A Process Algebra for Synchronous Concurrent
Constraint Programming

Lubos Brim* David Gilbert!

Jean-Marie Jacquet? Mojmir Kietinsky*

Abstract

Concurrent constraint programming is classically based on asynchronous
communication via a shared store. This paper presents new version of the ask
and tell primitives which features synchronicity. Our approach is based on the
idea of telling new information just in the case that a concurrently running
process is asking for it.

An operational and an algebraic semantics are defined. The algebraic
semantics is proved to be sound and complete with respect to a compositional
operational semantics which is also presented in the paper.

1 Introduction

As a consequence of being a generalisation of previous proposals for concurrent
logic programming languages (Concurrent Prolog, Parlog, GHC, etc.), concurrent
constraint programming has naturally inherited one of their main features: the
asynchronous character of the communication. This is obtained by ask primitives
blocking when the information on the store is not complete enough to entail the
asked constraints. Following these lines, a natural way of obtaining synchronous
communication in concurrent constraint programming is to force the reduction of
ask and tell primitives to synchronise. Specifically, our approach considers tell prim-
itives as lazy producers of information and views ask primitives as consumers of this
information. From this point of view, a tell operation is reduced when an ask oper-
ation requires the told information. Moreover, the reduction of the two primitives
is performed simultaneously. However, there is no reason to block ask and tell
primitives on information which is already present. Consequently, stress is put on
the novelty of the information and hence any tell(c) and ask(c) operations whose

*Dept.of Comp.Sci., Masaryk University, Brno, Czech Republic, {brim|mojmir}efi.muni.cz
{Dept.of Comp.Sci., University of Namur, Namur, Belgium, jmj@info.fundp.ac.be
"Dept.of Comp.Sci., City University, London, UK., drg@soi.city.ac.uk

constraint argument ¢ is entailed by the current store are reduced without partners.
The scheme is made slightly more general by permitting the synchronisation of more
than two partners.

This framework, called Scc, is presented in [3] and its expressiveness has been
demonstrated through the coding of a variety of examples. It has been argued that
one advantage over related work such as [12, 9, 8], which introduce synchronisation
by special operators and not by altering the behaviour of tell and ask primitives, is
that Scc permits the specification of on what information the synchronisation should
be made, rather than with whom. Synchronisation in Scc is thus data-oriented as
opposed to process-oriented.

In order to motivate its interest and to substantiate the need for novel treat-
ments, it is worth stressing the behavioural difference of Scc with, on the one hand,
traditional concurrent constraint programming, as exemplified in the cc family of
languages ([12]), and, on the other hand, traditional concurrent programming mod-
els, as exemplified by CCS ([10]).

It has been argued in [6] that the main difference between ccp and CCS is that
complementary actions do not synchronise in ccp. This property is due to the fact
that telling a constraint never suspends in cc. In contrast, the action of telling a
constraint may suspend until an ask can make use of it. A synchronisation similar
to that in CCS is thus produced. However, this synchronisation does not hold in Scc
in the case that the told or asked constraints are entailed by the current contents of
the store. A novel kind of synchronisation is thus achieved.

Major differences appear between the three frameworks. It is to be expected
that these differences call for new treatments as well. In order to formalise our
reasoning somewhat, let us turn to the example given in [6]. There CCS and ccp
are compared by interpreting the action « as telling the constraint © = a, and the
co-action @ as asking the constraint * = a. To keep our notations consistent, we
shall use “4” for the non-deterministic choice operator and “;” for the sequential
composition operator.

Example 1 (Differentiating ccp and CCS (from [6])) Let A, = (@;b)+(a@;¢)+
(@;d) and Ay = (@;b) + (@; (¢ + d)). In any compositional semantics for CCS these
two processes must be distinguished. Indeed, they behave differently under the con-
text A = a;(b+ ¢). The process Ay can deadlock, by choosing the third alternative
of the choice, while Ay cannot. However, in cc, both Ay and A, have the same
behaviour. The process Ay can deadlock by choosing the second alternative, because
A can independently decide to produce y = b (after x = a).

Example 2 (Differentiating ccp and Scc) Using the processes A, Ay, Ay of the
above example, the processes Ay and Ay are also distinguished by A in Scc for the
same reason as in CCS.

This example illustrates the difference between Scc and cc. Stated in other
terms, in the ccp paradigm, since the tell operation is asynchronous, the choice

guarded by tell(a) is a local choice whereas, since the tell operation is synchronous
in Scc, this choice is global in Scc.

Nevertheless, synchronisation is only forced in Scc in the case that a process
tries to tell information which is not already entailed by the store. Otherwise, it can
proceed asynchronously. This fact is used subsequently to differentiate CCS and
Scc.

Example 3 (Differentiating CCS and Scc) Using again the above processes A,
Ay, Ay, let By = by Ay and By = by Ay, In CCS, these two processes can be distin-
quished by the process B = b; A for the reasons exposed in Fxample 1. However, in
Scc, both processes have the same behaviour. The process By can now deadlock by
choosing the second alternative because A can now independently proceed by the first
alternative as y = b is already entailed by the store.

The distinction between Scc and CCS thus appear to be more subtle than the dis-
tinction between ccp and CCS. The choice guarded by tell is actually a “mixture”
of global and local choice. The choice depends upon actions performed and upon
the results of the past behaviour of the system, i.e. upon the constraint contained
in the store.

The rest of the paper is organised as follows. Section 2 describes informally
Scc and section 3 presents the basic operational semantics . Section 4 studies
the algebraic semantics. To prove its soundness and completeness, we introduce a
compositional model M in the section 5 and relate it with the algebraic semantics.
Finally, section 6 draws our conclusions.

2 The Language Scc

This section presents the syntax and the informal semantics of the language un-
derlying the Scc paradigm, also called Scc by abuse of language. For reasons of
simplicity we consider a simplified version of Scc which does not contain recursion.
Recursion can however be treated in the standard way described in [2].

As in [14], the constraint system underlying Scc consists of any system of partial
information that supports the entailment relation. We assume a given cylindric
constraint system (C,F) over a set of variables Svar, defined as usual from a simple
constraint system (D,F). Furthermore, for the purposes of axiomatisation we will
suppose that the cylindric constraint system is embedded into a complemented and
distributive one denoted by de(D). For detailed definitions we refer to [14, 7, 4].

The language description is parametric with respect to (C,F), and so are the
semantic constructions presented.

In the following, we use G, H,... possibly subscripted to range over the set
Sgoal of processes ¢, d, ... to range over basic constraints (i.e. constraints which are
equivalent to a finite set of primitive constraints), and X,Y,... to range over the
subsets of Svar.

Processes (G € Sgoal are defined by the following grammar
Gu=A | 6| ask(e) | tell(e) | G5G | G+ G | G| G| IxE

The constant A denotes a process which is only capable of terminating success-
fully. The constant 4 is used to denote deadlocking processes.

The atomic constructs ask(c) and tell(c) act on a given store in the following
way: as usual, given a constraint c, the process ask(c) succeeds if ¢ is entailed
by the store, otherwise it is suspended until it can succeed. However, the process
tell(c), of a more lazy nature than the classical one, succeeds only if c is (already)
entailed by the store and in this case it does not modify the store, and suspends
otherwise. It is resumed by a concurrently suspended ask(d) operation provided
that the conjunction of ¢ and of the store entails d. In that case, both the tell
and the ask are resumed synchronously and at the same time the store is atomically
augmented with the constraint c.

The sequential composition Gy; (G5 is executed by first performing GGy and, if Gy
terminates successfully, by performing G’.

The nondeterministic choice G; + G5 selects between the execution of G; or Gy
respectively provided that the selected component can perform at least one step of
a computation (i.e. it is not immediately suspended). It is a global nondeterministic
choice since the selection of a component can be influenced by the (global) store and
by the environment of the process as well.

The parallel composition Gy || Gy represents both the interleaving (merge) of
the computation steps of the components involved (provided they can do these
steps independently of each other) and also synchronisation: this is the case of
the tell and ask described above. Note that in the general case there can be a
parallel composition of a finite sets of tell’s and a finite set of ask’s such that the
current store and a conjunction of some of the tell constraints entail the conjunction
of the ask constraints and the other tell’s. In this case all the components are
reduced simultaneously. This is sometimes referred to in the literature as multi-
party synchronous communication.

The block construct dyG behaves like a process G with the variables in X
considered as local. It hides the information about variables from X within the
process (. Let us recall that full version of Scc contains recursive procedures too
(see an example below), but for ease of reasoning they are not studied here.

To ilustrate some features of Scc (synchronous multi-party communication) we
present the dining philosophers example. We have chosen to represent both philoso-
phers and forks as processes; in addition communication is achieved via shared
stream variables as in classical concurrent logic programming.

The inital description of the system is

- phil(L1,R1) || fork(R1,L2) || phil(L2,R2) || ... ||[fork(Rn,L1)

and the processes are described as follows:

fork(R,L):- ask(L=[taken|L']); ask(L'=[free|L"]); fork(R,L")
I
ask(R=[taken|R’]); ask(R'=[free|R"]); fork(R",L)

phil(L,R):- tell(L=[taken|L'] , R=[taken|R']);
tell(L/=[free|L”] , R’=[free|R"]); phil(L",R")

Finally, it is worth observing that it is quite easy to recover the traditional
cc paradigm from our framework by the introduction of an asynchronous tell by
providing, for each constraint to be told, a concurrent corresponding ask operation.

3 The operational semantics O

It turns out that it is possible to treat the sequential and parallel composition oper-
ators in a very similar way by introducing the auxiliary notion of context. Basically,
a context consists of a partially ordered structure where place holders (subsequently
referred to by O) have been inserted at a top-level place i.e. a place not constrained
by the previous execution of other atoms. Viewing goals as partially ordered struc-
tures too, the ask and tell primitives to be reduced are those which can be substituted
by a place holder O in a context. Furthermore, the goals resulting from the reduc-
tions are essentially obtained by substituting the place holder by the corresponding
syntax structure or the A, depending upon whether an atom or a ask/tell primitive
is considered.

The formal definition of the contexts is a very standard one and can be found
e.g.in [4]. Moreover, we further state that the structure (Sgoal,;,||,2) is a bi-
monoid, that is, “ ;7 and “ ||” are associative binary operations and have A as
neutral element. In the following, we will also simplify the goals resulting from the
application of contexts accordingly.

The operational semantics of Scc is defined in Plotkin’s style [11] by means of a
transition system, where Sstore denotes the set of stores.

Definition 1 Define the transition relation — as the smallest relation of (Sgoal x
Sstore) x (Sgoal x Sstore) satisfying the rules of Figure 1.

Rules (H) and (C) express the classical treatment of hiding and of choice, re-
spectively. Classical rules for the sequential and parallel composition operators are
tackled by means of the notion of context.

Rule (T) defines the reduction of tell and ask primitives. The primitives to be
reduced, there referred to as spy, ..., sp,,, are partitioned in three categories:

i) the ask primitives (the multi-set {ask(ay),- -, ask(a,)});
ii) the tell primitives split into those which add information to the store (the
multi-set {tell(rty),---,tell(rt,)}) and those which do not (the multi-set

{tell(atq), - -, tell(aty)});

All these primitives are then simultaneously reduced to the empty goal A when
the information on the current store (o) together with the new information told
(rt1,...,rt.) entails the information of the other primitives. The new store consists
in this case of the old store enriched by the new information told. Note that this
rule reflects the laziness feature of our tell primitives.

In the case a constraint c is entailed by the current store o an ask(c) primitive
can be reduced alone following rule (T) by taking the unary context O, m = 1,
p=1,¢=0,r =0 and tell(c) can be reduced alone following rule (T) by taking
the unary context O, m=1,p=0,¢q=1,r =0.

Other tell’s and ask’s need each other for reduction and reduce simultaneously.
A minimality condition is required to forbid outsider tell’s to be reduced by taking
advantage of a concurrent reduction.

Tell and ask reduction

(T) <telspr, -, 8pm], 0> — <tc[A, - Al >

{Sp17"'78pm}: { aSk(al)v"'vaSk(ap)7
tell(aty), - -, tell(at,),
tell(rty),---, tell(rt,) }

oU{rty, -+, rt,} H{ar, -+, ap} U{aty, -, aty}

there is no strict subset S of {rty,---,rt,}

such that c U S+ {aq,---,a,} U{aty, -+, at,}
T=ocU{rty, -, rt,}
m >0

Hiding

<tc[G|Y/X]], 0> — <tc|G'],0">
<tc[AxG], o> — <tc[G],0'>

(H) if {Y is a fresh variable }

Choice

<G,o>— <G" ">
(C) <G+G'o0>— <G" o">
<G'4+ G o>—<G" ">

Figure 1: Scc transition system

We are now in a position to define the operational semantics. Following the logic
programming tradition, it specifies the final store of the successful computations.

It also indicates those stores associated with deadlock situations, namely situations
corresponding either to the absence of suitable data on the store or to the absence
of concurrent process(es) that would allow tell and ask primitives to proceed, i.e. to
resume suspended tell’s and ask’s. Note that the two situations may be distinguished
by a simple criterion: the existence of a store richer than the current one that would
enable the computation to proceed. Note also that real failure, corresponding to
the absence of suitable procedure declaration, does not occur since recursion is not
treated here.

The following definition follows directly from this intuition. The symbols 6T
and ¢° are used to indicate the computations ending by a success and a suspension,
respectively.

Definition 2 Define the operational semantics O : Sgoal — P(Sstore x {6,56°})
as the following function: for any goal G,

OG) = { <r,0t>: <G true> — - = <N, 7> }
U { <7r,d>: <G true>— - — <G 7>/
G' # A and there are o', G", 0"
such that <G',o'> — <G" o"> }.

4 Algebraic Semantics

Now we describe an axiomatisation in the style of process algebras for Scc. Part of
the axioms is borrowed from traditional work on process algebras (see e.g. [2]) and
from work already published on concurrent constraint programming (see e.g. [7]).
Other axioms are specific to our work (see [4] for comparisson of our axioms with
the axioms for asynchronous ccp given by deBoer and Palmidessi [7]).

Axioms from general process algebra

The first group (A) consists of axioms in Figure 2. They deal with the general
requirements found in any process algebra of communicating systems. As usual, we
use two auxiliary operators to axiomatise the parallel composition operator ||. They
are || for left merge and | for communication merge. In the following «, 3, a(c)

and (3(c) represent asks or tells on constraints, the constraint ¢ when an axiom is
parametric with respect to it. The system A axiomatises a notion of equivalence
which is known as bisimulation (see e.g.[2]).

The next group of axioms (T) in Figure 3 permits the abstraction from silent
steps 7. In the context of concurrent constraint programming 7 corresponds to a
tell(c) or ask(c) action where ¢ is entailed by the current store, e.g. tell({rue) or
ask(true). Failure is axiomatised by axioms (F) given in Figure 3 (cf. [2], p.215).

A axioms General
(A1) AtA = 4 (46) 84 = o
(A2) A+B = B+ A (A7) 644 = A
(A3) A+ (B+C) = (A+B)+C (A8) AjA = A
(A4) A;(B;C) = (A;B);C (A9) AN = A
(A5) (A+B);C = A;C+B;C

(A10) AllB = A|B+B|A+A|B

(All) (A+B)LC = (ALE)+(BILO)

(A12) (@A) LB = as(A]| B)

(A13) (A+B)|C = A|B+A|C (A16) A|lA = &
(Al4) A|(B4+C) = A|B+A|C (A17T) A|A = §
(A15) a3 A BB = (0] 5):(A]B) (A13) A|A = &

Figure 2: A-axioms

T and F axioms

T-abstraction and Failure

(1)

a; (8; A1+ B1) + «; (35 A2 + Ba)

o; (684 B1) + a; (3; A+ By)

AT
T;A+ B

a; A+ a; (B+C)

A

T A+ 7 (A+ B)

o; (85 A1+ B As + By)

+a; (85 A1+ B Ay + Bs)

a; (B4 5;A+ Br) + o (B+ 5; A+ By)
a;A+a;(A+ B) +a;(B+C)

Figure 3: T&F-axioms

Axioms from work on ccp

The group of axioms (H) in Figure 4 axiomatises hiding (quantification) in terms
of the auxiliary operator 3S.

To axiomatise the communication merge | we shall also need another auxiliary
operator 3°. To that end we extend the notion of cylindric constraint system by
adding the identity function 3 : C' — C'. 3 clearly satisfies the required conditions.
Hence, we must add an extra transition rule to the rules from Figure 1 to cover 3%

H axioms Hiding (Quantification)
(H1) Je. A = TJuuey (H4) 5 = 6

(H2) #LA = A (H5) FL.a(d);A = aVy(c—d));35.A
(H3) F.(A+B) = F.ALFE.B (H6) Fask(d) = A if c-d

Figure 4: H-axioms

L axioms

(1) (O B AT B) = ale) (Bendi AT B)

(12) a(e); ()i A+ B) = alo):(r; A+ B)

(L3) ask(c); (ask(d); A+ B) = ask(c);(ask(d); A+ B) +ask(cAd); A

(L4) ask(c) | tell(d) = ask(c)|tell(d)+ ask(d)|tell(d) ifdtFc

(L5) ask(c); A+ ask(cAd);B = ask(c); A+ ask(c); (A+ ask(d); B)

(L6) (tell(c) | ask(d)); A+ B = I°ask(d));(tell(c) | ask(c)); A+ B

(L7) tell(c)|tell(d)|ask(e) = tell(cAd)|ask(e) ifcAdbe,ct/dlfe

(L8) ask(c) | ask(d) = ask(cAd)

(19) a(e); (B A+ B) = ale): (B(d); A+ B) + 5(d);a(e); A

(L10) Yhiasyask(e); Ay = 2,0 ask(cy,); A+ as Yy ask(cer); A
if forall f€ I+ J ke K C{i;|i€l,jeJ}: ask(Nicq,)) € U; j{ask(c;;); A}
whenever A; Cig t ¢k

Figure 5: L-axioms

<tc[G),o N p> — <tc[('],0">

(R) <tc[3*.G],0> — <tc[F7.G"],0 A o'>

The idea of hiding the empty set of variables is to allow a separate local compu-
tation. A local computation step proceeds from a store which consists of the entire
global store seen “locally”. The resulting global store of a local computation is the
same as the one before starting the local computation.

Axioms specific to Scc

Now we present a group of axioms (L) which characterise the specific treatment
of “lazy” tell in concurrent constraint programming. The axioms are presented in
Figure 5.

The axiom (L1) expresses that once a constraint has been established by telling
it, it remains in the store. The axiom (L2) expresses that asking or telling an entailed
constraint results in a silent action 7.

The axiom (L3) permits the composition of ask actions, and the axiom (1.4)
permits the strengthening of an ask-guard in a suitable parallel context. The axiom
(L5) allows the restricted decomposition of ask actions.

The justification of (L6) is as follows. Suppose that the current store together
with ¢ entails d. In this case the left-hand side process synchronizes, allowing both
components to proceed, and the resulting store is enriched by ¢. The right-hand
side process results in exactly the same store, namely it first “checks” whether the
current store together with ¢ implies d by performing a local computation of ask(d)
and if this is true it then just “tells” ¢. Note that if this occurs in a parallel context,
then telling ¢ means “waiting” for a partner who asks for this information.

The axiom (L7) permits the restricted composition of tell actions and reflects
our minimality condition (see rule (T) in Figure 1). The axiom (L8) permits the
composition of ask actions.

The axiom (L9) is informally justified as follows. Suppose that the current store
implies the constraint d. In this case the process represented by the right-hand side
of the axiom can select the 3 branch, execute the « action and proceed with A. But
this behaviour can be mimicked by the other branch, the order of the actions being
unobservable. In the case the current store does not imply d, the only choice left is
to execute the « branch.

5 Soundness and Completeness

This section discusses the soundness and completeness properties of our axiomatisa-
tion. Classically, algebraic theories identify computations which not only exhibit the
same final results but also behave identically when they are placed in any context.
We are thus lead to relate our algebraic semantics with a compositional semantics.
However, the semantics O is not compositional, as shown by considering the goals
tell(c), ask(c), tell(c) || tell(c), and tell(c) || ask(c): for any store o such that o t/ ¢,
the first three suspend whereas the last succeeds. Consequently, we first define a
compositional operational semantics, prove that it is correct with respect to the
semantics O and then relate it to the algebraic semantics just developed.

A Compositional Operational Semantics

Two problems need to be tackled in order to transform O into a compositional
semantics. Firstly, the semantics should be modified in order to allow suspended
goals to resume thanks to the store as computed by concurrent goals. This is sub-
sequently achieved by reporting in the semantics not just the final results coupled
to a status mark but sequences corresponding to the computation steps. Progress
made by the concurrent goals is then indicated by steps of the form <o, 7> indi-
cating the update of the store o in the store 7. Secondly, tell and ask primitives
of goals should also be able to synchronise with primitives provided by concurrent
processes. This is subsequently achieved by introducing in semantic sequences the
steps of the form <o, o/ =465 where the (A, At, Rt) triple denotes the actors of
the synchronisation, according to the three categories detailed in section 3. In fact
each of these multi-sets is a pair composed of (the store argument of) the primitives
of the considered goal and of (the store argument of) the primitives provided by its
concurrent processes.

It is possible to extend the transition system of Figure 1 so as to reflect these
extensions. The slight modifications to rules (T), (H), and (C) are given in Figure 6.
They consist of adding labels describing the pair of initial and final values of the
store for the steps under consideration. Note that rule (R) introduced in section 4

can likewise be modified straightforwardly.

(T) <telspr, -+, 8pm], 0> —=T <te[A,--- Al >

{Sp17"'78pm}: { aSk(al)v"'vaSk(ap)7
tell(aty), - -, tell(at,),
tell(rty),---, tell(rt,) }

i oU{rty, -+, rt,} H{ar, -+, ap} U{aty, -, aty}

there is no strict subset S of {rty,---,rt,}

such that c U S+ {aq,---,a,} U{aty, -+, at,}
T=ocU{rty, -, rt,}
m >0

<te|GIY/X]], 0> 1 <t[G"],0">
<tc[AxG], 0> 1= <tc|G'],0'>

if {Y is a fresh variable }

<te[G],o A p> 1 <t 0">
<te[3.G], 0> 1= <ic[37.G",0 No'>

<G o> = <G", o">
(C) <G+G o> 1 <G o">

<G'+ G o> —— <G" o">

Figure 6: Reformulation of the Scc transition system

Extensions required to achieve compositionality are given in Figure 7. Rule (E)
deals with the first problem mentioned above. Rule (A) provides a solution to the
second problem: a synchronisation similar to that of rule (T) is performed but by
means of concurrent tell and ask primitives.

Rules (Sn) and (Ss) deal with suspension and success. The last one reflects the
intuition already embodied in definition 2.

The treatment of suspension requires some care. OQur solution, illustrated in rule
(Sn), is to report, in a single mark, for each suspended configuration, the set of stores
and the set of concurrent tell and ask primitives (split as before) that would allow
a transition to take place. Suspension marks disappear when combining components
in the case where the tell and ask primitives required by the components are mutually
provided.

The intuition has now been provided for the following definitions.

Environment

<o,0! ¢

(E) <G,o> /22— <G, 0> if{oc'Fo, G£A}

Reduction by means of auxiliary tell’s and ask’s

>(A,At,Rt)

(A) <te[spy, +,8pm], 0> 227

<te|A, -, A, >

{sp1,---,spm} = { ask(a),---,ask(a,),
tell(aty),-- -, tell(at,),
tell(rty),---, tell(rt,) }

oU{rty, -, rts U{rrty, -, rrt;}

Fo{ar, - a,} U{aay, - aap} U{aty, - - aty}
U {aaty,---,aat;}
there is no strict subset .S of
if {rty,---,rtsy U{rrty,-- -, rrt;} such
that cUS F{ay, -, ap} U{aay, -, aar} U{aty, -, at,}
U {aaty,---,aat;}

A=({ar, -, ap}, {aar, -+, aas})

At = ({atq, -+, aty},{aaty, -, aaty})

Rt = ({rtq,- -+, rt. }, {rrte, -+, rrt;})

T=ocU{rty, -, rt, } U{rrty,-- -, rrt;}

m >0
Suspension
(Sn) <G,o> | 0.8 <Susp, o>
G#NA
<G,o> 4

there are G, ¢’, ¢ such that ¢’ + ¢ and <G, o0'> — <G", 0>
if ¢ € is the set of all such stores ¢’
S is the set of all triples (A, At, Rt) fulfilling the conditions

of rule (A) together with some spy, ..., sp,, such that

G =te[spry -+, Spm)

Success

(Ss) <N, o> (S N <Swucc, o>

Figure 7: Rules induced by the compositionality requirement

Definition 3

1) The set Sspair of synchronisation pairs is defined as the set (Sstorex Sstore)x
(Sstorex Sstore) x (Sstorex Sstore) x (Sstore x Sstore) x (Sstore x Sstore).

2) The set Smark of marks is defined as the set {e}USspair. Marks are typically
denoted by the letter M, possibly subscripted.

3) The set Sstep of steps is defined as the set (Sstore x Sstore) U (Sstore x
Sstore x Smark). Steps are typically denoted in an exponential fashion as
<o, 7>M: the notation [M] indicating a possibly absent mark.

4) The set Sterm of terminators is defined as the set Sstore x ({5%} U {559 .
Q) C Sstore, S C Sspair}). In the following, terminators are typically denoted
as <o, 8%, Terminators not involving 6T are typically denoted as <o,5%,
when there is no need to specify further the mark S.

5) The set of semantic histories is defined as Shist = Sstep< x Sterm

Definition 4 Let Susp and Suce be fresh names appearing in no set previously
mentioned. Define the transition relation — as the smallest relation of ((Sgoal U
{Susp, Suce}) x Sstore) x (Sstep U Sterm) x ((Sgoal U {Susp, Succ}) x Sstore)
satisfying the rules of Figures 6 and 7, where P is assumed to be given and the
notation <G, o> 11— <G’ o'> is employed instead of (<G, o>,1, <G, 0'>) €.

The operational semantics M basically collects the labels appearing in the
finitely ended computations. To obtain compositionality, those computations are
allowed to start in any store.

Definition 5 Define the operational semantics M : Sgoal — P(Shist) as the fol-
lowing function: for any goal G,

MG = { Ll <Go> e o0 e (O
o € Sstore,C € ({Succ, Susp}) x Sstore }

The semantics M can be proved compositional. It is also correct with respect
to the semantics O in the following sense. A few definitions are first in order.

Definition 6 Let h = <oy, 7 =M1 <0, Tn>-[M"].-<0'n_|_1, 8+ be a history,n > 0.
1) h is continuous iff there is no gap of stores between the steps ie iff 0,01 = 7
fori=1,...,n.
2) h starts in o iff oy = 0.
3) h is non-hypothetical iff it contains no step of Sstore x Sstore x Smark.
4) =0ni1,0%= is called the final step of h and h is said to end by this step.

For any goal G, the semantics O((') can be obtained from M(G) in the fol-
lowing way: (i)by retaining the histories of the latter which are continuous, non-
hypothetical, and which start in true; (ii) by taking their final steps; (iii) by changing
all the symbols §° by the symbol §°.

Proposition 7 Define the function o : Sstore — P(Shist) — P(Sstorex {d+,6°})
as follows: for any store o € Sstore, any subset S C Shist,

a(o)(9) = { =<7,6"=: h €5, h continuous, non-hypothetical
h starts in o, h ends by <7,5 >~ }

U{ =<7,8°~: h €S h continuous, non-hypothetical
h starts in o, h ends in <7,5%> }.

Then, for any program P and any goal G, O(G) = a(true)(M(G)).

Soundness and completeness

We finally relate the algebraic semantics with the semantics M. This is achieved
following the classical lines, illustrated among others in [2].

The proof of soundness of our axiomatisation consists of a simple verification
establishing M(G) = M(H), for any axiom G = H. As far as completeness is
concerned, every process is first proved equal to a basic process, namely a process
built up from the ask, tell and (tell | ask) constructs, and A, constants using
sequencing and choice only. Completeness is then established for basic processes by
inductively reasoning on their structure.

Summing up, the following theorem can be established.

Theorem 8 For any processes G and H
FG = H iff M(G) = M(H)

An interesting relationship between the algebraic semantics and the semantics
O can be derived therefrom and from proposition 7.

Proposition 9 For any processes G and H, if - G = H then O(G) = O(H).

6 Conclusions

This paper has presented an algebraic semantics for a synchronous version of concur-
rent constraint programming. This version is based on new variants of the tell and
ask primitives where the former behave as lazy producers of new pieces of informa-
tion which are consumed by the latter at the same time they are produced. Stress on
the novelty of the information permits tell and ask to proceed asynchronously in the
case their corresponding constraint argument is entailed by the current contents of
the store. This framework, called Scc, has been argued to be (in some aspects) dif-
ferent from traditional algebraic languages, exemplified by CCS, and from classical
concurrent constraint programming, exemplified by the cc family of languages.

These differences call for semantic treatments, which have been proposed and
compared with existing ones. Soundness and completeness of the proposed axiomatic
system have been established by relating it to a compositional operational semantics,
which has also been presented.

References

1]

2]

Krzysztof Apt, editor. Proceedings of the Joint International Conference and
Symposium on Logic Programming, Washington, USA, 1992. The MIT Press.

J.C.M. Baeten and W.P Weijland. Process Algebra. Cambridge University
Press, 1990.

L. Brim, J-M. Jacquet, D. Gilbert, and M. Kietinsky. New Versions of Ask and
Tell for Synchronous Communication in Concurrent Constraint Programming.
Technical Report No. 1996/03. ISSN 1364-4009, Northampton Square, London
EC1V 0HB, 1996.

L. Brim, J-M. Jacquet, D. Gilbert, and M. Kietinsky. A Process Algebra
for Synchronous Concurrent Constraint Programming. Technical Report No.

1996/06. ISSN 1364-4009, Northampton Square, London EC1V 0HB, 1996.

F. S de Boer, J. W. Klop, and C. Palamidessi. Asynchronous communication in
process algebra. In Proceedings, 7th Annual IEEE Symp. on Logic in Computer
Science, pages 137-147. IEEE Computer Society Press, 1992.

F. S. de Boer and C. Palamidessi. A fully abstract model for concurrent con-
straint programming. In S. Abramsky and T.S.E. Maibaum, editors, Proc.
of TAPSOFT/CAAPY1, Lecture Notes in Computer Science, pages 296-319.
Springer-Verlag, 1991.

F. S. de Boer and C. Palamidessi. A process algebra of concurrent constraint
programming. In Apt [1], pages 463-477.

M. Falaschi, G. Levi, and C. Palamidessi. A Synchronization Logic: Axiomatics
and Formal Semantics of Generalized Horn Clauses. Information and Control,

60:36-69, 1994.

J.-M. Jacquet and L. Monteiro. Communicating clauses: Towards synchronous
communication in contextual logic programming. In Apt [1], pages 98-112.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

G. Plotkin. A structured approach to operational semantics. Technical report,
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

V. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. of

17th POPL, pages 232-245, 1990.

V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concur-

rent constrant programming. In Proc. of 18th POPL. ACM, 1991.

