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ABSTRACT

Developers inevitably make human errors while coding. These er-
rors can lead to faults in code, some of which may result in system
failures. It is important to reduce the faults inserted by developers
as well as fix any that slip through. To investigate the fault inser-
tion and fault fixing activities of developers. We identify developers
who insert and fix faults, ask whether code topic ‘experts’ insert
fewer faults, and experts fix more faults and whether patterns of
insertion and fixing change over time. We perform a time-based
analysis of developer activity on six Apache projects using Latent
Dirichlet Allocation (LDA), Network Analysis and Topic Modelling.
We show that: the majority of the projects we analysed have devel-
opers who dominate in the insertion and fixing of faults; Faults are
less likely to be inserted by developers with code topic expertise;
Different projects have different patterns of fault inserting and fix-
ing over time. We recommend that projects identify the code topic
expertise of developers and use expertise information to inform the
assignment of project work. We propose a preliminary analytics
dashboard of data to enable projects to track fault insertion and
fixing over time. This dashboard should help projects to identify
any anomalous insertion and fixing activity.
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1 INTRODUCTION

Software code remains predominantly a handmade product, pro-
duced by human developers, and as such, it is prone to error. The
result of this developer error can be faults in code and as the world
demands ever larger and more complex software systems, control-
ling faults in code becomes more difficult but increasingly necessary.
Understanding fault insertion and fault fixing is crucial to enabling
the effective reduction of faults in software systems.

Previous studies have looked at a variety of aspects of fault
insertion and fixing, however, this previous work is fragmented,
with individual studies looking at elements of insertion and fixing
in isolation. Previous studies focus on analysing fault fixing for a
variety of potential uses. Developer experience has previously been
investigated with the aim of matching developers to job vacancies
(e.g. [13]), to identifying who should review code (e.g. [24]) as well
as to enable effective bug triaging (e.g. [28]).

Developer experience is reported to be related to fault insertion
[9]. Measuring developer experience is not straightforward with
conflicting reports of whether time spent coding is a valuable metric.
Studies increasingly suggest that additional context information
must be considered alongside time spent coding [8].

Expertise seems an important enabler to reduced fault insertion
and improved fault fixing. Expertise has been studied in software
engineering with Baltes & Diehl [1] recently developing a theory
of expertise in software development.

The impact of developer code ownership [2] on fault insertion
has been studied extensively. Low code ownership (i.e. code that
has been touched by many different developers) is widely reported
as more likely to be faulty than code with high ownership (e.g.
[2, 12]).

Most previous studies consider only snapshots of developer fault
insertion and fixing. Very few account for the impact project expe-
rience over time is likely to have on developer fault inserting and
fixing. Kini & Tosun [19] is an exception to this, using developer
experience metrics over time to improve defect prediction models.

In this study, we look across a variety of aspects of developer
fault insertion and fixing in an attempt to identify specific patterns
of activity for particular systems. We consider the intensity of fault
insertion and fixing by developers to highlight influential fault in-
serters and fixers in projects. We simulate the coding expertise of
developers by analysing the code topics with which developers
have most experience. We investigate the relationship between
these code topics and the fault insertions and fixes made by indi-
vidual developers. We also analyse fault insertion and fixing within
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the context of code complexity, over time, to establish whether
developers’ fault insertion and fixing changes as their experience
over time increases.

Our study takes a multi dimensional approach to understanding
(I) fault insertion and fixing by considering the impact of developer
expertise via familiarity with code topics, (II) developer insertion
and fixing over time and (II) the complexity of the code being
touched by developers during fault insertion and fixing over time.
Our study attempts to pull together and build on previous research
to understand more comprehensively fault insertion and fault fix-
ing. We move towards building a more comprehensive time-based
understanding that could help to enable better organised software
teams who are more able to effectively deploy developers to min-
imise shipped faults and also underpin the development of tools to
support the minimisation of faults during development. We sug-
gest a dashboard of data for projects which may help to identify
anomalies to a project’s normal fault insertion and fixing activities.

Our study analyses the repositories of six Apache Github projects.
We provide a replication package of our analysis containing a full
set of scripts and raw data'. We aim to understand fault insertion
and fixing by answering the following research questions:

RQ1: Can we identify those developers most likely to in-
sert and fix faults in code? If we can identify who is most likely
to insert faults, it may become easier to manage the deployment of
developers effectively. Similarly, if we can identify who is likely to
fix faults, assigning tasks to developers could become easier. We
find in each project examples of developers who are very active in
all activities as well as developers who seem to predominately insert
faults and also developers who predominately fix faults inserted by
other developers.

RQ2:Does expertise impact developers’ fault insertion and
fixing? We try to understand whether it is important that develop-
ers have expertise in the code that they touch. We analyse whether
developers with topic expertise insert and fix faults. We suspect
that it is likely that developers with topic expertise insert fewer
faults and make more fixes than developers without expertise in the
code topic. We find that faults appear to be inserted by developers
with low expertise in the code topic of the fault. We also find that
fault fixers have slightly more expertise in the topic of the fault,
but less expertise than we expected.

RQ3: Does experience over time on projects impact de-
velopers’ fault insertion and fixing? Developers’ experience
changes over time and it is likely that developers’ fault insertion
and fixing also changes as time goes on. Understanding the rela-
tionship between experience over time on the project and fault
insertion and fixing will help to deploy tasks to developers in line
with their project experience. To mitigate the impact of increas-
ing code complexity over time, we analyse the complexity of files
touched by developers. We find that there is a complex pattern of
developer activity over time with no clear patterns of fault insertion
and fixing across the projects studied. Similarly the evolution of
code complexity varies across projects.

The rest of the paper is structured as follows: Section 2 sum-
marises previous related work on fault insertion and fixing. Section
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3 details the methodology of our analyses and is followed by Sec-
tion 4 which presents the results of our analyses in response to the
research questions we pose. In Section 5 we describe a preliminary
expertise dashboard for future development. Section 6 outlines the
threats to validity of our study. Section 7 concludes the paper and
suggests future work.

2 BACKGROUND & RELATED WORK

The fault insertion and fixing behaviours of developers have been
investigated for a variety of purposes using a range of methods and
measurements. We summarise this previous work.

Many previous studies use code ownership to describe the fa-
miliarity developers have with units of code. Code ownership is
often used to indirectly measure developer expertise. Mockus and
Herbsleb [17] were some of the first to measure the frequency with
which developers work with specific pieces of code and to associate
code expertise with this measure.

Code ownership has also been analysed in terms of faults inserted
into code. Matsumoto et al. [15] reported that code touched by many
different developers was more likely to be faulty. Bird et al. [2] used
code authorship metrics to identify the developer who originated
problems in code and also to identify developers to whom fault fixes
should be assigned. Bird et al. divided developers into two groups:
Minor Developers (those who have contributed less than 5% of code
in a component) and Major Developers (those who have contributed
more than 5% of code in a component). Bird et al. report that faulty
code is more likely to have been written by Minor developers.

Bird et al’s findings were further supported in Greiler et al’s
[12] replication study and Foucault et al’s [10] larger study of code
authorship in open source systems. Businge et al. [6] also report
a similar relationship between authorship and faults in Android
applications. Overall, there seems to be growing empirical evidence
that authors who are actively involved with a piece of code insert
fewer faults into that code. Fritz et al’s [11] model of code base
knowledge confirms the importance of code authorship. Fritz et al’s
experimental study suggests that developers have more knowledge
about code that they author. Fritz et al. show a direct link between
effort spent by developers on code and knowledge about that code.

More recently Wang et al’s [27] preliminary work used Latent
Dirichlet Allocation (LDA) modelling [4] to identify the expertise
of developers. Wang et al. automatically measured developer exper-
tise based on code quantity, code quality, skills and contribution;
embedding this understanding in an on-line tool. Wang et al. are
among the few previous studies that take into account a variety of
factors when measuring the quality of code produced by developers,
including faults inserted, vulnerabilities introduced, code complex-
ity and code smells introduced. Wang et al’s study is preliminary
work based on a small sample of data.

Developer expertise is likely to be influential to fault insertion
and fault fixing. Measuring expertise directly is challenging as it is
an abstract and multi dimensional concept [17]. Previous studies
have resorted to a range of diverse indirect measures of developer
expertise. Constantine and Kapitsaki [7] proposed an approach
to analysing development activity to identify developer expertise.
Constantine and Kapitsaki tracked the continuity of code contri-
butions made by approximately 150 active Github developers to
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understand the development of programming language expertise
across Github projects in relation to the size of projects. Length of
project participation is the most common proxy for measuring ex-
pertise and is used particularly in studies of OSS (e.g. Vasilescu et al.,
[26]). Recent studies suggest that the impact that length of project
participation has on productivity and quality [8] and expertise [1]
is not conclusive.

A more sophisticated understanding of developer expertise now
seems to be emerging with Baltes & Diehl [1] recently develop-
ing a theory of software development expertise. Specific aspects
of expertise have also recently been investigated. Dieste et al. [8]
investigated the relationship between years of programming expe-
rience and programmer performance. Their quasi experiments with
56 students and 70 professional developers revealed that years of
industry experience did not directly influence programmer perfor-
mance. Other task specific skills were more influential to program-
mer performance (e.g. skills in specific frameworks). Vasilescu et
al. [26] report that a combination of knowledge, perspectives and
experience are good predictors of productivity and project success.

Developer use of specific tools and techniques has also been
reported as an indirect measure of expertise. Montandon et al. [18]
analysed library and framework use by Github developers to iden-
tify evidence of expertise. Montandon et al. reported that expertise
was related to intensity of coding activity (i.e. low expertise is
related to few contributions to projects). Montandon et al. triangu-
lated their findings using other sources (e.g. Linkedin) to identify
Github developers with high levels of expertise.

High developer turnover is also reported to increase code faults.
This is because overall knowledge of the code base diminishes as
developers leave. Foucault et al’s [10] study of five large projects
suggested that new developers lack project expertise and have dif-
ferent activity levels because of their reduced code-base knowledge.
Rigby et al. [20] further confirms the relationship between high
turnover and lower code knowledge. Foucault et al. [10] report that
projects with high developer turnover exhibit lower productivity
levels and higher numbers of faults.

In this study we investigate coding authorship by developers
over time, not only in terms of the intensity of fault insertion, but
also fault fixing, taking into account their sustained contributions
and topic expertise in a particular project. We contextualise this
developer activity by considering the complexity of code that devel-
opers are working with. We go further than the snapshot analysis
predominately used previously by analysing changes in developer
fault insertion and fixing over time.

3 METHODS
3.1 Open Source Projects Analysed

We selected six open source systems detailed in Table 1. All projects
were selected from the Apache community. We chose Apache projects
as they follow the same development guidelines which reduces
the variability that arises when analysing datasets from different
sources. In addition, the projects use the git versioning system and
JIRA fault database which are linked using the JIRA ID. This makes
it possible to extract faults in code. We selected the projects with the
highest number of commits, comments, and issues. We extracted
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data for each project from the beginning of the repository found
on Github until February 2020.

The first column of Table 1 is the project name. The # commits
column shows the total number of commits for the project at the
time we collected the data. The #FI and #FF columns represent the
total number of fault insertion and fault fix commits, respectively.
The same fault can be fixed in multiple commits which is why
some projects have more fault fix than fault insertion commits. The
last two columns represent the total number of project contribu-
tors throughout the project’s history. In derby, hadoop hdfs and
hadoop common the number of authors and committers is the same
suggesting that all authors are allowed to contribute to the project.

Table 1: Summary of the six Apache projects

Project #commits ~ #FI  #FF #bugs #commiters #authors first commit last commit

hadoop hdfs 1134 856 927 817 25 25 2009-05-19  2011-06-12
camel 44020 19607 12446 6623 213 673 2007-03-19  2019-12-18
derby 8269 4235 5889 3267 37 37 2005-01-24  2019-08-18
hadoop common 10509 5314 2408 2070 83 83 2009-05-19  2014-08-22
hive 14247 11060 13104 12290 120 324 2008-09-09  2020-01-14
hbase 17424 12580 15023 22133 138 458 2007-04-19 2020-01-11

3.2 Data Extraction

We extracted a range of data from each project’s Github and JIRA
repositories. From Github we obtained the following information:
commit hash, commit author, commit date. The data was collected
for each commit on the master branch throughout each of the
project’s history. To collect the Github data we used a script which
is provided in the replication package. From JIRA we obtained the
following information: fault ids, fault titles, fault description, fault
comments and fault report dates. Similar to Github data, we obtained
all the fault reports throughout the projects’ history. The script for
collecting the JIRA data is available in the replication package.

We used the SZZ algorithm to extract fault fix and fault insertion
git commits from the six systems [23]. The SZZ algorithm finds a
link between a fault report and the corresponding fix git commits in
the version control system. From the fix commit, the SZZ algorithm
then identifies which code snippets were faulty and tracks those
back to their insertion points. The SZZ algorithm has been widely
used in previous studies (e.g.[21]). From fault fix and insertion data
we extracted the developer, git hashes and files involved in the fault
fix/insertion. In addition, information about author and committer
for each git commit was collected. We used author/committer infor-
mation to attribute each change to the author of a commit, rather
than the committer. This is because only committers have the right
to commit changes but may do this on behalf of other authors.

Finally, we collected cyclomatic complexity metrics for all fault
insertion and fault fix commits. We used JHawk? to collect this
data. Metrics were collected at class level. We recorded the commit
hash next to each class for which the metrics were collected. We
then linked these commit hashes to the developers who authored
the code changes. This data enabled us to investigate how code
complexity changed over time for individual developers.

The data collected enables us to identify who inserted a fault,
who fixed that fault and the complexity of the files being changed
at insertion and fix.

Zhttp://www.virtualmachinery.com/jhawkprod. htm
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3.3 Data Cleaning and Analysis

We performed a series of cleaning steps on our data. First, we
merged all developer activity representing the same developer into
one set. As several developers were contributing to a project using
slightly different names or email address. We then ensured that all
data was anonymised. All identifiable information about developers
such as their names and emails were replaced. We also associated
the numbers of fault insertion and fault fix commits to each devel-
oper. Finally, we used the data about authors and committers of git
commits to correctly attribute changes made by developers. For all
of our extracted data we ensured that the metrics are mapped to
the author of a commit, rather than the committer.

We used the following techniques to analyse our data. Latent
Dirichlet Allocation (LDA) was used for cluster analysis of issue
topics as described in Section 3.5. We used the Gensim® package to
perform the LDA analysis with Python. The gephi tool* was used
for network analysis to identify the contributions of individual de-
velopers on a project and to visualise developer activity in terms of
who introduces and fixes faults (as described in Section 3.4). Finally,
we used static code metrics to demonstrate how the complexity of
code that developers touch changes over time.

3.4 Network Analysis

We built developer network graphs for the six systems we analysed.
These graphs represent the team of developers working on a sys-
tem and the connections between developers. Such network graph
structures have previously been used in various analysis of open
source projects (e.g. [16] [25]).

For each system we generated a direct network graph showing
insertion and fixing activity of developers. We built our developer
network graph using Gephi, an interactive network visualization
and exploration tool. Figure 1 provides an example network graph.
Each developer is represented by a node and an edge between two
nodes means that the two developers are interacting. If developer
A fixes an issue generated by developer B, there is a direct link
between node A and node B, with an in-link from A to B. The size
of the nodes are proportional to the number of out-links (which
represents the number of fixed issues by a developer) in the graphs
showing fixing activities. In Figure 1 node A has two out-links,
while node B has no out-links. The size of node A is bigger than the
size of node B. If there is a link going from node A to node B, this
means that developer A fixed an issue introduced by developer B.
The “self-link” exiting from node A and entering node A indicates
that developer A both introduced and fixed a fault.

We also computed the Betweenness Centrality network metric to
obtain a deeper understanding of the developer network structure,
and the interactions of developers in the project. Betweenness Cen-
trality is a statistical property of a network used to find influential
people in a social network. The Betweenness Centrality of a node is
an indicator of its importance in the network and is defined as the
number of shortest paths that pass through the node [5]. A node
with higher Betweenness Centrality has an important role over the
network, since more information will pass through that node.

3https://radimrehurek.com/gensim/
“https://gephi.org version 0.9.2
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Figure 1: Example of network graph

3.5 Topic Modeling

We use topic modelling to identify the code topics in projects and
to understand the topic ‘expertise’ of developers. Topic modelling
involves using statistical models to automatically discover themes
occurring within a corpus of text documents. The aim of topic
modelling is to find a distribution of words in each topic and the
distribution of topics in each document. A topic can be considered
as a probability distribution over a collection of words, e.g. a topic
relating to football is more likely to contain the words goal and
offside than a topic relating to cricket. Since its introduction in 2003
[4], LDA has become a popular unsupervised learning technique
for topic modelling. LDA assumes each document contains multiple
topics to different extents. The generative process by which LDA
assumes each document originates is described below:

Algorithm 1 LDA’s Algorithm
Require:
1: Choose N Poisson(e)
2: Choose 6 Dir(a)
for each: N € Words W,
3: Choose a topic Multinomial(6).
4: Choose a word W;, from p(W,|Zp, ), a multinominal probabil-
ity conditioned on the topic Zj,.

Considering each document, the number N of words to generate
is chosen (1). The algorithm randomly chooses a distribution of
words over the topics, o (2). For each word to be generated in the
document, the algorithm randomly chooses a topic, from the dis-
tribution of topics (3), and then, from the topic selected, chooses a
word using the distribution of words in the topic (4). The algorithm
focuses on the distribution of topic in document and the distribu-
tion of words in topic as variables. The aim is to find latent (hidden)
parameters that can be estimated via inference for retrieval of per-
document topic distributions and per-topic word distributions. We
applied LDA to model developers’ topic ‘expertise’ in issues (faults)
considering the title and description as a textual representation of
the issue - which is common in topic modeling [3, 14] applied to
social content and user generated content. We aggregated issues
by assignee (namely the developer assigned to the issue) allowing
us to created a corpus of documents (where each document rep-
resents an issue) and applied LDA to obtain the high level topics
on which developers are grouped based on the dominant topic of
issues assigned to developers.
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4 RESULTS

RQ1: Can we identify those developers most
likely to insert and fix faults in code?

To put fault insertion and fault fixing into context we first looked
at whether developers fixed faults that they themselves or other
developers had inserted into the code. Figure 2 shows in blue the
percentage of faults where the developer who inserted the fault
and the developer who fixed the fault are the same, in orange the
percentage of faults where the inserter and the fixer are different
developers. Figure 2 shows that for five of the six projects between
40-60% of faults are fixed by developers who did not insert the fault.
The Camel project is an outlier in much of our analysis, which
we nevertheless include throughout to avoid appearing to cherry
pick results, as well as to show that there are always a range of
heterogeneous projects, each with their own proclivities.

100 mmm Fixer and Introducer are the same.
e Fixer and Introducer are not the same.

e\ n S e e
con De(:\é 1 O 000 WO vas v
i

Figure 2: Fault Insertion Vs Fault Fixing. The orange bar rep-
resents the percentage of bugs where the developer that in-
troduced the bug is not the same developer that fixed the
issue and blue otherwise

To provide a more detailed understanding of the dynamics within
each project’s development community, and to identify any devel-
opers who are most actively inserting and fixing faults, we built
a network of insertion and fixing activities and apply network
analysis (as described in the previous section).

A developer active in a project, from the point of view of the
network graphs we built, can perform one or more of the following
actions over time:

o fix a previous fault they inserted;
o fix a fault inserted by an other developer.

Developer activity levels are proportionate to the number of
out-degree of a node in the network. Nodes with higher value of
out-degree indicate increased developer activity. Where a developer
fixes a fault they inserted, a self-loop is added to the node in the
network which represents that developer. When a developer fixes
a fault inserted by another developer, a direct link will connect the
two nodes representing the developers, with the arrow pointing at
the developer who inserted the fault. Tables 2 and 3 provide exam-
ples of the underlying data related to the Hadoop HDFS and Derby
directed graphs. Table 2 shows that developer 1 has the highest
out-degree value (449) in the project. This means that developer
1 represents the biggest node for Hadoop HDFS (and it highlights
that this developer performed the most fixes). Table 2 and Table 3
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show that for Hadoop HDFS and Derby developer 1 also has the
highest Betweenness Centrality value resulting in Node 1.

Table 2: Network Analysis (Hadoop HDEFS)

DevId | Out-degree | In-degree | Degree | B-cent

1 449 176 625 56.25
2 188 116 304 15.46

2
3 167 158 325 | 1185
4 165 12 277 | 883
5 133 20 153 | 003
6 118 60 178 115
7 61 32 93 106
8 38 . s 344
9 15 12 27 0
10 14 65 79 029
11 12 56 68 0
12 9 83 92 369
13 7 71 78 0
4 13 17
3 39 42
16 3 18 21
0 42 42

cooo

Table 3: Network Analysis (Derby)

DevId | Out-degree | In-degree | Degree | B-cent

1 1469 492 1961 | 8519
2 512 241 753 191

2
3 441 203 644 | 567
4 331 (O 1638 726
5 276 166 442 | 876
6 138 176 314 861
7 118 183 301 301
8 11 264 375 109
55 82 137 | 003
10 48 30 78 0
11 46 27 73 0
12 37 86 123 | o
13 21 45 66 0
14 7 9 16| 0003
7 19 2 0
5 13 1us | 001
17 3 12 15 0
2 170 172 0
2 4 3 0

The networks data suggest that some developers predominately
fix faults inserted by other developers. Data also shows that the
most active fault fixing developers have a high number of self-
loops, meaning that they introduce and fix their own faults. We
previously identified a relatively high level of self-fixing in Figure
2. Each project has a small number of highly active developers who
insert and fix many of their own and other developers’ faults.

The results obtained from the directed graphs show that it is
possible to identify specific types of developers in most of the six
projects. We describe these types of developers as:

e Super-developers: most active in the project who insert and
fix their own faults and those of other developers;

o Fixers: less active in the project who predominately fix faults
inserted by other developers;

e Inserters: less active in the project who predominately fix
their own faults.

A relatively large number of inserters and fixers seem active
in most of the six projects. Whereas a small number of super-
developers are active in all six projects. Each type of developer
is important to identify as each type is likely to impact differently
on project success. More stringent reviews of code contributed by
inserters would probably benefit projects. Whereas more active use
of fixers would also probably benefit projects. Super-developers
are likely to have excellent knowledge of the project and could be
deployed to more difficult tasks with less stringent code review. The
structure of networks vary across the six projects, as it is possible
to see in the network graphs provided in the repository containing
the replication package®. This variation suggests slightly different

Shttps://bitbucket.org/giuseppedestefanis/promise2020
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insertion and fixing activity across projects. Such variability is to
be expected as most projects have specific ways of working and it
is important to understand the normal patterns for each project so
that anomalies can be identified quickly.

The analysis we provide in response to Research Question 1 is an
aggregated picture of the entire time-frame we analysed for each
project. It is likely that developer activity evolves over time as new
developers join a project and gain experience. To investigate this
evolution we present a time-based analysis of developer activity in
response to Research Question 3.

RQ2: Does expertise impact developers’ fault
insertion and fixing?

Figure 3 presents the topic modelling clusters, considering all kind
of issues (e.g. bugs, enhancements etc.), for the six projects and
shows that for all projects there are distinct topic clusters. These
are clusters of issues sharing similar content produced using LDA
(as described in the previous section). This suggests that the issues
on which developers work cover a range of different topics and that
some of these topics are likely to benefit from specific expertise
during development activities.

Figure 4 looks in more detail at the topics for the HBase project
(similar detail for all projects is available in our replication package).
The figure on the left represents the size and dimensional spacing
among the ten topics, the dimension of the circle represents the
number of issues belonging to that cluster. These circles show that
there is little overlap between topics meaning that, in general, the
topics are well defined for HBase. On the right of Figure 4 are the
top 30 most important keywords of the first topic (represented
by circle 1). We manually analysed each topic for each project to
confirm that these topics make sense, representing for example
topics such as "compute, thread, save etc" for concurrent issues or
"connection, pool, jdbc, driver" for database related issues.

Clustering issues into topics allowed us to assign a dominant
topic to each developer, i.e. to identify the most frequent topic in the
issues that each developer has worked on. For example, if developer
A worked most often on issues related to concurrency, developer
A’s dominant topic would be the topic containing keywords repre-
senting concurrency. In the remainder of this study we considered
only issues related to fault (e.g. bugs) and link topics to faults by
assigning a topic to the issue report for that fault. We then com-
pute the percentage of issues where the fixer is an expert, i.e. the
dominant topic of the fixer and the fault are the same. For example,
a fault related to “concurrency” is reported and an issue assigned
to a developer. The topic “concurrency” is assigned to the fault, we
then compare the topic with the dominant topics of the fixer.

We analysed the expertise of developers who insert and fix faults
(i.e. whether a developer’s dominant topic matches that of the fault
at insertion and fix). Figure 5 shows this expertise analysis for each
project broken down into four quadrants (Q1: the fault inserter is
an expert; Q2: the fault inserter is not an expert; Q3: the fault fixer
is an expert; Q4: the fault fixer is not an expert). For four out of six
projects, in most cases the developer who inserted the fault is not
an expert in the fault topic (78% to 93% of faults are introduced by
developers whose dominant expertise is not in the topic). This is
an important finding as lack of developer expertise could be the
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cause of some of these faults. Camel has a different profile with only
6.5% faults introduced by non-experts. More research is needed to
understand why Camel seems to be such an outlier project, but
this may be related to the relatively high number of authors and
committers, all of whom seem to fix their own faults.

Figure 5 also shows that the expertise of fault fixers is slightly
better aligned to the topic of the fault. This alignment is not as
strong as we might expect, but may be mitigated by the presence of
’super-developers’. Such developers are likely to have wide expertise
of the project and so are able to tackle a range of fault topics rather
than faults only related to their dominant topic.

RQ3: Does experience over time on projects
impact developers’ fault insertion and fixing?

We analyse the impact of time on fault insertion and fixing. We
investigate whether developers introduce fewer faults and fix more
faults as time goes by. We also investigate whether the code tackled
by developers gets more complex over time and developers gain
more project experience and how code expertise changes during
the lifetime of a project. We first analysed the activity levels of de-
velopers in relation to the complexity of files touched by developers
over time. This analysis allowed us to identify how the complexity
of the code developers were working on evolved in the context of
activity intensity. Figure 7 plots the cyclomatic complexity of the
files changed during a fault insertion or fix in each project over
time by individual developers.

Figure 7 shows that each project has a unique pattern of devel-
oper activity over time. Such differences in projects are commonly
reported in empirical investigations (e.g. [22]) and very few em-
pirical studies are able to convincingly report findings that hold
across all projects, even when the projects appear to have much
in common. Figure 7 suggests that developer contributions over
time vary between projects, with sustained project contributions
from some developers and bursts of intense contributions from
other developers. Some projects (e.g. HBase) seem to have many
developers who come and go from the project. Other projects (e.g.
Derby) seem to have fewer but more long lasting project develop-
ers. Patterns of developer retention and contribution intensity are
likely to affect developer expertise and underpin patterns of fault
insertion and fault fixing. However the exact relationship is difficult
to understand given the complexity of activities across projects (in
which Figure 7 provides some insight).

Figure 7 also shows that projects vary in terms of the evolution
of code complexity. Some projects seem to increase in complexity
as time goes on, e.g. Hive (figure 7¢) appears to be stable for about
4 years during which time there are relatively few developers work-
ing on the system, after 2014, the number of developers increases
and the files worked on become more complex. In other projects
complexity seems to remain fairly stable, e.g. Hadoop Common.
Whereas some projects start highly complex but steeply reduce in
complexity over time (e.g. Derby).

Figure 8 shows the fault fixing and fault insertion activities by
the 20 most active developers over time. The blue area shows the
density of fault inserting changes and the pink shows the density
of fault fixing changes. It is not possible for a fault fix to occur
before a fault insertion, therefore it is expected that the density of

Copyright © 2020 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in PROMISE '20: 16th International Conference on Predictive Models and Data Analytics in Software Engineering, https://doi.org/10.1145/3416508.3417117 (see:
https://www.acm.org/publications/policies/publication-rights-and-licensing-policy).



Fault-Insertion and Fault-Fixing: Analysing Developer Activity over Time

SNE Clustring o 10 LDA Topicsfo Hadoop HOFS LSNE Clustering of 10 LDA Topls forCamel

PROMISE 20, November 8-9, 2020, Virtual, USA

SNE Clustaring of 10 LDA TopiesforDerby

(a) Hadoop HDFS

SNE Clustaring of 10 LDA Topics forHadoop Commen SN Clustering

>3
TR e Dbl
iR

(c) Derby

SNE Clustering of 10 LDA Topics for HBase

(d) Hadoop Common

(e) Hive

Figure 3: Topic Clusters for Issues

Top-30 Most Salient Terms'
3 s0000 100000 150000 20000

Intertopic Distance Map (via multidimensional scaling)

Megratpcdsvbaen e

E3

s see Chuang et 81(2012)

Figure 4: HBase Topic Clusters for Issues and Top 30 Key-
words

fault insertion activity appears before fault fixes. Figure 8 shows
that peaks of fault insertion are followed by peaks of sustained
fault fixing activity. For Derby and the Hadoop projects, there is a
peak of fault insertion near the start of the project. Figure 8 also
shows the activity of the most frequent committer to each project.
The most active committers also show periods of fault insertion
followed by fault fixing. The density of fault fixing for frequent
committers seems more sustained over time compared to other
developers. In most projects the introduction of faults by the most
frequent committer drops as a proportion of faults fixed over time.

We also track expertise over time in relation to fault insertion
and fixing. Figure 6 shows in red the number of commits, per month,
from developers who inserted faults with a dominant topic different
from the topic of the fault. In green is shown the number of com-
mits, per month, of developers who fixed faults with a dominant
topic matching the topic of the fault. Figure 6 suggests a pattern of
fault insertion and fixing where bursts of non-expert activity occur
throughout the lifetime of the project. Figure 6 also suggests that
in most projects there is relatively high activity in non-expert fault
insertion compared to fault fixing. Again, Camel is an outlier in
this analysis showing a very different pattern of activity over time.

Monitoring fault insertion and fixing trends over time seems to
provide useful insights into how projects are changing and when
anomalous and potentially problematic activity is occurring. Moni-
toring ’curves’ over time should allow projects to recognise poten-
tial problems and adapt their activities to ensure faults are reduced.

5 ANALYTICS DASHBOARD

Figure 9 presents a mock-up for a potential project dashboard which
aggregates all the fault analytics presented in this study. The dash-
board consists of two sections: Topic Dashboard and Fault-Fix Dash-
board. The first section visualises the dominant topic of the issues
that developers are working on. For example showing the number
of commits over time whose author is an expert in the topic versus
the number of commits over time whose author is not expert in the
topic. Monitoring this data may help projects to quickly identify
a situation where non-expert developers are touching code they
probably should not.
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The second section of the analytics dashboard summarises for
projects the information provided in this study about fault insertion
and fixing over time. In this section is, for example, a time-series
of fault insertion commits as shown in Figure 6. This data could
enable project managers to visualise situations where, for instance,
there is a growing number of fault insertions from developers with
low expertise of the code topic. Observing such a situation could
trigger, for example, stronger issue triaging in the project.

Overall such a dashboard could be useful for identifying systemic
fault insertion and fixing problems in projects. Improved processes
and tools can then be identified and the impact of their implemen-
tation tracked using the data in the dashboard. In addition, training
and support requirements for individual developers could also be

identified. Though clearly there are potential management chal-
lenges in using such a dashboard for the management of individuals.
These management challenges go beyond the scope of this study.

6 THREATS TO VALIDITY & RELIABILITY

Internal Validity. Threats to internal validity concern confound-
ing factors that can influence the obtained results. Based on empir-
ical evidence, we assume a causal relationship between the topic
modelling of developers and what they write in their discussion.

External Validity. Threats to external validity correspond to
the generalisation of experimental results. In this study, we used
several empirical approaches to evaluate the collaboration network
of six projects from GitHub repositories. As the results of the camel
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= Xpertise Dashboard @ ® @ communities may demonstrate different behaviours. Replications
on commercial and other open source projects are needed to confirm
or extend our results. We provide all scripts and data for other
research to replicate this work.

Construct Validity. Developer expertise is a multi faceted chal-
lenging concept to measure. Numerous factors, such as project
participation and use of libraries and frameworks, can proxy devel-
oper expertise. It is unlikely that a single factor exists to measure
developer expertise. We considered the fault insertions and fixes
of developers over time, as well as the complexity of the code they
touch. We enhanced this data by considering experience working
on specific code topics. We believe that, together, this data gives a
reasonable approximation of developer expertise.

After visual inspection we assumed that the network graphs used
for analysing developer activities are not random. This assumption
was on the basis that all the nodes representing the developers in

Last Month

Assignee-Topic Matches

Figure 9: Analytics dashboard mock-up

project suggest, our approach may not always hold across all open
source or close source projects. Projects from other open source
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networks are not fixing all the faults introduced by all the other
nodes in the network.

7 CONCLUSIONS AND FUTURE WORK

We performed a multi-dimensional study to identify patterns of
developer activity over time. We considered the fault insertion and
fixing activity of developers, the familiarity of developers with code
topics, alongside code complexity. Our time-based analysis was
performed throughout the history of six projects on Github.

Our findings suggest that analysing developer activity over time
provides insightful information about fault insertion and fixing. In
each of the analysed projects we identify patterns that suggest that
certain developers insert and fix more faults than others as well
a developers who are highly active across the project. Our results
also imply that developers who lack topic expertise are likely to
insert more faults compared to those with more code topic expertise.
Our results also suggest that developers who fix a fault have only
marginally more expertise in the topic of the fault. The impact of
code complexity on fault insertions and fixes over time is not clear.

We propose a project analytics dashboard to visualise and un-
derstand anomalies to a project’s normal fault insertion and fixing
activity. Such a dashboard could help to enable better organised
teams who are more able to deploy developers to minimise faults
and also underpin the deployment of tools to support the minimi-
sation of faults during development activities.

We plan to extend our analysis to more Open source projects as
well as to valid our findings on closed source systems. We intend to
enhance our dashboard to provide an accessible tool to managing
development activities for the reduction of faults.
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