenjL0] , R=[takenjR0]);tell(L0=[freejL00] , R0=[freejR00]); phil(L00,R00)Finally, it is worth observing that it is quite easy to recover the traditionalcc paradigm from our framework by the introduction of an asynchronous tell byproviding, for each constraint to be told, a concurrent corresponding ask operation.3 The operational semantics OIt turns out that it is possible to treat the sequential and parallel composition oper-ators in a very similar way by introducing the auxiliary notion of context . Basically,a context consists of a partially ordered structure where place holders (subsequentlyreferred to by 2) have been inserted at a top-level place i.e. a place not constrainedby the previous execution of other atoms. Viewing goals as partially ordered struc-tures too, the ask and tell primitives to be reduced are those which can be substitutedby a place holder 2 in a context. Furthermore, the goals resulting from the reduc-tions are essentially obtained by substituting the place holder by the correspondingsyntax structure or the 4, depending upon whether an atom or a ask/tell primitiveis considered.The formal de�nition of the contexts is a very standard one and can be founde.g. in [4]. Moreover, we further state that the structure (Sgoal; ; ; k;4) is a bi-monoid, that is, \ ;" and \ k" are associative binary operations and have 4 asneutral element. In the following, we will also simplify the goals resulting from theapplication of contexts accordingly.The operational semantics of Scc is de�ned in Plotkin's style [11] by means of atransition system, where Sstore denotes the set of stores.De�nition 1 De�ne the transition relation ! as the smallest relation of (Sgoal�Sstore)� (Sgoal � Sstore) satisfying the rules of Figure 1.Rules (H) and (C) express the classical treatment of hiding and of choice, re-spectively. Classical rules for the sequential and parallel composition operators aretackled by means of the notion of context.Rule (T) de�nes the reduction of tell and ask primitives. The primitives to bereduced, there referred to as sp1, . . . , spm, are partitioned in three categories:i) the ask primitives (the multi-set fask(a1); � � � ; ask(ap)g);ii) the tell primitives split into those which add information to the store (themulti-set ftell(rt1); � � � ; tell(rtr)g) and those which do not (the multi-setftell(at1); � � � ; tell(atq)g);

All these primitives are then simultaneously reduced to the empty goal 4 whenthe information on the current store (�) together with the new information told(rt1; : : : ; rtr) entails the information of the other primitives. The new store consistsin this case of the old store enriched by the new information told. Note that thisrule re
ects the laziness feature of our tell primitives.In the case a constraint c is entailed by the current store � an ask(c) primitivecan be reduced alone following rule (T) by taking the unary context 2, m = 1,p = 1, q = 0, r = 0 and tell(c) can be reduced alone following rule (T) by takingthe unary context 2, m = 1, p = 0, q = 1, r = 0.Other tell's and ask's need each other for reduction and reduce simultaneously.A minimality condition is required to forbid outsider tell's to be reduced by takingadvantage of a concurrent reduction.Tell and ask reduction(T) <tc[sp1; � � � ; spm]; �>! <tc[4; � � � ;4]; �>if 8>>>>>>>>>>>><>>>>>>>>>>>>: fsp1; � � � ; spmg = f ask(a1); � � � ; ask(ap);tell(at1); � � � ; tell(atq);tell(rt1); � � � ; tell(rtr) g� [frt1; � � � ; rtrg ` fa1; � � � ; apg [fat1; � � � ; atqgthere is no strict subset S of frt1; � � � ; rtrgsuch that � [S ` fa1; � � � ; apg [fat1; � � � ; atqg� = � [frt1; � � � ; rtrgm > 0 9>>>>>>>>>>>>=>>>>>>>>>>>>;Hiding(H) <tc[G[Y=X]]; �>! <tc[G0]; �0><tc[9XG]; �>! <tc[G0]; �0> if fY is a fresh variable gChoice(C) <G;�>! <G00; �00><G +G0; �>! <G00; �00><G0 +G;�>! <G00; �00>Figure 1: Scc transition systemWe are now in a position to de�ne the operational semantics. Following the logicprogramming tradition, it speci�es the �nal store of the successful computations.

It also indicates those stores associated with deadlock situations, namely situationscorresponding either to the absence of suitable data on the store or to the absenceof concurrent process(es) that would allow tell and ask primitives to proceed, i.e. toresume suspended tell's and ask's. Note that the two situations may be distinguishedby a simple criterion: the existence of a store richer than the current one that wouldenable the computation to proceed. Note also that real failure, corresponding tothe absence of suitable procedure declaration, does not occur since recursion is nottreated here.The following de�nition follows directly from this intuition. The symbols �+and �s are used to indicate the computations ending by a success and a suspension,respectively.De�nition 2 De�ne the operational semantics O : Sgoal ! P(Sstore � f�+; �sg)as the following function: for any goal G,O(G) = f <�; �+> : <G; true>! � � � ! <4; �> g[f <�; �s> : <G; true>! � � � ! <G0; �> 6!G0 6= 4 and there are �0; G00; �00such that <G0; �0>! <G00; �00> g:4 Algebraic SemanticsNow we describe an axiomatisation in the style of process algebras for Scc. Part ofthe axioms is borrowed from traditional work on process algebras (see e.g. [2]) andfrom work already published on concurrent constraint programming (see e.g. [7]).Other axioms are speci�c to our work (see [4] for comparisson of our axioms withthe axioms for asynchronous ccp given by deBoer and Palmidessi [7]).Axioms from general process algebraThe �rst group (A) consists of axioms in Figure 2. They deal with the generalrequirements found in any process algebra of communicating systems. As usual, weuse two auxiliary operators to axiomatise the parallel composition operator k. Theyare k� for left merge and j for communication merge. In the following �; �; �(c)and �(c) represent asks or tells on constraints, the constraint c when an axiom isparametric with respect to it. The system A axiomatises a notion of equivalencewhich is known as bisimulation (see e.g. [2]).The next group of axioms (T) in Figure 3 permits the abstraction from silentsteps � . In the context of concurrent constraint programming � corresponds to atell(c) or ask(c) action where c is entailed by the current store, e.g. tell(true) orask(true). Failure is axiomatised by axioms (F) given in Figure 3 (cf. [2], p.215).

A axioms General(A1) A+A = A (A6) �;A = �(A2) A+ B = B +A (A7) � + A = A(A3) A + (B + C) = (A+B) + C (A8) �;A = A(A4) A; (B;C) = (A;B);C (A9) A; � = A(A5) (A+B);C = A;C +B;C(A10) A k B = A k�B + B k�A+ A j B(A11) (A+ B) k�C = (A k�C) + (B k�C)(A12) (�;A) k�B = �; (A k B)(A13) (A+B) j C = A j B +A j C (A16) � k�A = �(A14) A j (B + C) = A j B +A j C (A17) � j A = �(A15) �;A j �;B = (� j �); (A k B) (A18) A j � = �Figure 2: A-axiomsT and F axioms � -abstraction and Failure(T1) A; � = A(T2) � ;A+B = � ;A+ � ; (A+ B)(F1) �; (�;A1 + B1) + �; (�;A2 +B2) = �; (�;A1 + �;A2 + B1)+�; (�;A1 + �;A2 +B2)(F2) �; (� + B1) + �; (�;A+B2) = �; (� + �;A+B1) + �; (� + �;A+B2)(F3) �;A+ �; (B + C) = �;A+ �; (A+B) + �; (B + C)Figure 3: T&F-axiomsAxioms from work on ccpThe group of axioms (H) in Figure 4 axiomatises hiding (quanti�cation) in termsof the auxiliary operator 9cx.To axiomatise the communication merge j we shall also need another auxiliaryoperator 9c. To that end we extend the notion of cylindric constraint system byadding the identity function 9 : C ! C. 9 clearly satis�es the required conditions.Hence, we must add an extra transition rule to the rules from Figure 1 to cover 9c:H axioms Hiding (Quanti�cation)(H1) 9x:A = 9truex A (H4) 9cx:� = �(H2) 9cx:� = � (H5) 9cx:�(d);A = �(8x(c! d)); 9cx:A(H3) 9cx:(A+B) = 9cx:A+ 9cx:B (H6) 9c:ask(d) = � if c ` dFigure 4: H-axioms

L axioms(L1) �(c); (�(d);A+ B) = �(c); (�(c^ d);A+ B)(L2) �(c); (�(c);A+ B) = �(c); (� ;A+B)(L3) ask(c); (ask(d);A+ B) = ask(c); (ask(d);A+B) + ask(c^ d);A(L4) ask(c) j tell(d) = ask(c) j tell(d) + ask(d) j tell(d) if d ` c(L5) ask(c);A+ ask(c^ d);B = ask(c);A+ ask(c); (A+ ask(d);B)(L6) (tell(c) j ask(d));A+B = 9c(ask(d)); (tell(c) j ask(c));A+B(L7) tell(c) j tell(d) j ask(e) = tell(c^ d) j ask(e) if c ^ d ` e; c 6`; d 6` e(L8) ask(c) j ask(d) = ask(c^ d)(L9) �(c); (�(d);A+ B) = �(c); (�(d);A+ B) + �(d);�(c);A(L10) Pi �;Pj ask(cij);Aij = Pi �;Pj ask(cij);Aij + �;Pk ask(ck);Akif for all f 2 I J; k2 K � fij j i2I; j2Jg : ask(^icif(i)) 2 Si;jfask(cij);Aijgwhenever ^i cif(i) 6` ck Figure 5: L-axioms(R) <tc[G]; � ^ �>! <tc[G0]; �0><tc[9�:G]; �>! <tc[9�0:G0]; � ^ �0>The idea of hiding the empty set of variables is to allow a separate local compu-tation. A local computation step proceeds from a store which consists of the entireglobal store seen \locally". The resulting global store of a local computation is thesame as the one before starting the local computation.Axioms speci�c to SccNow we present a group of axioms (L) which characterise the speci�c treatmentof \lazy" tell in concurrent constraint programming. The axioms are presented inFigure 5.The axiom (L1) expresses that once a constraint has been established by tellingit, it remains in the store. The axiom (L2) expresses that asking or telling an entailedconstraint results in a silent action � .The axiom (L3) permits the composition of ask actions, and the axiom (L4)permits the strengthening of an ask-guard in a suitable parallel context. The axiom(L5) allows the restricted decomposition of ask actions.The justi�cation of (L6) is as follows. Suppose that the current store togetherwith c entails d. In this case the left-hand side process synchronizes, allowing bothcomponents to proceed, and the resulting store is enriched by c. The right-handside process results in exactly the same store, namely it �rst \checks" whether thecurrent store together with c implies d by performing a local computation of ask(d)and if this is true it then just \tells" c. Note that if this occurs in a parallel context,then telling c means \waiting" for a partner who asks for this information.

The axiom (L7) permits the restricted composition of tell actions and re
ectsour minimality condition (see rule (T) in Figure 1). The axiom (L8) permits thecomposition of ask actions.The axiom (L9) is informally justi�ed as follows. Suppose that the current storeimplies the constraint d. In this case the process represented by the right-hand sideof the axiom can select the � branch, execute the � action and proceed with A. Butthis behaviour can be mimicked by the other branch, the order of the actions beingunobservable. In the case the current store does not imply d, the only choice left isto execute the � branch.5 Soundness and CompletenessThis section discusses the soundness and completeness properties of our axiomatisa-tion. Classically, algebraic theories identify computations which not only exhibit thesame �nal results but also behave identically when they are placed in any context.We are thus lead to relate our algebraic semantics with a compositional semantics.However, the semantics O is not compositional, as shown by considering the goalstell(c), ask(c), tell(c) k tell(c), and tell(c) k ask(c): for any store � such that � 6` c,the �rst three suspend whereas the last succeeds. Consequently, we �rst de�ne acompositional operational semantics, prove that it is correct with respect to thesemantics O and then relate it to the algebraic semantics just developed.A Compositional Operational SemanticsTwo problems need to be tackled in order to transform O into a compositionalsemantics. Firstly, the semantics should be modi�ed in order to allow suspendedgoals to resume thanks to the store as computed by concurrent goals. This is sub-sequently achieved by reporting in the semantics not just the �nal results coupledto a status mark but sequences corresponding to the computation steps. Progressmade by the concurrent goals is then indicated by steps of the form ��; ��e indi-cating the update of the store � in the store � . Secondly, tell and ask primitivesof goals should also be able to synchronise with primitives provided by concurrentprocesses. This is subsequently achieved by introducing in semantic sequences thesteps of the form ��; �0�(A;At;Rt), where the (A;At;Rt) triple denotes the actors ofthe synchronisation, according to the three categories detailed in section 3. In facteach of these multi-sets is a pair composed of (the store argument of) the primitivesof the considered goal and of (the store argument of) the primitives provided by itsconcurrent processes.It is possible to extend the transition system of Figure 1 so as to re
ect theseextensions. The slight modi�cations to rules (T), (H), and (C) are given in Figure 6.They consist of adding labels describing the pair of initial and �nal values of thestore for the steps under consideration. Note that rule (R) introduced in section 4

can likewise be modi�ed straightforwardly.(T) <tc[sp1; � � � ; spm]; �> ��;��! <tc[4; � � � ;4]; �>if 8>>>>>>>>>>>><>>>>>>>>>>>>: fsp1; � � � ; spmg = f ask(a1); � � � ; ask(ap);tell(at1); � � � ; tell(atq);tell(rt1); � � � ; tell(rtr) g� [frt1; � � � ; rtrg ` fa1; � � � ; apg [fat1; � � � ; atqgthere is no strict subset S of frt1; � � � ; rtrgsuch that � [S ` fa1; � � � ; apg [fat1; � � � ; atqg� = � [frt1; � � � ; rtrgm > 0 9>>>>>>>>>>>>=>>>>>>>>>>>>;(H) <tc[G[Y=X]]; �> l! <tc[G0]; �0><tc[9XG]; �> l! <tc[G0]; �0> if fY is a fresh variable g(R) <tc[G]; � ^ �> l! <tc[G0]; �0><tc[9�:G]; �> l! <tc[9�0:G0]; � ^ �0>(C) <G;�> l! <G00; �00><G +G0; �> l! <G00; �00><G0 +G;�> l! <G00; �00>Figure 6: Reformulation of the Scc transition systemExtensions required to achieve compositionality are given in Figure 7. Rule (E)deals with the �rst problem mentioned above. Rule (A) provides a solution to thesecond problem: a synchronisation similar to that of rule (T) is performed but bymeans of concurrent tell and ask primitives.Rules (Sn) and (Ss) deal with suspension and success. The last one re
ects theintuition already embodied in de�nition 2.The treatment of suspension requires some care. Our solution, illustrated in rule(Sn), is to report, in a single mark, for each suspended con�guration, the set of storesand the set of concurrent tell and ask primitives (split as before) that would allowa transition to take place. Suspension marks disappear when combining componentsin the case where the tell and ask primitives required by the components are mutuallyprovided.The intuition has now been provided for the following de�nitions.

Environment(E) <G;�> ��;�0�e! <G;�0> if f �0 ` �; G 6= 4 gReduction by means of auxiliary tell's and ask's(A) <tc[sp1; � � � ; spm]; �> ��;��(A;At;Rt)! <tc[4; � � � ;4]; �>
if 8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

fsp1; � � � ; spmg = f ask(a1); � � � ; ask(ap);tell(at1); � � � ; tell(atq);tell(rt1); � � � ; tell(rtr) g� [frt1; � � � ; rtsg [frrt1; � � � ; rrtig` fa1; � � � ; apg [faa1; � � � ; aakg [fat1; � � � ; atqg[faat1; � � � ; aatlgthere is no strict subset S offrt1; � � � ; rtsg [frrt1; � � � ; rrtig suchthat � [S ` fa1; � � � ; apg [faa1; � � � ; aakg [fat1; � � � ; atqg[faat1; � � � ; aatlgA = (fa1; � � � ; apg; faa1; � � � ; aajg)At = (fat1; � � � ; atqg; faat1; � � � ; aatkg)Rt = (frt1; � � � ; rtrg; frrt1; � � � ; rrtig)� = � [frt1; � � � ; rtrg [frrt1; � � � ; rrtigm > 0
9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>;Suspension(Sn) <G;�> ��;�s(
;S)�! <Susp; �>if 8>>>>>>>>>><>>>>>>>>>>: G 6= 4<G; �> 6!there are G00, �0, �00 such that �0 ` � and <G; �0>! <G00; �00>
 is the set of all such stores �0S is the set of all triples (A;At; Rt) ful�lling the conditionsof rule (A) together with some sp1; : : : ; spm such thatG = tc[sp1; � � � ; spm] 9>>>>>>>>>>=>>>>>>>>>>;Success(Ss) <4; �> ��;�+�! <Succ; �>Figure 7: Rules induced by the compositionality requirement

De�nition 31) The set Sspair of synchronisation pairs is de�ned as the set (Sstore�Sstore)�(Sstore�Sstore)�(Sstore�Sstore)�(Sstore�Sstore)�(Sstore�Sstore).2) The set Smark of marks is de�ned as the set feg[Sspair. Marks are typicallydenoted by the letter M, possibly subscripted.3) The set Sstep of steps is de�ned as the set (Sstore � Sstore) [(Sstore �Sstore � Smark). Steps are typically denoted in an exponential fashion as��; ��[M]; the notation [M] indicating a possibly absent mark.4) The set Sterm of terminators is de�ned as the set Sstore� (f�+g [f�s(
;S) :
 � Sstore; S � Sspairg). In the following, terminators are typically denotedas ��; �z�, Terminators not involving �+ are typically denoted as ��; �S�,when there is no need to specify further the mark S.5) The set of semantic histories is de�ned as Shist = Sstep<! � StermDe�nition 4 Let Susp and Succ be fresh names appearing in no set previouslymentioned. De�ne the transition relation 7! as the smallest relation of ((Sgoal [fSusp; Succg) � Sstore) � (Sstep [Sterm) � ((Sgoal [fSusp; Succg) � Sstore)satisfying the rules of Figures 6 and 7, where P is assumed to be given and thenotation <G;�> l! <G0; �0> is employed instead of (<G;�>; l;<G0; �0>) 27!.The operational semantics M basically collects the labels appearing in the�nitely ended computations. To obtain compositionality, those computations areallowed to start in any store.De�nition 5 De�ne the operational semantics M : Sgoal ! P(Shist) as the fol-lowing function: for any goal G,M(G) = f l1 � � � lm : <G;�> l1! � � � lm! C;� 2 Sstore;C 2 (fSucc; Suspg)� Sstore gThe semantics M can be proved compositional. It is also correct with respectto the semantics O in the following sense. A few de�nitions are �rst in order.De�nition 6 Let h = ��1; �1�[M1] : : :��n; �n�[Mn]:��n+1; �z� be a history,n � 0.1) h is continuous i� there is no gap of stores between the steps ie i� �i+1 = �ifor i = 1; : : : ; n.2) h starts in � i� �1 = �.3) h is non-hypothetical i� it contains no step of Sstore� Sstore� Smark.4) ��n+1; �z� is called the �nal step of h and h is said to end by this step.For any goal G, the semantics O(G) can be obtained from M(G) in the fol-lowing way: (i)by retaining the histories of the latter which are continuous, non-hypothetical, and which start in true; (ii) by taking their �nal steps; (iii) by changingall the symbols �S by the symbol �s.

Proposition 7 De�ne the function � : Sstore! P(Shist)! P(Sstore�f�+; �sg)as follows: for any store � 2 Sstore, any subset S � Shist,�(�)(S) = f ��; �+� : h 2 S; h continuous, non-hypotheticalh starts in �; h ends by ��; �+� g[f ��; �s� : h 2 S; h continuous, non-hypotheticalh starts in �; h ends in ��; �S� g:Then, for any program P and any goal G, O(G) = �(true)(M(G)):Soundness and completenessWe �nally relate the algebraic semantics with the semantics M. This is achievedfollowing the classical lines, illustrated among others in [2].The proof of soundness of our axiomatisation consists of a simple veri�cationestablishing M(G) = M(H), for any axiom G = H. As far as completeness isconcerned, every process is �rst proved equal to a basic process, namely a processbuilt up from the ask, tell and (tell j ask) constructs, and �; � constants usingsequencing and choice only. Completeness is then established for basic processes byinductively reasoning on their structure.Summing up, the following theorem can be established.Theorem 8 For any processes G and H` G = H i� M(G) =M(H)An interesting relationship between the algebraic semantics and the semanticsO can be derived therefrom and from proposition 7.Proposition 9 For any processes G and H, if ` G = H then O(G) = O(H).6 ConclusionsThis paper has presented an algebraic semantics for a synchronous version of concur-rent constraint programming. This version is based on new variants of the tell andask primitives where the former behave as lazy producers of new pieces of informa-tion which are consumed by the latter at the same time they are produced. Stress onthe novelty of the information permits tell and ask to proceed asynchronously in thecase their corresponding constraint argument is entailed by the current contents ofthe store. This framework, called Scc, has been argued to be (in some aspects) dif-ferent from traditional algebraic languages, exempli�ed by CCS, and from classicalconcurrent constraint programming, exempli�ed by the cc family of languages.These di�erences call for semantic treatments, which have been proposed andcompared with existing ones. Soundness and completeness of the proposed axiomaticsystem have been established by relating it to a compositional operational semantics,which has also been presented.

References[1] Krzysztof Apt, editor. Proceedings of the Joint International Conference andSymposium on Logic Programming, Washington, USA, 1992. The MIT Press.[2] J.C.M. Baeten and W.P Weijland. Process Algebra. Cambridge UniversityPress, 1990.[3] L. Brim, J-M. Jacquet, D. Gilbert, and M. K�ret��nsk�y. New Versions of Ask andTell for Synchronous Communication in Concurrent Constraint Programming.Technical Report No. 1996/03. ISSN 1364-4009, Northampton Square, LondonEC1V 0HB, 1996.[4] L. Brim, J-M. Jacquet, D. Gilbert, and M. K�ret��nsk�y. A Process Algebrafor Synchronous Concurrent Constraint Programming. Technical Report No.1996/06. ISSN 1364-4009, Northampton Square, London EC1V 0HB, 1996.[5] F. S de Boer, J. W. Klop, and C. Palamidessi. Asynchronous communication inprocess algebra. In Proceedings, 7th Annual IEEE Symp. on Logic in ComputerScience, pages 137{147. IEEE Computer Society Press, 1992.[6] F. S. de Boer and C. Palamidessi. A fully abstract model for concurrent con-straint programming. In S. Abramsky and T.S.E. Maibaum, editors, Proc.of TAPSOFT/CAAP91, Lecture Notes in Computer Science, pages 296{319.Springer-Verlag, 1991.[7] F. S. de Boer and C. Palamidessi. A process algebra of concurrent constraintprogramming. In Apt [1], pages 463{477.[8] M. Falaschi, G. Levi, and C. Palamidessi. A Synchronization Logic: Axiomaticsand Formal Semantics of Generalized Horn Clauses. Information and Control,60:36{69, 1994.[9] J.-M. Jacquet and L. Monteiro. Communicating clauses: Towards synchronouscommunication in contextual logic programming. In Apt [1], pages 98{112.[10] R. Milner. Communication and Concurrency. Prentice Hall, 1989.[11] G. Plotkin. A structured approach to operational semantics. Technical report,DAIMI FN-19, Computer Science Department, Aarhus University, 1981.[12] V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.[13] V. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. of17th POPL, pages 232{245, 1990.[14] V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concur-rent constrant programming. In Proc. of 18th POPL. ACM, 1991.

