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ABSTRACT

This study addresses the pivotal challenge of water resource allocation in urban environments by introducing a novel approach – a multi-

objective chance-constrained fuzzy interval linear programming model integrated with principal component analysis (PCA). This innovative

model aims to alleviate subjectivity in urban water management processes, particularly in adjusting water demands across various sectors.

The proposed model incorporates correlation analysis to identify dimensionality-reducing factors of multitarget components, determining the

proportion of each target component relative to the total components. Fuzzy sets are applied to irrigation water resource allocation quantity,

segmented into six levels of fuzzy membership to analyze the stochasticity of water supply. Results demonstrate the model’s efficacy, reveal-

ing that variations in risk probabilities impact water supply, necessitating positive water management strategies to enhance agricultural

efficiency and negative strategies to mitigate the risk of inadequate water supply. Key findings emphasize the significance of agricultural

water availability and the structure of irrigation water use in optimal resource allocation. Importantly, the study showcases the enhanced

precision achieved through the proposed multi-objective chance-constrained fuzzy interval linear programming with PCA, thereby refining

the optimization outcomes for water management under multifaceted objectives.
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• Development of a multi-objective chance-constrained fuzzy interval model.

• Integration principal component analysis to improve the optimal solutions.

• Application of a multidimensional analysis to effectively assess risk probabilities.

• Optimization of agricultural water resources under varying constraints.

• Offering strategic recommendations for agricultural cropping structures.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

In contemporary societies, water resources serve as the linchpin of regional development, forming a pivotal human-ecology-

industry-centered water supply and demand network (Jin et al. 2019; Zhang et al. 2022a, 2022b, 2022c). Given the escalat-
ing challenges of water scarcity and population growth, the allocation of water resources is essential to social development,
as it often dictates the quality of regional development. Therefore, the optimal allocation of water resources has become
one of the focus on research in natural resource science (Naghdi et al. 2021; Jiang et al. 2022; Wu et al. 2022; Cheng
et al. 2023).

As urban centers expand, intensified competition among water-consuming sectors, stringent environmental policies and
regulations, and a rise in extreme weather occurrences engender increasingly intricate uncertainties. These factors accentuate

the shortcomings and antiquation of prior water management systems (Ju et al. 2023). To confront these uncertainties
inherent in water management systems, this study has devised a programming model aimed at the optimal allocation of
urban water resources. This model integrates multi-objective fuzzy interval linear programming, chance-constrained program-

ming (CCP), and principal component analysis (PCA), with agricultural water resources programming serving as its
cornerstone (Sivagurunathan et al. 2022).

Fuzzy set theory facilitates the transformation of information into a range-based format within a given fuzzy space, as
demonstrated through triangular fuzzy sets (Zadeh 1965; Nagarajan et al. 2019). By establishing a fuzzy membership func-

tion, the information can be converted into rational intervals distributed across fuzzy levels. This process yields the
interval fuzzy representation of a variable at a designated fuzzy set level. In addition, employing a two-stage arithmetic
approach helps delineate the distribution space of the optimization objective (Zeraatkar & Afsari 2021; Chang et al.
2022). To address the uncertainty inherent in programming models and the challenge of objective weighting within multi-
objective models, Zhang et al. (2022a, 2022b, 2022c) proposed an approach called full fuzzy-dependent linear fractional pro-
gramming. This approach integrates fuzzy correlated-chance programming, fuzzy plausibility-constrained programming, and

linear fractional programming into a unified framework specifically designed for irrigation programming. This effectively
addresses the fuzzy uncertainty associated with ratio objectives. Yang et al. (2020) solved fuzzy multi-objective linear frac-
tional programming problems using an approach based on the superiority and inferiority measurement method. Chen

et al. (2022) introduced a type-2 fuzzy bi-level programming method coupled with a fuzzy ranking algorithm to address
fuzzy information on subordinate functions in programming agricultural water resource systems. Pandiya et al. (2024)
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constructed a nonparametric transcendental fuzzy preference programming model to derive optimal weights from a fuzzy

two-by-two comparison matrix. Wan et al. (2020) presented interval-valued Atanassov intuitionistic fuzzy preference relations
(IV-AIFPRs) to objectively establish the weights of decision makers (DMs) by assessing the consistency level of individual
IV-AIFPRs. This approach integrates individual IV-AIFPRs into collective weights.

Most previous studies have employed optimization models founded on fuzzy linear programming to address fuzzy par-
ameters, relying on consistency level assessments or settings of fuzzy preference models for decision-making regarding
events (Wan et al. 2020; Pandiya et al. 2024). While these studies possess their strengths in addressing uncertainty or decision
preference issues, they notably underestimate the complexities confronted by water management systems (Zhang et al. 2023a,
2023b). In practice, water resource systems frequently contend with both fuzziness and randomness issues that are inherently
intertwined (Deng et al. 2022). For instance, while water sector demand exhibits fuzziness, surface water resource supply is
characterized by random distribution, necessitating the establishment of a comparative relationship between water demand

and supply within water resources management systems (Zhou et al. 2023). Furthermore, the allocation of weights in multi-
objective programming has long grappled with the challenge of subjective decision-making. This constraint curtails the accu-
racy of multi-objective linear programming results and undermines the establishment of a rational water usage framework in

reality (Wang et al. 2022).
In order to achieve a more comprehensive optimization, a CCP random information processing-multi-objective fuzzy inter-

val linear programming model (CCPRIP-MOFILP) is employed, which integrates the PCA and CCP methods. This approach

aims to capture the uncertainty inherent in water resource systems through a combination of fuzzy and stochastic program-
ming. This method offers the following advantages:

(i) The model establishes six α-cut levels for crop irrigation quotas within the fuzzy agricultural water resource system. The

fuzzy space of each level is incorporated into the multi-objective framework of the model for optimization, which enables
the exploration of scenarios and inclusion of precise fuzzy interval parameters.

(ii) By considering four different risk levels that violate the constraints of the probability distribution, the model effectively

addresses the randomness of maximum supply of surface water. This simulation mirrors real-world scenarios in
Xiamen City, China, which enables the integration of MOFILP with stochastic programming methods. This integration
helps mitigate the impact of uncertainty in water resource optimization and allocation systems.

(iii) The programming model utilizes PCA to analyze the correlations and significance between multi-objective component
factors. It derives the component weights essential for the multi-objective programming model. Compared with the pre-
vious analytic hierarchy process (AHP) method, the PCA method offers a more detailed explanation of the components

and a multilevel comparison structure. Consequently, it enables multi-objective programming models with multiple
uncertainties to yield objective results that help DMs establish the criteria for regional water allocation (Ren et al.
2019; Zhang et al. 2023a, 2023b).

2. METHODOLOGY

2.1. Fuzzy interval linear programming

The interval fuzzy linear programming can be expressed as follows:

max f+ ¼ C+X+ (1a)

subject to:

Pn
j¼1

~AljX
+
j � ~Bj, l ¼ 1, 2, � � � , m (1b)

X+
j � 0, j ¼ 1, 2, � � � , n (1c)
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where C+ [ {@+}1
�n and @+ denote the interval parameters; X+ [ {x+}n

�1 and x+ denote the interval variables; and
~Alj [ {ℶ+}m

�n, ~Bj [ {ℶ+}m
�1, and ℶ+ denote the fuzzy parameters defined as follows:

~Alj ¼ [L~A(a), U~A(a)] (2a)

~Bj ¼ [L~B(a), U~B(a)] (2b)

where L ~N (a) ffi min{x [ Rjm ~N(x) � a} and U ~N (a) ffi max{x [ Rjm ~N(x) � a}; ~N is a fuzzy set defined on R with the mem-
bership function m ~N(�) and ~N ffi {x [ Rjm ~N(x) � a}, where a [ [0, 1]. The modeling approach employed fuzzy sets

and intervals to address uncertainties, creating interval fuzzies based on the degree of membership (Kaushik &
Kumar 2022). However, uncertainty manifests not only through the fuzzification of natural attributes but also
extends to the resolution of stochastic attribute problems (Kheirollahi et al. 2022). In this context, the study incor-

porated classical stochastic probability distributions into the right-hand side parameters of the constraints,
substituting the fuzzy right-hand side parameters (Boukezzoula et al. 2022). This methodology extends beyond fuz-
zifying natural attributes; it aims to address uncertainty by integrating stochastic attribute solutions into the

modeling framework.

max f+ ¼ C+X+ (3a)

subject to:

Pn
j¼1

~AljX+ � BPi
m , l ¼ 1, 2, � � � , m (3b)

X+
j � 0, j ¼ 1, 2, � � � , n (3c)

The membership function is a fundamental concept in portraying fuzzy sets, its construction is pivotal for the prac-

tical application of fuzzy sets (Deng & Deng 2021). In this study, the triangular membership function was utilized to
map the fuzzy subset of the domain onto the domain within the range [0, 1]. Under complete fuzziness, this function
defines the upper bound, lower bound, and most credible value of the fuzzy parameter (Figure 1). Assuming the exist-

ence of fuzzy set A with mA(x) as its triangular membership function, its lowest possible value Amin, highest possible
value Amax, and most plausible value Aa¼1 can be derived from its function XA. When considering fuzzy set A under
the α-cut of the membership function, the interval limit value of fuzzy parameter ~A is represented by

[A�
a , A

þ
a ] ¼ [(1� a)Amin þ aAa¼1, (1� a)Amax þ aAa¼1]. The membership function is expressed as follows:

a ¼ m(x) ¼

0 x � Amin or x � Amax
A�

a �Amin

Aa¼1 �Amin
Amin , x , Aa¼1

Amax �Aþ
a

Amax �Aa¼1
Aa¼1 , x , Amax

1 x ¼ Aa¼1

8>>>>><>>>>>:
(4)

2.2. Chance-constrained programming approach

The CCP approach is often used to determine whether conditional parameters – bound by objective facts and adhering to the

traits of probability distributions within the confines of natural conditions – possess stochastic properties (Xie & Ahmed 2020
2020). These properties introduce uncertainty into the programming model when seeking the global optimal solution of the
planning model. To address the stochastic uncertainty embedded in model parameters, this study utilized a CCP model. The
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CCP model can be written as follows:

Min f(x) (5a)

P[ci(x) � di(x)] � 1� pi, i ¼ 1, 2, . . . , s (5b)

x � 0 (5c)

where ci(x) [ C(x), di(x) [ D(x), and x [ X; C(x), D(x) represent the set of mappings within the probability space X. Pi

denotes the probability level associated with the random event, and m represents the number of constrained events.

When the left and right parameters in the constraint equations exhibit uncertainty, the constraints become more complex
and exhibit nonlinear behavior. However, in the CCP model, not all parameters within C(x) and D(x) are random elements.
In cases where the parameters on the left side are deterministic, while those on the right side are ambiguous, the constraint

equations can be transformed into linear programming equations. Thus, the feasible constraint set can be expressed as follows
(Ren et al. 2019):

Ci � Di(x)
(Pi), i ¼ 1, 2, . . . , s (6)

The equation di(x)
(Pi) ¼ F�1

i (Pi) represents the inverse of the cumulative distribution function denoted as di[i:e:, Fi(bi)], and
i(Pi) is the probability of violating the constraints. In the CCP model, this equation addresses the stochasticity problem of

parameters on the right-hand side of the constraints by assigning a probability value Pi(Pi [ [0, 1]) to the occurrence of
the uncertainty event. Each constraint should adhere to the probability value of 1� Pi. The general form of the research
model was derived by combining the provisions of the CCP model and FILP approach to the uncertainty.

max f+ ¼ C+X+ (7a)

Figure 1 | α-cut for triangular fuzzy membership function.
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subject to:

P
Pn
j¼1

~AljX
+
j � ~Bj

" #
� 1� pi, i ¼ 1, 2, . . . , s (7b)

Pn
j¼1

~Al�nX+ � BPi
m , l ¼ 1, 2, � � � , m (7c)

X+
j � 0, j ¼ 1, 2, � � � , n (7d)

2.3. PCA process

In this study, the MOFILP model was employed to consider agricultural irrigation water consumption and irrigated area

within the realm of multi-objective optimization. However, it should be noted that DMs may attribute the different levels
of importance and judgment to various objectives (Yeo et al. 2020). Regardless of whether the DMs prioritize economic
benefits or emphasize the efficiency of water resource utilization, their perspectives introduce subjective influences into

the overall programming model. To mitigate this subjective interference, the PCA method was incorporated in this study.
This method leverages multidimensional reduction analysis to transform the optimal allocation ratios of agricultural irrigation
water and land-use areas into factor weights associated with the principal components. This approach aims to reduce the

impact of subjective judgments in the modeling process. The simplified steps of the PCA method are as follows:

Step 1: Standardize the raw data to eliminate the effect of the dimension (generated from SPSS software).

Step 2: Establish the matrix of correlation coefficients between variables R.
Step 3: Calculate the eigenvalues and eigenvectors of the correlation coefficient matrix R.
Step 4: Extract the principal components and calculate the composite score.

To find additional principal components, the second, third, and possibly fourth principal components must be derived.
Each subsequent principal component should encapsulate information that was not captured by the preceding component.
In statistical terms, this means ensuring that the covariance between these principal components is zero. Geometrically, this

means ensuring that the directions of these principal components are orthogonal (Ibebuchi & Richman 2023).
In PCA, the correlation analysis for component indicators is realized by the algorithm defined in the method itself, while in

the similar AHP algorithm, it needs to set up judgment matrices for each target first, and use manual inter-comparison

between the targets to set up judgment matrices according to the relative importance (Gao & Gao 2022). The study chose
the former for the target weighting analysis, which is helpful to avoid the human subjective will to interfere with the
decision-making results.

2.4. CCP random information processing-multi-objective fuzzy interval linear programming model

In this study, the programming model prioritizes addressing two key uncertainty problems, i.e., the stochasticity and fuzziness

inherent in the model parameters, to simultaneously optimize agricultural irrigation water resources and crop land area.
Moreover, to ensure objective prioritization and achieve optimum results, a multi-objective linear programming model was
developed. This model integrates various methodologies, including the CCP model, triangular fuzzy set, and PCA method.

Termed as the CCPRIP-MOFILP model in Equation (15), it integrates these techniques to enhance the optimization process
and provide a holistic framework for decision-making in agricultural resource allocation and land-use planning.

maxf+1 (x) ¼ ~AX+ þ B (8a)

max f+2 (x) ¼ CX+ þ ~D (8b)

max f+3 (x) ¼ EX+ þ F (8c)

subject to:

P
Pn
j¼1

~AljX
+
j � ~Bj

" #
� 1� pi, i ¼ 1, 2, . . . , s (8d)

X+ � 0 (8e)
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In practice, the general comparative equation was derived by transforming the constraints into an equivalent form. In

addition, the interval fuzzy set/number, obtained by converting the triangular fuzzy set using α-cut intervalization, was
utilized for the fuzzy parameters. This process yielded feasible computational equations for the CCPRIP-MOFILP model.
These equations incorporated the fuzzy parameters represented as interval fuzzy numbers/sets, which resulted in a compu-

tational framework that accommodates uncertainties and optimizes the objectives within the multi-objective linear
programming model as follows:

max f+1 (x) ¼ A+X+ þ B (9a)

max f+2 (x) ¼ CX+ þD+ (9b)

max f+3 (x) ¼ EX+ þ F (9c)

subject to:

Pn
j¼1

~gl�nX
+ � hPi

m , l ¼ 1, 2, � � � , m (9d)

X+
j � 0, j ¼ 1, 2, � � � , n (9e)

After addressing the challenges related to fuzzy parameters and the stochastic nature of the probability distributions within
the model, the PCA method was used to analyze the factor structures within the principal components. The factor analysis

results yielded factor weights associated with the objectives. These factor weights provide insights into the significance and
contributions of each objective within the multi-objective framework to aid in determining their relative importance in the
optimization process.

In this study, PCA, triangular fuzzy sets, and CCP were used to address the uncertainties arising from water resource plan-
ning. These methods were collectively integrated into the newly established framework, CCPRIP-MOFILP. This framework
was designed to handle two main sources of uncertainty: stochastic events related to surface water supply and the uncertainty

represented by fuzzy sets in determining water-use quotas for irrigated agricultural areas. The combination of these method-
ologies enhances the robustness of the model in managing and optimizing water resource allocation under various uncertain
conditions. The comprehensive methodology for the resolution is as follows:

Step 1: Establish the CCPRIP-MOFILP model.
Step 2: Transition the CCPRIP-MOFILP model from an MOFILP model to a multiple subobjective model, ensuring adher-

ence to constraints established for all subobjective functions.

Step 3: Convert the random variables into crisp numbers that conform to a probability distribution using the CCP model.
Step 4: Translate the triangular fuzzy parameters into rational interval numbers and model the upper and lower bounds of the

fuzzy sets via the interval linear programming method.

Step 5: Resolve the solution set of each subobjective model, encompassing the decision variables and a single-objective
function.

Step 6: Utilize the PCA method to derive principal component factor weights for each objective.

Step 7: Iterate through steps (3)–(6) using an identical probability distribution to address the solution set of fuzzy parameters,
employing different α-cut grading.

Step 8: Repeat steps (3)–(7) to obtain the global optimal solution of the model across varying probabilities.

3. APPLICATION

3.1. Problem statement

Xiamen City is located in the southeastern area of Fujian Province (24 °230–24 °54 N, 117 °530–118 °26 E), along the south-

eastern coastline of China. It is densely populated and has undergone significant economic development. However, this
region lacks major rivers, as evidenced by the short river mileage, narrow riverbeds, and shallow rivers within its territory
(Zhang et al. 2022a, 2022b, 2022c; Sun et al. 2023). Xiamen has subtropical maritime monsoon climate characterized by
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an average annual temperature of 20.7 °C and average annual rainfall of 1,513.3 mm. In particular, the city is frequently

struck by typhoons from July to September (Jiang et al. 2023).
As of 2022, Xiamen was designated as a Special Economic Zone by the State Council of China, aside from being a major

city, port, and tourist destination. Xiamen has six districts (Figure 2) covering a total area of 1,700.61 km2. It boasts a resi-

dent population of 5.380 million and has achieved an urbanization rate of 90.19%. Considered as one of the fastest-growing
urban centers in China, Xiamen thrives on its robustly developed manufacturing and service sectors. Its accelerated growth
is underpinned by liberal economic policies and a highly favorable business environment. However, Xiamen continues to
grapple with the lack of freshwater resources owing to high evapotranspiration and limited precipitation. In 2022, the city’s
water resources per capita was 229 m3, which is significantly lower than the national average for that year (Shangshang
et al. 2024) . Furthermore, Xiamen’s primary agricultural zones lie beyond the main island, characterized by relatively out-
dated production techniques and the inequitable distribution of water for irrigation. These areas exhibit an irrational

development pattern and inefficient use of agricultural water resources, which contribute to the low efficiency of water
resource utilization in the agricultural sector (Ren et al. 2021) .

To formulate a water allocation strategy for Xiamen, a comprehensive understanding of the city’s unique character-

istics, such as its separate islands and sizable inland area, is required. This study addresses the challenge of meeting
the water demands of a developed economy of a port city, while ensuring sufficient provisions to meet basic agricultural
needs and sustain the resident population. Such divergent objectives are inherently complex and make multi-objective

programming a suitable approach to analyze the water-related challenges of a city grappling with water scarcity and
high demand (Zeng et al. 2023). In the multi-objective programming model, Xiamen City’s agricultural water utilization
structure must be optimized. This means delving into the specifics, such as the opinions regarding the acreage allocated
to various crops, and analyzing their economic viability and water-use efficiency in accordance with agricultural irriga-

tion quantities and crop-planting patterns. The model accounts for various uncertainties stemming from natural factors
and market dynamics, including the surface water supply following random probability distributions and fuzzy agricul-
tural irrigation water quotas (Fu et al. 2012; Kumar & Sen 2020; Chen et al. 2022). In addition, an objective data

Figure 2 | Zoning map of Xiamen City in Fujian Province.
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organization approach was adopted to address the subjective inclinations of DMs. The PCA method was used to conduct

factor analysis on the objectives and derive the objective principal component scores. This method aims to scientifically
evaluate the weights of multiple objectives to ensure rational and objective policy outcomes. In response to these chal-
lenges and technical pathways, this study developed the CCPRIP-MOFILP model to conduct an in-depth analysis of

agricultural water allocation in Xiamen City to optimize the crop irrigation water-use structure. The crops considered
include rice, coarse cereals, beans, potatoes, sweet potatoes, edible fungi, vegetables, tea leaves, oranges, longans, and
litchis (Xing et al. 2021).

3.2. Model formulation

A combination of multi-objective programming, fuzzy sets, PCA, and CCP was employed to explore the optimal allocation of
agricultural water resources in Xiamen City. The resulting framework was encapsulated in the CCPRIP-MOFILP model, a
linear programming model designed to achieve the following objectives:

(a) Maximize economic benefits: Given Xiamen City’s stature as an economic powerhouse with a robust industrial landscape,
promoting its economic growth is paramount.

(b) Maximize agricultural water productivity: Enhancing water productivity expands the scope of agricultural water allo-

cation while ensuring the optimal results for each objective.
(c) Minimize irrigated area: Minimizing irrigated areas is crucial to acknowledge the significance of agricultural development

in Xiamen City’s overall livelihood program. This aligns with the city’s development plans while ensuring food security for

its populace.

Figure 3 shows the research framework of this model. It illustrates the interplay and integration of various methodologies to

address the challenges of optimizing agricultural water resource allocation in the city.
The formulated application equations in this case study are as follows:

3.3. Objective functions

Maximize the economic benefits:

max E+
P ¼ max

P11
i¼1

(POCi � YOCi � IAOCi � COCi � IAOCi) (10a)

Maximize agricultural water productivity:

max P+
W ¼ max

P11
i¼1

(YOCi � IAOCi)

gIQOCi �
IAOCi

IWUE

� �
26664

37775 (10b)

Minimize the irrigated area:

max I+A ¼ max TIAS� P11
i¼1

IAOCi

� �
(10c)

3.4. Constraint conditions

Water supply constraints:

P11
i¼1

gIQOCi �
IAOCi

COCi

� �
þWDSIþWDTIþDWCþ EWC � GEþMSOFWPi (10d)
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Groundwater constraints:

GE � MEOG (10e)

Irrigation area constraint:

IAOCi min � IAOCi � IAOCi max (10f)

P11
i¼1

IAOCi � TIAS (10g)

Food security constraints:

PCFR � PISA � P4
i¼1

IAOCi � YOCi (10h)

Figure 3 | Research framework and the CCPRIP-MOFILP model.
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3.5. Parameter explanation

i is the crop index (1¼ rice, 2¼ coarse cereals, 3¼ beans, 4¼ potatoes, 5¼ sweet potatoes, 6¼ edible fungi, 7¼ vegetables,
8¼ tea leaves, 9¼ oranges, 10¼ longans, 11¼ litchi)

POCi: Price of crop i (yuan/t)
YOCi: Yield of crop i (t/ha)
IAOCi: Irrigation area of crop i (103 ha)
IAOCi min: Minimized irrigation area of crop i (103 ha)

IAOCi max: Maximum irrigation area of crop i (103 ha)
COCi: Cost of crop i (yuan/ha)gIQOCi: Irrigation quota of crop i (m3/ha) (fuzzy parameters)

IWUE: Irrigation water-use efficiency of study area
TIAS: Total irrigation area of the study area (103 ha)
WDSI: Water demand of the secondary industry (103 m3)

WDTI: Water demand of the tertiary industry (103 m3)
DWC: Domestic water consumption (103 m3)
EWC: Ecological water consumption (103 m3)
GE: Groundwater exploration (103 m3)

MEOG: Maximum exploration of groundwater (103 m3)
MSOFW: Maximum supply of surface water (103 m3) (random parameter)
PCFR: Per capita food requirement (t/p)

PISA: Population in the study area (103 p)

In the proposed model, the parameter gIQOCi adheres to the traits of fuzzy variables, and was analyzed and resolved using the
fuzzy interval programming methodology. Within the confines of the total water resource constraint in Xiamen City, the peak

supply of surface water follows a stochastic probability distribution. To determine the maximum surface water supply under
the distinct probability of violating constraints, this study generated P-III hydrological curves derived from runoff data from
2002 to 2022. The available surface water resources corresponding to the four distinct risk probabilities are 7:53� 108 m3,

8:28� 108 m3, 9:13� 108 m3, and 9:79� 108 m3.
The principal parameter integrals of the formulated model are listed in Tables 1 and 2. The datasets in these tables were

obtained via field surveys, supplemented by information from the yearbook of the Xiamen Special Economic Zone (Statistical

Yearbook 2002–2023).
In the research model, three primary objectives are delineated: maximizing economic benefits, maximizing agricultural

water productivity, and minimizing irrigated area. These objectives are constrained by factors such as water availability,

Table 1 | The basic crop parameters

Crops (i) YOC (kg/ha) Irrigation quota (m3/ha) IAOCmin (ha) IAOCmax (ha) POC (￥/kg) COC (￥/ha)

Rice 7,590 5,385 1,882 9,798 2.84 16,500

Coarse cereals 6,650 4,070 181 655 3.86 8,000

Bean 2,750 4,574 112 794 5.62 11,500

Potato 1,621 4,650 837 2,415 5.66 37,500

Sweet potato 6,675 5,420 917 7,843 6.24 30,000

Edible fungi 30,500 2,620 112 406 16.28 75,000

Vegetable 105,880 4,950 5,587 21,002 1.16 15,000

Tea leaves 4,050 4,295 547 2,058 54.02 30,000

Orange 45,675 5,250 228 18,831 4.22 22,500

Longan 75,623 4,846 4,383 18,716 18.12 81,000

Litchi 6,848 4,592 108 8,469 10.32 13,500
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cultivation area, and food security. These constraints confine each objective within defined boundaries, precipitating poten-
tial conflicts among objectives within these limits. Resolving such conflicts constitutes the crux of the CCPRIP-MOFILP

model. Following the tenets of multi-objective linear programming, the optimal solution for each of the three objectives is
attained through the simplex method. This step is executed subsequent to utilizing computational code developed with
LINGO11 software (Voulgaropoulou et al. 2022). Upon securing optimal solutions for the three objectives, the Weighting
Method concept in multi-objective optimization is applied to introduce weighting coefficients, thus determining the priority

of each objective function (Cui et al. 2024). To ascertain these weighting coefficients, the study employs the PCA method.
Herein, the proportion of total component variance explained by each objective serves as the weighting coefficient for
multi-objective optimization. The Pareto optimal solution of the CCPRIP-MOFILP model, signifying the optimal solution

for the entire research scheme, is derived as the sum of the product of each obtained weighting coefficient and the corre-
sponding objective function value.

The rules governing the extraction of principal components in the PCA process were deduced from a dimensionality

reduction factor analysis of the raw data, predicated on the proportion of variance explained by each component relative
to the total variance explained (Obiri et al. 2021). The study incorporated social development data from Xiamen spanning
the period 2012–2022 as the analyzed indicators, which were utilized to generate correlation analysis outcomes and

derive the total variance interpretation of the analyzed cases. These indicators encompassed various metrics such as GDP
per capita, end-of-year employment figures, total retail sales of consumer goods, fixed asset investment, local financial rev-
enue, total exports, total value of primary industry, total value of secondary industry, total value of tertiary industry, and
per capita disposable income of urban and rural residents. Given the inconsistency in dimensionality among the aforemen-

tioned social development data, the initial step in PCA involved standardizing the data to mitigate dimensionality effects
(Huang et al. 2023). Furthermore, to ascertain the validity of employing the PCA method for the research case, the KMO
(Kaiser–Meyer–Olkin) and Bartlett’s test were conducted. As per methodological criteria, the KMO value necessitates exceed-

ing or equaling 0.6, while the Sig value must be less than or equal to 0.05 to satisfy the PCA method’s validity test. As
illustrated by the test outcomes in Table 4, the study met these criteria. From a practical standpoint, the weight coefficients
assigned to the three objectives correspond to the variance interpretations of the three principal components extracted. These

coefficients have undergone rigorous testing and computation, proving to be highly indicative of the total variance interpret-
ation. Consequently, the weights attributed to the objectives approximate representations of the direction and exigencies of
the study area’s social development.

Table 3 presents the correlation coefficient matrix obtained after conducting a correlation analysis of the indicator factors

using the PCA method. Most variables in the original dataset had correlation coefficients exceeding 0.3, indicating a substan-
tial degree of correlation between them. This study assessed the suitability of the dataset using the KMO measure of sampling
adequacy and Bartlett’s test of sphericity. A KMO value of 0.623 and significance level below 0.05 were obtained, as shown in

Table 4. These findings confirmed the strong correlation within the dataset, which supports the application of the PCA
method to obtain accurate results in this study.

According to Table 5, the PCA algorithm employed in this study revealed the loadings of the three principal components,

indicating the respective weights assigned to the three optimization objectives: 0.863, 0.074, and 0.038, respectively. Collec-
tively, these principal components (1, 2, and 3) explain approximately 97.54% of the total variance. Figure 4 shows the
eigenvalue distribution across all components. The principal components 1, 2, and 3 were the most ranked, occupying pre-

dominant positions within the distribution. The plot of the components in Figure 4 shows the close proximity of all
components in the spatial context, indicating that principal components 1, 2, and 3 distinctly represent the entire array of
components. In other words, the representativeness of these principal components is high, while the correlations between
them are strong. This suggests that these principal components effectively encapsulated the overall objectives. Thus, the

three objective functions incorporated in this study accurately reflected the outcomes of the optimal water resource
allocation.

Table 2 | The basic model parameters

TA TPR FDP SW EW DW TW IC
(104ha) (104P) (kg/P) (104ha) (104ha) (104ha) (104ha)

6.98 528 300 14,469 6743 25,912 11,343 0.59
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4. RESULTS AND DISCUSSION

4.1. Results analysis

In this study, the model was configured with six α-cut levels (0, 0.2, 0.4, 0.6, 0.8, and 1) and four probabilities (0.05, 0.1, 0.2,
and 0.25) for analysis. The primary objective was to translate multiple fuzzy conditions into a manageable mathematical

model using linear operations. This approach allows the visualization and analysis of the impact of various degrees of fuzzi-
ness on the desired outcomes.

Figure 5 shows the dataset illustrating the maximum allocation of surface water derived from the optimal water resource

allocation model under various risk probabilities; this elucidates the outcomes of irrigation water resource allocation at

Table 4 | KMO and Bartlett’s test

KMO and Bartlett’s test

Kaiser–Meyer–Olkin Measure of Sampling Adequacy 0.62

Bartlett’s Test of Sphericity Approx. Chi-square 202.54
df 45.00
Sig. 0.00

Table 5 | Total variance explained

Component

Initial eigenvalues Extraction sums of squared loadings

% of variance Cumulative % % of variance Cumulative %

1 86.33 86.33 86.33 86.33

2 7.4 93.72 7.4 93.72

3 3.81 97.54 3.81 97.54

4 1.46 99

5 0.67 99.67

6 0.21 99.88

7 0.1 99.97

8 0.02 99.99

9 0.01 100

10 0 100

Table 3 | Correlation matrix

Correlation x1 x2 x3 ‧‧‧ x9 x10

x1 1 0.8 0.86 ‧‧‧ 0.97 0.97

x2 0.8 1 0.85 ‧‧‧ 0.85 0.84

x3 0.86 0.85 1 ‧‧‧ 0.95 0.94

x4 0.96 0.8 0.95 ‧‧‧ 0.99 0.98

x5 0.95 0.7 0.88 ‧‧‧ 0.95 0.96

x6 0.73 0.71 0.76 ‧‧‧ 0.75 0.76

x7 0.6 0.87 0.79 ‧‧‧ 0.71 0.69

x8 0.96 0.9 0.94 ‧‧‧ 0.98 0.97

x9 0.97 0.85 0.95 ‧‧‧ 1 0.99

x10 0.97 0.84 0.94 ‧‧‧ 0.99 1
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distinct probability levels. A notable trend was the increase in irrigation water allocation as the risk probability increased. For
instance, at the risk probability Pi ¼ 0:05, the amount of irrigation water allocated was 2:57� 108 m3; at the risk probability
Pi ¼ 0:25, the amount of irrigation water allocated surged to 4:83� 108 m3. This trend was attributed to the gradual relax-
ation or tightening of constraints that defined the optimum quantity as the probability distribution exceeded the constraint

violation limit. Figure 6 shows that at each α-cut level, no changes were observed in the irrigation water utilization outcomes.
This suggests that the maximum supply of surface water was fully exhausted under the prevailing risk probability, underscor-
ing the stark reality of water scarcity in the agricultural sector of Xiamen City.

Figure 6 shows the outcomes derived from the model’s optimal allocation of the irrigated area across six α-cut levels and
four risk probability levels. When Pi ¼ 0:05 and α¼ 0, the lower and upper limits of the irrigated area are 2:91� 104 and

Figure 5 | Irrigation water resources under different probabilities of violation risk.

Figure 4 | Scree and component plots.
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3:30� 104 ha, Pi ¼ 0:05, α¼ 0.2, the result of irrigated area is lower limit 2:96� 104 ha and upper limit 3:26� 104 ha. When
Pi ¼ 0:05, α¼ 0.4, the result of irrigated area is lower limit 3:00� 104 ha and upper limit 3:23� 104 ha. It suggests that under

identical risk probability constraints, the irrigated area exhibited a phenomenon in which the upper limit decreased while the
lower limit increased as the α-cut level increased. This trend can be ascribed to the triangular fuzzy parameter irrigation water
quota, which delineates the fluctuation in the irrigated area of a crop under different degrees of fuzziness. This parameter
stems from constraints on the expansion of irrigated areas imposed by fluctuations in the irrigation quota, all within the con-

text of limited water resources. Post α-cut processing, the triangular membership function underwent a certain degree of
fuzziness modification that was dependent on the varying levels of constraint cutting, thereby confining the scope of the
fuzzy space to different degrees. In addition, a quadrant contraction in the model’s traits occurred. As the α-cut level

approached 1, indicating the moment when the fuzzy parameter ceased to represent a fuzzy space, the model generated
the most accurate value for the objective function. For instance, when Pi ¼ 0:05 and α¼ 1, the interval transformed into a
deterministic value of 3:13� 104 ha, and when Pi ¼ 0:2 and α¼ 1, the interval transformed into a deterministic value of

4:93� 104 ha.
Figure 6 also shows that as Pi increased, both the upper and lower limits of the irrigated area increased across various α-cut

levels. For instance, when Pi ¼ 0:1 and α¼ 0, the upper and lower limits of the irrigated area reached 4:22� 104 ha and

3:75� 104, and when Pi ¼ 0:2 and α¼ 0, the upper and lower limits of the irrigated area reached 5:26� 104 and
4:65� 104 ha. Besides, when Pi ¼ 0:25 and α¼ 0, the upper and lower limits reached 6:10� 104 and 5:36� 104 ha, respect-
ively, which shows the significant increase in the irrigated agricultural area, highlighting the pivotal role of surface water
supply in determining the irrigated area. Pi is also used in research as the risk probability of violating constraints and

plays an important role in water use decision problems. For example, economic growth is a primary objective for most
DMs, this means that the decision-making process may result in an imbalance in the allocation of water resources. Policymak-
ing on urban water allocation will benefit by factoring in considerations based on risk probability, thereby enhancing the

rationale and efficacy of policy programs.
A case study with a risk probability of Pi ¼ 0:25 and α¼ 0.2 was chosen to demonstrate the allocation and optimization

process for irrigation water and crop-planting structures for 11 distinct crops, as shown in Figure 7. Different crops possess

Figure 6 | Irrigation area based on multiple uncertainties under various probabilities of violation risk and α-cuts.
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unique characteristics that influence their optimum allocation. For instance, crops such as rice, coarse cereals, and beans, the
maximum restricted acreage is 9,798, 655, 794 ha and the minimum restricted acreage is 1,822, 181, 112 ha while the actual
maximum acreage after programming is 1,822, 181, 112 ha and the actual minimum acreage is 1,822, 181, 112 ha. They are

essential to maintaining food security despite their relative inexpensiveness and average yield. In contrast, high-value crops
such as vegetables, oranges, and longans command higher prices and provide higher yields, the maximum restricted acreage
is 21,002, 18,831, 18,716 ha and the minimum restricted acreage is 5,587, 228, 4,383 ha, whereas the actual maximum acre-
age after programming is 5,587, 10,848, 18,716 ha and the actual minimum acreage is 5,587, 7,131, 18,716 ha, respectively. In

the model’s attempt to optimize the planting structure and allocate agricultural water resources, adherence to the planting
limit to maintain food security is prioritized. The emphasis shifts to crops with higher economic value and potential yield
when attempting to optimize profit margins. This strategic allocation approach maintains the balance between essential

food production and maximizing economic returns within the given constraints.
Figure 8 shows the development trajectory of the single economic benefit objective along with the economic benefit trend

under a multi-objective optimization configuration, considering a multilevel analysis with six α-cut levels and four risk prob-

abilities. The data reflect that the economic benefit after multi-objective programming is 86.3% of the share of the single-
objective economic benefit at each level of risk probabilities, which is consistent with the results of the weighting coefficients
for multi-objective programming. This result was attributed to the constraints imposed by various uncertainties. The expected

economic benefit was reduced to balance the effects of multiple factors in multi-objective optimization, thereby rendering
comprehensive optimization outcomes. The observed trend in the expected economic benefits parallels the previous analysis
of agricultural irrigation water usage. For every 0.05–0.1 increase in the probability of risk Pi, the maximum surface water
supply will be enhanced by at least 7.24–10.2%. As the maximized agricultural irrigation water use steadily increased

across various risk probabilities Pi, it contributed to the increase in the irrigated area, fostering economic growth. For
single-objective economic benefit, Pi from 0.05 to 0.25, the agricultural economic scale (with α¼ 1) is increased from
2:55� 1010 to 2:94� 1010 yuan, while for multi-objective optimization the agricultural economic benefit (with α¼ 1) is

increased from 2:20� 1010 to 2:54� 1010 yuan. On the other hand, both single and multi-objective economic benefits exhib-
ited a trend of fuzzy interval parameter aggregation and convergence as the α-cut levels increased under the same risk
probability Pi. This agreement with previous findings underscores the direct influence of both agricultural irrigation water

Figure 7 | Optimized space with maximized and minimized irrigated area restrictions for 11 crops (Pi ¼ 0:25, α¼ 0.2).
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quotas and crop-planting structures on the developmental potential of each objective and the outcomes of optimal water

resource allocation. The cumulative evidence emphasizes the interplay between agricultural irrigation practices, crop-plant-
ing strategies, and the city’s economic benefits. Therefore, to optimize the economic benefits and water resource allocation in
Xiamen City, the application of decision analysis methods must be combined with the resolution of multiple uncertainties.

This integrated approach aids in determining an adaptive allocation strategy that aligns with the city’s development needs
in the current scenario.

Figure 9 shows the production efficiency of agricultural water resources in Xiamen City and presents an analysis of the

efficiency curve trend. When Pi ¼ 0.05, α¼ 0, the upper and lower limits of agricultural water productivity are 43.0 t=m3

and 37.5 t=m3, respectively, whereas when Pi is kept constant and α¼ 0.2, 0.4, 0.6, the upper and lower limits of agricultural
water productivity are 42.4, 41.8, 41.3 and 38.0, 38.5, 39.1 t=m3, respectively. Notably, the upper limit of agricultural water

resource production efficiency increased while the lower limit decreased as the α-cut level increased from 0 to 1. This trend
agrees with previous analyses of irrigated agricultural water resources and economic efficiency. However, a different result
was obtained with regard to the impact of increased risk probability on the agricultural water resource production efficiency.
Unlike the influence of α-cut levels, the efficiency did not exhibit significant changes owing to the increase in risk probabil-

ities. This result was attributed to the manner in which the components of the objective function, particularly those associated
with stochastic parameters, were streamlined within the linear system. The processed objective function remained primarily
influenced by fuzzy uncertainty and was not affected by randomly distributed events. For instance, when Pi ¼ 0:05 and α¼
0.2, the upper and lower bounds of the objective function for agricultural water productivity were 38.0 and 42.4 t=m3, respect-
ively. This result holds true in scenarios when Pi ¼ 0:1, α¼ 0.2; Pi ¼ 0:2, α¼ 0.2; and Pi ¼ 0:25, α¼ 0.2. This observation
emphasizes that while the α-cut levels affected the agricultural water resource efficiency, changes in risk probability have

minimal influence on efficiency owing to the controlled nature of the objective function within the model’s structure.

5. DISCUSSION

Given the strong connection between the surface water resource supply and annual runoff, these have a significant impact on
the overarching objectives of maximizing economic benefits and augmenting agricultural water-use efficiency. Hence, when

formulating an optimal water resource allocation model, it is important to consider the uncertainties affecting the surface
water supply. Compared with the Integrated Multi-Objective Stochastic Fuzzy Programming model (IMOSFP), the
CCPRIP-MOFILP model strategically integrated CCP to systematically address the inherently stochastic nature of the surface

Figure 8 | Upper and lower bounds of the interval of the economic efficiency objective in the case of multi-objective joint optimization and
single-objective optimization.
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water supply. This combination includes the methodological analysis of the annual runoff and the probabilistic distribution
characteristics listed in Tables 6 and 7. This analysis is shown by the P-III hydrological curves in Figure 10, which illustrate
the treatment and representation of uncertainties surrounding the water resource supply. This comprehensive approach
ensures a more resilient and nuanced treatment of the uncertainty embedded within the optimal allocation model.

When the risk probability Pi ¼ 0, the water availability outcome becomes certain, enabling the use of the IMOSFP model
for water allocation analysis. Specifically, at Pi ¼ 0, the focus is on maximizing the surface water supply, leading to the extrac-
tion of fuzzy interval memberships using the α-cut. During this period, the derived objective function, such as the upper and

lower bounds of maximized economic benefits, remains unaffected by the Pi. In contrast, the CCPRIP-MOFILP model covers
a broader range of Pi values (0.05, 0.1, 0.2, and 0.25), influencing the upper and lower bounds of the objective function. This
divergence indicates that the decision space within the IMOSFP model was significantly constrained and lacked a flexible

constraint deflation space. Such constraints are not conducive to aiding DMs in formulating and implementing water
resource policies. In contrast, the CCPRIP-MOFILP model utilizes CCP to process randomized information to facilitate a
more expansive space for optimizing and allocating water resources. This approach increases the flexibility in decision-

making for water resource policymaking and implementation.
Within the realm of multi-objective result impact analysis, the CCPRIP-MOFILP model has integrated the PCA method.

This approach introduces the dimensionality reduction factor analysis of water resources into the model results analysis.
This premise involves optimizing the allocation of the principal components of the model by weighting the target ideas

while minimizing the loss of pertinent information. This process involves the conversion of multiple indicators into a con-
densed set of composite indicators, commonly referred to as the principal components.

The derived composite indicators (i.e., principal components) were meticulously crafted as linear combinations of the

original variables in the CCPRIP-MOFILP model. Each principal component was designed to exhibit no correlation with
other principal components, thereby ensuring superior ordering performance compared with the original variables. Fol-
lowing the PCA of the various downscaling factors and indicators, the factor weight coefficients were analyzed using the

Figure 9 | Upper and lower bounds for maximized and minimized agricultural water productivity under multiple uncertainties.
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Statistical Package for the Social Sciences (SPSS) software. The results are shown in Figure 11. In the figure, lines 1, 2,
and 3 correspond to the indicators following dimensionality reduction factor analysis, combined into composite indi-

cators according to the definition outlined in the PCA. These were represented as principal components 1, 2, and 3,
and signify the weights attributed to the objective function of the model in this study. In the preceding case study, the
interpretation of the variance of these principal components within the model was presented. Moreover, based on the

Table 7 | Adapter calculation

Frequency P (%) Horizontal distance to p¼ 50% x

Third wiring
Cs¼ 3Cv

Kp xp

1 �2.33 0 1.89 1,397.42

5 �1.64 0.68 1.56 1,153.43

10 �1.28 1.04 1.4 1,035.13

20 �0.84 1.48 1.23 909.43

50 0.00 2.33 0.96 709.80

75 0.67 3.00 0.78 576.71

90 1.28 3.61 0.66 487.99

95 1.64 3.97 0.6 443.63

99 2.33 4.65 0.5 369.69

Table 6 | The empirical frequencies and statistical parameters

Year Yearly precipitation x (mm) Serial number Size-ranking of annual rainfall x Modal ratio coefficient Ki P¼m/(nþ 1)(%)

2002 875.8 1 1,469.3 1.99 4.55

2003 532.6 2 1,245.2 1.68 9.09

2004 720 3 1,011.9 1.37 13.64

2005 1,011.9 4 875.8 1.18 18.18

2006 1,245.2 5 849.9 1.15 22.73

2007 798.4 6 845.1 1.14 27.27

2008 849.9 7 819.2 1.11 31.82

2009 434.7 8 810.5 1.10 36.36

2010 819.2 9 798.4 1.08 40.91

2011 583.9 10 773 1.05 45.45

2012 773 11 720 0.97 50.00

2013 845.1 12 716.1 0.97 54.55

2014 619.5 13 643.6 0.87 59.09

2015 810.5 14 619.5 0.84 63.64

2016 1,469.3 15 583.9 0.79 68.18

2017 537.7 16 554.4 0.75 72.73

2018 554.4 17 537.7 0.73 77.27

2019 643.6 18 532.6 0.72 81.82

2020 320.9 19 434.7 0.59 86.36

2021 365.2 20 365.2 0.49 90.91

2022 716.1 21 320.9 0.43 95.45
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Figure 11 | Distribution of factor weight coefficients of multiple downscaling factors with multiple indicators.

Figure 10 | P-III hydrological curves.
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results of data analysis using the SPSS software, the standardized factor coefficients of the 11 indicators were delineated

sequentially in the radar charts. These results show the distribution of the 11 indicators collated into a single radar chart,
facilitating the comparative analysis of their disparities. The radar chart is an intuitive tool that shows the correlation
analysis results of each indicator that corresponds with its standardized factor coefficient. This presentation method pro-

vides a clearer depiction of the relationships and variations between the indicators in this study. Subsequently, the system
analyzes these outcomes to establish prioritized composite indicators, which serve as the basis for configuring the refer-
ence weight outcomes in MOFILP. In particular, the IMOSFP model, which leveraged the AHP method, could achieve
analogous analytical outcomes. However, the accuracy of these results is susceptible to disturbances due to the structural

nuances of the AHP method. The AHP method involves hierarchical layers, including target, criterion, and indicator
layers. During the construction phase of the criterion layer, a judgment matrix and consistency testing are required. Con-
structing this judgment matrix requires subjective opinions to compare the importance of indicators, thereby influencing

the sorting outcomes. This subjective involvement introduces uncertainty into the decision-making process to yield rela-
tively subjective analytical results. In contrast, the CCPRIP-MOFILP model, which integrates the PCA method, employed
a dimensionality reduction factor analysis approach to circumvent the subjective ranking of the indicators. This strategy

mitigated the amplification of uncertainty in the decision-making process, thereby ensuring a more objective and robust
analytical framework.

The establishment of the CCPRIP-MOFILP model and subsequent analysis conducted in this study have culminated in a

novel approach to address water utilization challenges in the midst of multiple uncertainties while advancing the develop-
ment of the component factor validation system. This study delved into the realm of uncertainty, demonstrating the
utilization of the FILP method to construct a fuzzy parameter processing system centered on triangular fuzzy sets. Within
the framework of triangular membership functions, it is possible to determine the upper and lower bounds of fuzzy par-

ameters while identifying the most reliable values. This indicates a quantitative relationship that can confine uncertainty
values within a finite region. The stable range of the fuzzy set m ~N , mapped onto the domain space X, was determined through
the α-cut under various degree-of-membership conditions. Analogous procedures can be applied to other fuzzy membership

functions, such as trapezoidal membership functions featuring intricate membership relations. These functions can also lever-
age the α-cut method to deal with hierarchical memberships within the optimization model and derive fuzzy quantitative
relationships. This approach facilitates the more comprehensive handling of higher-order fuzzy problems.

This study proposed a random information processing mechanism, demonstrating the key role of the CCP model in
addressing uncertainties characterized by random attributes. This mechanism aims to establish random probability distri-
butions within the water supply space, which is contingent upon the varying risk probabilities of constraint violations.
To derive the value of the surface water supply random variable, this study adapted a local stormwater runoff system. It

calculated the annual runoff index, conforming to the gamma distribution, and constructed the P-III hydrologic curve.
Its advantage is providing DMs with a scientific basis for formulating economic and environmental policies, and water
resource planning objectives. This approach enables simultaneous risk management and the pursuit of profitability, in

accordance with the requirements of the economy, market dynamics, ecological balance, and the population. The
random information processing method provides a novel approach to resolve the uncertainty within quantitative relation-
ships. Moreover, it provides a versatile application space in the optimization model, augmenting its flexibility and utility in

real-world decision-making scenarios.
TheMOFILPmodel can be used to obtain the optimal solution for managing agricultural water resources under multi-objec-

tive joint optimization conditions. By incorporating the PCAmethod, decision-making insightswere further augmented through

the correlation and significance analysis of the dimensionality reduction component factors. This method fortified the weight
relationship within the multi-objective optimization model. Within the framework encompassing fuzzy sets, random distri-
butions, and a multi-objective optimization system, the programming model navigated multiple uncertainties, providing an
optimization framework characterized by unity in terms of approach but multifaceted in terms of execution. The modeling

approach provides decision support solutions that cater to the various perspectives of DMs. By leveraging these alternative sol-
utions, DMs can comprehensively evaluate various viewpoints, harnessing the feedback provided by the CCPRIP-MOFILP
model in a timely manner. This, in turn, facilitates the optimization of agricultural water resource irrigation systems and

crop-planting structures in Xiamen City. The iterative nature of this approach allows informed and adaptable decision-
making in the management of agricultural water resources, aligning policies with evolving needs and considerations.
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6. CONCLUSION

In the programming problem, linear programming is applicable to the scenario where the highest power of the variable in the
objective function and constraint condition is only 1, which means the model can be solved by simplex method, and has the
advantages of high efficiency and convenient expansion of the model, which is in line with the actual application scenarios of

resource planning and production planning. However, in nonlinear programming, the highest power of the variable in the
objective function and constraint conditions is greater than 1, which is accompanied by other basic elementary functions.
This complex variable form is beyond the actual production norms, and the operation is quite difficult, which is not conducive

to the construction of resource planning models, but it can be used in financial market analysis and engineering modeling in
complex scenarios.

In this study, a MOFILP model integrated with PCA was proposed to optimize water resource allocation and agricultural

operations in Xiamen City. The CCPRIP-MOFILP model systematically considered the benefits and losses of different
decisions by examining the correlations between constituent factors and analyzing the uncertainty in agricultural water
resource programming using fuzzy sets and stochastic probability distributions. The model established risk relationships

and hierarchical structures based on the stochastic nature of the water resource supply and the complexity of fuzzy irrigation
systems. This approach effectively solved water resource optimization problems and improved the stability and control of
water resource utilization systems. The CCPRIP-MOFILP model was applied to the agricultural water resource allocation
system in Xiamen City to maximize economic benefits, optimize agricultural water productivity, and minimize agricultural

irrigation areas, while complying with constraints such as the water supply and demand equilibrium, limitations on agricul-
tural irrigation areas, and ensuring food security. The study established six α-cut levels and four risk probabilities. Through
hierarchical operations, global optimization results were obtained for single objectives. Following PCA, optimized allocation

results were obtained for multiple objectives. This comprehensive approach allowed robust decision-making and efficient
resource allocation in the complex domain of agricultural water resource management.

The results of this study can be summarized as follows. (i) With the increased risk probability Pi of violating the random

probability distribution, augmenting the supply of agricultural water resources is essential to promote the agricultural devel-
opment of Xiamen City. This helps DMs formulate either radical or conservative agricultural water resource supply strategies
in accordance with the natural resource and economic development trends of the year. (ii) Within the trend of multi-objective

synergistic optimization, the key components of optimization are the economic benefits, agricultural water resource pro-
ductivity, and irrigated area. Prioritizing the supply of agricultural water resources and optimizing crop irrigation
structures have emerged as the factors in water resource allocation. DMs are compelled to adopt conservative strategies
for agricultural development if the risk of water scarcity increases or if the crop cultivation structure deteriorates. (iii)

Fuzzy set and CCP methods effectively synergized with linear programming models, enhancing the optimization of water
resource allocation systems. Concurrently, the employment of PCA methods aided in the rationalization and objective formu-
lation of agricultural water resource optimization policies tailored to the needs of Xiamen City.

While this study endeavors to analyze various uncertainties and compare weight allocations, there are certain limitations
inherent in the methodology employed for constructing the model. Firstly, while the research outlines methods for incor-
porating fuzziness, randomness, and objective weight allocations into a multi-objective linear programming model to

establish a risk-based decision-making framework for water resource utilization in the study area, it somewhat neglects
the examination of fuzziness and randomness in other industrial sectors within the model. Secondly, the study lacks a
clear research strategy for addressing the potential impacts of climate change. Thirdly, although the study employs a variety
of methods in conjunction with optimization efforts, it does not harness more advanced linear programming techniques to

establish an interoperability pipeline between methods. Moving forward, enhancements to the existing linear programming
method could involve the utilization of interval type-2 fuzzy set methodology, incorporating an examination of the second-
ary membership space of fuzzy sets. This would allow for the exploration of uncertainty in water usage sectors such as

industry and commerce, thereby refining the sophistication of the programming model. Additionally, leveraging climate
change prediction tools could prove instrumental in bolstering water resource management and agricultural cultivation
analysis. The study could consider integrating remote sensing technology to develop a Geographic Information System

(GIS) tailored to the study area. Such a system would facilitate access to uncertainty information within the model and
enable the use of the GIS platform to model agricultural cropping patterns under various seasonal and climate change
scenarios.
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