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Abstract—In recent years, remote sensing object counting has
received widespread attention from academia and industry due
to its potential value in urban traffic management, public safety,
and agriculture planting. However, object counting tasks still have
many technical challenges for computer vision because of the
scale changes, uneven object density, and complex background
noise in remote sensing images. Although the latest research
shows that CNN are technically feasible for object counting,
most current CNN-based methods rely on complex network
architectures, which limits their deployment in practical applica-
tion scenarios. In response to the above issues, a lightweight
object counting method named EdgeCount aims to balance
interface speed and object counting accuracy more effectively.
Specifically, we construct a network architecture based on density
map knowledge distillation, allowing lightweight student models
to learn object density distribution from teacher models. The
teacher and student models are composed of an encoder-decoder
structure. In the encoding stage, we use the MobileViT as the
backbone. The student model only uses the first four layers of
the backbone, effectively reducing the number of parameters and
computational burden of the model. In addition, we introduce
channels and spatial attention module to enhance the ability
of feature extraction. In decoding, a low parameter weighted
multi-scale feature fusion module (LW-MMFFM) is designed to
improve the model’s ability to recognize and segment minor
structural differences in multi-scale features. Finally, this ar-
ticle conducted experiments on multiple remote sensing object
counting datasets ( RSOC, CARPK, PUCPR, DroneCrowd) and
dense population counting datasets (ShanghaiTech, UCF-QNRF),
and the experimental results demonstrated the effectiveness and
superiority of the EdgeCount method.

Index Terms—Object Counting, distillation, lightweight, mul-
tiscale

I. INTRODUCTION

THe object counting task, including crowd counting [1]
[2], vehicle counting [3] and general object counting

[4], aims to estimate the number of target instances in the
image [5] or video [6] in a specific scene. In recent years,
with the rapid development of computing power, the object
counting method [7] [8] based on the convolutional neural
network has made significant progress with the help of a
large number of label data. The counting task has practical
use for dense scenes, especially in remote sensing scenes. For
example, TasselNetV3 [9] is proposed to calculate the number
and distribution of plants from aerial images. However, the
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object counting of remote sensing images is more challenging
than standard scenes due to the small object scale of the remote
sensing image itself and the complex background interference.
It is difficult to extract the characteristics of the target and
affect the counting performance. Meanwhile, in remote sensing
object counting, the processing of multi-scale information
needs higher granularity, and the requirement of a receptive
field is also more significant. Therefore, when the scale change
is involved, the scale difference of the remote-sensing object
is more significant. The domain gap between the scene in the
dataset and the natural world scene also limits the use of the
counting algorithm.

In [10], the multi-column convolution network is used for
multi-scale feature extraction to extract more discriminative
object features and rich semantic information from remote
sensing images. It extracts multi-scale features by aggregating
multiple branches with different receptive fields, which gives
the network strong multi-scale representation fusion ability
and has achieved encouraging performance. However, they
usually aggregate features from different layers in a scale-
agnostic manner, which may lead to inconsistent mapping
between feature levels and object scales. In addition, these
methods bring network parameters and computational burden.
In the era of mobile computing and edge computing, improv-
ing the model’s accuracy while maintaining a low reasoning
delay to meet the limited computing capacity of edge devices
or embedded systems is crucial. At present, [11] [12] has
proposed several lightweight counting networks to improve
the operation efficiency. Although they have some advantages,
they still have some limitations in remote sensing images with
more complex scenes. Firstly, the feature extraction ability
of lightweight network structures is limited, which makes it
challenging to eliminate complex backgrounds in remote sens-
ing images. Second, the existing lightweight methods improve
the scale representation ability by extracting or fusing multi-
scale information. However, the existing networks pay more
attention to the extraction of scale information rather than the
fusion of scale information. In general, the above methods
do not balance the counting accuracy and running speed, that
is, on the basis of meeting the real-time requirements, the
counting ability can still be improved.

In addition to optimizing the network structure, model
lightweight can be constructed through model pruning [13],
low-rank factorization [14], model quantization [15], and
knowledge distillation [16]. The first three model compression
methods mainly focus on simplifying the network architec-
ture and reducing parameters and rarely consider knowledge
transformation and transmission. Knowledge distillation makes
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Fig. 1: Framework of our proposed EdgeCount based on density map knowledge distillation. The student model EdgeCount
learned knowledge from the teacher model EdgeCount-T through knowledge extraction and soft labeling, which enhanced
the counting ability of the student model and the quality of density map generation. In addition, a low parameter weighted
multi-scale feature fusion module (LW-MMFFM) is designed to improve the model’s ability to recognize and segment minor
structural differences in multi-scale features, which is illustrated in Fig. 3.

up for this defect. Knowledge distillation was first proposed
by Hinton et al. [17] in 2015. Different from the above
three methods, it not only concerns the performance and
efficiency of the model but also focuses on improving the per-
formance of lightweight networks through knowledge transfer.
In the process of knowledge distillation, the knowledge in the
teacher network is transferred to a smaller student network
by matching the output probability distribution of the teacher
network and the student network so that the student network
can imitate the knowledge distribution. It emphasizes how to
retain and transfer the knowledge of the original model while
compressing the model to make the lightweight model closer
to its teacher model in performance.

This paper proposes a lightweight object counting network
based on density map knowledge distillation to be applied
to remote sensing scenes. The teacher network is named
edgecount-t, and the student network is named edgecount. In
the encoder stage, MobileViT [18] is used as the backbone
network, in which the teacher network uses L1-L5 layer net-
work structure to extract high-level target feature information,
and the student network only uses the first four layers. In
addition, spatial and channel attention mechanisms are used
to enhance the detail feature capture ability of lightweight
networks. In the coding phase, a light multi-scale correlation
learning module, which consists of two parts: multi-scale fea-
ture extraction module and cross-scale learning mechanism, in
which the multi-scale feature extraction module is composed
of 1x1 convolution modules with different expansion rates, and
the cross-scale learning module establishes the correlation of
varying scale features. In addition, the knowledge content in
the teacher model is transferred to the student model through
distillation learning. The main contributions of our work are
summarized as follows:

1) We design a lightweight object counting method Edge-
count for remote sensing, which can realize a better

balance between the accuracy and the interference speed
of the network to meet the real-time requirements.

2) We design a object counting trainning structure based on
density map knowledge distillation. The student model
EdgeCount learned knowledge from the teacher model
EdgeCount-T through knowledge extraction and soft
labeling, which enhanced the counting ability of the
student model and the quality of density map gener-
ation. This method effectively reduced the number of
parameters, model size and Glflops.

3) We designed a low parameter weighted multi-scale
feature fusion module to learn the relationship and
interaction between different scale features.

Many experiments on the remote sensing object count-
ing datasets(RSOC, Dronecrowd) and dense crowd datasets
(ShanghaiTech, QNRF) show the effectiveness of the proposed
method. In particular, our approach can achieve similar or even
better detection results than the optimal algorithm.

II. RELATED WORK

This section briefly reviews the relevant object counting
methods, especially the counting methods based on density
maps. Then we introduce the application of lightweight net-
works in computer vision.

A. Object counting

In order to fully capture the feature details in images,
many researchers have adopted complex multi column convo-
lutional structures. Whether it is universal object counting or
specific target counting, these complex network architectures
have been adopted as the basic skeleton to address common
challenges in the field of counting, such as multi-scale changes
and interference from complex backgrounds. However, in both
general target counting and specific target counting, complex
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network architectures are used as backbone to address general
challenges in the field of counting, such as scale changes
and background interference. SFANet [19], ASPDNet [10],
[20], PSGCNet [21], and CAN [22] have been proven to be
effective against VGG-16. Similarly, SFCN [23] achieved good
counting performance on ResNet-101. For example, in order
to accurately process and estimate counting tasks in highly
congested scenarios and obtain high-quality density maps,
a congested scene recognition network (CSRNet [24]) was
proposed. In addition, in order to cope with pedestrians or
other objects of different sizes, the scale pyramid network
(SPN [25]) was designed, which uses a shared single deep
column structure and combines multi-scale feature extraction,
utilizing the scale pyramid module to obtain advanced infor-
mation. In [23], spatial fully convolutional networks (SFCN)
are specifically designed to utilize a large amount of synthe-
sized data for crowd counting. Multi column convolutional
neural network (MCNN) is a multi column structured network
designed to solve scale change problems, where each column
is constructed based on different filter kernels.

B. Lightweight Networks

In the past few years, lightweight neural architecture [26]
has been an active research field, aiming to achieve the best
balance between accuracy and efficiency in object counting.
Most state-of-the-art and efficient networks are designed based
on an efficient CNN architecture. Mobilecount [12] introduces
MobileNetV2 [27] as the backbone for the first time to
significantly reduce FLOPs at a little cost of performance
drop. Lw-count proposes an effective, lightweight encoding-
decoding crowd counting network through a refined ghost
block and a scale regression module to reduce the error details
and chessboard effect. LMSFFNet [3] achieves object counting
in remote sensing scenarios by constructing a lightweight
multi-scale fusion network. LEDCrowdNet [28] achieves an
optimal trade-off between counting performance and running
speed for edge applications of IoVT. Model lightweight is
also achieved via knowledge transformation and transmission
except to optimize network structure, Knowledge distillation
is a way to solve this problem.

Knowledge distillation was originally proposed in [17].
It can transfer knowledge from a large network to a small
network. In knowledge distillation, a small student network
mimics the intermediate output of a large teacher network. In
[29] and [30], the teacher network and student network imitate
between layers of the same dimension. [31] proposes a new
structured knowledge transfer (SKT) framework. SKT can de-
rive structured knowledge from well-trained teacher networks
to generate a lightweight but efficient student network. [32]
studied unsupervised crowd counting by transferring knowl-
edge from tagged data to unlabeled data. Unlike traditional
and distorted knowledge distillation, Hou et al. [29] proposed
self attention distillation (SAD). Sad does not require a teacher
network. Distillation is the knowledge of attention layer by
layer and spreads between layers.

III. PROPOSED METHOD

This section provides a detailed introduction to the overall
framework of EdgeCount, network structure based on density
map distillation, low parameter weighted scale feature fusion
module, and loss function.

A. Overview of the Network Architecture

Fig. 1 depicts the overall framework of the proposed method
described in this paper. The process begins by passing the data
through the teacher model (EdgeCount-T) for training. This
step aims to capture the logits and soft labels produced by the
teacher model. Subsequently, training the EdgeCount model
facilitates the student model’s learning from the teacher net-
work’s soft labels, thereby establishing a knowledge transfer
between density maps. Furthermore, the KDLoss function as-
sesses the gap in density map distributions between the student
and teacher models. At the same time, MSELoss quantifies the
discrepancy between the student model’s training outputs and
actual values. Ultimately, these measurements are integrated
into DistillLoss for parameter updates. The subsequent sec-
tions detail the specifics of the proposed method.

B. Disstilation Based On Density Map
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Fig. 2: Illustration of the general framework of density map
object counting algorithms based Knowledge Disstilation.

Most existing methods mainly reduce the amount of com-
putation and parameters by optimizing the network structure
but rarely consider using the existing network for knowledge
transformation. However, with the reduction of network layers
and channels, the network cannot extract richer crowd features,
resulting in a significant decline in counting accuracy. At
the same time, the network structure design often needs
experimental data to verify its effectiveness, which brings
expensive time costs. To solve the above issues, we designed
a network architecture based on density map distillation, as
shown in Fig. 2. The student model can learn the density map
distribution information from the teacher model by construct-
ing a knowledge distillation, where the density map represents
the distribution of each target on the pixel unit.
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TABLE I: TECHNICAL SPECIFICATION OF NVIDIA EMBEDDED PLATFORMS

NVIDIA Jetson Xavier NX NVIDIA Jetson Orin NX NVIDIA Jetson Nano NVIDIA Jetson Orin Nano
AI Performance 21 TOPS[Int8] 100 TOPS 472 GFLOPs 40TOPS
GPU 384-core NVIDIA Volta 1024-core NVIDIA Ampere 128-core NVIDIA Maxwell 1024-core NVIDIA Ampere
CPU 6-core NVIDIA Carmel ARM 8-core NVIDIA Cortex ARM 4-core NVIDIA Quad-core 6-core NVIDIA Cortex ARM
Storage 16GB eMMC5.1 512GB microSD 512GB NVMe
RAM 8GB 128-bit LPDDR4 16GB 4GB 64-bit LPDDR4 25GB/s 8GB

Algorithm 1: EdgeCount training pseudocode algorithms
Input: Train Dataset; Training epochs n
Output: Lightweight deep learning detection model based on

knowledge distillation
1: procedure: Train Teacher Model EdgeCount-T
2: Input train dataset into the teacher network for training
3: Use mse loss as loss function
4: Save logits c
5: Save Teacher model as the teacher model
6: return Teacher model
7: Load EdgeCount-T
8: count=0
9: λ=0.01

10: procedure: EdgeCount Model
11: Input train dataset into the student network for training
12: for epoch in epochs do
13: teacher logits t ← the training logits of EdgeCount-T
14: student logits s ← the training logits of EdgeCount
15: soft label qt ←

∑H
i=1

∑W
j=1 cij

16: soft label ps ←
∑H

i=1

∑W
j=1 sij

17: calculate distill loss based on qt and ps

18: KDLoss ←
∑N

i=1 p
s ·

(
log (ps )− log

(
qt ))

19: calculate mse loss based on ground truthyi and
student logits

20: MSELoss = 1
2N

∑N
i=0 (y − ps )2

21: DistillLoss = MSELoss + λ∗ KDLoss
22: Update the weight and bias of student model by DistillLoss
23: best count ← getCount(ground truth, student logits)
24: end for
25: return EdgeCount Model

1) Teacher model: The teacher model consists of encoder
and decoder. The encoder is the L1-L5 layer of MobileViT,
which is mainly used to extract the target features in the
sample, and the decoder is further used to extract the subtle
features of the segmented target. In particular, the teacher
model itself is also lightweight. Since the teacher network
has rich target feature information, it can be trained into
a highly accurate model. Then, the sample features can be
converted into Logits learning tags to introduce the student
model through knowledge distillation.

To investigate the efficacy of the teacher model, we incor-
porate spatial attention mechanisms SRU and CRU to amplify
the network’s feature extraction capabilities. In the decoder,
the previous strategy generally grasps more conceptual spatial
features through a multi-layer architecture. Nevertheless, the
multi-layer architecture’s potential to detect intricate changes
between scales may be more resilient, simplifying the identi-
fication of the fine segmentation structure. A scale-weighted
enhancement module has been developed, incorporating the
expansion convolution group and cross-scale connection op-
eration. The convolution group is expanded to increase the
number of scales that can be represented by a single output

layer. Next, the scale information is analyzed hierarchically
from coarse to fine in order to capture multi-scale information
at a finer granularity. The model can gain a deeper under-
standing and analysis of the input feature information through
cross-scale connections. Additionally, cross-scale connections
allow the model to further comprehend and analyze input
feature information. The required number of channels to
generate a new feature map varies due to different convolution
kernel parameters, optimizing the fullest extent of feature
space information. The teacher model undergoes training with
mselos and Adam optimizers until its performance no longer
improves. Once trained, the model generates an output logits
value c, which is a density map of logits. The trained teacher
model can be utilized to prepare the student model edgecount.

2) Student model: The student model is a lightweight
model proposed in this paper, with a structure similar to the
teacher model. In the middle encoder of the student network,
only MobileViT L1-L4 layers are utilized. Consequently, the
number of channels present in the last layer of the encoder
is only 80, which is less than 1/4 of that of the teacher
model. This reduction in channels effectively lessens the total
computation and parameters, and significantly reduces the size
of the model and flops in finer grained multi-scale operations.

The distillation process of the student model is as follows:
first, the teacher’s logit c is obtained by edgecount-t with the
pre-training weight, and then the teacher’s model and its pre-
training weight c are loaded before training the student model.
In each epoch, the training data is input into the teacher and
student models, respectively. The decoder outputs the target
probability at the pixel position to obtain the logits t and s,
respectively. Then the soft tags (i.e., the number of targets) are
generated by summing the pixel values in the matrix, which
are qt and ps respectively. The formula can express as follows:

qt =
H∑
i=1

W∑
j=1

cij , p
s =

H∑
i=1

W∑
j=1

sij (1)

Then, the distribution difference between the student density
map and the teacher density map is calculated by Kloss,
and mselos calculates the difference between the student
model and the GT. Finally, the student model is optimized
by constructing distillloss by combining the above losses, so
that the student network can learn the target distribution and
counting performance similar to the teacher network as much
as possible.

C. Low-parameter Weighted Multi-scale Feature Fusion
Module(LW-MFFM)

To effectively address the challenges posed by varying
target scales in images, researchers have developed various
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Fig. 3: Details of LW-MFFM architecture. Multiscale features are captured by four parallel different receptive fields. The
DGR-N are the group of CNNs, and N means .All convolutional layers maintain the previous size by using padding and
followed by the softmax layer.

Algorithm 2: Low-parameter Weighted Multi-scale
Feature Fusion Module(LW-MFFM)
Input: The input feature map Fin ∈ RC×H×W .
Output: Merged feature map Fout.

1: Define 1×1 convolution layer Di, dilation rate={1, 2, 3}.
2: Define dialation convolution groups l2 (drg-1, drg-2,

drg-3), with rates j ∈ {{1, 2, 3}, {3, 4, 5}, {5, 6, 7}}.
3: Generate two Randomly parameters θ, τ .
4: for (Di) in (D) do
5: Apply Di block to feature map Fin.
6: Obtain dilated feature map Fi.
7: end for
8: l2=Dj (Wj , Fi)
9: Fine-grained sub-features qi, pi, ri.

10: Calculate the weight value Q,P,R by Eqs.3 and 4.
11: Get F by Eq.5.

methods to capture rich multi-scale features, utilizing multi-
level, multi-branch, or multi-column feature fusion techniques.
Nevertheless, current technologies exhibit limitations in cap-
turing nuanced variations between scales, particularly in accu-
rately identifying and segmenting targets with minor structural
differences. In response to this, we propose a lightweight
scale-weighted enhancement module (LW-MMFFM), designed
to capture detailed changes in channel direction and spatial
dimensions. Its infrastructure is depicted in Fig. 3.

The LW-MMFFM module comprises three core stages:
multi-scale feature extraction, fine-grained feature analysis,
and cross-scale connection operations. Initially, the module
broadens the scale range that a single output layer can rep-
resent through the use of dilation convolutional groups. It
employs hierarchical methods to meticulously analyze scale
information, capturing multi-scale features from broad to fine,
including smaller levels. Subsequently, a cross-scale connec-
tivity mechanism was constructed to ensure robust perfor-
mance across diverse scenarios, enhancing the model’s ability
to comprehend and analyze input feature information. This
mechanism effectively associates and parses critical features.
Furthermore, drawing inspiration from the cited work [], the
cross-scale connection module utilizes a comparable organiza-
tional approach for arranging expanded convolutional network

groups, thereby facilitating the reuse of computational results
and markedly reducing computational costs. The following
will provide a detailed introduction to the three critical stages
within this module.

During the multi-scale feature extraction phase, the input
feature Fin is sent into three parallel 1×1 expansion con-
volution Di, whose expansion rate is i ∈ {1, 2, 3}, and its
operation process can be expressed as l1 = Di (Wi, Fin ), and
then get three multi-scale feature maps F1, F2, F3. Then, we
designed three dialation convolution groups (DCG) with dense
connections (dcg-1, dcg-2, dcg-3) to refine them deeply. The
feature is decomposed into three sets of sub-node features, and
then the dialation convolution Dj of multiple subgroups with
expansion rates j ∈ {{1, 2, 3}, {3, 4, 5}, {5, 6, 7}}, which can
be expressed as:

l2 = Dj (Wj , Fi) , j ∈ {{1, 2, 3}, {3, 4, 5}, {5, 6, 7}} (2)

The feature map involving rich multi-scale information is con-
nected to the next layer. The specific operation is as follows:
first, the feature map f1will be input into DRG-1, where DRG-
1 is composed of three expansion convolutions with different
expansion rates, and then Three fine-grained sub-features q1,
q2, q3. Then by randomly generating two parameters θ, τ to
establish the linear relationship of fine-grained characteristics
at different scales, the specific operations are as follows: Q1 = q1

Q2 = Q1 · θ + (1− θ) · q2
Q = Q2 · τ + (1− τ) · q3

(3)

{
P = (p1 · θ + (1− θ) · p2) · τ + (1− τ) · p3
R = (r1 · θ + (1− θ) · r2) · τ + (1− τ) · r3

(4)

Finally, the cross-scale weighted connection operation is per-
formed to obtain the final weighted multi-scale fine-grained
fusion feature map F . The specific operations are as follows:

F = [Q · θ + (1− θ) · P ] · τ + (1− τ) ·R (5)

However, due to the limited feature extraction ability of the
lightweight architecture, background noise is still inevitable
in the feature map input to the module. Specifically, a C is
generated through the global average pooling and sigmoid
activation function and multiplied by F . In this way, the
number of parameters of the network structure is reduced, and
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the local and global information are thoroughly combined so
the network can better extract the critical knowledge of the
target object. The specific formula is as follows:

ωg = Sigmoid(GAP (F )) (6)

Where F represents the input characteristic graph, a weight is
obtained by global average pooling and multiplied by F . The
formula is:

Fout = ωg ⊗ F (7)

Where ⊗ represents multiplication, in this method all layers
have the same number of channels but use different expansion
rates to capture multi-scale information. Therefore, four dif-
ferent receptive fields are used to construct a pyramidal multi-
scale structure that can extract rich feature information. Then,
the global weight coefficient is multiplied by a multi-scale
feature map to obtain the global information, which reduces
the number of parameters and computations without changing
the scale. Although the tree structure looks complex for
complexity analysis, our scale enhancer is lightweight due to
the ingenious organization of various expansion convolutions.
The standard convolution usually contains a single kernel type
with kernel size k2 and depth D. The standard computing
block consists of a conv layer of 1 × 1 and two layers with
the same depth. The kernel size is 32, and the depth is d. The
parameter quantity (P) and flops can be calculated as:

P = D2 + 2× 9D2 = 19D2, FLOPs = 19D2WH (8)

Where W and Hrepresent the spatial width and height of the
feature graph. Similarly, parameters and flops can be expressed
as:

P = D2 + 3× 9

(
D

3

)2

+ 9× 9

(
D

9

)2

= 5D2 (9)

FLOPs = 5D2WH (10)

D. Loss Function

Distillloss is composed of MSEloss and KDLoss. KDLoss
is used to help students learn the knowledge distribution of
the teacher model. Its formula is as follows:

Lkd = y · log y

ypred
= y · (log y − log ypred ) (11)

Where y represents the density map distribution of the teacher
model output, ypred represents the density map of the predicted
result of the student model. The distribution difference be-
tween the teacher and student models can be calculated using
the above formula. However, this paper also uses Euclidean
distance to estimate the gap between the predicted and actual
values. The Euclidean distance is adopted as a loss function
to evaluate the difference between the expected density maps
and the GT. The loss function lc is defined as follows:

Lmse =
1

2M

M∑
i=1

∥∥F (Ci; Θ)− FGT
i

∥∥2
2

(12)

where M represents the number of pixels in the density
maps, Ci represents the input image, θ represents the training
parameters, and F (Ci; Θ) and FGT

i represents the estimated

number and the GT, respectively. The final loss L is defined
as follows:

L = Lmse + λ ∗ Lkd (13)

IV. EXPERIMENTS
This section presents experiments to evaluate our proposed

methods. We first describe the implementation details, includ-
ing the dataset, parameter settings, and evaluation metrics.
Then, the performance of the proposed method is demonstrated
on remote sensing datasets and dense crowd datasets. In
addition, visualization results were presented to illustrate the
effectiveness of EdgeCount and EdgeCount-T.

A. Implementation Details

1) Datasets: We carry out experiments on four remote
sensing datasets (RSOC [10], CARPK [33], PUCPR+ [33],
and DroneCrowd [42]) and dense crowd datasets (Shang-
haiTech Part A/B [35] and UCF-QNRF [36]) to verify the
generalization ability and robustness of the model, as described
in detail in Table III.

2) Parameter Settings: EdgeCount and EdgeCount-T are
implemented by the PyTorch toolbox, and comparable exper-
iments are conducted on one NVIDIA RTX6000 GPU. Speed
experiments conduct on the edge development board. The
Adam optimizer is used, and the initial learning rate is 1e-
4 without learning rate decay. Hyperparameters λ are set to
0.001. For all subsets, we adopt a batch size of 6. The training
process can converge within 500 epochs. The images with
resolutions higher than 768 × 1024 are downscaled to 768
× 1024. Random cropping and horizontal flipping are applied
for augmentation to improve the training and avoid overfitting.
Specifically, the crop size is 256×256 for the RSOC Building
and 512×512 for the others.

3) Evaluation Metrics: Two widely used metrics in object
counting, mean absolute error (MAE) and RMSE, are adopted
to measure the performance of each algorithm. They are
defined as follows,

MAE =
1

N

N∑
i=0

|yi − ŷi| (14)

RMSE =

√√√√ 1

N

N∑
i=0

|yi − ŷi|2 (15)

where N represents the number of samples, yi and ŷi represent
the ground truth and the predicted value, respectively.

B. Object Counting

1) Performance On RSOC: The RSOC dataset includes
four categories: buildings, small vehicles, large vehicles, and
ships. In these categories, different types of images have dif-
ferent resolutions and object sizes. For example, the resolution
of small vehicle images is 2473 × 2339, with an average of
approximately 531 object instances per image.

According to Table IV, it can be shown that EdgeCount-
T achieved the lowest MAE on the Building, Ship, and S-
Vehicle datasets. Compared with the state-of-the-art method
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TABLE II: REMOTE SENSING OBJECT COUNTING DATASETS USED FOR EVALUATION

Datasets Platform Images Training/test Average Resolution Annotation Format Count Statistics
Total Min Average Max

RSOC [10]

Building Satellite 2468 1205/1263 512×512 center point 76,215 15 30.88 142
Small-vehicle Satellite 280 222/58 2473×2339 oriented bounding box 148,838 17 531.56 8531
Large-vehicle Satellite 172 108/64 1552×1573 oriented bounding box 16,594 12 96.48 1336

Ship Satellite 137 97/40 2558×668 oriented bounding box 44,892 50 327.68 1661
CARPK [33] Drone 1448 989/459 1280×720 bounding box 89,777 1 62 188
PUCPR+ [33] Camera 125 100/25 1280×720 bounding box 16,915 0 135 331

DroneCrowd [34] Drone 33,600 24,600/9,000 1920×1080 bounding box 4,864,280 25 144.8 455

TABLE III: CROWD COUNTING DATASETS USED FOR EVALUATION

Datasets Avg. Max. Total Numbers of Image Average Resolution
ShanghaiTech A [35] 501 3,139 241,667 482 589 × 868
ShanghaiTech B [35] 123 578 88,488 716 768 × 1024
UCF-QNRF [36] 815 12,865 1,251,642 1,525 2013 × 2902
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Fig. 4: Visualization density map on the RSOC dataset. The first row represents the original images, the second row represents
the predictions of EdgeCount-T, and the third row represents the predictions of EdgeCount.
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GT:295 Pred:295.2

Ground Truth Teacher Student

Pred:294.9

Input

Fig. 5: Visualization results on the CARPK and PUCPR+
dataset. The first column shows the original image and the
ground-truth counts, and second column shows the density
maps. The last two column represents density map generate
by EdgeCount-T and EdgeCount respectively.

ADMAL, EdgeCount-T is not better in terms of MAE and
MSE, but its network structure complexity is challenging to
apply in practice. Compared with the second group of meth-

ods, EdgeCount-T performs better than all methods and has
the least GFLOPs. Therefore, the Teacher model EdgeCount-
T can achieve the best counting performance through less
parameter consumption. Meanwhile, for the student model, the
EdgeCount achieves the lowest number of parameters, GFlops,
and superior performance in Ship datasets. EdgeCount also
achieves better MAE and RMSE on S-Vehicle and L-Vehicle
than complex methods such as PSGCNet and eFreeNet, except
for ADMAL. However, EdgeCount has only 0.12M parameters
and 1.951GFlops overall, which can achieve similar or even
better results than ADMAL. This proves that EdgeCount can
effectively balance detection accuracy and running speed. Fig.
4 shows some visualization results of our proposed method in
RSOC. The density map generated by EdgeCount is almost
the same as the ground truth, and the predicted number is less
different from the actual number, which proves that EdgeCount
is robust to the scale change and an uneven distribution of the
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TABLE IV: QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE RSOC DATASET. The
FLOPS on 1024 × 768 INPUTS ARE REPORTED.

Methods Year Params(M) GFlops RSOC-Building RSOC-S-Vehicle RSOC-L-Vehicle RSOC-Ship
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CSRNet [24] 2018 16.26 325.3 8.00 11.78 443.72 1252.22 34.10 46.42 240.01 394.81
CAN [22] 2019 18.18 - 9.12 13.38 457.36 1260.39 34.56 49.63 282.69 423.44
SFANet [19] 2019 - - 8.18 11.75 435.29 1284.15 29.04 47.01 201.61 332.87
ASPDNet [10], [20] 2021 22.702 465.75 7.59 10.66 433.23 1238.61 18.76 31.06 193.83 318.95
MCFA [5] 2022 - - 7.93 11.82 238.46 625.90 12.94 20.25 50.45 65.24
TransCrowd-Token [37] 2022 - - 8.88 12.48 370.96 1209.74 33.53 40.06 108.43 190.05
TransCrowd-GAP [37] 2022 - - 8.58 12.51 382.06 1209.55 31.54 37.26 95.56 164.49
PSGCNet [21] 2022 27.51 385.79 7.54 10.52 157.55 245.31 11.00 17.65 74.91 112.11
eFreeNet [38] 2023 - - 5.62 7.69 195.86 463.62 14.55 19.77 65.34 85.45
ADMAL [39] 2023 - - 5.55 7.73 115.61 210.77 11.68 17.34 45.07 64.78
MCNN [7] 2016 0.13 21.17 13.65 16.56 488.65 1317.44 36.56 55.55 263.91 412.30
CMTL [40] 2017 2.454 95.55 12.78 15.99 490.53 1321.11 61.02 78.25 251.17 403.07
SANet [41] 2018 1.39 71.45 29.01 32.96 497.22 1276.66 62.78 79.65 302.37 436.91
MobileCount [12] 2020 3.40 6.15 7.72 11.90 316.02 598.58 18.5 30.4 73.2 100.2
LMSFFNet [3] 2023 4.58 14.9 6.52 70.0 141.7 273.0 12.74 27.13 49.47 85.03
LEDCrowdNet [28] 2023 2.02 - 6.81 10.22 237.18 621.80 22.01 32.84 82.26 131.52
EdgeCount-T - 1.32 2.724 5.49 8.05 106.53 203.14 11.05 20.25 37.94 54.91
EdgeCount - 0.12 1.951 6.27 9.46 136.61 260.6 11.34 18.37 36.38 52.44

TABLE V: QUANTITATIVE COMPARISON WITH STATE-
OF-THE-ART METHODS ON THE CARPK AND PUCPR+
DATASETS

Methods CAPRK PUCPR+
MAE RMSE MAE RMSE

LPN [43] 23.80 36.79 22.76 34.46
RetinaNet [44] 16.62 22.30 24.58 33.12
LEP [45] 51.83 - 15.17 -
MCNN [7] 39.10 43.30 21.86 29.53
CSRNet [24] 11.48 13.32 8.65 10.24
BL [8] 9.58 11.38 6.54 8.13
ASPDNet [10] 7.81 10.16 - -
PSGCNet [21] 8.15 10.46 5.24 7.36
ADMAL [39] 5.12 7.05 - -
LMSFFNet [3] 7.05 9.03 4.49 6.21
EdgeCount-T 6.11 8.51 3.56 4.72
EdgeCount 7.12 9.44 3.39 5.15

TABLE VI: PERFORMANCE COMPARISON ON THE
DRONECROWD DATASET [34]

Methods Params(M) FPS MAE RMSE
MSCNN [46] - 1.76 58.0 75.2
Switch-CNN [47] 15.3 0.01 66.5 77.8
StackPooling [48] - 0.73 68.8 77.2
DA-Net [49] - 2.52 36.5 47.3
CSRNet [24] 16.26 3.92 19.8 25.6
CAN [22] 18.18 7.12 22.1 33.4
DM-Count [50] 21.5 10.04 18.4 27.0
STNNet [34] - 3.41 15.8 18.7
PSGCNet [21] 27.51 6.79 24.7 31.9
CMTL [40] 2.45 2.31 56.37 65.9
LMSFFNet [3] 4.58 5.75 23.85 30.69
ACSCP [51] 5.1 1.58 48.1 60.2
EdgeCount-T 1.32 15.51 24.65 29.12
EdgeCount 0.12 18.52 20.48 28.91

object.
2) Performance on CRUPK+ and PUCPR: CARPK is a

large-scale UAV vehicle counting dataset. It consists of 1448
pictures containing about 17000 vehicle labels, of which 989
are used as training sets and 459 as test sets. PUCPR+ is
also a vehicle counting dataset, which includes 125 pictures
and about 17000 car labels, of which 100 images are used

Fig. 6: The visualization shows the comparison results of the
proposed method and other methods in terms of parameter size
and computational complexity at different scales.

as training sets and the rest as test sets. The results are
shown in Table V, which indicates that EdgeCount-T can
achieve the lowest MAE and RMSE values on PUCPR+,
followed closely by EdgeCount. In CAPRK, in addition to
ADMAL, EdgeCount-T can achieve better accuracy than other
models, and EdgeCount can surpass other models except for
ADMAL and LMSFFNet in Kyoto. Fig.5 shows the density
map generation effect of EdgeCount and EdgeCount-T on
CARPK and PUCPR+.

3) Performance on DroneCrowd: We also evaluate our
method on a more challenging dataset, DroneCrowd, which
contains 112 video clips with 33,600 high-resolution frames
(1920×1080) captured in 70 different scenarios. The results
are shown in table ref table: dronecrowd. The table showed that
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TABLE VII: COMPARISON OF INFERENCE SPEED ON DIFFERENT PLATFORMS

Methods Params Size FLOPs Latency FPS
NX ORIN-NX NANO ORIN-NANO NX ORIN-NX NANO ORIN-NANO

CSRNet [24] 16.26
128 6.77G 34.13 19.05 156.11 12.73 29.30 52.50 6.41 78.57
256 27.07G 154.24 51.36 675.08 33.30 6.48 19.47 1.48 30.03
512 128.69G 555.57 208.56 - 136.34 1.80 4.79 - 7.33

BL [8] 21.5
128 6.75G 42.06 23.46 133.04 15.21 23.78 42.62 8.51 65.75
256 26.99G 164.40 54.90 536.00 34.49 6.08 18.21 1.90 29.00
512 107.96G 483.64 191.87 - 126.86 2.07 5.21 - 7.88

ASPDNet [10] 23.03
128 9.70G 90.69 59.80 379.05 44.40 11.03 16.72 2.68 22.52
256 38.79G 273.14 133.39 1188.51 99.69 3.66 7.50 0.84 10.03
512 155.16G 970.21 513.61 - 353.71 1.03 1.95 - 2.83

PSGCNet [21] 27.51
128 8.26G 92.28 32.46 173.26 20.23 10.84 30.81 5.77 49.44
256 32.35G 265.45 68.11 642.34 44.25 3.77 14.68 1.56 22.60
512 128.69G 628.93 251.90 - 171.50 1.59 3.97 - 5.83

LMSFFNet [3] 4.58
128 117.76M 71.22 45.10 187.57 44.47 14.04 22.17 5.33 22.48
256 476.55M 73.47 51.67 246.51 48.15 13.61 19.35 4.06 20.77
512 1.99G 137.65 121.35 719.00 83.73 7.26 8.24 1.39 11.94

LMSFFNet-S [3] 9.51
128 868.49M 76.49 41.50 187.68 39.35 13.07 24.10 5.33 25.42
256 3.47G 82.60 50.38 289.71 44.85 12.11 19.85 3.45 22.30
512 13.89G 178.50 133.83 871.45 91.33 5.60 7.47 1.15 10.95

LEDCrowdNet [28] 2.06
128 173.26M 56.48 34.48 142.00 32.83 17.71 29.00 7.37 30.46
256 692.96M 59.81 35.23 172.70 34.32 16.72 28.39 5.79 29.14
512 2.77G 67.19 42.11 260.37 34.58 14.88 23.75 3.80 28.91

EdgeCount-T 1.32
128 163.10M 90.40 63.43 234.84 62.51 11.06 15.77 4.25 16.00
256 658.06M 99.08 69.29 318.96 66.82 10.09 14.43 3.14 14.97
512 2.72G 154.73 141.48 795.15 94.57 6.46 7.07 1.25 10.57

EdgeCount 0.12
128 19.87M 57.44 41.07 150.42 40.46 17.41 24.35 6.65 24.72
256 84.75M 64.10 43.33 196.14 41.90 15.60 23.08 5.10 23.87
512 423.91M 107.47 94.72 558.18 66.45 9.30 10.56 1.79 15.05

TABLE VIII: PERFORMANCE COMPARISON WITH THE
STATE-OF-THE-ART METHODS ON CROWED DATASET

Methods Par.(M) SHT-A SHT-B UCF-QNRF
MAE MSE MAE MSE MAE MSE

CP-CNN [52] 68.40 73.6 106.4 20.1 30.1 - -
Switch-CNN [47] 15.30 90.4 135.0 21.6 33.4 - -
CSRNet [24] 16.26 68.2 115.0 10.6 16.0 135.4 207.4
BL 21.50 61.5 103.2 7.5 12.6 87.7 158.1
UOT [53] 21.50 58.1 95.9 6.5 10.2 83.3 142.3
SUA-Fully [54] 15.85 66.9 125.6 12.3 17.9 119.5 213.3
UEPNet [55] 26.21 54.6 91.2 6.4 10.9 - -
P2PNet [56] 18.34 52.7 85.1 6.3 9.9 85.3 154.5
DKPNet [57] 30.63 55.6 91.0 6.6 10.9 81.4 147.2
MCNN [7] 0.13 110.2 173.2 26.4 41.3 277.0 426.0
CMTL [40] 2.47 101.3 152.4 20.0 31.1 252.0 514.0
ACSCP [51] 5.10 75.7 102.7 17.2 27.4 - -
TDF-CNN [58] 0.13 97.5 145.1 20.7 32.8 - -
SANet [41] 0.91 75.3 122.2 10.5 17.9 152.6 247.3
PCC-Net [59] 0.55 73.5 102.7 11.0 19.0 148.7 247.3
LCNet [60] 0.86 93.3 149.0 15.3 25.2 - -
C-CNN [61] 0.073 88.1 141.7 14.9 22.1 - -
LMSFFNet [3] 4.58 85.85 139.9 9.2 15.1 112.8 201.6
EdgeCount-T 1.32 68.95 118.64 8.07 13.72 111.43 189.16
EdgeCount 0.12 74.04 119.35 8.58 13.38 107.3 183.34

EdgeCount can achieve the fastest FPS detection speed and
the smallest parameter quantity, while MAE and RMSE can
surpass networks such as LMSFFNet, CMTL, and PSGCNet.
Our method can achieve comparable counting performance to
the best approach on a large dataset with a few parameters
and the fastest detection speed.

C. Comparisons on Dense Crowd Counting Datasets

We compared the proposed method with various state-of-
the-art methods on the SH-T A/B and UCF-QNRF datasets,
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Fig. 7: Visualization results of our method for crowd counting
on ShanghaiTech Part A, ShanghaiTech Part B, UCF-QNRF
and DroneCrowd respectively.

and the specific details are presented in Table VIII. In com-
parison to the first group on the SHT dataset, our method
outperforms CP-CNN and Switch CNN, and it also requires
fewer parameters than both. In the second group, EdgeCount-
T recorded the lowest MAE on SHT-A and SHT-B, while
EdgeCount notched up the lowest MSE and RMSE on UCF-
QNRF, attributable to the LW-MMFFM module’s enhanced
ability to aggregate multi-scale and fine-grained features. The
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Fig. 8: Density maps generated from each stage of our proposed method EdgeCount-T.

visualization results are depicted in Fig.7.

D. Speed comparison

To rigorously assess the performance of the proposed Edge-
Count method in terms of parameters, GFLOPs, FPS, and
latency on different edge devices, we conducted comparative
experiments at multiple resolutions (128, 256, and 512) and
benchmarked them against current state-of-the-art methods.
Parameters and GFLOPs at different input resolutions are
depicted in Fig.6. EdgeCount exhibits the lowest GFLOPs at
each scale, 19.87M, 84.75M, and 423.91M, while maintaining
a meager parameter count (merely 0.12M). Furthermore, Edge-
Count demonstrates a faster processing speed and higher FPS
on all four test devices compared to CSRNet, BL, ASPDNet,
and PSGCNet. EdgeCount attains superior latency and FPS
performance on three different input resolutions relative to
other lightweight models. Particularly on the NX and ORIN-
NX devices, the latency experienced by EdgeCount is compa-
rable to that of LEDCrowdNet at a resolution of 128. However,
on the Nano and Orin-Nano devices, LEDCrowdNet outper-
forms EdgeCount, attributable to its single-column network
structure and parallel multi-core hole convolutional module for
feature extraction, which integrates MobileNetV2 and Vision
Transformer. Although EdgeCount does not record the fastest
FPS on all test devices, its capacity to effectively extract rich,
high-semantic information from teacher models via distillation
learning enables it to realize comparable or superior detection
performance relative to more complex networks, with minimal
inference speed loss. These results illustrate that EdgeCount
can effectively balance detection accuracy and inference speed.

V. ABLATION STUDY AND ANALYSIS

A. Ablation on EdgeCount-T

In this section, ablation studies are conducted on the
EdgeCount-T. The detailed results are presented in Table IX.
The results indicate that EdgeCount-T achieves relatively ex-
cellent counting performance while maintaining low parame-
ters and GFLOPs, even without additional modules. Following
the introduction of SRConv, the parameters and GFLOPs saw
increases of 0.27M and 1.23 GFlops, respectively, resulting in
significant improvements across the four subsets. Notably, the

MAE and RMSE for small vehicles (SV) experienced a slight
increase. As depicted in Fig.8, integrating SRConv allows the
network to capture richer target information, resulting in a
density map that better aligns with the ground truth (GT).

B. Albation on EdgeCount

1) Contribution of module: Experiments were conducted
to examine the impact of SRConv and LW-MFFM on Edge-
Count’s counting results and density map quality, as illustrated
in Table X, with visual results presented in the figures. Fig.9
(a) depicts the density map generation without any modules,
which, relative to the Ground Truth (GT), lacks significant
target information, and the resulting density map quality is rel-
atively indistinct. With the introduction of SRConv, despite a
minimal increase in parameters and computational cost (0.01M
and 0.04 GFLOPs, respectively), the network’s overall perfor-
mance is significantly enhanced. The visual results in figures
a-b show that incorporating SRConv enables the network to
extract more abundant target feature information. The addition
of LW-MFFM alone results in a noticeable improvement in
network performance, as observed in Fig.9 (a-c), where the
network captures more detailed information. Integrating both
modules results in observable improvements in the quality of
network-generated images, as depicted in Fig.9 (d). Conse-
quently, as the number of integrated modules increases, there
is a slight increment in parameters and GFLOPs by 0.05M
and 0.29 GFLOPs, respectively, corresponding with a signifi-
cant improvement in target counting performance. Notably, in
the Small Vehicle (SV) dataset, EdgeCount’s Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) showed
significant improvements of 26% and 47%, respectively.

2) Contribution of Disstilation: Importantly, the Edge-
Count student network exhibits improved performance in four
categories of the RSOC dataset through the implementation of
the knowledge distillation (KD) step, as opposed to scenarios
without KD. This enhancement is attributed to the network’s
ability to inherit vital information from the teacher network,
which boasts richer representation capabilities, during the
knowledge distillation process. In the remaining three experi-
mental settings, it was noted that knowledge distillation effec-
tively enhances the network’s target counting ability without
incurring additional parameters and computational overhead.
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Fig. 9: Density maps generated from each stage of our proposed method EdgeCount.In each sample, the first row are images
and ground truth; Starting from the second row, the first column of each sample represents the density map without distillation
learning, and the second column represents the density map after distillation learning. (a-d) mean density maps generated from
baseline, Baseline+SCConv, Baseline+LW-MFFM, Baseline+SCConv+LW-MFFM. respectively.

TABLE IX: ABLATION STUDY OF EdgeCount-T ON RSOC DATASET

Method Param Gflops Building Ship Lage-Vechile Small-Vehicle
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

w/o SCConv & w/o LW-MFFM 308.787K 2.644G 6.25 9.15 53.51 77.19 12.42 22.52 142.09 298.83
w SCConv & w/o LW-MFFM 576.435K 3.468 5.73 8.17 48.97 67.32 12.2 26.27 147.3 380.73
w/o SCConv & w LW-MFFM 1.049M 8.085 6.35 9.09 38.9 58..50 14.591 41.79 188.97 376.14
EdgeCount-T 1.316M 8.91G 5.49 8.05 37.91 54.81 11.05 18.37 106.53 136.61

C. Effect of the Hyperparameter λ

To verify the effectiveness of the loss function, we conduct
experiments under the condition of different λ. As can be
observed from Table XI, when λ = 0.001, we can obtain the
best performance.

VI. CONCLUSIONS

In this work, we propose a lightweight object counting
method named EdgeCount aims to balance interface speed
and object counting accuracy more effectively. Specifically,
we construct a network architecture based on density map
knowledge distillation, allowing lightweight student models
to learn object density distribution from teacher models. The
teacher and student models are composed of an encoder-
decoder structure. In the encoding stage, we use the MobileViT
as the backbone. The student model only uses the first four
layers of the skeleton network, effectively reducing the number

of parameters and computational burden of the model. In
addition, we introduce channels and spatial attention mobile to
enhance the ability of feature extraction. In decoding, a low
parameter weighted multi-scale feature fusion module (LW-
MMFFM) was designed to improve the model’s ability to
recognize and segment minor structural differences in multi-
scale features. Finally, this article conducted experiments on
multiple remote sensing object counting datasets ( RSOC,
CARPK, PUCPR, DroneCrowd) and dense population count-
ing datasets (ShanghaiTech, UCF-QNRF), and the experimen-
tal results demonstrated the effectiveness and superiority of
the EdgeCount method.
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