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Abstract

This research focuses on scheduling systems in manufacturing and developing new opti-
misation techniques which are capable of dealing with scheduling problems. Scheduling
is an important factor in manufacturing systems and aims to optimise the production
system, reducing time and energy consumption. In this regard, numerous researchers
have studied Job shop Scheduling Problems (JSSPs). In JSSPs, there are several jobs
and machines, and depending on the type of job shops, schedules and related penalties,
each job needs to be executed on machines on specific orders. Finding the best schedule
is challenging, and there is still a need to improve and develop advanced and optimised
scheduling models.

This work designs optimisation models based on hybridising Genetic Algorithm (GA)
techniques and Reinforcement Learning (RL) for scheduling a furnace model and simu-
lated job shops. Hence, several sophisticated algorithms are developed for this proposal,
namely Stochastic GA, Sexual GA, Ageing GA, Parthenogenetic algorithm and Ethnic
GA. These algorithms are employed to establish a new metaheuristic hybrid partheno-
genetic algorithm (NMHPGA) based on the combinations of the different selections to
hybridise the basic GAs; moreover, two types of advanced RL, including off-policy Q-
learning and on-policy RL based on State-Action-Reward-State-Action (SARSA) are de-
veloped. Following that, all algorithms are tested on two categories of scheduling job
shops, including 10 single-machine job shops and 19 multi-machine job shops; all the job
shops are simulated in MATLAB, and the aim is to reduce the makespan of the job shops.
Results which are compared to basic GA, show that the developed models attain superior
results with a faster convergence rate. As a case study, a reheating furnace model is used
to optimise material heating schedules, finding the most efficient schedule to minimise
time and energy consumption. The models improve the efficiency on average to 40 % on

job shops and furnace fuel consumption by up to 3.20 % and operation time by 3.79 %.
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Chapter 1

Introduction

1.1 Overview

The manufacturing process consists of several intricate operations that must be meticu-
lously planned and scheduled to be executed effectively, it is an integral part of manufac-
turing systems [1, 2]. Production scheduling aims to find the best possible schedule to
maximise one or more performance parameters such as time or energy.

Scheduling fundamentally concerns ordering a known series of stages or actions along
a timeline for effective and potentially optimal implementation subject to constraints and
uncertainties. As a consequence, a particular set of resources is allocated to the series of
operations in a way that satisfies specific efficiency or optimal requirements. Scheduling
problems are one of the most challenging optimisation problems [3] and have emerged
as an essential academic field spurring the publication of an enormous literature volume
[4, 5]; in this context, Job Shop Scheduling Problems (JSSPs) pertain to industrial system
scheduling are concerned with maximising operational efficiency by reducing production
time and costs [5, 6, 7, 8].

A common feature among research studies on optimisation is the absence of consistent
and efficient solution algorithms, and many researchers have applied different algorithms
to find the best solution for JSSPs [7, 8, 9, 10, 11]. Practical algorithms need to be
created to address scheduling problems optimally in an acceptable amount of time [3].

Johnson [12] first presented his work on optimal two and three-stage production plans with



setup times in 1954, which marked the beginning of the study of scheduling optimisation
problems. The development of branch and bound approaches, pure and mixed integer
programming formulations, and other scheduling application fields followed. In many
industrial systems, an efficient production plan and optimal job execution sequence are
essential to increase production and resource efficiency.

This chapter explains the nature of the salient characteristics of intelligent scheduling
systems and the current manufacturing paradigm. It provides a basic conceptualisation of
JSSPs, which are the particular field of concern in this research. The subsequent sections
will explain the motivation for undertaking this study, expound its aim and objectives,
identify the study’s contributions to knowledge and associated publications, and provide

an outline of the chapter structure of this thesis.

1.2 Manufacturing and Scheduling

1.2.1 The Emerging Paradigm

Manufacturing is seen as the source of all products which may be applied for production
purposes and is entirely dependent on contemporary technologies [13, 14]. Manufacturing
has a critical role in developing and developed countries; it is crucial for societies since
it contributes significantly to the global economy [15, 16]. It is strategically necessary
to shift the current manufacturing paradigm to one that emphasises sustainability and
reducing energy [13, 17, 18, 19, 20]. To achieve sustainability, manufacturers are rethink-
ing and changing their manufacturing processes. Given that natural resources are finite
and cannot meet future generations’ demand, manufacturing sustainability is a crucial
concern [13, 16, 17, 18, 21].

An essential element of any manufacturing setup is scheduling, which directly affects
the system’s efficiency, productivity and cost-effectiveness [5, 22]. Scheduling allocates,
manages, and maximises tasks and workloads. Scheduling is a crucial technique to ef-
fectively assign machinery and equipment and optimise production processes focusing on

time and energy reduction. In manufacturing, scheduling provides the objective of si-



multaneously optimising production time and cost; it is a strategic process that seeks to
minimise the makespan [5, 22]. Production scheduling has several types of machine envi-
ronments, such as Single-Machines (SM) and Multi-Machines (MM), parallel machines,
flow shops, and flexible job shops. These types depend on the jobs’ technological needs
and the type of facilities available [23, 24]. Studies on JSSP used to be primarily ori-
ented on a single target, such as completion time, but modern scheduling takes multiple
objectives into account [2]. For instance, there may be a focus on JSSP’s energy and
environmental aspects and makespan [25] or more academic inquiries, such as applying
improved optimisation algorithms [26].

Although traditional scheduling methods have contributed significantly to this do-
main, they often need to handle complex and dynamic environments encountered in
contemporary industrial settings [1, 5, 13, 22, 27, 28]. Artificial Intelligence (AI) has
brought about substantial changes to the domain of JSSPs, which has historically been
plagued by intricate decision-making procedures and the requirement for efficiency in
the manufacturing and service sectors. Al offers a cutting-edge answer to these diffi-
culties by its capacity to effectively process extensive datasets and intricate algorithms;
this improves operational effectiveness and enables the implementation of flexible and
responsive scheduling approaches, essential in settings marked by unpredictability and
swift fluctuations in demand [29, 30].

The application of AI in the domain of JSSPs is readily apparent through the ad-
vancement of intricate models and algorithms. These models and algorithms possess the
capability to acquire knowledge from data, identify trends, and enhance scheduling de-
cisions in real-time. These innovations enhance operational efficiency and contribute to
enhanced resource utilisation and decreased lead times. Industries’ increasing automation
and intelligence have significantly impacted JSSPs [29, 30]. Despite numerous research
on JSSPs, there is still a need to find an improved and advanced model to optimise
JSSPs. As a result, emphasis is now being given to more capable and modern technology.
Various scheduling methods have been applied to solve JSSPs, and there are encouraging

indicators of the current spike in interest in Metaheuristic (MH) algorithms. These high-



level algorithmic frameworks give developers a set of rules or approaches to follow. They
are a desirable solution for scheduling problems due to their proficiency in navigating

challenging search spaces [28, 31, 32].

1.2.2 Job Shop Scheduling Problems

The Job Shop Scheduling Problem (JSSP) is one of the most challenging problems in the
manufacturing process. It consists of ordering a series of operations to make the execution
process optimal [1, 8]. JSSPs are the central part of the manufacturing system, as they
affect the efficiency of the production system. The initial attempts to solve the JSSP may
be traced back to the 1950s [12, 33] and 1960s [34, 35]. Significant modern advancements
have occurred since the 1980s. In 1984, optional machines were considered, with the
initial development of Flexible Job Shop Problems (FJSP) [36]. With the extensive use
of the flexible manufacturing system in recent years [37, 38], the problem of FJSP has
become a research hot spot [1, 39]. Currently, studies on FJSP often concentrate on three
aspects: problem definition, optimisation model, and implementation approach [39, 40].

Intelligent optimisation algorithms are widely utilised to address large-scale combi-
natorial optimisation issues, such as the classic FJSP and many extended scheduling
problems. They can efficiently identify sub-optimal solutions, but the efficacy of various
methodologies strongly depends on the optimisation objectives [41, 42]. Optimisation
is a design problem that necessitates suitable approaches and methodologies to deliver
positive outcomes over a respectable (i.e., timely) period with minimal costs. Simply
put, optimisation identifies the variables or parameters affecting an objective function,
whether it has a single target (single-objective optimisation) or several objectives (multi-
objective optimisation) [32, 43].

Nevertheless, despite these developments and their potential, many uncharted terri-
tories and problems still need to be solved, highlighting the need for extensive research
in various directions pertaining to JSSPs [6, 32]. To fine-tune the search scope, Meng et
al. [44] devised a hybrid Artificial Bee Colony (ABC) method. Furthermore, Nouiri et al.

[38] introduced a distributed Particle Swarm Optimisation (PSO) that can be integrated



into a manufacturing system. The JSSPs were addressed in another work using the ABC
[45]. In a hybrid algorithm proposed by Li and Liu [37], global and local searches are
controlled by Genetic Algorithm (GA) and Tabu Search (TS), respectively. Furthermore,
Amelian et al. [46] applied a multi-objective optimisation model for JSSPs. Wei et al.
[1] proposed a hybrid scheduling method for FJSPs. Xu et al. used an improved Firefly
Algorithm (FA) for JSSPs [22].

This work intends to address the identified research gaps by investigating the use
of scheduling techniques in the context of JSSPs. It is necessary to thoroughly analyse
earlier works in this field to pinpoint any research gaps in applying scheduling algorithms.
Even if significant progress has been accomplished, there are still many opportunities for

improvement and creativity to optimise scheduling in manufacturing systems.

1.3 Motivations

Based on the importance of reducing energy consumption and time in the manufacturing
system, this thesis investigates different intelligence systems that can optimise the pro-
duction system and scheduling problems. As a result of optimising the system, industry
can reduce energy consumption, time and cost in production lines. JSSP comprises a
popular research subject in the scheduling discipline, attracting significant attention and
investigation from researchers in engineering and academia [24]. Several studies have used
MH to manage system optimisation, but there is an ongoing need to improve optimisation
systems by any possible method.

This research seeks to contribute to this emerging field of studies and to address
specific industrial optimisation problems. With this research background in mind, the
following are the primary motivations for undertaking this thesis.

The financial effectiveness, operational effectiveness, and productivity of a manufac-
turing system are significantly influenced by scheduling for manufacturing job shops. A
highly optimised scheduling process can shorten lead times for manufacturing, which
has a positive economic impact [47, 48, 49, 50]. Manufacturing industries face increas-

ingly intensive competitiveness in global markets, and there is an imperative to optimise



manufacturing efficiency[47, 48, 49].

Environmental and sustainability considerations are growing and are evident in the
governance and regulatory frameworks that govern business operations and customer
expectations. Optimised scheduling can help make manufacturing operations more eco-
logically friendly by reducing energy use. By increasing operational efficiency, intelligent

scheduling can provide better workflow and less energy consumption [47, 48, 49, 51].

1.4 Aim and Objectives

This thesis aims to develop intelligent systems for optimising JSSPs. To achieve the

above-defined aim, it undertakes to achieve the following objectives:
1. To investigate the state-of-the-art intelligent methods applied to JSSPs.
2. To develop and design new models of intelligent algorithms to optimise the JSSPs.

3. To generate and create simulated job shops to validate the proposed scheduling

methods.

4. To design a novel scheduling algorithm based on advanced GA algorithms and test
it using benchmarks (models’ execution time, cost, and energy consumption after

optimisation).
5. To create learning-based scheduling and Reinforcement Learning (RL) models.
6. To test the RL model on simulated job shops.

7. To test the designed novel models on an industrial furnace model to reduce the time

and energy consumption and optimise the schedule.

1.5 Contributions to Knowledge

This thesis presents new optimisation models developed in this research. This system

makes use of a variety of intelligent methods, including hybridised systems and novel
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models of GAs; these methods include the combination of different selections, allowing
the less accurate algorithm to pass along its results to the faster and more accurate
algorithm, which will benefit from the faster convergence speed and more accurate results;
these models specifically reduce the makespan of the schedules. In addition, simulated
FJSPs generated by generator code in MATLAB are used to assess each algorithm.

The research demonstrates that new optimal solutions can be discovered by employing
various efficient techniques, which prevent the system from producing infeasible solutions.
Furthermore, the advanced RL techniques are proposed in the second contribution of this
study. The RL models are tested to optimise FJSPs.

Additionally, a case study of the furnace model is used for optimisation proposals;
the novel models are applied to optimise the schedule of the furnace model. The time
and fuel consumption may be precisely measured using these methodologies. Finally, the
results of designed algorithms, including hybrid GA and RL, are compared.

The current overview covers the domain of job shop scheduling and optimisation,
emphasising the significance and utilisation of advanced computational models. The pri-
mary objective of this study is to highlight the distinct contributions made within this
particular subject while conducting an in-depth analysis of the obtained data and engag-
ing in a comprehensive discussion regarding their broader implications. The following are

the main contributions of this research:

1. Advancements in GA Methodologies:

The present study presents new selection strategies within the framework of GAs,
which demonstrate a substantial enhancement in the diversity and efficacy of the
solutions. This novel methodology combines the most advantageous characteristics
from distinct categories, resulting in solutions demonstrating enhanced effectiveness

over a wide range of scheduling scenarios.

Significant progress has been made in algorithmic techniques by rediscovering con-
ventional GA functions. This is especially crucial in intricate operating environ-

ments where traditional approaches may prove less efficacious.



2. Advancements in RL Models:

The study has built advanced RL models to address intricate scheduling challenges.
These models demonstrate proficiency in optimising key scheduling parameters such
as makespan and resource allocation, hence enhancing the overall efficiency of the
scheduling process. The models display notable efficacy in managing production
schedules, notably in attaining elevated rates of completion. The inherent qualities
of robustness and flexibility make them very suitable for demanding conditions
commonly seen in industrial environments. The methods discussed in this study

can be applied in both simulated and real-world settings.

3. Diverse Range of Simulated Tests: This study incorporated a wide variety of sim-
ulated job shops, creating a realistic and comprehensive testing environment. This
guarantees that the constructed models possess not only theoretical validity but also
practical feasibility in diverse settings. The utilisation of these models in practical
industrial case studies constitutes a vital element of this research, thereby establish-
ing a connection between theoretical research and practical usefulness. The rapid
identification of appropriate solutions in complex scheduling assignments is of the

highest priority.

Significant progress has been made in the realm of enhancing resource utilisation
and scheduling efficiency, resulting in notable reductions in overall completion du-
rations within production schedules. These enhancements highlight the capacity of
these models to enhance resource efficiency and time effectiveness in industrial oper-
ations. The academic and practical significance of the study refers to its importance

and relevance in both scholarly and real-world contexts.

The insights and achievements elucidated in this comprehensive research represent
a notable advancement in the domain of job shop scheduling and optimisation.
The implementation and utilisation of these sophisticated computational models
not only bring significant insights to scholarly communities but also provide effi-

cient and effective resolutions for intricate industrial scheduling difficulties. These



technological developments offer novel insights and approaches to tackle scheduling

challenges in several industrial domains effectively.
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misation Model”. IEEE Access, vol. 11, pp. 56027-56045, 2023, doi: 10.1109/AC-
CESS.2023.3278372.

3. Atefeh Momenikorbekandia and Maysam Abbod. ”Intelligent Scheduling Based on
Reinforcement Learning Approaches: Applying Advanced Q-Learning and State
—Action—-Reward—State— Action Reinforcement Learning Models for the Optimisa-
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1.7 Thesis Structure

This thesis contains several chapters, as adumbrated briefly below.

1. Chapter 1 outlines the research’s initial context, which explains the background of
the research context about manufacturing and JSSPs. The context for the topic’s
importance in the larger academic and industrial scene is provided in this section.
The chapter summarises the precise aims and objectives and clarifies the ratio-
nale for choosing this research topic. It explains the study’s motivation, aims and

objectives, and distinctive contributions it intends to make to the field.



. Chapter 2 provides a thorough literature review on JSSP, tracing the development
of scheduling algorithms and examining their substantial impact on JSSP and pro-
duction processes. This chapter delves deeply into the approaches frequently used
in the academic and industrial worlds to investigate the optimisation systems of
JSSPs in production systems. This chapter critically reviews different types of MH

algorithms and learning-based and RL applied on JSSPs.

. The theory of GA as it pertains to scheduling is covered in Chapter 3. The chapter
introduces the GA’s fundamental ideas, terminology, and workings. It also em-
phasises the algorithm’s uses, benefits, and potential drawbacks in scheduling and

optimisation.

. Chapter 4 describes the characteristics and applications of the advanced Ethnic se-
lection GA (EGA) and the Novel Metaheuristic Parthenogenetic Algorithm (NMH-
PGA) developed in this research. The novel model is presented with a thorough
analysis of its structure and capabilities. The performance of this unique algorithm
in comparison to the fundamental GA is examined in a comparative analysis part

that draws on simulated job shop scenarios.

. Chapter 5 introduces the RL framework, explaining its fundamental ideas and op-
erations. The chapter focuses on the advanced RL models and investigates how RL
techniques are tailored for scheduling problems. Later in this chapter, NMHPGA

and advanced RL model results are compared critically.

. Chapter 6 explains the case study of the reheating model and explains the com-
plexities of the furnace model. The design and functions of the furnace are briefly
explained in this chapter. The novel algorithms expounded in the preceding Chap-

ters (4 and 5) are tested on the furnace model to optimise its scheduling.

. Chapter 7 summarises the salient outcomes of this research, identifying its ma-
jor conclusions and contributions and their theoretical and practical ramifications.

The chapter concludes with a forecast of future study areas, advancements, and
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difficulties in manufacturing system optimisations. This framework seeks to lead
readers through the research’s multilayered arguments and conclusions by assuring

coherence and clarity throughout each chapter.
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Chapter 2

Literature Review

2.1 Introduction

This study’s primary objective is to review the industrial applications of intelligent system
algorithms in manufacturing and propose novel models to solve JSSPs. This chapter aims
to critically examine different optimisation algorithms and investigate what algorithms
will be established in this thesis to optimise the JSSPs. To achieve this, it reviews
literature related to the field of JSSPs and examines the application of different intelligent
systems proposed to solve them.

The structure of this chapter is as follows: Section 2.2 reviews definitions of JSSPs
and establishes the description that will be used for this study. Section 2.3 discusses
the different types of job shops and justifies the rationale for selecting those appropriate
for this project. Section 2.4 reviews optimisation algorithms and scheduling methods
pertinent to this research. Section 2.5 examines scheduling using learning-based methods
and RL. Section 2.6 discusses the existing research gap, analyses different scheduling
methods, and selects appropriate models to develop novel models for this research and

finally Section 2.7 provides a summary of the chapter.
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2.2 Job Shop Scheduling Problems

Job Shop Scheduling Problems involve scheduling jobs that require multiple operations
on different machines or workstations[8]. The standard JSSP can be characterised as a
collection of jobs to be carried out on various machines, whereby each job consists of
many processes carried out in a predetermined order and on particular machines [52, 53].
JSSPs are categorised as Non-deterministic polynomial-time hardness (NP-hard) prob-
lems, which are considered the most complex class of problems in computational com-
plexity theory. These are challenging to solve, and they usually pertain to sophisticated

types of optimisation problems [10, 54, 55].

2.3 Job Shop Types

Production systems have several distinct job shops; some of the most popular types are

reviewed in the subsequent sections.

2.3.1 Single-Machine Job Shop Scheduling

Single-machine job shop scheduling is the simplest form of JSSP, in which one workstation
is used to complete all jobs, each of which consists of a sequence of operations with a
specific duration. SM job shop scheduling aims to minimise the total completion time
(i.e., the time taken to complete all jobs) [56].

SM scheduling and its learning effects have been the subject of numerous studies. For
instance, Wang et al. [57] analysed an SM scheduling problem with the time-dependent
learning effect to minimise the weighted sum of completion times and the maximum
lateness. A job’s computation time is a function of the total average processing time of
all the other jobs scheduled up front in the job. In addition, Lee et al. [58] studied SM
problems, including the learning effect and released time, to reduce the makespan. A
branch-and-bound algorithm was also created to find the best answer [59, 60].

SM job shop scheduling can be solved using various algorithms, including the Short-

est Processing Time (SPT) and the Earliest Due Date (EDD) algorithms. The SPT and
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EDD algorithms, as their names imply, prioritise jobs with the fastest processing time
and earliest due date (respectively) [56, 61]. One of the main advantages of SM job
shop scheduling is its simplicity, whereby it requires less computational power and can
be solved using basic algorithms. This characteristic makes it an attractive option for
small-scale manufacturing industries with limited resources. However, it is hampered by
its fundamental inefficiency, including long waiting times, resulting in low productivity
and increased production costs. Furthermore, it is unsuitable for large-scale manufactur-
ing industries requiring high-volume production. Therefore, SM scheduling is commonly
used in small-scale manufacturing industries such as job and repair shops and mainte-
nance workshops [56]. In contrast to SM, MM job shops have several workstations to be

executed, which will be discussed later in this chapter.

2.3.2 Parallel Job Shop Scheduling

Another type of job shop scheduling is parallel job shop scheduling, which is used when
multiple machines or workstations work to complete jobs simultaneously. In this type
of scheduling, each job consists of a sequence of operations performed simultaneously
on different machines or workstations. Parallel job shop scheduling aims to minimise
the total completion time (i.e., the time taken to complete all jobs). It can be solved
using various algorithms, such as the branch-and-bound algorithm, GA, and Simulated
Annealing algorithm (SA). The branch-and-bound algorithm systematically explores all
possible solutions to find the optimal solution. GA is based on natural selection and
evolution and is used to find the best answers [56, 62].

One of the main advantages of parallel job shop scheduling is its efficiency because
jobs are performed on different machines simultaneously [56]. It can significantly reduce
waiting times, increasing productivity and lowering production costs. Furthermore, it
suits large-scale manufacturing industries requiring high-volume production. However,
its disadvantage is its complexity because it requires significant computational power
and large-scale problems can be challenging. Furthermore, using multiple machines and

workstations can increase the risk of machine breakdowns, leading to production delays
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56, 62].

2.3.3 Flexible Job Shop Scheduling Problem

In a practical model of JSSPs, a machine may perform more than one type of opera-
tion, and every procedure may then be performed on various machines, giving it greater
flexibility than standard JSSP; this problem is referred to as FJSP [52, 53, 63]. FJSP
is an extension of the traditional JSSP, which reduces constraints on machine selection
by allowing each operation to be processed on many machines within its alternative ma-
chine set. Due to the addition of new choice content to the sequencing and the fact
that it comprises more problems than JSSP, FJSPs are more difficult combinatorial op-
timisation problems. In FJSPs, the objectives are to solve two subproblems: operation
sequencing and machine assignment. The goal of the FJSP is to obtain an allocation
for each operation and define the order of operations on each machine to reduce the
maximum processing workload time (makespan) [10, 38, 42, 63, 64].

The FJSP problem may be formulated as described below:
e In FJSP, there is a set of independent jobs J = Jy, Jo, ..., J,.

e Each job J; is formed by a sequence O1,02, ..., On; of operations to be processed

one after the other.
e There is a set U = M, M, ..., M,,, of machines as well.
e Each operation O;; is executed among a subset U;; C U of compatible machines.

e Each operation has to be executed to complete the job.

Each operation j of job i (O;;) needs one machine out of a set of given machines

In general, the following assumptions are considered in FJSSP:
1. Machines are available at time t = 0.

2. Jobs are available at time t = 0.
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3. Each operation can be executed only by one machine at a time.

4. There are no precedence constraints in the execution of different jobs, and jobs are

independent of each other.

5. Pre-emption of operations is not allowed; an action, once begun, cannot be inter-

rupted.

6. Transportation time of jobs between available machines and time, which is required
to set up the machine for processing the operations, are included in the processing

time [10, 38, 42, 63, 64, 65, 66).

Many optimisation techniques have been devised to address FJSPs; some major stud-

ies pertaining to FJSPs are displayed in Table 2.1.
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Table 2.1: Application of different optimisation methods on FJSPs.

Reference | Year | Method
[67] 2009 | Hybrid approach combining PSO and TS
[68] 2010 | Knowledge-based ant colony optimisation (ACO)
[69] 2011 | GA
[70] 2017 | Multi-agent-based PSO and a two-stage PSO
[71] 2017 | Hybrid ABC based on TS
[72] 2018 | Multi-objective evolutionary algorithm
[73] 2019 | Mathematical modelling
[42] 2019 | Novel MH method
[74] 2020 | Effective search algorithm
[75] 2020 | Reinforcement learning
[63] 2020 | self-learning genetic algorithm
[76] 2021 | Advanced GA
[77] 2021 | Hybrid GA and TS
[78] 2022 | Novel approach for FJSPs
[41] 2022 | Improved GA
[19] 2022 | A hybrid iterated greedy algorithm
1] 2022 | Hybrid scheduling measures

2.3.4 Flow Shop Scheduling

Flow shop scheduling is a particular example of job shop scheduling in which every
operation must be done in a specific order. In specific low shop scheduling, no machine
can carry out more than one task at once, and an execution time is given for each job’s
operation. There has been much research into the flow shop scheduling problem. For
example, Lin et al. [79] solved the flow shop scheduling problem for changeable processing
parameters and low carbon emissions, thoroughly examining the effects of machines and

scheduling levels on production throughput and the environment. Using renewable energy
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and processing time as constraints, Wu et al. [80] developed a mathematical model of
multi-objective optimal scheduling. Lu et al. [81] investigated energy consumption of
the flow shop scheduling problem with the sequence-dependent setup, and controlled
transit time was investigated. Figure 2.1 depicts some fundamental categories of job

shop scheduling methods reviewed in this study.

Job Shop Types

Single-Machines Parallel Job Shops Flexible Job Shops

Figure 2.1: Job shop types.

JSSP, the primary production and manufacturing system’s topic, has been discussed
in the previous sections. Based on the above review of job shop types, this thesis focuses
on FJSPs due to their flexibility in the scheduling process. Due to the features of FJSPs
and their importance in production scheduling and manufacturing, much research has
been done in this field [11]; however, there is still a need to improve and find advanced
models. The review of prior research indicates that the central emphasis on improving
JSSPs and introducing novel models mainly focuses on verifying and evaluating optimisa-
tion algorithms’ performance. The following sections review various intelligent methods

applications in the FJSPs (Section 2.4).
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2.4 Optimisation Algorithms and Scheduling Meth-
ods

In relation to the JSSPs, there are four distinct activities that can be undertaken to
address an optimisation problem effectively. The first step is identifying the problem’s
parameters. The optimisation problem can be categorised as either continuous or dis-
crete based on the nature of its parameters. Continuous optimisation involves parameters
that can involve any value within a given range, whereas discrete optimisation involves
parameters that can only take on specific, distinct values, often representing countable or
categorical choices. The second step consists of distinguishing between a constrained and
an unconstrained optimisation problem by deciding what limitations should be placed
on the parameters. Thirdly, the problem’s goals must be carefully examined and incor-
porated. Optimisation problems may be classified as single-objective problems (having
one objective) or multi-objective problems (having multiple objectives). Lastly, a com-
patible optimiser should be selected to solve the problem depending on the parameters,
constraints, and number of objectives [32, 43].

Many optimisation challenges are inherently complicated, and traditional mathemat-
ical optimisation techniques cannot quickly identify optimal solutions. Current studies
demonstrate a growing demand for optimisation techniques that are more accurate and
efficient in terms of associated time and financial costs. Metaheuristic (MH) are one of
these optimisation techniques [32, 82]. To optimise JSSPs, there are different scheduling
methods. Figure 2.2 [83, 84| indicates popular scheduling methods (i.e., MH, heuristic,
simulation, and mathematical programming). Each category includes different models
using discrete and continuous problems; this thesis focuses on FJSPs and continuous
problems. This section will discuss various scheduling methods based on MH algorithms,

which are the most popular techniques for scheduling problems.
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Figure 2.2: Scheduling methods.
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2.4.1 Metaheuristic Methods and Optimisation

Glover [85] proposed the term “metaheuristic” in the 1980s, derived from “meta” (indicat-
ing something superseding the usual or natural bounds) and “heuristics” (“to discover”),
referring to the methodology of solving problems within systems. MH optimisation seeks
to identify the best solutions to defined problems while avoiding local optima. MHs
are optimisation solution techniques incorporating higher-level strategies within search

procedures [85, 86, 87].

2.4.2 Brief History of metaheuristic

The history of MH usage is categorised into five main periods [82, 85]. MH approaches
were not formally introduced during the first period, prior to the 1940s, and only straight-
forward optimisation problems were resolved using these techniques. MH was first for-
mally used during the second period, from 1940 to 1980. Many MHs were used for various
applications during the third phase (1980 to 2000). This approach was effectively intro-
duced in the fourth period, which spans from 2000 to the present. In the fifth phase,
referred to as the scientific period, the creation of new MHs will become an increasingly
specialised scientific endeavour [82, 85]. MHs fall into four primary categories: The first
group is Evolutionary Algorithms (EAs), which include GAs [88], memetic algorithms,
Differential Evolution (DE) [89], and evolution methods [90], all of which are based on bi-
ological evolution [82, 91]. Darwinian principles (i.e., natural selection) to solve scientific
problems first emerged in the 1940s, before computers were developed [82].

The cooperative behaviour of decentralised and self-organised natural or artificial
systems provides the basis for the second category of swarm intelligence-based algorithms,
including ACO [92], PSO [93], ABC [94] and Cuckoo Search (CS)[95]. Physical principles
drive the third group of algorithms, and the fourth category includes techniques based
on human and animal behaviour [82].

All of these types of MHs offer promising models for FJSPs [39]. The following section
reviews and discusses the application of the most popular MH algorithms in scheduling

problems.
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2.4.3 Evolutionary Algorithms

Evolutionary Algorithm (EA) is a fundamental population-based optimisation algorithm
and a subset of the MH evolution account. EA uses biologically inspired mechanisms,
including selection, recombination, mutation, and reproduction. The fitness function
establishes the quality of the candidate solutions, which act as members of a population
in the improvement issue. Population growth occurs after the relevant operators are
applied repeatedly.

Computational complexity is a prohibited element in most real-world EA applications.
The evaluation of the fitness function causes this computational complexity; simple EAs
can frequently handle complex models. Application areas for EAs include planning,
design, and simulation. Different types of EAs, including GA and DE, are discussed in

the subsections [32, 96].

2.4.4 Genetic Algorithm

Among EAs, GA is a popular optimiser scheduling system. The first GA was created
by John Holland in 1975 [90, 97]. It is a well-known optimisation technique that uses
the theories of evolution and natural selection to address challenging optimisation prob-
lems. It begins with a random initial population in which each member is referred to
as a chromosome (potential solution). Evaluating an individual’s performance using an
objective function initiates the algorithm’s primary iterative cycle. Higher fitness values
are given a higher likelihood of selection for creating a new generation (offspring) than
lower fitness values since they represent better solutions. The most promising individuals
are more likely to be chosen for reproduction, while individuals with low fitness scores are
commensurately eliminated. As a result, the performance of the new generation of indi-
viduals is expected to improve. The selected individuals are then recombined to create
offspring by sharing information. After reproduction, mutation further messes with the
progeny [98]. A new generation will subsequently emerge based on the fitness of these
new offspring. This selection, reproduction, mutation, and evaluation cycle continues

until the optimisation requirement is met.
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GAs have been widely employed to address challenging JSSPs [90]. GAs encourage
solution space exploration through crossover and mutation operators [90]. Furthermore,
GAs can become trapped in local optimums and are susceptible to premature convergence.
They also need the parameters for population size, mutation rate, and crossover rate to
be carefully tuned. The size and complexity of the task can significantly lengthen the
computing time [99]. The following are some salient features of GA:

1. Optimisation: Natural selection and genetics are the foundations of GAs, making
them effective at finding the best solutions in vast and complex problem spaces, such as
those seen in scheduling difficulties [98].

2. Adaptability: GAs are suitable for flexible scheduling problems where conditions
can change over time because they can handle changes in the problem environment [98].
Selection is the core part of the GA process, and there are different types of selections,
such as elitism, fittest, sexual, tournament, and roulette wheel selection. Some essential
types of selections, which are the main topic of this thesis, are discussed in more detail in
Chapter 3. Table 2.2 summarises key literature published from 1996 to 2003 concerning
different GA selection types applied in optimising FJSPs, which is the principal aim
of this research. The review demonstrates the potential of GAs to address FJSPs by

employing a range of selection types, as displayed in Table 2.2.

Table 2.2: Application of different types of selections of GA on FJSPs.

Reference | Year Algorithm Selection types

[100] 1996 GA Ageing

[101] 2001 GA Fittest

[102] 2003 GA Fittest

[103] 2003 GA Sexual selection

[104] 2006 GA Elitism

[105] 2005 GA Elitism

[7] 2008 GA Tournament

[106] 2008 GA + TS Tournament selection

Continued on next page
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Table 2.2 (continued)

Ref Year Algorithm Selection

[107] 2009 GA Linear ranking

[108] 2010 GA Random

[109] 2010 PSO + GA Hybrid

[110] 2010 GA + TS Hybrid

[111] 2010 Parthenogenetic Roulette wheel

[112] 2011 GA Tournament selection

[113] 2011 GA + SA Roulette wheel

[114] 2011 GA + ACO Linear scaling, stochastic

universal sampling

[115] 2012 GA Elitisim

[116] 2012 GA + PSO Roulette wheel

[117] 2014 GA Tournament selection

[118] 2014 GA Roulette wheel

[119] 2015 GA Roulette wheel

[120] 2015 GA Roulette wheel

[121] 2015 GA + TS Tournament selection

[122] 2015 Improved Parthenogenetic | Greedy selection

[123] 2016 Neighbourhood GA + TS | Fitness neighbourhood selec-

tion operator

[124] 2016 A Heuristics-Based | Roulette wheel selection
Parthenogenetic

[125] 2017 GA Tournament selection

[126] 2017 A hybrid GA Elitism

[127] 2018 Parthenogenetic Parthenogenetic

Continued on next page
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Table 2.2 (continued)

Ref Year Algorithm Selection
[128] 2018 List-scheduling-based mul- | Pareto-Ranking and Selec-
tiobjective parthenogenetic | tion
(LS-MPGA)
[129] 2019 GA Tournament selection
[130] 2019 RCGA Roulette wheel
[131] 2020 GA Tournament selection
[132] 2020 Parthenogenetic algorithm | Parthenogenetic
[133] 2022 Hybrid immune GA with | Tournament, Roulette-
TS wheel, linear-rank
[131] 2020 IGA Maximum priority selection
method for remaining pro-
cessing time
[134] 2021 Learning interactive GA Edge selection encoding
[135] 2021 Adaptive GA Based on In- | Binary tournament
dividual Similarity
[136] 2021 Parthenogenetic Parthenogenetic
[137] 2022 GIFA Ranking based on Fitness
[138] 2022 Taguchi method GA and Parthenogenetic
[41] 2022 MILP and IGA Two-vector encoding scheme
to represent the configura-
tion selection and operation
sequencing
[139] 2022 Elite GA Binary tournament selection

and the elitism method
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Table 2.2 (continued)

Ref Year Algorithm Selection

[140] 2023 HGA A hybrid selection of tourna-
ment selection and the elite
selection

[141] 2023 Improved GA with a pop- | Elitist selection and the bi-
ulation  diversity  check | nary tournament selection
method
[142] 2023 MGA multi-start GA Biased on random partheno-

genetic algorithm

2.4.5 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a well-known swarm intelligence model created by
Eberhart and Kennedy [93], based on the social behaviour of swarming birds and fish.
Swarm intelligence models refer to computational algorithms which take inspiration from
the collective behaviour observed in natural systems, such as the coordinated movements
of bird flocks or the organised activities of ant colonies. These models employ basic prin-
ciples for individual agents to engage with their surroundings and one another, resulting
in the formation of intricate, intelligent global patterns that are advantageous for ad-
dressing optimisation challenges. In PSO, the agent known as particles represents the
candidate solution to the optimisation problem. Position and velocity describe particles
which are free to move about the search space.

In the startup phase of PSO, each particle is given a randomly chosen initial position
and velocity. The following iteration will change the particle’s position depending on its
rate [93]. By comparing the particle’s present fitness to both its past best placements and
its neighbour’s best solution, the PSO technique determines the particle’s new position.
To solve JSSPs, PSO is frequently taken into consideration by researchers in hybridisation

with other MH algorithms, including TS [143], ACO [144], harmony search (HE) [145],
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and CS [146].

Unlike GA, PSO lacks a systematic calculation approach and evolutionary operators
like crossover, selection, and mutation. Consequently, PSO models are more straight-
forward to build and have fewer parameters to alter [83]. Fontes et al. [147] proposed
a hybrid PS and SA algorithm for the JSSPs. PSO, which has unique advantages for
resolving issues with FJSP, has a quick search speed and a limited number of parame-
ters [148]. Furthermore, in another work by [149], the scheduling of embedded real-time
production systems was categorised as an FJSP and a distributed PSO approach was
proposed as a solution; in this work, the elements affecting speed, position, and learning
remained the same. Notably, the PSO algorithm’s ability to balance local search with

global exploration largely depends on the control settings that the algorithm uses [150].

2.4.6 Differential Evolution

Differential Evolution (DE) is a global optimisation algorithm developed by Storn and
Price [88]. It can be considered an EA, which solves optimisation problems by evolving
a population of candidate solutions using biology-inspired crossover, mutation, and se-
lection operations [88]. The DE approach provides better results for multi-dimensional
optimisation problems, including neural network learning, than other EAs, such as GA.
In addition, DE methods have been suggested to solve Holland’s primary problem of poor

local search performance [90].

2.4.7 Simulated Annealing

Simulated Annealing (SA) is a local and random search MH algorithm [95]. This algo-
rithm mimics the annealing process in metallurgy. During an annealing process, a metal
is heated to a specified temperature and then cools and freezes at a determined cooling
rate into a crystalline state with minimum energy to avoid defects. The optimisation pro-
cedures of SA always start by generating an initial solution space, after which a proper
initial value of the annealing parameter is set. In each iteration step, the algorithm de-

termines whether the neighbouring solution is better or worse than the current solution.
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The adjacent solution will be accepted if it improves the cost function value, and only
specific worse points will be taken based on an acceptance function. After that, the tem-
perature decreases slowly, and the probability of accepting a worse solution is the same.
Lastly, the iteration ends while a stopping criterion is met.

A significant advantage of SA is that it has high flexibility and robustness and can
approach global optimality compared to other local search methods [95]. Its key drawback
is that the computation time tends to grow dramatically with the size of the problem.
Furthermore, picking a suitable cooling schedule is a crucial SA parameter, but it can
be difficult and significantly affect the algorithm’s performance. Zhang and Wu [151]
proposed a functional SA model for JSSPs.

The selection operations used by GA and DE algorithms differ markedly [88]. One
of the advantages of the DE approach is its simplicity because the search process is only
controlled by three input parameters: size of the population, scale factor, and crossover
parameter. However, its efficiency depends on the control parameter [152]. In addition,
obtaining the optimum operations, such as crossover and mutation in the DE approach, is
usually time-consuming [152]. Different variants of DE have been implemented in various

industrial applications for better performance [153, 154, 155].

2.4.8 Tabu Search

Glover created Tabu Search (TS), an MH algorithm to solve optimisation problems [85].
This method employs responsive exploration and memory structures to find an optimi-
sation solution. Memory structures like the tabu list can effectively search the solution
space by specifying the visited solutions. Responsive exploration provides a fundamen-
tally enhanced technique employing the search history in T'S.

The tabu list prevents the seen solutions and directs the search towards the undis-
covered solution space for possible solutions. It stores the keys studied throughout the
search space. TS effectively solves larger and more complex problems. Numerous control
parameters should be established, and the parameter setting significantly impacts achiev-

ing a global optimum [85]. TS has been applied in hybridisations with other optimisation
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techniques for scheduling, including SA [156, 157] and ABC [158].

2.4.9 Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm is an MH algorithm based on bees’ forag-
ing behaviour [159]. A food source’s position and nectar content symbolise a potential
solution to a problem and the fitness that goes along with it. The program uses three
types of artificial bees: employed, bystanders, and scout bees. The available food and the
number of bees at work are equal. All employed bees belong to groups that use dancing
to find, transport, and communicate information about food sources. Scout and observer
bees are always looking for new food sources. Scout bees only blindly explore the search
area, while spectator bees can gather information from employed bees by remaining in
the dance area while searching for a food source [160].

The ABC method solves issues in various applications, such as improving wireless
sensor networks, maximising heat transfer rates, power plant optimisation, machining
process improvement, and JSSPs [155]. Compared to other MH algorithms, the ABC
method has been shown to efficiently tackle engineering problems with high dimensional-
ity [161]. To improve performance, the ABC algorithm has also been combined with other
algorithms, including the hill-climbing [162], ACO [163], and DE [164, 165] algorithms.
As a result, in recent years, JSSP has been solved using ABC and its advancement [166]
Problems including no-wait constraints [167, 168], rescheduling strategy [71] or FSSP
[169] having deteriorated, or a hybrid. However, due to the search process, ABC has

shortcomings in solving the scheduling problems [170].

2.4.10 Harmony Search

The intriguing Harmony Search (HS) algorithm is designed to overcome problems accord-
ing to the inspirations of musical performances [171, 172]. Musicians constantly seek the
ideal harmony, and the search process in HS is modelled on their behaviour while seeking
the optimal balance to improve their melodies. The HS iteratively improves the solutions

during optimisation to optimise the objective function. Initialising the HS parameter,
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which includes the amount of harmony memory, harmony considering rate, and pitch
adjusting rate, is the first step in the HS algorithm technique.

Three different iterative techniques must be used to improvise and update the new
solution to reach the best outcome [171]: (a) Consideration of memory: to use HM,
a new solution is created from an old one; (b) Considering memory, a new solution is
devised by slightly changing the pitch; (¢) Randomisation process: a new, improvised
solution is constructed. The subsequent HM acceptance rate determines its strength.
These three factors can thus be used to achieve good performance in HS with a balance
of intensification and diversification.

HS is straightforward to implement because it does not involve complicated calcula-
tions. The HS method has also been modified to enhance its convergence capabilities.
This approach is frequently used in many applications, including scheduling in manufac-
turing processes [173], and medical applications [174]. Owing to these benefits, the HS
has been effectively adapted to address many optimisation issues in various domains [175].
Besides the benefits of HS for solving JSSPs, HS can experience stagnation throughout
the optimisation process, resulting in less-than-ideal solutions [176]. The algorithm’s
complexity rises due to the requirement for precise parameter adjustment to produce the

best results [177].

2.4.11 Cuckoo Search

According to Yang and Deb [178], Cuckoo Search (CS) optimisation MH algorithm imi-
tates the cuckoo’s breeding habits, which are defined by laying fertilised eggs to be hatched
in the nests of other birds. Cuckoos typically prefer newly produced nests to enhance the
likelihood of hatching eggs; consequently, the host birds will care for the cuckoo offspring.
To increase their access to food delivered by the foster parents, the cuckoo chick pushes
the native eggs out of the nest after hatching. The host bird either destroys or quits the
nest and creates a new one elsewhere if it learns that the egg that has been hatched is
alien [178]. As a result, the cuckoo chick has a unique ability to imitate the look and

sound of its host bird to maximise its reproductive success and prevent abandonment.
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To solve the JSSP, Singh et al. [179] suggested CSO with several individual enhance-
ment schemes. In terms of finding the global optimum, CS has a faster convergence
speed in finding optimal solutions. Compared to other algorithms, it simplifies the tun-
ing process because there are fewer parameters to change [178, 180]. CS excels at solving
continuous or combinatorial problems, making it adaptable to various JSSPs. However,

it is exposed to premature convergence in areas with complicated problems [181].

2.4.12 Firefly Algorithm

Firefly Algorithm (FA) is an MH algorithm inspired by the flashing behaviour of fireflies
[182]. A firefly is a species of bug that may emit natural light to entice a mate or ward
off predators. The FA generally follows three guidelines: 1. Since fireflies are unisex,
they usually gravitate toward the brighter and more appealing mating partner. 2. Since
air absorbs light, the attraction is inversely related to brightness and diminishes as the
distance between two fireflies grows. 3. The brightness of a firefly will depend on the
geography of the objective function.

FA is a simpler algorithm compared to other swarm-based algorithms. Additionally,
the benefits of autonomous subdivision have improved its effectiveness [182]. As docu-
mented in the literature [182, 183, 184, 185], this approach has been used in numerous
applications since the inception of the firefly algorithm. Studies have shown that FA
outperforms algorithms like ABC and PSO and can obtain the world’s best solutions
[183].

FA has been used effectively in a variety of applications, but in contrast to other MHs,
not much study has been done on applying the FA with regard to the FJSP [186], in the
study by [186], an integrated approach using FA has been proposed to solve FJSPs. In
the field of scheduling, an FA was provided by [187]to minimise makespan in the workflow
scheduling problem with deadline constraints. Recently, [188] applied improved FA for
FJSPs.
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2.4.13 Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) is a physical-based heuristic search algorithm
that draws inspiration from the Newtonian principle of mass interaction [189]. It is widely
used to solve nonlinear optimisation problems. According to Newton’s gravity equation,
any two particles will be attracted to one another by a gravitational force [190]. The
gravitational force varies inversely with the square distance between the particles and
directly with the product of the particle masses. A group of agents in search space are
drawn together by gravity in GSA. While their performance is correlated with their packs,
these agents behave as objects. Due to the pull of gravity, all things in the search space
gravitate toward those with heavier masses [83].

Researchers’ interest in this algorithm is growing because it can produce better results
than other nature-inspired algorithms and identify solutions close to the global optimum.
In various applications, it is useful when combined with other computational techniques
to overcome its slow convergence and searching speed [83].

On the basis of current knowledge, the GSA has abundant reported applications for
scheduling problems. For instance, [191] introduced a highly efficient GSA for addressing
the study’s permutation flow shop scheduling problem. In another study, [192] proposed
an enhanced GSA for addressing the scheduling problem in hybrid flow shop environments
with parallel machines. Furthermore, [193] suggested discrete GSA for a kind of flow shop

problem with total flow time minimisation.

2.4.14 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is another effective swarm intelligence method, first put
forth to categorise problems in the medical industry and achieve success in continuous
optimisation[194]. The ACO algorithm’s application to scheduling problems, such as SM
scheduling problems, was the subject of preliminary studies [195] or JSSP in general [196].
Researchers have employed strategies for combining the ACO algorithm with specific
JSSPs, such as local searches[197, 198].

JSSPs have been successfully solved using ACO [199]. Heuristics customised to a
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particular situation can be incorporated into ACO algorithms to improve the search
process [200]. ACO’s distributed computing model makes parallel processing possible,
speeding up the problem-solving process [201]. One of the disadvantages of ACO is
that the algorithm needs to be fine-tuned to perform well because it is highly sensitive to
parameter adjustments [202]. ACO performance degrades with more significant problems

[199).

2.5 Scheduling Using Learning-Based Methods and
Reinforcement Learning

One of the promising models for JSSPs and FJSPs is RL [8], wherein agents make deci-
sions while receiving little input and each decision is rewarded or penalised based on a
given reward policy; RL is the subfield of machine learning (ML) wherein the agent aims
to maximise the reward by starting with arbitrary trials [203]. A Markov decision process
has been used to model the primary reinforcement [203]. RL is frequently employed in
autonomous robotic operation manufacturing [204]; furthermore, Q-learning and deep
learning are often used to create RL agents [205].

A growing number of RL techniques are being used to improve JSSPs. For instance,
Shahrabi et al. [206] created an RL with the Q-factor method to solve JSSP. Shen
et al. [207] suggested a multi-objective dynamic software project scheduling based on
Q-learning. Chen et al. [208] proposed a self-learning GA for addressing the FJSP.
This method incorporates both the State-Action-Reward-State-Action (SARSA) algo-
rithm and Q-learning within the self-learning framework. Shi et al. [209] adopted a DRL
strategy for intelligently scheduling discrete automated production lines. In another work,
Chen et al. [63] suggested using a self-learning genetic algorithm (SLGA) based on RL

to reduce the FJSP makespan.
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2.6 Discussion

2.6.1 Identifying the Knowledge Gap

Various intelligent optimisation methodologies have been discussed in this chapter, in-
cluding the GA, PSO, SA, DE, TS, ABC, CS, GSA, ACO, and RL. Having reviewed the
relevant literature on JSSPs and, more specifically FJSPs, it can be noticed that there
is a research gap indicating the need for more clarity on the effectiveness of intelligent
algorithms to optimise job shop scheduling. This thesis gives particular attention to
FJSPs due to their flexibility. Numerous algorithms have been used to solve the FJSPs.
However, the effectiveness and quality of the solutions can be improved by parameter
modifications in the algorithms. The key features of the knowledge gap in this area are
outlined below.

1. Scheduling using MH algorithms: MH algorithms are promising methods for
locating excellent answers to optimisation issues. JSSPs are ideally suited to them, mainly
when the solution space is large and complex. However, depending on the problem’s
features and the particular algorithm’s settings, the efficacy of MH can vary dramatically
(28, 31, 32, 40, 48, 210, 211].

2. Hybrid models: There are numerous methods of solving scheduling problems,
each with benefits and drawbacks. Additionally, very little research and development is
being done on hybrid models, which combine the benefits of many methods to improve
performance overall. The following section compares the advantages and disadvantages
of some popular MHs discussed earlier in this chapter for job shop scheduling.

Compared to ACO and GA, CS and HS could be more straightforward to deploy
and require less parameter adjustment [171, 178]. Unlike the more recent CS and HS,
GA and ACO have been extensively used for job shop schedulings and are backed by
substantial research outlining strategies to improve their performance [90, 199]. GA and
ACO are known to be computationally expensive because of their complicated processes
like crossover and mutation [99, 199].

Careful parameter tuning is necessary for GA and ACO to work properly [202]. Com-
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paring CS to other algorithms, the tuning procedure is more straightforward because
there are fewer parameters to change [180]. Additionally, HS needs precise parameter
tweaking [177]. Moving on to PSO, it has several advantages over other algorithms, such
as being easy to create, fast on computers, and requiring fewer changes to its parameters
[93]. However, it frequently becomes trapped in local optima, and the quality of the
solutions may decline as the size of the problem grows [148]. Regarding DE, like many
EAs, they tend to be slow, particularly for challenging problems. Additionally, it can be
difficult to determine the ideal control parameters for DE [152].

3. Scheduling using reinforcement learning models: RL effectively solves job
shop schedulings. The most significant advantage of developing RL models is their ability
to enhance the system’s performance without using many EA functions [8]. It is noted
that the RL technique in the literature above solves fewer studies for FJSP. As a result,
it is possible to determine the best FJSP scheme via RL, which is also one of this thesis’s

key innovations.

2.6.2 Implications

RL and GA have demonstrated promising results in the context of FJSPs. Consequently,
this research presents advanced hybrid GA and RL models. The efficacy and benefits
of the new and advanced methods for solving FJSP are shown by extensive computer
testing and comparisons. As a result, they can be competitive algorithms for solving

FJSPs. The advanced models are tested on FJSPs in the following chapters.

2.7 Summary

This chapter reviewed different types of JSSPs, including SM job shops, parallel job shop
scheduling, FJSPs and flow shop schedulings. JSSPs are typically categorised as NP-
hard problems and have been demonstrated to be inherently complex, related to many
constraints, a set of objectives, and the scope of the search area. Later in this chapter, the

most popular approaches to addressing various scheduling problems have been reviewed.
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FJSPs are more flexible than other scheduling problems due to the enormous search
space; consequently, this thesis’s primary focus is optimising FJSPs. Based on research
in the literature and comparing several hybrid algorithmic properties, advanced hybrid
GA and RL models are designed to optimise FJSPs and a furnace model.

The new application of RL techniques is also employed to test and compare the
outcomes with the established hybrid GA. More specifically, the advanced GA algorithm
utilises a combination of various selections to improve the convergence speed. The next
chapter will review the Principles of GAs for scheduling. The suggested techniques and
simulation results are expounded in detail in Chapters 4 and 5; these techniques are

proposed to reduce the makespan of the schedules.
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Chapter 3

Principles of (Genetic Algorithm for

Scheduling

3.1 Introduction

This chapter reviews the principles of GA, explaining its underlying theoretical basis and
explanations of different types of selections. It also points out the benefits and limitations
of GA and discusses its various stages, including initialisation, selection, crossover and
mutation. It first introduces such algorithms in Section 3.2, and Sections 3.3 and 3.4
discuss GA theory and fundamental operators. Moreover, Section 3.5 discusses the simu-
lated benchmarks and essential GAs used in this chapter to create comparable reference
results for the upcoming chapters. More precisely, in this chapter, we get the results from
standard GAs to have comparable references for Chapters 4 and 5 in order to test the
performance of the established models. Lastly, Section 3.6 provides a summary of this

chapter.

3.2 Genetic Algorithm and Biological Background

Genetic algorithm is the most widely used method in research on evolutionary com-
putation, whereby each position in a string represents a particular characteristic of an

individual [98, 212]. Individuals are inside the string, and the population is a group of
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solutions. Genetics is the field of study that examines the processes underlying a species’
similarities and differences. GAs now borrow ideas from natural evolution [98, 212]. The

following are the key terms used to describe a species’ biological history.

3.2.1 Reproduction and Natural Selection

The idea of survival of the fittest, which entails the preservation of favourable variations
and the rejection of detrimental ones, is the foundation of the theory of evolution by
natural selection. Within a species, as well as among the offspring of the same parents,
variations can occur. Those with beneficial features have a higher chance of living and
passing on their genes because they have improved access to resources and increased
survivability and reproduction. Natural selection, therefore, plays a crucial role in deter-

mining which traits persist over time in a species [98, 212].

3.3 Genetic Algorithm in Brief

Rechenberg first discussed evolutionary computers in the 1960s in his article named Evolu-
tion Strategies. Several researchers later developed this concept, including John Holland,
the inventor of GAs, who expanded on this concept in his 1975 book “Adaptation in Nat-
ural and Artificial Systems.” He presented GA as a heuristic approach based on “survival

of the fittest,” which was a helpful tool for search and optimisation issues [98, 212].

3.3.1 Search Space

In many applications, the objective is to select the best option from a predetermined list
of workable options, whereby all possible solutions are set by the search space. A fitness
function based on the problem statement can be used to assess each point in the search
space as a possible solution. GAs are used to find the best solution, typically requiring
the minimum objective function, from a set of potential solutions represented by various
points in the search space [98, 212].

The GA brings up a few significant features. It is, first and foremost, a stochastic
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algorithm and depends heavily on chance. Reproduction and selection both require ran-
domness. The fact that GAs constantly consider a population of solutions is crucial, and
many benefits are associated with keeping many solutions in memory throughout each
iteration. Such features make GA a highly effective tool for optimisation. The straight-
forward technique of random search involves choosing solutions at random, determining

their fitness, and then exploring the search space [98, 212].

3.3.2 Benefits and Limitations of Genetic Algorithm

Advantages of GA:
1. The solution area is large.
2. Simple to find the global optimum.
3. The problem is a multi-objective function.
4. Easily adaptable to different problems.
5. Handles huge, complex search spaces with ease.
Limitations:
1. Identifying fitness function.
2. Premature convergence in some cases.

3. Choosing various parameters and functions such as population size, mutation and

cross over rates and the selection method.

98, 212].

3.4 Fundamental Operators of Genetic Algorithms

The two main components of a GA are populations and individuals; in contrast to the

population, the group of individuals involved in the search process, an individual is a
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single solution. The fitness represents the quality of the solution and how near the
chromosome is to the ideal one. A population is a collection of individuals being tested.
The formation of the initial population and the size of the population are two crucial
components of the population that are highlighted in GAs. The population size refers to
the total number of individuals determined randomly. Several approaches may be used
based on the problem being solved, as described below, and these two considerations

substantially impact the algorithm’s success [98, 212].

3.4.1 Search Strategies

The search begins by initialising the population and breeding new individuals until the
termination condition is satisfied. There is always a chance that the following search
iteration will produce a more desirable result. The GA’s centre is where the breeding
process occurs, whereby the selection process produces new, ideally more fit individuals.
There are three phases in the breeding cycle, as discussed in the following subsections:
selecting parents, mating the selected parents to produce offspring, and substituting the

old population with the new individuals [98, 212]

3.4.2 Selection

Two parents from the population are selected for crossover. Subsequently, the next
stage is to decide how to choose or pick individuals within the population who will
produce offspring for the following generation and how many offspring each will produce.
The greater the fitness function, the more likely a candidate will be chosen. Variation
from crossover and mutation must be balanced with selection; slow evolution will result
from limited selection, while over-selection will conversely result in suboptimal, highly fit
individuals dominating the population. The following subsections discuss the commonly

used selection techniques in this context [212, 213, 214].
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3.4.2.1 Roulette Wheel Selection Genetic Algorithm

Roulette selection is one of the classic GA selection methods. The proportionate repro-
ductive operator, which selects a string from the mating pool with a probability propor-
tional to fitness, is the most widely used reproduction operator. The roulette selection
concept is a linear search across a roulette wheel with slots weighted according to a can-
didate solution’s fitness values. The population refers to the potential solutions in the
optimisations, and the population is increased until the desired value is attained. This
is a somewhat effective selection method. In the roulette procedure, an individual’s ex-
pected value is calculated by dividing their fitness level by the population’s actual fitness
level, whereby each candidate solution is given a slice of the roulette wheel whose size
corresponds to the individual fitness level. N times are spun on the wheel, where N is the
total population. The candidate solution chosen as a potential parent for the following

generation is under the wheel’s marker for each spin[98, 212, 213, 215].

3.4.3 Stochastic Selection Genetic Algorithm

Stochastic selection is a popular technique in GAs whereby individuals are randomly
chosen depending on their fitness; it has been widely used as an alternative to roulette
wheel selection. This is so that each candidate solution is given an equal place on the

roulette wheel based on fitness, using a set random number [98, 212, 213, 215].

3.4.4 Sexual Selection Genetic Algorithm

An enhanced variant of the GA is sexual GA (SGA). Choosing parent chromosomes for
reproduction is the foundation of the selection process in traditional GA. SGA is moti-
vated by the notion of masculine endeavour, and female choice is based on an algorithm
that divides the population into males and females. Each female is used as the basis for
the selection process, and several males compete to be chosen for reproduction. The final
processes resemble those of traditional GA. SGA optimisation method is more advanced
than conventional GA, which uses a single-selection approach to choose parent chromo-

somes for reproduction [103, 216, 217, 218]. Algorithm 1 shows the pseudo-code for SGA
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219, 220].

Algorithm 1: Sexual GA
Input: Population size, Fitness function

Output: Best solution

Randomly Initialise population;

Evolution population fitness;

Divided the individuals into males and females;

while Stopping criteria not met do
Reproduction using the idea of male effort and female choice

end

Return the best solution;

3.4.5 Ageing Selection Genetic Algorithm

Ageing Selection Genetic Algorithm (AGA) is another modified form of conventional GA,
with the goal of performance enhancement. To produce a better generation or population
that approximates the ideal answer, GA acts on a population of potential solutions based
on the survival of the fittest principle. AGA differs from traditional GAs in that it
more closely mimics the natural genetic system and considers how an individual’s age
impacts performance. When a new candidate solution enters a population, their age is
immediately presumed to be zero, and each candidate solution’s age increases by one
with each repetition. Young and old people are considered less fit than adults, just as in
a natural genetic system [98].

According to this strategy, individuals who have been a part of the population for a
long time have a reduced probability of being chosen for mating. In contrast, younger
people have a higher possibility. If a proportional selection method is utilised, a particular
individual that becomes fit continues to have opportunities to generate offspring up to the
algorithm’s conclusion, increasing the likelihood of producing similar offspring. Less fit

individuals typically do not survive, whereas the more fit ones usually do [100, 221, 222].
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Algorithm 2: Aging GA
Input: Population size, Fitness function

Output: Best solution
Randomly Initialise population;

while Stopping criteria not met do
1. Compute the age factor for each

2. Adjust fitness according to age factor (older individuals have less chance)
3. Select the best individuals for reproduction (based on adjusted fitness)
4. Breed new generation through crossover and mutation

5. Compute fitness of new generation

end

return the best solution;

3.4.6 Crossover and Recombination

Crossover is the process of creating a child from two-parent solutions. The selection
(reproduction) process adds better individuals to the population. The mating pool is
given a crossover operator to produce better progeny. A recombination operator called

crossover goes through three steps [212].

1. A pair of individual strings is randomly chosen for mating through the reproduction

operator.
2. A cross-site is randomly selected along the string length.

3. Lastly, the position values are exchanged between the two strings after the cross-

site.

There are different crossover types, such as single- and double-point crossover. The

following subsections describe some popular types of crossovers.

3.4.6.1 Single Point Crossover

The conventional GA employs single-point crossover, in which the matching parts of the

two mating chromosomes are cut once at each location and are subsequently switched. In
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this case, bits close to the cross-sites are swapped after a random cross-site or crossover
point is chosen along the length of the matched strings. If the right location is chosen,
good parents can combine to produce superior offspring; otherwise, the string quality will

be greatly limited [212].

3.4.6.2 Multi Point Crossover

Besides single-point crossover, various crossover algorithms have been developed, often
involving multiple cut points. It should be mentioned that increasing the number of
crossover points reduces the effectiveness of the GA: increasing the number of crossover
locations has the drawback of making it more likely that construction blocks may be
disturbed while having more crossing points can lead to a more exhaustive search of the
study area. Two crossover points are selected in a two-point crossover, and the content

between them is shared between two mated parents [212].

Parent1 1 0 1 1 0 O 1 O
Parent2 1 0 1 0 1 1 1 1

Child1 1 0 1 1 0 1 1 1
Chid2 1 0 1 0 1 0 1 O
Parent1 1 1 0 1 1 0 1 O
Parent2 0 1 1 0 1 1 0 O

Chidi 1 1 0 0 1 1 1 O
Chid2 0 1 1 1 1 0 0 O

The parents swap the contents between these points to create new offspring for mating
in the following generation. One-point crossover, which divides two chromosomes into
two pieces and splices them together to form new ones, was the first method used by GAs

212, 213, 214].
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3.4.7 Mutation

The strings are subjected to mutation after crossing. Thanks to mutation, the algorithm
cannot become stuck at a local minimum, which can restore lost genetic material or
randomly disrupt genetic information. Mutation represents a form of protection against
the permanent loss of genetic material. Traditionally, the mutation is understood to be a
straightforward search operator designed to aid in investigating the entire search space.
In contrast, crossover is supposed to take advantage of the existing solution, seeking to
identify better ones. It randomly alters genetic building blocks, introducing new genetic
structures into the population [212, 213, 214].

The likelihood of a mutation determines how frequently specific chromosomal regions
will change. Without a mutation, children are produced immediately after a crossover
(or are directly duplicated) without any modifications. When a mutation occurs, a chro-
mosome’s one or more sections are altered. If the likelihood of a mutation is 100%, the
entire chromosome is limited; if it is 0%, nothing is changed. There shouldn’t be too

many mutations because then GA will switch to random search [212, 213, 214].

3.4.8 Search Termination and Convergence Criteria

The stopping conditions for GAs are:

1. Maximum generations: The algorithm terminates when the specified number of

generations has been reached.

2. Elapsed time: The algorithm terminates when a specified time has elapsed. How-
ever, if the maximum number of generations has already been reached, the algorithm

will terminate regardless of the elapsed time.

3. No change in fitness: The algorithm terminates if the population’s best fitness
remains unchanged for several generations. However, if the maximum number of
generations has already been reached, the algorithm will terminate regardless of the

number of generations with no change in fitness.
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The more-or-less standard procedure for running the standard GA algorithm is as

follows:

Algorithm 3: Standard GA
Input: Population size, Fitness function

Output: Best solution
randomly generate population;

while Stopping criteria not met do
Select parents (using fitness function);

Crossover parent chromosomes;

Mutate offspring chromosomes;

Add offspring back into the population; Implement elitism (select parents);

end

Return the best solution;

3.5 Job Shops Case Studies

This section applies four standard GAs based on STGA, RGA, SGA, and AGA to opti-
mise the sequencing orders of the simulated job shops that are modelled in MATLAB.
These four GAs are based on the basic GA. Still, they differ in selection criteria, as
explained previously (i.e., STGA employs stochastic selection, RGA employs roulette
wheel selection, SGA uses sexual selection type, and AGA exploits the ageing selection

method).

3.5.1 Simulated Benchmarks

Single-machine and multi-machine (SM and MM) benchmarks are used with regard to
three basic flexible simulated job shops, with early arrival (earliness) and delay (tardi-
ness) penalties. The job shop examples are SM, MM, with similar scale of earliness and

tardiness penalties, and MM, with a different scale of earliness and tardiness penalties,
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The Total Penalty is given by equation 3.1.

Total Penalty(n) = Earliness x 0.3 4+ Tardiness x 0.7 (3.1)

The benchmark sequencing orders are tested and optimised using the above GAs to
have primary results as a reference to be compared with the performance of advanced
models whose designs are presented in the following chapters. In the classical n x m job
shop type, there are n jobs Jy, Js of ,..., J, of different processing times scheduled on m
machines; each job has a set of operations Oy, 0, ..., O, processing in a specific order
98, 212, 223, 224].In the simulated job shops in this thesis, each job has only 1 operation
because we aim to make the job shops as straightforward as possible to compare the

performance of the algorithms.

3.5.2 Job Shop Parameters with Earliness and Tardiness Penal-
ties

The following is a description of the JSSP. There exists a collection of m machines, de-
noted as M = {My, M,, ..., M,,}, and a collection of n jobs, denoted as J = {Jy, Jo, ..., Ju }
which need to undergo processing. Let ¢ denote the index for tasks and k denote the index
for machines. Specifically, we have ¢ ranging from 1 to n, and k ranging from 1 to m.
Every job J; necessitates a collection of n; operations, O; = {O;1, O, ..., Oy, }, which
must be executed in a sequential order. Let j denote the index for operations, where j
takes on values from 1 to n;. The operation O;; is executed on a designated machine
M(0O;j) € M, with a processing time denoted by p;. Let M be a machine in the set M.
The notation O (My) denotes the set of all operations that are executed on Mj.

Every operation O;; is associated with a specific due date d;;, and any completion of
the operation that is either early or late will result in a penalty that is directly propor-
tionate to the extent of deviation from d;;. Every operation O;; is associated with two
penalty coefficients, «;; and (3;;, which are utilised to impose penalties for its early and

tardy completion, respectively.

47



Let ¢;; denote the scheduled completion time of operation O;;, e;; represent its earli-
ness, and ¢;; denote its tardiness and e;; = max (0, d;; — ¢;;) and t;; = max (0, ¢;; — d;;).

The primary goal of JSSP is to identify an optimal schedule in terms of minimising the
overall cost resulting from the divergence of completion times for all operations from their
respective due dates. This cost is represented by the equation > " | > 7| (aizes; + Bijtij)-

The problem can be mathematically formulated as follows [225]:

Objective:

Minimize z”: Zm: (ajei; + Bijtis) (3.2)
i=1 j=1

Subject to:
eij > dij —cij  Vi,] (3-3)
ti; > ey —dij Vi j (3.4)
¢t = pia Vi (3:5)
Cij 2 Cij—1+pij Vi,j:j#1 (3.6)
Vi, j,7, 7'k : Oy € O (M), Opy € O(My),i # ' (3.7)
ei; > 0,t; >0 Vi, j. (3.8)

Constraints 3.3 and 3.4 establish a correlation between the timeliness of each opera-
tion, as measured by its completion time and due date, and its earliness and tardiness.
The constraint 3.5 indicates that the initial operation of every job commences after the
time zero. Constraint 3.6 enforces a precedence relationship between successive opera-

tions inside the same job.

3.5.3 Simulation Results

In this work, the GAs are set to a population size of 300, a generational age of 1000, a
crossover rate of 95% and a mutation rate of 5% and regeneration was considered when

calculating the generation gap. The characteristics of simulated job shops are shown in
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Table 3.1 regarding the number of jobs and machines. SM has 32 jobs and one machine,
while MM; and MM, are flexible MM job shops with eight jobs and four machines.
Table 3.2 compares the convergence speed of the applied GAs on the simulated bench-
marks. Table 3.3 indicates the objective functions of different GAs. The objective func-
tion represents the makespan (time) to complete the job shop schedule. This section shows
the simulated benchmarks established from running STGA, RGA, SGA, and AGA. These
results show the objective functions applying essential GAs; when the objective function
is less, the cost and time used are less. Converging speed refers to identifying the number
of generations required to stabilise the error (cost). Once the best solution is reached and
the error remains constant, the algorithm can be terminated, as further iterations will
not result in any changes. This approach saves time and resources by quickly arriving at

the optimal solution.

Table 3.1: Simulated benchmarks.

Job Shop Type Number of Machines Number of Jobs
SM 1 32
MM; with similar penalties 4 8
MM, with different penalties 4 8

Table 3.2: Basic GAs convergence speed.

Job Shop Type STGA RGA SGA AGA
SM 130 62 26 910
MM, with similar penalties 180 30 38 700
MM, with different penalties 910 120 230 920

Table 3.3: Basic GA objective function results for different job shops.

Job Shop Type STGA RGA SGA AGA
SM 38977 43,146 40,588 40,247
MM; with similar penalties 7,900 7,850 7,893 7,761
MM, with different penalties 4,194 4,187 4,358 4,042

Figures 3.1, 3.2 and 3.3 illustrate the comparison of four algorithms applied to the

mentioned three benchmarks, including SM, MM; and MM,. These figures compare
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Figure 3.1: SM benchmark results.

the performance of different GAs to reach the best objective function. The algorithm

terminates when finding the best schedule with the lowest objective function.
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3.6 Summary

This chapter has explained the theory of GAs and the biological metaphors used to un-
derstand these algorithms. A brief explanation of several selection techniques, including
STGA, RGA, SGA, and AGA, have also been included to illustrate the working principles
and performance of different types of selections of GA. Also, the benefits and restrictions
of GA have been discussed, concluding that it is a valuable tool for global optimisation.

Building on the identified advantages of various GA selections, this study creates
advanced GAs to solve JSSPs to reduce elapsed time. To test the performance of new
and advanced algorithms in the following chapters, three benchmarks in this chapter have
been simulated, and primary results are provided as a reference to be compared in the

following chapters with the proposed new algorithms.
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Chapter 4

Ethnic and Parthenogenetic

Algorithms

4.1 Introduction

This chapter presents a new model named NMHPGA. This approach is built on the fun-
damental ideas of GAs, which also underlies a new procedure based on EGA. NMHPGA
uses parthenogenetic operations, including swap, reverse and inserts, which are examined
in this work, along with an EGA. The established algorithm’s results are compared to
those of other standard GAs using different selection methods, and it becomes clear that
the NMHPGA produces superior objective functions with a faster convergence rate.

In Section 4.2, the concept of the proposed EGA is introduced. The ethnic selection
process employs a variety of selection operators, including stochastic, roulette, sexual, and
ageing. The best individuals are then chosen from each technique and blended. SM and
MM job shops with tardiness, earliness and due date penalties are used to test the ethnic
selection technique. Later, this concept is tested in this section using similar case studies
from Chapter 3, and the results are compared with the basic GAs. Since the results
from the experiments outperform the essential GAs, the parthenogenetic algorithm and
NMHPGA approaches are introduced in Sections 4.3 and 4.4, combining EGA and PGA

to improve the algorithm’s accuracy. Section 4.5 uses this new approach in multiple case
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studies, and the results are presented and critically analysed. Lastly, section 4.6 provides

the summary of this chapter.

4.2 Ethnic Genetic Algorithm

This study proposes EGA. The concept behind EGA is based on combining the diverse
populations produced by various selection techniques [226]. The combinations impact
the speed of convergence and the overall solution. To verify the convergence speed, an
EGA in this section mixes four different forms of selections, including stochastic, ageing,
sexual, and roulette selections. Converging speed refers to the process of identifying the
number of generations required for the error (cost) to stabilise.

The suggested EGA has been set to a population size of 300, a generational age of
1000, a cross-over rate of 95%, and a mutation rate of 5%, and regeneration is considered
when calculating the generation gap.

In this section, the results of EGA are compared with results from essential GAs
from Chapter 3. The simulated job shops include SM, MM; and MM, from Chapter 3.
All these three flexible job shops have earliness, tardiness and due date penalties. SM
includes 1 machine and 32 jobs, and MM; and MM, are flexible MM job shops, including
8 jobs and 4 machines. Figure 4.1 shows the flow chart of EGA. It includes different

steps; below are the various stages in this algorithm:

1. Initialisation: Creating an initial population of random solutions (schedules in the

context of JSSP).

2. Evaluation: Calculating each individual’s fitness within the population. This usu-

ally entails figuring out each schedule’s makespan in the JSSPs.

3. Selection (Continuous Process): Applying a variety of selection techniques on the

population, in the EGA, selections are as follows:

e Stochastic Selection: Selecting individuals with a bias toward better answers.
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e Ageing Selection: To add diversity, preferring more recent solutions and steer

clear of more traditional ones.
e Sexual Selection: Selection is based on female and male solutions.
e Roulette Selection: Choosing individuals where the likelihood of selection is

inversely correlated with fitness.

4. Crossover and Mutation: To generate offspring, performing crossover procedures on
the chosen parents. Applying mutations to some of the new population to introduce

random changes.
5. Every 10 Generations: Reviewing and Combination:

e Reviewing: Considering the effectiveness of the individuals, each selection ap-

proach is chosen before making the decision.

e Combination: Determining the best performers from each selection approach

based on the review.

e Combining these top individuals to create a new subset.

6. Termination

Up until a termination requirement is satisfied, the previous procedures are repeated.
This might be the algorithm improving a little over numerous cycles, achieving a desirable

makespan.

4.2.1 Benefits and Limitations of Ethnic Genetic Algorithm

Below are some benefits and limitations of EGA:

4.2.1.1 Benefits

1. Diversity Preservation: The EGA helps the population remain diversified by em-
ploying various selection techniques and reevaluating every 10 generations. Prema-

ture convergence may be prevented in this way.

95



2. Utilising the Best Options: The EGA ensures that reasonable solutions are not
lost and can further develop and combine their strengths by integrating the best

answers from each method.

The EGA outlined here aims to take advantage of various selection procedures while
routinely analysing and changing to ensure the best solutions are being spread. This
strategy can be extremely helpful in complex issues like JSSPs, where the search

space is broad and challenging to navigate.

4.2.1.2 Limitations

1. Computational Cost: The diversity preservation mechanisms and the continu-
ous reevaluation process every ten generations can be computationally expensive,

especially for large populations and complex problems.

2. Parameter Sensitivity: The performance of the EGA can be highly sensitive to
the choice of parameters such as population size, mutation rate, and generation

numbers.

3. Convergence Speed: Although EGA aims to prevent premature convergence, it

might sometimes lead to slower overall convergence towards the optimal solution.

4.2.2 Case Study: Testing Ethnic Genetic Algorithm

Simulation results comparing STGA, RGA, SGA, AGA, and EGA tested on the single
SM and MM job shops (MM; and MM,) are shown in Figures 4.2., 4.3, and 4.4 respec-
tively. Each graph displays the objective function of the generation, representing the
cost function to complete the job shop schedule. It can be seen that ethnic selection has
the best results in locating the global minima (i.e., the best time) compared to other
types of selection, as shown in Table 4.1, which compares the various types of suggested

selections. The convergence speed required by each algorithm to find the overall answer

is shown in Table 4.2.
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SM, MM; and MM, have better results generated from EGA than basic GAs. For
instance, MM has the objective function of 7724 on EGA, which is lower than other GA
results. MM, has the objective function of 4050 on EGA. Having compared the conver-
gence speed of the algorithms, it can be concluded that EGA has better results because it
also improves the convergence speed besides having a low objective function value. EGA

reduces the objective function and improves the convergence speed simultaneously.

Table 4.1: Comparison of the objective functions of basic GAs and EGA tested on dif-
ferent job shops.

Job Shop Type STGA RGA SGA AGA EGA

SM 38,977 43,146 40,588 40,247 40,161
MM; with similar penalties 7,900 7,850 7,893 7,761 7,724
MM, with different penalties 4,194 4,187 4,358 4,042 4,050
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Table 4.2: Comparison of the convergence speed of basic GAs and EGA tested on different
job shops.

Job Shop Type STGA RGA SGA AGA EGA

SM 130 62 26 910 135
MM, with similar penalties 180 30 38 700 410
MM, with different penalties 910 120 230 920 390

4.3 Parthenogenetic Algorithm

GA is founded on evolution, and NP-hard problems have frequently been solved using
the survival of the fittest strategy. A population of chromosomes (individuals) of a series
of genes make up the candidate solutions in GAs. The crossover operator is the lead-
ing genetic operator to produce new offspring when two parents are combined. Unique
individuals can inherit specific characteristics from their parents. Traditional crossover
operators come in various forms, such as one-point crossover, two-point crossover, scat-
tered crossover, etc [213].

The Parthenogenetic Algorithm (PGA) produces offspring by gene recombination and
selection rather than the conventional crossover operator. By eliminating the crossover
operator, PGAs address the problem above and enhance the effectiveness and perfor-
mance of the GA. This is because the shift operator, which is only performed on a single
chromosome, prevents the offspring from the crossover operator from jumping to the in-
valid solutions area. Swap, reverse, and insert are the three PGA operators. These three
operators create a new chromosome by rearranging the genes on an existing one, Figure
4.5 indicates the flow chart of PGA [82, 122, 127].

PGA Operators for JSSP are as follows:

1. Swap Operation in PGA:
e Concept: Changing the locations of two jobs in the encoding.

e Application in PGA: Creating a child from a parent solution by switching two
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tasks in the order. This generates a new potential solution without the requirement

for crossover by simulating a slight modification to a machine’s task sequence.

. Reverse Operation in PGA:

e Concept: Choosing a set of jobs, then reversing the order of the jobs within the
encoding.

e Application in PGA: Creating a child solution from a parent solution by flipping
a series of tasks. Due to the order of numerous jobs changing, this results in a more
noticeable shift than a swap. It gives the PGA another way to delve into the large

JSSP solution space.

. Inserting Operation in PGA:
e Concept: Taking a job from its current location in the encoding and place it in

another position.

Chromosome Representation

v

Generate initial population

\ 4
Chromosome Evaluation

Bit mutation

v

Elitism

Figure 4.5: Flowchart of PGA.
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4.4 New Metaheuristic Hybrid Parthenogenetic Al-
gorithm

A New Metaheuristic Hybrid Parthenogenetic Algorithm (NMHPGA) is developed in
this research. This algorithm integrates a variant of existing selections with the PGA
to conduct a reliable comparative analysis and assess the overall effectiveness of the
innovative NMHPGA [82].

Five distinct algorithms with different selection types solely use mutation, swap, re-
verse, and insert functions instead of crossover operators to test the algorithm. Stochastic
selection based on random selection is used in the stochastic selection PGA (STPGA).
Additionally, the sexual PGA (SPGA) is based on sexual selection; in contrast, the APGA
wish is an ageing PGA based on ageing selection; and finally, the NMHPGA is based on
ethnic selection, which is a combination of stochastic selection, roulette selection, sexual
selection, and the ageing above selection. The NMHPGA algorithm’s steps are depicted
as follows [82]: Standard selection techniques are used in the first testing phase. The
second stage, ethnic selection, contrasts this by combining the top individuals chosen
using various styles into a single group. The crossover function, which takes a lot of time
since it must check for duplicate chromosome genes, is not used by the NMHPGA.

The algorithm’s accuracy is improved using the most recent and enhanced selection
versions. Also, the intrinsic parameters of the algorithm play a significant role in how
quickly they converge. This algorithm is tested on 29 simulated job shops. Figure 4.6
indicates different stages of NMHPGA, which are described below:

1. Initialisation: Starting with a population of potential solutions for JSSPs that

have been randomly initialised.

2. Ethnic Selection: Determining an individual’s fitness for each ethnic population

using the JSSP objective (e.g., minimising makespan).

3. Parthenogenetic Operations:

a. Reverse: Applying the reverse process on some of the solutions inside each
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subset of chosen solutions. This entails selecting tasks from a solution and flipping
their placement. This may introduce diversity and lead to improved job processing

sequences.

b. Insert: Applying the insert operation to some solutions. A job is chosen from
the present position of the sequence and is relocated to another position. This
operation determines whether altering the relative priority of some tasks enhances

the solution’s fitness.

c. Swap: A swap operation is performed on solutions by which two jobs trade
places in the sequence. Swapping can change job priorities, which could result in
shorter makespans. The core of parthenogenetic reproduction is preserved after
these operations because each solution in the population received a modification

without crossover.

4. Mutation: Introducing a typical mutation phase after the parthenogenetic proce-
dures, here, randomly chosen genes (i.e., jobs, in the context of JSSP) may expe-
rience slight alterations in a solution. This could involve altering a job’s machine
assignment in the sequence. This mutation ensures that the population is even
more variable and facilitates the discovery of sections of the solution space that the

parthenogenetic operations might not have been able to reach.

5. Evaluation and Selection Evaluating the fitness of all modified solutions follow-
ing the mutation phase, keeping the top performers for the following generation and

replacing or discarding the less efficient ones.

6. Termination: For a given number of generations or until a specific convergence
criterion is satisfied, repeating the ethnic selection, parthenogenetic operations,
mutation, and evaluation phases. The best response across all populations is chosen

once the algorithm has finished.

Generation Gap: The generation gap is a crucial factor; a more significant gen-
eration gap may accelerate convergence, but there is a chance that it will result in less

desirable solutions. A smaller generation gap may allow for greater diversity and a more
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thorough exploration of the problem space, but it may also result in a slower convergence
rate. Finding the best value for a given issue frequently necessitates tuning, as with many
factors in GAs. The selection and replacement phases of the GA involve the generation
gap as follows:

Selection:
An individual is chosen as a parent to produce the following generation based on their
fitness values. The generation gap affects both the selection process and the number of
candidates. If the generation is 100%, enough parents are chosen to create an entirely
new population. Fewer parents are chosen if it is less.

Replacement:
After crossover and mutation procedures produce new offspring, the GA must choose
which members of the old population to replace with these children. The generation gap

determines the number of replacements.

4.5 Comparative Analysis of NMHPGA

To test the performance of NMHPGA, objective function values and convergence rates
of various algorithms, including (STPGA, APGA, SPGA and RPGA) are used. To
achieve this, the following subsections compare the convergence rates of several algorithms

evaluated on the simulated job shops.

4.5.1 Simulated Job Shop Schedules

In this work, three categories of flexible job shops are tested, designed to make workshops
as straightforward as possible to focus on optimisation results and compare the efficacy
achieved. Three categories of job shops are tested: Category SM job shops, consisting of
10 SM job shops with earliness, tardiness, and due date penalties (Table 4.3). Category-
A MM job shops, consisting of 10 MM job shops, have four machines and eight jobs
with earliness, tardiness, and due dates. Category-B consists of nine MM job shops with

earliness, tardiness, and due date (Table 4.4).
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Tables 4.3 and 4.4 present features of the various job shops employed in this study.
Also, the beginning state of random selection is evenly chosen to provide a comparable
model. Appendix A illustrates the earliness and tardiness of the job shops, which are
created randomly in the MATLAB code.

The purpose of the scheduling problem is to minimise execution time and penalties.
The population is set to 300, and the generation size is set at 1000. The test examines
the NMHPGA’s performance with simple mutation and advanced regeneration and the
impact of the chosen forms of roulette, sexual, ageing, and ethnic selection. MATLAB
R2021a software was utilised for this testing. Based on the analysis of the provided data,
the NMHPGA algorithm’s performance was compared to the best performances of the
other algorithms (STPGA, RPGA, SPGA, and APGA) across different job shop types.
The improvement percentages were calculated by identifying the lowest (best) objective
function value from the other algorithms for each job shop type and then computing the
percentage reduction achieved by NMHPGA relative to this best value. For instance,
in the SM category, the NMHPGA algorithm demonstrated an overall average improve-
ment of approximately 0.32-4.6 per cent in the SM category. This indicates that while
NMHPGA showed significant improvements in some cases, Despite these variations, the
NMHPGA algorithm generally contributed to better optimisation outcomes, reflecting

its potential effectiveness in enhancing job shop scheduling solutions.

Table 4.3: SM job shops attribute.

Job Shop Type Number of Machines Number of Jobs

SM1 1 32
SM2 1 40
SM3 1 60
SM4 1 80
SMb 1 100
SM6 1 120
SM7 1 150
SMS 1 200
SM9 1 250
SM10 1 300

66



Table 4.4: Category-A MM job shops 4 machines, 8 jobs (MM1-MM10) and category-B
MM job shops (MM11-MM19) attributes.

Job Shop Type Number of Machines Number of Jobs

MM1 4 8
MM?2 4 8
MM3 4 8
MM4 4 8
MM5b 4 8
MM6 4 8
MM7 4 8
MMS8 4 8
MM9 4 8
MM10 4 8
MM11 4 10
MM12 4 20
MM13 4 30
MM14 4 40
MM15 4 100
MM16 4 150
MM17 4 200
MM18 4 250
MM19 4 300

4.5.2 Simulation Results

Figures 4.7, 4.8 and 4.9 present the SM and MM simulation results. Figure 4.7 shows the
simulated result of the applied algorithms to SM1-SM10. Figure 4.8 shows the simulated
result of the applied algorithms to MM1-MM10 (MM-A). Lastly, Figure 4.9 shows the
simulated result of the applied algorithms to MM11-MM19 (MM-B).

Each graph displays the generation number’s objective function. The objective func-
tion represents the cost function required to finish the job shop. The comparison of
objective functions of various algorithms tested on job shops for the SM category is
shown in Table 4.5. Also, Table 4.6 compares the convergence rates of several algorithms
evaluated on job shops in the SM category. The number of generations shown to arrive
at the optimal solution indicates that the objective function for NMHPGA has the lowest
value and the fastest convergence speed. As NMHPGA requires fewer generations, this
improves convergence speed. As shown by SM1 results, the suggested algorithm provides

a lower objective function; for instance, the objective function of SM1 is 39444, and the
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Table 4.5: Comparison of objective functions of different algorithms tested on job shops
in SM category.

Job Shop Type STPGA RPGA  SPGA  APGA NMHPGA
SM1 41,251 39,082 39,047 40,225 39,444

SM2 159,607 181,734 187,035 159,802 160,871

SM3 479,639 599,840 584,763 471,184 474,325

SM4 1,154,879 1,280,561 1,301,604 1,118,500 1,120,440
SM5 2,405,190 2,566,361 2,609,437 2,209,609 2,297,979
SM6 14,135,674 11,540,670 11,591,499 11,849,996 11,009,721
SM7 0,342,492 10,172,814 9.832.276  8546,759 8,549,596
SMS 19,156,403 19,650,883 19,532,952 15,980,532 15,952,550
SM9 39,430,578 40,136,718 40,668,916 31,142,579 30,845,566
SM10 74,190,404 61,548,166 60,259,784 52,838,449 52,260,543

Table 4.6: Comparison of convergence speed of different algorithms tested on job shops
in SM category.

Job Shop Type STPGA RPGA SPGA APGA NMHPGA

SM1 859 113 113 800 500
SM2 311 53 143 210 47
SM3 894 113 150 203 142
SM4 906 145 362 143 178
SM5 899 173 159 272 271
SM6 917 740 943 975 581
SM7 984 475 259 396 338
SMS 991 382 302 604 394
SM9 993 728 018 647 578
SM10 988 636 353 47 606

convergence speed is 500. Results from the APGA are 40225 for the objective function
and 800 for convergence. If the above results are compared with SPGA, it can be shown
that the objective function of SPGA is 39947, which is almost in the same range near
4000; however, NMHPGA has a lower objective function with a desirable convergence
speed. Moving forward to other job shops, the general procedure of NMHPGA is the

same, and it concentrates on both the objective function and convergence speed.
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Table 4.7: Comparison of objective functions of different algorithms tested on job shops

in MM category-A

Job Shop Type

STPGA RPGA SPGA APGA NMHPGA

MM1
MM2
MM3
MM4
MMb
MMG6
MM7
MMS8
MM9
MM10

7,031
9,481
7,805
7,931
7,104
7,849
9,428
8,728
6,255
7,931

7850 7,893 7,700 7,758
9469 9,523 9,485 9,465
8,514 8277 8,023 7,913
7850 7,893 7,700 7,758
7582 7,306 7,054 7,039
7907 7918 7,785 7,798
9,387 9,399 9,210 9,181
9,039 9,209 8,824 8,727
6,258 6237 6,198 6,195
7850 7,893 7,700 7,758

Table 4.8: Comparison of convergence speed of different algorithms tested on job shops

in MM category-A.

Job Shop Type STPGA RPGA SPGA APGA NMHPGA

MM1
MM2
MM3
MM4
MM5
MM6
MM7
MMS8
MM9
MM10

991
435
219
908
583
429
938
265
952
986

997 127 95 818
152 177 115 20
385 67 85 76
590 99 60 812
664 382 410 336
406 447 420 543
136 120 147 90
733 905 343 212
141 81 230 635
592 104 76 816

Table 4.9: Comparison of objective functions of different algorithms tested on job shops

in MM category-B.

Job Shop Type STPGA RPGA SPGA APGA NMHPGA
MM11 17,043 16,503 16,634 16,546 16,421
MM12 137,736 131,970 131,274 133,618 131,115
MM13 468,806 463,734 465,696 461,970 461,538
MM14 1,269,516 1,258,531 1,246,911 1,238,453 1,236,658
MM15 18,603,560 17,521,764 17,555,825 17,503,567 17,432,983
MM16 67,602,116 62,639,047 62,988,711 62,694,341 62,354,613
MM17 147,200,593 133,407,491 133,306,194 133,005,781 131,840,576
MM18 305,201,786 274,169,417 275,108,844 273,802,285 270,317,679
MM19 544,267,800 482,106,036 480,728,988 482,871,193 475,082,286
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Table 4.10: Comparison of convergence speed of different algorithms tested on job shops
in MM category-B.

Job Shop Type STPGA RPGA SPGA APGA NMHPGA

MM11 995 364 661 915 143
MM12 993 825 744 816 401
MM13 993 396 445 283 279
MM14 993 329 403 018 302
MM15 998 454 641 232 493
MM16 990 715 908 878 e
MM17 992 942 954 922 920
MM18 986 982 984 979 979
MM19 993 984 988 988 933

NMHPGA can produce superior outcomes in terms of the cost function because NMH-
PGA objective function results are generally better with lower values. The proposed
algorithm chooses the best answers from multiple selection methods, providing thorough
and varied solutions that may be combined to produce new answers using missing chro-
mosomes from various search locations. On the other hand, due to the random nature
of the solution generation restricted to a specific search area of the solution space, the
stochastic and roulette selection approaches exhibit slower convergence and do not reach
the global minima.

The objective functions of the algorithms tested on job shops in MM category A are
compared in Table 4.7. A comparison of the convergence rates of the algorithms tested
on job shops in MM category-A is also included in Table 4.8. The findings of job shops
category-B are shown in Tables 4.9 and 4.10.

Comparing the convergence speed and objective functions run on different selected
algorithms shows the excellent performance of NMHPGA. For instance, testing algo-
rithms on MM1, NMHPGA produces an objective function of 7758; compared to STPGA,
RPGA, SPGA and APGA, the objective function of NMHPGA is lower with improved
convergence speed, which means cost reduction in a faster period.

MM11-MM19 are more complicated job shops than MM1-MM10 because the num-
ber of jobs and machines are increased in this category; they are simulated to test the

performance of NMHPGA on the more complex and more significant scale of job shops.
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Figure 4.7: Simulation results tested on (SM1-SM10).

Similar to the MM1-MM10, NMHPGA outperforms the primary GAs. Due to the large
scale of MM11-MM19, the primary GAs are time-consuming, and NMHPGA performs

faster.
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Figure 4.8: Simulation results of MM category-A (MM1-MM10).
4.6 Summary

This chapter developed the NMHPGA technique based on the fusion of various GA selec-
tion techniques. Three kinds of job shops were used to assess the established algorithm’s

performance. The following are the key conclusions and a summary of the findings:

This work addresses several GA types with various selection types.

The PGAs are tested using various selection methods, and the results show that

a combined solution is superior to an individual one. The ethnic selection is the

greatest since it brings together the top individuals.

Integrating the PGA with ethnic selection demonstrates that superior outcomes can

be obtained without time-consuming crossover processes.

The NMHPGA can improve the global search point and convergence speed.
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Figure 4.9: Simulation results of MM category-B (MM11-MM19).

e The NMHPGA eliminates the crossover function and replicates it with swap, in-

sert, and reverse functions combined with ethnic selection, enhancing efficacy and

performance.

The established NMHPGA has been tested using three different job shop categories.

More selection and combination processes can be incorporated into upcoming research

to increase efficiency with fewer genes. Moreover, more challenging benchmarks and case

studies from the industry might be used to test the algorithm.

Converging speed refers to determining the number of generations until the error (cost)

is steady. The best solution has been found, and the algorithm can be stopped because
the error will not change. This saves time and resources by enabling the best solution
to be found quickly. Such selection approaches indeed impact the speed of convergence

and the global solution. The method will thus identify the best and quickest convergence

compared to the basic GAs tested in this study. In the next chapter, two RL-based

methods are designed, and the results are compared with the technique in this chapter.
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Chapter 5

Application of Reinforcement
Learning for Job Shop Scheduling

Problems

5.1 Introduction

This chapter provides intelligent algorithms that control scheduling problems using ad-
vanced Q-learning (QRL) and SARSA algorithms. To test and compare the accuracy
and convergence speed of the models, the results are compared to the EGA and ad-
vanced NMHPGA [82, 226] presented in the previous chapter. RL methodologies are a
kind of machine learning algorithms identified as global optimiser methods. The pro-
posed methods are discussed in more detail in the subsequent sections. The most notable
benefit of the developed RL models is their ability to enhance the system’s performance
without using numerous GA functions.

The structure of this chapter is as follows: Section 5.2 provides the RL framework,
including related equations. Section 5.3 discusses QRL, Section 5.4 discusses the novel
model of SARSA, and Section 5.5 provides simulation results and discussion. Section 5.6

provides a summary of the Chapter.
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5.2 Reinforcement Learning Framework

This section discusses conventional RL foundations. The methodology used in this study
is discussed in detail in the next section. The RL discussion begins with its foundational
definitions and ideas, such as the agent, environment, action, state and reward functions.

In RL, an agent can use a action set A = {A;, Ay ...} to interact with the environment.
All the potential actions are described in the action set. RL methods are designed to train
the agent to interact properly with its surroundings [227, 228, 229]. The agent initially
determines the current state of the environment .S;, and the associated reward value Ry,
at a relative time step t. The agent decides what to do next based on the state and
reward information. To achieve a new state Sy;; and reward R;,;, the intended action
of the agent A;, is fed back to the environment [227, 228].

The reward function R generates an immediate reward R;, based on the status of the
environment and sends it to the agent at each time step. The goal is to provide feedback
from the environment to the agents; the reward function is based only on the present

state, as expressed in Equation 5.1 [227, 228]:

R, = R(S) (5.1)

A trajectory in RL is a series of conditions, actions, and rewards that record how the

agent interacts with the environment, as expressed in Equation 5.2:
T = (So,Ao,RQ,Sl,Al,Rl,...) (52)

The start-state distribution is denoted as 0, from which Sy is randomly sampled to

determine the initial state of a trajectory as expressed in Equation 5.3:

So ~ po(-) (5.3)

A trajectory, also known as an episode, is the progression from a starting point to an

ending point. Two important factors in RL are exploration and exploitation. Utilising
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Algorithm 4: Q-learning algorithm
Initialise Q(s,a)
for all state-action pairs and step size a € (0, 1] do

for each episode do
Initialise Sy

for each step S; in the current episode do
Select A; Using policy that is based on @)

Rii1, Siy1 < Environment (Sy, A;)

Q (S, Ay) <+ Q (Su At) ta [Rt+1 +ymax, Q (Sig1,a) — Q (S, At)]
end

end
end

current knowledge to maximise agent performance is known as exploitation, and the
expected reward typically measures an agent’s performance. On the other hand, through

activity and interaction with the environment, exploration aims to increase the knowledge

227, 228].

5.3 Application of Q-Reinforcement Learning

5.3.1 Overview

One of the most common RL methods is QRL. It trains an action-value function that
reflects the anticipated cumulative reward for performing a given action in a given situ-
ation. It works by imparting knowledge to an action-value function and expressing the
expected cumulative benefit of performing a specific action.

The primary concept of the algorithm is a simple iterative update, wherein each pair
of the states and actions (s,a) has a corresponding Q-value. When the agent in state
s selects an action (a), the reward for doing so and the best Q-value for the following
states are utilised to update the Q-value of the state action pair [228]. Q-value shows the
quality of the action in a given state. The basic QRL process is presented in Algorithm

4 227, 228].
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5.3.2 State, Action and Reward in the Designed QRL Model

The initially developed model of this chapter is based on the QRL. Figure 5.1 shows the
training phase of the proposed QRL model. Flexible job shops, including 10 SM and
19 MM job shops from Chapter 4, are considered QRL environments. In this model, an
agent is connected to each machine to find the best schedules. Here, the agent locally
selects the fundamental actions and decides which work among those pending on the
appropriate machine must be processed next. The agent considers the jobs processed at
each stage based on the limits and challenges. The process depends on the collection of
machines performing specific tasks. This approach is rewarded significantly and occupies
the top slot when the new makespan is superior. When there is no improvement in the
outcomes, the iterations end. The scheduling procedure is further optimised by repeating
the optimisation steps of the QRL algorithm.

In this model, the learning rate (alpha) is 95%, the discount rate (gamma) is 0.1, and
the max number of iterations is 10000 [229]. Following is a discussion of the parameters
in the proposed RL models as follows:

Alpha («): The agent changes its Q-values depending on new experiences, which is
determined by the learning rate represented by («). Regarding simulated FJSPs in this
work, alpha affects how fast the agent modifies its scheduling decisions. When FJSPs
are highly interactive, a more significant alpha can help because it speeds up learning.
However, an excessively low learning rate can cause slow convergence.

Gamma (): The agent’s preference for immediate rewards over future rewards is
determined by the discount factor, represented by the (y) symbol. It impacts how the
proposed RL models balance short- and long-term goals. This work focuses on short-term
goals.

Greedy exploration (g)-Greedy: The (¢)-Greedy exploration strategy combines ex-
ploitation and exploration. It entails choosing between a random action and the action
with the highest Q-value (greedy action) with probability 1- (¢). This approach in the
applied FJSPs enables the agent to balance the exploitation of proper strategies and

the exploration of scheduling choices. More exploration is encouraged by a greater (¢),
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Figure 5.1: The designed QRL model, applying the simulated job shops as the environ-
ment.

Algorithm 5: SARSA algorithm

Initialise Q(s,a) for all state-action pairs.

for each episode do
Initialize Sy

Select Ag using a policy that is based on @

for Fach step S; In the current episode do
Select A; from S; Using policy that is based on )

Ry 11, Environment (S, A;)
Select Ay, from S, using a policy that is based on @)
Q (St Ar) = Q (Sy, Ap) + a[Reyr +9Q (Seq1, Aryr) — Q (Si, Ay)]
end
end

which is advantageous in flexible scheduling environments. A smaller indicates more

exploitation and the use of try-and-error methods.

5.4 Application of SARSA Model

The second contribution of this chapter is to develop an advanced SARSA model. Algo-
rithm 5 presents the standard SARSA algorithm [227, 228]. Figure 5.1 shows the design
of the proposed SARSA model for optimising the job shops applied in this study [229].

The following section discusses the model in more detail.
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Figure 5.2: The designed SARSA model applying the simulated job shops as the envi-
ronment.

In this model, the initial environments include 29 simulated flexible job shops from
Chapter 4. The initial state begins to schedule the job sequences employing related
rewards.

Agent In this model, an agent interacts with the environment, gains knowledge, and
makes choices. When a job becomes available, it is selected from the local waiting queue
of the machine and processed. When the current operation is completed, each job chooses
a machine. At this point, the job becomes a job candidate for the machine and is assigned
an agent for task routing. This is performed to address the vast action space of the FJSPs.
Thus, the agent decides what is appropriate given the current state of the environment.

States and Rewards The state represents the environment, including various ma-
chines and jobs-related aspects. Such aspects include the productivity of machines and
how they interact, including the number of machines active and available for use in each
operation and the workloads of the jobs completed or in progress. RL aims to maximise
returns or the sum of rewards while minimising the makespan required to accomplish the

jobs.
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Table 5.1: Comparison of developed RL models with EGA

Job Shop Type EGA QRL SARSA
SM 38,980 42,016 23,006
MM, 7,674 6,711 10,845
MM, 9,454 5,420 11,236

5.5 Simulation Results and Discussion

The simulated results of the established QRL and SARSA models are discussed in the
subsections below; the results are compared to the EGA and NMHPGA, which used

identical job shops.

5.5.1 Comparing Developed RL Models with EGA

To compare the findings to basic EGA, three basic job shops presented in Chapter 3 are
used (i.e., SM1, MM;, and MM,). Table 5.1 compares the results of the established QRL
and SARSA models to those of the EGA regarding the objective function. The objective
function or cost function is the main character which aims to reduce the makespan of
the schedules; when the objective function is the lowest, it means the results are the
best with the lowest makespan. The results from the RL models are similar to those
from the EGA. However, the RL models are desirable because the EGA is complex and
requires numerous functions. The schedule’s time is reduced when the objective function
is minimised. As demonstrated, SARSA performs better than the QRL on SMs with
small schedules. However, the QRL objective functions are preferred in more extensive

settings [229].

5.5.2 Comparing Developed RL Models with Advanced Genetic

Algorithm

In this part, the results of RL models are compared with NMHPGA, which are tested on
identical SM1-SM10 and MM1-MM19 job shops; by reversing the rewards, the minimum

time in the program is calculated, wherein the agent increases the reward while the
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environment minimises the time. Tables 5.2, 5.3, and 5.4 show the simulation results,
comparing the objective functions for the QRL and SARSA models with NMHPGA; the
Tables present the simulation results tested on SM (SM: SM1-SM10), MM category-A (
MM1-MM10), and MM category-B (MM11-MM19) respectively.

It can be seen from Tables 5.2, 5.3, and 5.4 that the Q agent delivers the maximum
reward and lowest objective functions. However, when the size of the job shop is large
(MM11-MM19), the proposed QRL algorithm performs poorly compared to the SARSA
algorithm. Additionally, as shown in Tables 5.3 and 5.4, by comparing the objective
function values, it can be concluded that the NMHPGA technique outperforms the pro-
posed QRL algorithm regarding apparent improvements for MM job shops (because the
objective functions of NMHPGA are lower than QRL results).

Results from QRL tested on the SM category are shown in Figure 5.3 (a), and results
from MM Categories-A and -B (MM-A, MM-B) are shown in Figures 5.3 (b) and 5.3 (c),
respectively. The simulation results for the SM categories SM1-SM10 comprise 10000
episode numbers, which means the agent increases the exploration-exploitation of the en-
vironment by 10000 generations. It is indicated that the agent tries exploring-exploitation
to learn from the environment to reach the best reward. Figure 5.4 shows simulation re-
sults applying the proposed SARSA model on the SM category and MM Category-A and
-B. Figure 5.4 (a) shows the rewards of using the SARSA model on SM1-SM10. Fig-
ure 5.4 (b) shows the rewards of applying the SARSA model on MM1-MM10 to reach
the best rewards. Figure 5.4 (c¢) shows the rewards of applying the SARSA model on
MM11-MM19 to achieve the best.

The SARSA convergence performs better than different algorithms, showing that the
RL-based algorithm can solve the FJSP with satisfying solutions. In the RL simulation
models, the rewards involve moving between jobs to calculate the makespan, which ulti-
mately becomes an objective function. Regarding the state, the agent moves between jobs
to calculate the time, add it to the reward, and calculate the objective function. In this
idea, RL learns how to connect environmental states to an agent’s actions to maximise the

reward. The agent can discover the best action for each state by repeatedly attempting
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Table 5.2: SM benchmarks results.

Job shop type Number of jobs NMHPGA QRL SARSA
SM1 32 39,444 42,016 23,006

SM2 40 160,871 297,088 156,270

SM3 60 474,325 816,604 507,100

SM4 80 1,120,440 1,662,800 1,082,100
SM5 100 2,297,979 4,452,100 2,446,362
SM6 120 11,009,721 11,283,000 8,310,500
SM7 150 8,549,596 12,201,000 8,051,900
SM8 200 1,595,2550 26,355,000 20,215,000
SM9 250 30,845,566 58,246,000 39,822,000
SM10 300 52,260,543 90,327,000 65,091,000

Table 5.3: MM category-A results (MM-A).

Job shop type NMHPGA QRL SARSA
MM1 7,758 6,711 7,230
MM2 9,465 5,420 7,490
MM3 7,913 13,558 13,187
MM4 7,758 6,711 7,230
MM5 7,039 10,647 11,542
MMG6 7,798 12,863 13,500
MM7 9,181 8,055 8,652
MMS 8,727 17,695 16,094
MM9 6,195 5,379 5,766
MM10 7,758 6,711 7,230

different actions in different states. The agent can also learn the best behaviour through

trial-and-error interactions with the environment.
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Table 5.4: MM category-B results (MM-B).

Job shop type Number of jobs NMHPGA QRL SARSA
MMI11 4 x10 16,421 17,700 17,882
MM12 4 x20 131,115 124,270 125,296
MM13 4 %30 461,538 429,230 443,460
MM14 4 x40 1,236,658 1,061,652 1,143,600
MM15 4 x100 17,432,983 15,698,000 17,035,000
MM16 4 x150 62,354,613 54567000 60,006,000
MM17 4 x200 131,840,576 126,430,000 105,410,000
MM18 4 x250 270,317,679 248,160,000 270,810,000
MM19 4 %300 475,082,286 417,290,000 420,790,000
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Figure 5.3: QRL training process.

The following are some conclusions from the analysis of this chapter: Based on this
study’s results, QRL, a fundamental RL model, outperforms the NMHPGA and EGA
because GA algorithms are more complex, time-consuming and require additional func-
tions to run the program. Most of the QRL results show the strong performance of the
algorithm, except for a few job shops of more considerable sizes. The SARSA model is
used to enhance these results. Despite the poor performance of SARSA when there are
more job shops, it is still a highly recommended model because it is more straightforward
than GA regarding the number of functions and time required to run the program. Future
deep RL-based manufacturing research could incorporate additional relevant benchmarks
by considering advanced algorithms, optimisations, and parameter tuning in similar sim-
ulations. This is because GA techniques are primarily slow and challenging to implement
(despite their high performance in optimising scheduling systems). Additionally, differ-

ent RL models can be integrated with advanced GA models, resulting in a noticeable

86




180

\
16011
i
i
140

120F i

o
=)
v

Episode reward
o3
o
N
\

)
'
'
‘
'
.

@
o

Episode reward
Episode reward

N
=)
=

¥

N
=)

l

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60
Episode number

70 80 90 100 0 20 40 60 80 100 120 140 160 180 200
Episode number

(c)

Episode number

(a) (b)

Figure 5.4: SARSA training process.

performance improvement without intensive adaptation efforts.

5.6 Summary

The purpose of this chapter was to present two advanced RL methods for solving FJSPs.
These two methods are applied to the simulated benchmarks (job shops) from Chapters
3 and 4, and the results are compared and critically analysed. In the next chapter, the
same methods from Chapters 4 and 5 are applied to an industrial case study of the
reheating furnace model, and the results are presented. By employing our techniques,
the scheduling of the furnace model is optimised. The general aim is to reduce the time

and energy consumption in the production process of the furnace.
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Chapter 6

Case Study: Reheating Furnace

Scheduling

6.1 Introduction

In this chapter, a reheating furnace model is presented as a case study; the same methods
of Chapters 4 and 5 are applied to test and optimise the furnace schedule, focusing on
reducing the energy and time consumption required for the production process.

To create the optimal site, it is vital in the steel industry to identify the ideal heat
treatment regime needed to give steel the correct mechanical qualities. Consequently,
creating a system that can choose the best heat treatment regime to get the desired
metal qualities (in the shortest amount of time and with the least energy consumption)
is crucial. The applied furnace model is derived from a real industrial application.

This chapter provides a general framework of the applied furnace model derived by
Yoshitani [230]. The structure of this chapter is as follows:

Section 6.2 describes the features of the furnace model. Section 6.3 provides the GA
results testing on the furnace model. Section 6.4 shows the results of the proposed RL
models in Chapter 5 tested on the furnace model. Section 6.5 discusses the results, and

Section 6.6 summarises the chapter.
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6.2 Reheating Furnace

Furnace designs differ depending on their purpose, heating operations, fuel type and
technique [230]. In this study, a furnace model is applied to test the optimisers of the
thesis. Appendix B shows the equations of the applied furnace model. Figure B.1 shows
the design of the used furnace model [230]. Appendix B.2 shows the physical equations
of the furnace model. Table B.1 shows the features of the materials used in the furnace.
There are 64 strips, and this work aims to find the best order of strips using minimal time
and energy. This furnace is intended to heat metal to a temperature of about 1850°C,
so high alumina materials were chosen for the walls. This is because its bricks can resist
temperatures of up to 1850°C. In this furnace model, a strip of material is heated through
a heating process. To prevent quality degradation, the strip is heated according to its

composition. The key points of this model can be summarised as follows [230]:

1. Heating: Heating occurs as the strip material passes through the furnace. The fur-
nace’s temperature and speed are controlled to ensure the strip reaches the desired

temperature.

2. Quenching: Quenching usually occurs after the strip exits. Air or a cooling liquid

would rapidly cool the heated strip.

3. Tempering: During tempering, the quenched strip is reheated at a lower tem-
perature than during the initial heating. Various methods could be used, such as
passing the strip through a second cooler furnace or using heaters. It has a hi-
erarchical control system with upper- and lower-level controls performing specific
tasks. The furnace has several zones, each measuring temperature and fuel flow.
The first zone is used for heating jobs, and the second for cooling them. The fur-
nace is quite long (400-500 metres). The strip’s temperature can only be measured
at the furnace’s outlet. An entire strip takes a few minutes to pass through. The
control system is made to react to changes in the system, such as variations in fuel
flow rate, strip thickness, line speed, etc., in a way that provides the best possible

heating of the strip material.
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4. Heat Pattern: A heat pattern is a plan for heating the strip based on its com-
position and grade. To ensure the quality of the final product, the strip’s actual
temperature must stay within the range defined by this heat pattern. The furnace’s

outlet heat pattern is used as a reference temperature to control the heating process.

5. Indirect Heating: Gas-fired radiant tubes heat the strip indirectly. As a result,

the furnace’s air is heated by the heat of the gas flames.

6. This model also works with various fuels, such as multiple oil grades and petrol
fuel. The capacity of the heating system, which can provide a certain amount of
heating per unit of time with no energy loss in this situation, can be used to directly

compute the net heat available when the energy source is electrical power.

The total amount of heat consumed in this situation will equal the amount lost and the
amount of heat absorbed by the workspaces. The following section indicates the results of

the furnace schedule testing NMHPGA and developed RL models from previous chapters.

6.3 Genetic Algorithm Testing

Optimum schedules are developed for materials to reduce the amount of time and energy
in the heating process. Five algorithms presented in Chapter 4 (i.e., STPGA, RPGA,
SPGA, APGA, and NMHPGA) are compared to optimise the furnace model’s schedule.
The NMHPGA model achieves superior results in reducing the time required to run the
furnace model. Moreover, in the next stage, optimisation outcomes from the developed
QRL and SARSA models applied in Chapter 5 are contrasted with the GAs outcomes.
The applied furnace model is a multi-objective function with three objectives: (1) re-
ducing the time of the schedule, (2) reducing the furnace’s energy consumption, and (3)
simultaneously reducing the time by 30% and energy by 70%. The latter is the most
critical in terms of efficiency. Based on the objectives, the furnace consumes 86.8673
x10% (m*/h) and takes 139.2167 (h) to operate. Following are the equations related to

the furnace objectives.
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Figure 6.1: NMHPGA results tested on the furnace model using Objective 1.

Objective 1 =Y "T; (6.1)
=1
Objective 2 = Y " F, (6.2)
=1
Objective 3 =Y (0.3 x T; + 0.7 x F}) (6.3)

i=1
where T; is the time taken for each job, F; is the fuel consumption per job, and n is the
number of jobs.

Figure 6.1 shows the changes in temperature on the furnace by applying NMHPGA
schedules based on Objective 1, which concentrates on reducing time. At the beginning
of the process, the temperature heats up to 820°C and then increases by 860°C; this
process continues, and the schedules are terminated. Similarly, Figures 6.2 and 6.3 show
the same method of applying NMHPGA on furnace Objective 2 and Objective 3. The
graphs show the elapsed time after optimising the schedules and achieving more efficient
results using NMHPGA.

In the next section, the furnace model is used as an environment in the RL models,

and RL models optimise the schedule of the furnace to find the best schedule, reducing
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Figure 6.2: NMHPGA results tested on the furnace model using Objective 2.
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Figure 6.3: NMHPGA results tested on the furnace model using Objective 3.
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time and energy.

6.4 Reinforcement Learning Testing

This section uses advanced QRL and SARSA models for the furnace model environment.
The following are the model’s initial parameters. The environment is a furnace model;
the agent initiates the state, learns from the environment, and calculates rewards at
each state. The initial state is chosen randomly, and the agents try to learn from the
environment.

RL models aim to use less time and energy in the furnace model. The maximum
number of iterations is 1000, the learning rate (alpha) is 1, the discount rate (gamma) is
0.09, and the greedy factor (epsilon) is 0.9. Evaluated results on NMHPGA, QRL and
SARSA are shown in Tables 6.1, 6.2 and 6.3; Table 6.1 shows the comparison of objective
functions of the model applying STPGA, RPGA, SPGA, APGA, NMHPGA, QRL and
advanced SARSA.

In Table 6.1, the first row shows Objective 1, which focuses on time reduction only.
The objective function is a crucial factor in optimisation, and when it is lower, it shows
that the optimisation has a better result in terms of reducing the objective function; here,
SARSA has the lowest objective function of 133.9333, which means that the time reduc-
tion is more desirable. Moving forward to the second row, Objective 2, which aims at fuel
reduction, SARSA has the lowest value of 84.1481 compared to other algorithms, which
shows the model’s accuracy. Lastly, SARSA has more desirable results for Objective 3,
a multi-objective model with the lowest value of 99.0837.

Based on the objectives prior to optimisation, the furnace consumes 86.8673 x10%
(m3/h) of fuel and takes 139.2167 hours to operate. Post-optimization, NMHPGA reduces
the operation time to 134.9500 hours, 3.06% improvement, and fuel consumption to
84.0847 x10* (m3/h), 3.20% improvement. SARSA further reduces the operation time
to 133.9333 hours, marking 3.79% improvement over the original and 0.75% better than
NMHPGA

The quantity of energy utilised in this model is displayed in Table 6.2, along with
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Table 6.1: Comparison of 3 objective functions minimisation of the furnace model.

Function STPGA RPGA SPGA APGA NMHPGA QRL SARSA

Objective 1  136.1167 136.0167 135.2500 135.7667 134.9500 137.9167 133.9333
Objective 2 85.4268  85.3400  84.9302  85.1881 84.7118 85.50716  84.1481
Objective 3 100.6338 100.5430 100.0261 100.3617 99.7833 100.6319  99.0837

the elapsed time results following schedule optimisation in Table 6.3. According to Table
6.2, SARSA model uses 84.1481 x10* (m3/h) of fuel, compared to NMHPGA’s 83.96
x10* (m3/h). Despite these variations in fuel usage, SARSA is still preferred due to its
simplicity and excellent performance over QRL and complicated GAs.

Table 6.2: Comparison of consumed fuel x 10* (m3/h) using three objective functions.

Function STPGA RPGA SPGA APGA NMHPGA QRL SARSA
Objective 1 83.9666  84.0094 84.0703 84.0942 83.9666 84.1481 84.1481
Objective 2 84.3083  84.3982 84.2927 84.2316 84.0847 86.2792  84.1481
Objective 3 83.9666  84.1739 84.0167 84.1451 83.9666 85.2274  84.1481

Asindicated in Figure 6.4, the QRL agent increases the exploration-exploitation trade-
off. At the same time, the number of episodes grows to learn from the environment and
enhance the reward at each state. The graph fluctuation depicts the agent’s learning rate
for the best reward. The blue line indicates the furnace training model for Objective 1,
the red line indicates the training of QRL on furnace Objective 2, and the yellow line
indicates Objective 3 activity.

In Figure 6.5, average reward findings using the SARSA model are displayed. Figure
6.5 (a) illustrates the average rewards of the SARSA model when applied to furnace
Objective 1, revealing the fluctuations and changes in the rewards to reach the best
reward. Figure 6.5 (b) shows the average rewards of the SARSA model applied to furnace
Objective 2, highlighting the fluctuations and changes in the rewards to reach the best
reward and maximise performance. Figure 6.5 (c) shows the average rewards of the

SARSA model applied to the furnace Objective 3 to obtain the best reward.

Table 6.3: Comparison of the elapsed time (h) using the 3 objectives.

Function STPGA RPGA SPGA APGA NMHPGA QRL SARSA
Objective 1 133.7500  133.8167 133.9833 133.9500 133.7500 133.9333  133.9333
Objective 2 134.4500 134.5833 134.4000 134.3167 134.0000 137.9667 133.9333
Objective 3 133.7500  134.2167 133.8333 134.1500 133.7500 135.6333 133.9333
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Figure 6.5: SARSA model tested on the reheating furnace using 3 objective functions.

The results for the simulated furnace temperature are shown in Figure 6.6, applying
QRL and SARSA. In Figure 6.6, (a), (b), and (c) illustrate the QRL model results, and
(d), (e), and (f) indicate the SARSA model results for the furnace model for objectives
1, 2, and 3 (respectively).

Objectives 1 and 2 are still relevant because they optimise for time, regardless of how
long it takes ( i.e., for urgent tasks) and fuel, respectively. Depending on the consumer’s
demands, the operator might select a schedule. The corporation will benefit most from
Objective 3 because it uses less time and fuel. In conclusion, SARSA always discovers

the optimal solution, the best option, for every aim, whereas QRL finds sub-optimal

solutions.
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Figure 6.6: Furnace temperature changes applying QRL and SARSA models, Figures
(a), (b) and (c) illustrate QRL results testing Objectives 1, 2 and 3. Figures (d), (e) and
(f) indicate the results of the SARSA model tested on the furnace testing Objectives 1,2
and 3.

6.5 Discussion of Results

It is evident from the findings displayed in Table 6.2 that SARSA and NMHPGA perform
similarly in terms of fuel utilisation. The appeal of SARSA, as opposed to QRL and
advanced GAs, rests in its simplicity and higher performance. SARSA provides a good
balance between performance and complexity. The third objective in the furnace schedule
appears to produce the best results because it minimises time and fuel use.

It is important to note that the first and second objectives (i.e., concerning time and
fuel) have particular advantages that warrant careful consideration for actual deployment
in practice. For instance, the first target, which minimises time, would be more appro-
priate for urgent jobs. In situations when there are no vital jobs, and the emphasis is
more on energy efficiency, the second objective, which optimises for fuel, would be more
pertinent.

Additionally, it is possible that the performance of the algorithms cannot be accu-

rately compared using only one indicator (fuel usage). Future studies may also consider
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additional elements, including computing complexity sensitivity to beginning conditions.
Moreover, due to its simplicity, reliable performance, and capacity to find the best solu-
tions for various objectives, the results make a compelling argument for using SARSA to
optimise industrial production lines. Future studies should examine this performance in
different circumstances.

SARSA is fast and precise enough to optimise industrial production lines with reason-
able schedules. Although the RL cannot yet be fully implemented in production systems
due to the abovementioned restrictions and the challenges of the models described, more

studies could hasten this process and enable effective real-world deployments.

6.6 Summary

This chapter presented the case study of a real industrial furnace model to test the
methods expounded in Chapter 4 and Chapter 5 to optimise the heat treatment processes.
The simulation results were displayed with a detailed description of how this model
counts the time and fuel consumption. All primary GAs, NMHPGA, and proposed
RL methods have been utilised to optimise the furnace and reduce time and energy
costs. The NMHPGA and RL have been successfully developed and operated efficiently.
Both methods reached desirable results; however, RL outperformed NMHPGA. The next
Chapter concludes the research presented in this thesis and identifies recommendations

for future work.
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Chapter 7

Conclusions and Future Work

This chapter presents the primary conclusions of this thesis and identifies areas requiring
additional research. The research projects discussed in earlier chapters are summarised
to reach concluding remarks, and the overall success in achieving the study’s goals and
objectives is described. Instead of purely theoretical advancements, this research con-
centrates on the integration problem of process planning in JSSPs and the environment
of steel heat treatment operations. Section 7.1 discusses the optimisers reviewed in this
thesis; more specifically, Sections 7.2 and 7.3 discuss two types of thesis methodologies,
including NMHHPGA and advanced RL models for optimising JSSPs. Section 7.4 dis-
cusses final thoughts and upcoming work, including future work recommendations for

this thesis. Section 7.5 discusses a general conclusion of this work.

7.1 The Optimisers

This thesis reviewed literature pertaining to intelligent scheduling applications, including
GA and RL, for scheduling problems. It demonstrated the importance of FJSP as an es-
sential subset of production scheduling and identified the factors rendering it challenging
to solve. Most reviewed studies revealed significant advancements in Al approaches to
solve JSSPs and FJSPs. This study provided an overview of scheduling problems and ad-
dressed FJSPs in detail. The analysis demonstrates the intricacy of scheduling problems,

typically categorised as NP-hard problems. To tackle scheduling problems, this research
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focused on FJSPs and has devised several algorithms, including GA, STGA, AGA, RGA,
SGA, EGA and PGA, STPGA, APGA, SPGA, RPGA, NMHPGA and RL.

In practice, the identified complexity is mainly caused by the search space size, limita-
tions, and objectives. These algorithms’ performance has been enhanced through multiple
successful selections introduced in Chapters 4 and 5. These algorithms were then tested
utilising a furnace model and SM and MM job shops. The NMHPGA and RL techniques
proposed in this thesis outperform the standard optimisers; these methods are discussed

briefly in the next section.

7.2 NMHPGA and EGA

To optimise FJSPs and the reheating furnace schedule, this thesis proposed NMHPGA
in Chapter 4. Combinations of various selection types support this GA-based approach,
suggested EGA and hybrid PGAs. This thesis examined the PGA (which includes the
parthenogenetic operators swap, reverse, and insert) and an EGA. To create an ethnic
population, the ethnic selection process employed a variety of selection operators (includ-
ing stochastic, roulette, sexual, and ageing). The best individuals were then chosen from
each technique and were blended. The established algorithm’s results were compared to
those of other selection methods, and it became clear that the NMHPGA was producing
superior objective functions with a faster convergence rate. This work addressed several
GA types with various selection types.

PGA and ethnic selection demonstrate that superior outcomes can be obtained with-
out time-consuming crossover processes. This method can improve the global search
point and convergence speed. NMHPGA, which replicates the crossover function using
the swap, insert, and reverse functions, increased the efficiency and performance of the
job shop schedules.

Convergence speed involves determining the iteration where the error (cost) reaches a
steady state; this indicates that the best solution has been found, and the algorithm can
stop because the error will not change. This practice helps find the best solution quickly,

requiring less time and effort.
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7.3 Reinforcement Learning

The performance of the scheduling methods was improved, as presented in Chapters 5 and
6, using the developed RL models, including the QRL and advanced SARSA algorithm.
The findings were compared with EGA and NMHPGA. Compared to NMHPGA and
basic GA from earlier works (as presented in Chapter 4), the simulation findings based
on various performance metrics showed that the proposed SARSA algorithm could be
a competitive approach for JSSPs; this is because of the reduction of makespan of the
schedules and increasing the convergence speed of the models. The RL application in this
thesis can be summarised as follows: To validate the performance of the novel models,
three simulated environments were used for reference comparisons—a furnace model, ten
single flexible machines job shops, and 19 flexible MM job shops. The results of EGA
and NMHPGA and other preceding studies were compared with the simulated outputs of
these environments. The results of the SARSA show how the proposed model enhances

system optimisation efficiency.

7.4 Final Thoughts and Future Work

The following are some salient outcomes of the work presented in this thesis.

1. According to the presented results, QRL, a fundamental RL model, outperforms
NMHPGA and EGA. This is attributable to GA algorithms being more complex

and time-consuming and requiring additional functions to run the program.

2. Although SARSA performs poorly when there are more job shops, it is still a highly
recommended model because it is more straightforward than GA regarding the
number of functions and the time needed to run the program. In addition, SARSA
performs better than NMHPGA and QRL by optimising the furnace model. It can
be said that SARSA is quick and precise enough to optimise industrial production

lines for schedules of a reasonable size.

3. The relevant system standards might be created to enable more complex and ad-

100



vanced industrial models, facilitating an accelerated escalation from simulation to

real-world application.

4. By considering cutting-edge algorithms, optimisations and parameter tuning inside
the same simulations, future advanced RL-based manufacturing, including DRL

research, can incorporate more pertinent benchmarks.

5. Additionally, advanced GA models can be combined with a variety of RL mod-
els, and performance could be noticeably improved without the need for extensive

adaptation efforts.

7.5 Conclusion

This study investigated interactions between intelligent scheduling and factory scheduling,
emphasising the roles of GA and RL. The dynamic and intricate nature of manufacturing
scheduling was acknowledged throughout the study, emphasising how urgent it is to
create more effective and flexible algorithms than those currently available in practice.
The analysis of novel GA and RL models revealed their potential to transform how
businesses address scheduling problems. These algorithms’ potential was demonstrated
through real-world use in a model of an industrial furnace, offering insightful information
for upcoming industrial uses.

The research addressed scheduling and provided a more profound knowledge of the
difficulties in balancing many goals in a scheduling problem. The comparison of vari-
ous scheduling algorithms revealed the advantages and disadvantages of each approach,
offering a foundation for future research. Hybrid models were created and tested, and
the results showed that performance could be improved by combining the advantages of
various algorithms.

This thesis closes a substantial knowledge gap by offering a thorough grasp of the
application of scheduling methods for challenging dynamic scheduling problems. Future
studies could explore several areas after looking into multi-objective scheduling, hybrid

models and more complicated real-world applications. The road to intelligent industrial

101



systems is a difficult and drawn-out one. Still, this thesis’s framework can offer guidance

for many intriguing and promising opportunities for further studies.
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Appendix A

Job Shop Parameters

Table A.1 shows the penalties for the multi-machine and Table A.2 shows the penalties

for single machines.

Table A.1: Multi-machine job-shop with due date, earliness and tardiness penalties.

No. M1 E/T penalty M2 E/T penalty M3 E/T penalty M4 E/T penalty
1 26 3/2 79 1/4 13 1/1 90 2/3
2 19 1/2 27 4/4 15 3/3 14 2/1
3 86 2/2 58 4/4 55 3/3 15 1/1
4 85 2/2 62 3/4 35 4/3 51 1/1
5 40 1/3 8 3/4 25 4/2 13 2/1
6 19 4/3 25 3/1 42 1/4 6 2/2
789 2/3 94 4/1 19 3/2 49 1/4
8 35 4/3 89 3/4 37 1/1 12 2/2
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Table A.2: Single-machine job-shop including earliness and tardiness penalties.

No. Job time FEarliness penalty Tardiness penalty

1 7 3 3
2 10 3 2
3 o7 2 1
4 81 2 2
) 65 2 3
6 95 4 4
7 68 2 4
8 7 2 4
9 49 2 1
10 o1 3 2
11 64 3 4
12 35 4 2
13 62 2 2
14 47 3 4
15 23 4 3
16 31 2 2
17 90 1 3
18 26 3 1
19 60 3 2
20 30 3 4
21 9 3 2
22 92 1 3
23 24 2 3
24 52 4 1
25 68 1 2
26 ) 3 3
27 11 3 2
28 14 2 4
29 49 2 2
30 88 3 4
31 4 1 3
32 90 1 1
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Appendix B

Furnace Model Equations

This appendix contains examples and derivations supporting the furnace model in Chap-
ter 6. Each entry indicates the section which refers to it. The model derivations are
based on an article published by [230].

The temperature of the furnace must be raised and decreased in order to adjust for the
substantial temperature fluctuations between the operations in a series. The procedure
will demand a lot of time and energy because the furnace needs to be heated and cooled
to the desired item temperature. The optimisation system will help to meet the need for

scheduling optimisation for the shortest time possible and use less energy.

B.1 Furnace Modelling

The reheating furnace model is based on the schematics shown in Figure B.1. It consists
of two sections: the heating section and the cooling section. The heating section is the
part where the temperature is raised and held for a specific period of time due to the
reheating requirements of the materials. Figure B.1 indicates the furnace model created
by [230]

Equations B.1-B.8 pertain to a dynamic model of the strip temperature [230].

y(t+d) = aoy(t) + 3 Brult — i) + D diwi(t +d) (B.1)
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Figure B.1: Furnace Model .

y(t) = Tu(t) = T3 (B.2)

u(t) = Dy (t) [F(t) — F*] (B.3)

vi(t +d) = Za’/dwthrd—j)( 1,---,4) (B.4)

wi(t) = (1= dy) wy(t — 1) + (1 = do) wa(t — 1) (B.5)

wo(t) = [Ty(t) — Tsin) [Sp(t) — Sp(t — 1)] (B.6)

ws(t) = Dy (t) Wat)TH(0)V () — W) (B.7)

wa(t) = Dy () (B.8)

Equations B.9 - B.14 pertain to a dynamic model of the furnace temperature [230].
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my
yr (t+dg) = agoys(t) + Y B (B.9)
=0

up(t — i) +ildf,»vﬂ (t + dy) (B.10)

yr(t) =Ty (t) = 17 (B.11)

ug(t) = F(t) — F* (B.12)

vy (t + dy) :if;:@]igwfi (t+d;—3),(i=1,2) (B.13)
ug(t) = F(t) — F* (B.14)

where
F is the total fuel flow rate in the heating furnace [10* Nm?®/h |
wpi(t) = Wa@)Th @)V (t) — Wy,
wrp(t) =1
t time [min] (One sampling period = 1 min);
d,d; dead time [min]; notes m® at 0°C;
T, Out-strip temperature of the heating furnace [100°C];
m, ms Non-negative integer (to be determined experimentally);
T Out-strip temperature in steady state [100°C];
Tsin Strip temperature at the inlet of the heating furnace (constant) [100°C];
Ty Furnace temperature of the heating furnace [100°C];
W, T, Strip width [m] and thickness [mm]
Vi (t) Average line speed during [t — tf,t];v(0 = 1,--- ,4);vp(i = 1,2);
Disturbance terms: F*, 17, Wy, Ty, TF : are Average values of F, Ty, WyT,V,T,, T}, re-

spectively, in normal operations.
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o, 8o, 5 B, dr, -+ ,dg, S1,+ -+, S4: specific model parameters.

The material properties used in the reheating furnace are shown in Tables B.1.

Diameter | Temp Quanching Cuenching Time Hardness Capth
= 5 Kn Cr L] L Pressun Hardness
[mm] ich Temp{C) | {min) (0]
|bar] fum]
14 5 55 75 [} 335 30 =50 E 0 m 335 ]
14 5 E 75 [} 325 30 550 5 m 0 400 Fij
14 5 5 75 [} 335 a0 =50 10 m 20 400 18
Tl 0.14% C, 0L26% 14 5 E 75 [} 325 30 550 10 n m 405 4
14 Ni Cr 14 5i, 0.85% Mn, 14 5 E 75 1] 335 a0 &50 12 m ] 410 24
0.75% Cr, 3.50% 14 5 55 15 o a5 as =50 2 m 18 410 21
Mi. 14 5 55 75 [} 335 a5 =50 E m m 413 13
14 5 E 75 [} 325 2 550 10 n 7] 415 24
14 5 E 75 [} 25 25 g50 10 m 3 418 4
14 5 55 15 [} 25 FE 50 12 0 ] A20 13
14 5 E 75 1] 25 30 200 g S0 0 415 FI
14 x5 55 15 1] 32 a0 200 5 50 E) 425 FE]
14 5 55 75 [} 32 30 00 10 S0 0 428 30
% 0.14% C, 0.25% 14 5 55 15 [} 25 D] 00 10 E ] 435 15
14 Ni Cr 14 5i, 0.55% Mn, 14 5 55 75 [} 325 30 00 12 S0 m 440 F
0.75% Cr, 3.50% 14 5 55 75 [} 335 a5 300 E S0 15 411 13
Mi. 14 5 55 75 1] 325 a5 200 5 S0 ] 414 F
14 5 55 75 o 335 as 200 0 50 Fr 407
14 5 55 75 [} 325 25 200 10 50 3 420
14 5 55 75 [} 335 a5 300 12 S0 m 422
16 m 115 55 [} 0 16 850 g m 16 |3
1470 20%3i 16 m 115 55 [} 0 16 =50 5 m 15 ;|7
16Mn Cr8 | 115%Mn 18%S 95 16 m 115 55 [} o 16 550 10 n 18 400
%Cr 16 ] 115 55 1] o 16 &50 10 m 15 407
16 m 115 55 [} 0 16 550 12 n m 411
16 m 115 55 [} 0 16 200 2 50 15 411 15
14760 20%Si 16 m 115 55 [1] 1] 3 00 5 E 16 415 15
16Mn CrS | 115%Mn 18%S 98 16 ] 115 55 [} 0 16 00 10 S0 15 417 15
%Cr 16 ] 115 55 [} ] 13 00 10 E 18 419 15
16 ] 115 55 1] o 16 200 12 S0 0 423 15
16 ] 115 55 [} ] a0 50 2 0 ] 330 13
14%C 20%Si 16 ] 115 55 [} 0 40 g50 B m i3 240 25
16Mn Cr8 | 115%Mn 18%S 98 16 ] 115 55 [1] ] a0 850 10 0 ] M5 a7
%0 16 m 115 55 [} o a0 550 10 7m0 35 350 30
16 m 115 55 [} 0 a0 =50 12 0 m 350 15
16 ] 115 55 1] o a0 200 E S0 ] =0 F
14%C 20%Si 16 m 115 55 o o a0 200 5 S0 kS @4 Frl
16Mn Cr8 | 115%Mn 18%3 95 16 m 115 85 [} [ a0 00 10 50 0 L) 30
%LCr 16 m 115 55 1] 0 a0 300 10 50 35 402 33
16 m 115 55 [} 0 a0 E] 12 50 m 415 18
30 m 45 200 a0 200 5 =50 2 m 15 542 El
M%C 20951 45Mn 30 m 45 200 a0 200 5 &50 5 m 15 B E]
30 Cr Ni Mo 8 2%S 200Cr 30 ] 45 200 20 2 E =50 10 m 17 553 El
APGMo 30 m 45 200 a0 200 5 550 10 n 17 550 E]
30 m 45 200 a0 200 5 =50 12 1 F] 555 El
30 m 45 200 a0 2 5 00 2 E 14 5 E]
I0WC 20%Si 30 ] 45 200 a0 2 B 00 B S0 14 558 El
30CrNi Mo B  45%Mn 2%S 30 2 A5 200 a0 2 [] 200 10 50 15 575 E]
200Cr 40%Mo 30 m 45 200 20 200 5 200 10 S0 15 530 El
30 ] 45 200 a0 2 5 00 12 i 17 610 E]
20 5 45 ] [} 0 22 g50 E m 17 T35 159
. 20 5 45 [1] ] 22 850 5 0 17 752 20
15520 m:‘“;f'::'s' 20 5 45 ] [} o 22 550 10 7m0 15 ThE 20
20 5 45 [} 0 22 =50 10 0 15 771 =]
20 5 45 1] o 22 g50 12 m m TEE FH
30 4 ] 28 15 546 330 ES 1] 24 =75 13
50 [T ] 28 15 546 330 15 ] 24 =75 FE]
30 [ ] 28 15 546 330 15 [ 35 245 [F]
50 55 ] 6 35 385 1025 15 1] = =52 [T}
S0 2E%Si 78 7 3z 53 28 455 240 s 40 3 252 24
mild earbon — - —
45%MnR 78 i EF 53 2 455 950 EE 40 24 ETE 5
50 55 ] 26 33 385 1025 15 =5 31 =56 44
B0 &5 5 22 18 455 950 a0 =5 5 =56 18
B0 &5 5 22 18 455 a7 a0 =5 1] 223 3
50 55 o] FI 33 380 1025 15 140 1 32 34

Table B.1: Materials properties data.
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