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A B S T R A C T 

Online energy management utilizing the real-time information of a residential microgrid (RM) can make 

full use of renewable energy and demand-side resources at the residential level. However, existing online 

energy management methods for RMs have poor robustness against environmental changes, which limits 

their applicability in highly uncertain scenarios. To address this, a novel online energy management method 

based on the prioritized sum-tree experience replay strategy with a double delayed deep deterministic policy 

gradient (PSTER-TD3) is proposed in this paper. First, we formulate the sequential scheduling decision 

problem as a Markov decision process (MDP) problem with the objective of minimizing residential energy 

costs while simultaneously ensuring household thermal comfort and minimizing range anxiety for electric 

vehicle usage. Then, using the proposed method, we determine the optimal online scheduling strategy under 

this objective. By integrating the prioritized experience replay strategy of the summation tree structure into 

TD3, the agent is able to learn the optimal scheduling strategy in complex environments, and its optimization 

performance and policy learning efficiency are significantly improved. In addition, its ability to handle 

multidimensional continuous action spaces helps achieve finer-grained optimization for RMs. The case 

study results demonstrate that the proposed method can effectively reduce the energy costs of residential 

microgrids while satisfying household thermal comfort requirements and reducing range anxiety for electric 

vehicle usage. Moreover, the optimization performance of the proposed method is robust when the 

uncertainty factors fluctuate violently in the environment. 

1. Introduction

To address energy crises and environmental pollution issues, the 

penetration rate of distributed energy generation (DEG) at the residential level 

is being continuously increased [1]. As a small-scale power generation and 

distribution network that integrates household loads, renewable energy sources 

(RESs), and energy storage systems (ESSs), the residential microgrid (RM) is 

considered an effective solution for utilizing DEG [2], [3]. Given the flexible 

scheduling and rapid response characteristics of controllable RM units, an RM 

integrated with advanced communication and information technology can 

schedule residential demand-side resources in real time through a coordinated 

home energy management system (HEMS) [4], [5]. However, the 

intermittency and randomness of RES output, as well as the uncertainty of 

electricity market prices and household load energy demand, make the 

formulation of RM energy management plans much more difficult. Online 

energy management is a key technology that allows real-time online 

adjustment of controllable units based on the collected real-time status data of 

RMs. This approach balances the supply and demand of the system in real time 

─────── 
 Corresponding author. 

E-mail address: xfcancan@163.com (C. Wang).

to meet the energy comfort needs of households and optimize the operational 

costs of RMs [6], [7]. Therefore, providing high-quality online energy 

management strategies for RMs is crucial for the economical, efficient and 

stable operation of RMs. 

Online energy management methods for RMs have been studied 

extensively, and a typical online optimization method is feedback-based model 

predictive control (MPC) [8]. This method improves robustness through 

rolling optimization. However, its performance is still directly affected by 

short-term prediction errors. To address this, some researchers have introduced 

the distributed ADMM algorithm [9] and Lyapunov optimization into the 

online optimization of networked microgrids (MGs) and smart homes; these 

methods do not rely on prediction information [10]. However, these model-

based methods share the following shortcomings when they are applied to 

solve online optimization problems in RMs: (1) The performance of model-

based online optimization methods depends on the specific case environment 

when the methods are applied to RMs considering the thermal comfort of 

households. Thus, their generalizability is poor [11]. (2) The reliability of these 

methods is limited by the model accuracy because the online optimization 

performance depends on the established dynamic physical model, and building 
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accurate models of RM components and operating environments is very 

difficult [12]. 

To overcome these drawbacks, researchers have become increasingly 

interested in utilizing deep reinforcement learning (DRL) techniques to design 

optimal energy scheduling strategies. DRL combines the universal function 

approximation capability of deep neural networks (DNNs) and the decision-

making ability of reinforcement learning (RL) to form a model-free, data-

driven approach [13]. Unlike in model-based methods, DRL agents can 

adaptively learn optimal action policies using feedback information from 

continuous interactions with the environment in scenarios without prior 

knowledge and explicit models. The trained DRL agent can make optimal 

action decisions in unknown environments in milliseconds based on the 

learned policy. Although DRL methods have been extensively studied and 

have achieved significant success in areas such as energy management, we 

must recognize some of their inherent drawbacks. To ensure appropriate 

performance, DRL methods often require large-scale annotated datasets to 

train the system. In situations where data collection costs are high, this can 

significantly increase computational expenses. Additionally, large-scale 

training demands substantial computational resources, especially when dealing 

with deep neural networks, leading to longer training times. Although DRL 

methods entail significant amounts of data and computational effort compared 

with those of traditional model-driven methods, they avoid the need to make 

specific models for complex situations such as highly nonlinear, partially 

observable or stochastically perturbed cases, so they are highly practical. 

Particularly in addressing complex problems with continuous action spaces, 

the autonomous exploration and learning capabilities of DRL methods, as well 

as their adaptation and generalization capabilities, are difficult to match with 

traditional methods. 

Recently, value-function-based DRL methods have been successfully 

applied for solving optimal energy management problems. In [14], an online 

energy optimization method based on a deep Q network (DQN) was proposed. 

The method achieves optimal scheduling of electrical equipment in residential 

buildings. However, when noise and errors are present, the overestimation of 

the action value (Q value) often negatively impacts the convergence 

performance of the DQN [15]. To address this issue, in [16], an interruptible 

load demand response method based on dueling DQNs was developed and 

used to reduce the peak load and operating costs of the system. However, these 

methods use DNNs that often generate discrete Q-value estimates instead of 

continuous actions. As a result, they are applicable only to problems with 

discrete and low-dimensional action spaces [13]. The control decisions in RM 

online energy management are often multidimensional and continuous (such 

as in the charging/discharging of energy storage systems (ESSs)), and 

discretely processing the action space will distort the environmental feedback 

information received by the DRL agent and simultaneously limit the feasible 

domain of the action space [17]. 

Given these limitations, researchers have started exploring the application 

of policy-based DRL methods to address energy management problems with 

continuous action spaces. These methods utilize DNNs to directly output 

deterministic action values or probabilities for executing actions, enabling 

effective handling of continuous action problems and achieving finer-grained 

energy management. In [18], a home appliance scheduling method that applies 

trust region policy optimization (TRPO) was designed to participate in demand 

response programs with real-time electricity prices. However, computing 

conjugate gradients makes the computational process of this method highly 

complex. To improve the computational efficiency of the model, a real-time 

energy management method for microgrids based on proximal policy 

optimization (PPO) was proposed in [19]. However, the target policy and 

action policy of the on-policy approach are the same, which restricts the 

exploration capability of the agent, causing it to learn suboptimal action 

policies. The off-policy DRL method separates the target policy and the action 

policy and can obtain the global optimal value while maintaining exploration 

capability. In [20], a smart home scheduling method based on the deep 

deterministic policy gradient (DDPG) was developed. This method was used 

to minimize electricity costs and ensure household thermal comfort. However, 

similar to the DQN, the DDPG also overestimates Q-values. 

Given the issues with the aforementioned energy management methods, an 

online RM energy management method based on the prioritized sum-tree 

experience replay strategy with a double delayed deep deterministic policy 

gradient (PSTER-TD3) is proposed in this paper. Unlike MPC methods, 

PSTER-TD3 directly approximates the optimal control policy through 

continuous interaction with the environment based on retrospective feedback. 

It does not rely on predictive inputs or modeling of environmental transition 

probabilities but rather trains deep neural networks by memorizing historical 

decision effects. This allows PSTER-TD3 to handle the uncertainty in state 

transitions and mitigate the impact of prediction errors, ensuring good control 

performance. The proposed method effectively improves the efficiency and 

quality of policy learning through three key technologies: tailoring double Q 

learning, policy delay updating and smooth target policy regularization under 

the actor-critic framework. Moreover, by integrating the priority experience 

replay strategy based on the sum tree structure into TD3, the agent can learn 

optimal energy management strategies in complex environments. The main 

contributions of this paper can be summarized as follows: 

 A Markov decision process (MDP) with unknown state transition 

probabilities is established to describe the optimal energy management 

problem in an RM consisting of electric vehicles (EVs), photovoltaics 

(PVs), ESSs, heating, ventilation, and air conditioning (HVAC), and 

fixed loads. Unlike in [14] and [18]-[20], under the constructed MDP, 

the uncertainties of market electricity prices, outdoor temperature, PV 

generation, EV departure/arrival times, EV state of charge (SOC) upon 

arrival, and fixed load demands in the RM are comprehensively 

captured. Furthermore, the designed action space and reward function 

effectively consider the thermal comfort of households and the range 

anxiety in EV usage when the HEMS jointly schedules EVs, ESSs and 

HVAC systems. 

 An RM online energy management method based on a novel DRL 

method called PSTER-TD3 is proposed. Unlike existing model-based 

methods [4], [5], and [7]-[10], the performance of the proposed method 

is not limited by the accuracy of physical model building or by specific 

environments. In addition, the proposed method offers higher 

optimization quality (including optimization accuracy and stability) and 

faster learning speed for energy management strategies than the DRL-

based energy management methods used in [14], [19], and [20]. It also 

demonstrates greater robustness to uncertainties in the RM environment. 

 The case studies based on real-world scenarios demonstrate that, 

compared to existing alternative state-of-the-art methods, even if there 

is some uncertainty in the environment, the proposed method can still 

effectively reduce the energy cost of the RM while meeting the 

household's thermal comfort requirements and reducing range anxiety 

in EV usage. 

2. System description and problem formulation 

2.1. System description 

Fig. 1 illustrates the structure of the considered RM system, which includes 

PVs, ESSs, household electrical loads, and HEMSs. The RM is connected to 

the main power grid through the point of common coupling (PCC) and 

maintains a grid-connected operation mode. We categorize household 

electricity loads into controllable loads (including HVAC systems and EVs) 

and fixed loads [21]. The fixed load is the general term for all basic loads in 

an RM (such as refrigerators and TV sets) that have nonschedulable operation 

characteristics [2], [4]. In contrast, the operating time, power consumption, and 

interruption support of controllable loads can be flexibly adjusted. 



 

Additionally, the power consumption of such loads can be continuously 

adjusted. 

During the operation of an RM, the HEMS primarily serves two functions. 

First, it monitors, collects, and processes information about the various 

components and environmental conditions in the RM system. This information 

includes the PV generation power, market electricity prices, ambient 

temperature, and household electricity demand. Second, the operation of the 

adjustable equipment online is optimized through centralized control based on 

the collected local information. The optimization and scheduling objective is 

to achieve the optimal economic operation of the system while ensuring 

household comfort. 

2.2. Mathematical model of RM components 

2.2.1. EVs and ESSs 

Due to the similar operational characteristics of EVs and ESSs, we discuss 

their mathematical models in the same section. Here, we assume that the arrival 

and departure of EVs occur at the beginning of the scheduling period. We 

define the moments when the EV arrives and departs from the household as 

at  and 
dt , respectively. The energy state of an EV can be expressed as follows 

[22]: 
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Equation (1) describes the energy conversion relationship during the 

charging and discharging process of an EV. Here, EV

tE represents the energy 

stored in the EV battery during period t , and EV

tP  represents the charging or 

discharging power of the EV. If EV 0tP  , the EV is in the charging state; 

otherwise, it is in the discharging state. Equation (2) imposes constraints on 

the state of charge of the EV to prevent overcharging or overdischarging of the 

EV. Here, EV

ch  and EV

dis  represent the charging and discharging efficiency 

coefficients of the EV, EV

maxSoC  and EV

minSoC  represent the upper and lower 

limits of the EV state of charge, and EV

CAPE  represents the battery capacity of 

the EV. Equation (3) restricts the charging/discharging power capacity of the 

EV, where EV

maxP  represents the maximum value of the charging/discharging 

power of the EV. 

In addition, the state EV

t  of the EV in period t  can be defined as follows: 
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where EV

1,t  is the operational state of the EV, represented as a binary variable 
EV

tu . If EV =1tu , the EV is connected to the charging facility in the RM; 

otherwise, the EV is unavailable. EV

2,t  represents the charging/discharging 

progress of the EV, which refers to the state of charge EV

tSoC  of the EV 

battery in period t . EV

3,t  is a specific attribute of the EV used to determine 

whether the EV is connected to the RM in period t . 

The mathematical model of ESSs in RMs is similar to that of EVs, but 

unlike EVs, ESSs are always connected to the RM. Therefore, the main 

difference between the ESS mathematical model and the EV mathematical 

model is the charging/discharging period. The charging/discharging period of 

the ESS is the entire day. 

2.2.2. HVAC 

The load power of HVAC in period t , denoted as AC

tP , can be 

continuously adjusted within the following range [23]: 
AC AC

max0 ,tP P    (5) 

where AC

maxP  represents the maximum rated power of HVAC. Then, the state 
AC

t  of HVAC in period t  is defined as 
AC AC AC AC AC AC AC

1, 2, 3, set set( , , ) ( , , ),t t t t tu T T T   = −  (6) 

where AC

1,t  represents the operating state of HVAC, expressed as a binary 

variable AC

tu ; EV

2,t  represents the difference AC AC

settT T−  between the current 

indoor temperature AC

tT  during period t  and the HVAC set temperature AC

setT ; 

and AC

3,t  represents the temperature set value AC

setT  of HVAC. 

Furthermore, according to the equivalent thermal parameter model of 

HVAC, the relationship between the indoor temperature variation in 

residential buildings and AC

tP  can be represented as [18], [23] 
AC AC out AC AC

1 (1 )( ),t t t tT T T P t   + =  + − −     (7) 

where out

tT  represents the outdoor temperature during period t ,   represents 

the heat dissipation coefficient of HVAC, AC  represents the heat conversion 

efficiency, and   represents the thermal conductivity of HVAC. 

2.2.3. Power balance 

To maintain the power balance of the RM, the total generating power of 

the RM must be equal to the total power consumed at any time during the 

whole scheduling cycle, that is, 
grid PV FL AC EV ESS,t t t t t tP P P P P P+ = + + +  (8) 

where grid

tP  represents the power interaction between the RM and the main 

power grid, PV

tP  denotes the PV output power, and FL

tP  represents the power 

demand of the fixed load. 

2.3. Optimization objective function 

The optimization problem considered in this paper requires minimizing the 

expected total energy cost of the RM over T  scheduling periods. This 

problem can be expressed as 

(P1) ( )ESS grid EV

t t t

1

min  Cost + Cost + Cost ,
T
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m P
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(1) (8).−   (9e) 

where ESSCostt
 represents the operational cost of the ESSs, ESSc  represents 

the cost coefficient of the ESS operation, and gridCostt
 represents the power 

interaction cost between the RM and the main power grid [20]. 
t+  and 

t−  

represent the prices of electricity purchased and sold by the RM to/from the 

main power grid, respectively. EVCost t
 represents the battery degradation cost 

of EV charging/discharging [22], EVc  represents the total cost of the battery, 

and 
km  represents the linearly approximated slope of the battery life cycle 

function. 

The models constructed above can provide a basis for the construction of 

representations of state and action variables and the design of reward functions 

in subsequent MDP. They also provide physical interpretations and 

mathematical relationship descriptions for the parameter variables involved in 

the MDP, thereby establishing a mapping relationship between the states, 

 

Fig. 1. The considered RM system structure. 



 

action variables, and reward functions considered in this paper and specific 

physical states. This makes it easier to understand the state, action variables, 

and reward functions. Additionally, introducing models of relevant state and 

action variables helps in analyzing and understanding the behavior of the 

method proposed in this paper in specific scenarios, thereby enhancing the 

interpretability of the results. 

3. Reformulating the problem as an MDP 

To facilitate the use of the DRL-based method, we reformulate problem 

(P1) defined in Equation (9) as an MDP problem. From a mathematical 

perspective, an MDP is generally defined as a quintuple ( , , , , )S A P R  . Here, 

S  represents the set of all states that can be perceived by the agent in the 

environment, A  represents the set of actions that the agent can perform, 

: [0,1]P S A S  →  is defined as the state transition probability distribution 

function, R  represents the immediate reward obtained by the agent when 

performing the action in a specific state, and [0,1)   is defined as the 

discount factor. The MDP formula based on the mapping of the optimization 

problem under consideration is established as described below. 

3.1. State space 

The environmental information elements observed by the HEMS agent in 

period t  include the output power PV

tP  of PVs, the purchase/sale prices 
t+  

and 
t− , the fixed load demand power FL

tP , the outdoor temperature out

tT , the 

charge state ESS

tSoC  of the ESSs, the EV state tuple EV

t  shown in formula (4) 

and the HVAC state tuple AC

t  shown in formula (6). Therefore, the state 

space 
ts  can be defined as follows: 

 PV FL ESS out EV AC, , , , , , , .t t t t t t t t ts P P SoC T   + −=  (10) 

Notably, certain elements in state 
ts  have inherent stochastic 

characteristics. These elements, which are not influenced by the actions of the 

HEMS agent, can be defined as exogenous state feature variables. In this study, 

the exogenous state feature variables are { PV

tP ,
t+ ,

t− , FL

tP , out

tT ,
at ,

dt }, 

where 
PV

tP  is related to the equipment status, location, and weather 

conditions and t+
 and t−

 are influenced by supply-demand conditions. 

Additionally, 
out

tT  is affected by different weather conditions. The stochastic 

nature of these factors introduces significant uncertainty. Moreover, the 

moments 
at  and 

dt  when the EV arrives and departs from the household and 

the SoC of the battery when the EV arrives are influenced by user behavior 

patterns and traffic conditions. These factors are also difficult to accurately 

predict and model, and their randomness further increases the dynamic 

uncertainty of the environment. 

3.2. Action space 

The scheduling decision variables of the HEMS include the 

charge/discharge power EV

tP  of the EVs, the output power AC

tP  of the HVAC, 

the charge/discharge power ESS

tP  of the ESSs, and the interaction power grid

tP  

between the RM and the main power grid. Note that when EV

tP , AC

tP  and 
ESS

tP  have been determined, grid

tP  can be directly obtained based on the 

power balance equation (as shown in Equation (8)). To simplify the action 

space, we do not consider grid

tP  in 
ta . In summary, the 

ta  of the HEMS 

agent can be expressed as 
AC EV ESS{ , , }.t t t ta P P P=   (11) 

3.3. State transition dynamics 

The state transition function represents the probability distribution of the 

environment transitioning from state 
ts  to the next state 

1ts +
 when the HEMS 

agent performs a given action 
ta  in period t . It can be expressed as follows: 

1 1( , ) Pr( , ).t t t t tP s s s s a+ +=   (12) 

In this study, the state transition is influenced not only by the actions of the 

HEMS agent but also by the inherent stochasticity of the exogenous state 

features, as discussed in Section 3.1. Therefore, describing the state transition 

probability P  using an accurate probability distribution model is difficult; that 

is, P  in the established MDP formula is unknown, which reflects the 

uncertainty of the system. To address this issue, we adopt a DRL method. DRL 

can implicitly learn probability distribution characteristics based on the 

historical data of the random parameters of the system. 

3.4. Reward 

According to the energy cost considered in Equation (9), the base 

electricity reward elec

tr  for the HEMS agent during period t  is set as follows: 
elec ESS grid EVCost Cost Cost .t t t tr = + +   (13) 

In addition, to ensure that the HVAC output can maintain an indoor 

temperature within a comfortable range, we define thermal comfort using the 

concept of an acceptable temperature range. Specifically, this range is defined 

as the maximum positive and negative deviation around the preferred 

temperature set by the user. If the indoor temperature deviates beyond this 

range from the set temperature, thermal discomfort is considered to occur. We 

represent this by calculating the absolute deviation between the actual 

temperature and the set temperature (beyond a deadband threshold 
AC

thesT ), 

and we add a penalty term 
AC

tr  for household thermal discomfort to the base 

reward, forming part of the negative reward. This is expressed as follows: 

( )AC AC AC AC

1 set thesmax 0,t tr T T T= − −  , (14) 

where 
AC

thesT  represents the threshold 
AC AC

set tT T−  of the difference between 

room temperature 
AC

tT  and the HVAC set temperature 
AC

setT . 
1  represents 

the thermal comfort weight factor, and it is measured in units of $/℃, which 

allows the thermal discomfort term to be measured in the same units, $, as the 

 

Fig. 2. PSTER-TD3-based RM energy management framework. 



 

energy cost. The household's thermal discomfort is related to the maximum 

deviation threshold 
AC

thesT  between the current indoor temperature 
AC

tT  and 

the set HVAC temperature 
AC

setT . If 
AC AC

set tT T−  is greater than 
AC

thesT , the 

thermal discomfort gradually increases; otherwise, the thermal discomfort is 0. 

We choose the above definition because it provides a quantifiable, 

standardized explanation of thermal comfort and can determine a comfortable 

temperature range considering the household environment. Additionally, 

through equation (7), it is directly associated with the control of the HVAC 

system to reflect the direct temperature control functionality of the HVAC 

system. 

To reflect the user's anxiety about having insufficient energy in the EV 

battery to reach the destination, we square the difference between the EV 

battery capacity (maximum range of the EV) and the remaining charge at the 

time of departure (actual remaining range at departure) to calculate the penalty 

for range anxiety. The less charge the vehicle has at the time of departure, 

indicating a shorter actual remaining range, the more anxious the owner is 

about not having enough energy to reach the destination. We then incorporate 

this penalty term, denoted as 
EV

tr , into the reward function, forming part of the 

negative reward. It is expressed as [22], [24] 
EV EV EV 2

2 CAP( ) , ,t t dr E E t t= − =   (15) 

where 
2  represents the weight factor of the range anxiety term, and its unit 

is defined as $/kWh2, which allows the range anxiety term to be measured in 

the same units, $, as the energy cost. We choose this definition because it is an 

effective and realistic way of increasing the penalty for severe electricity 

shortages by squaring the difference, preventing the case in which user travel 

demands cannot be met due to a severe electricity shortage. Additionally, 

through equations (1) and (2), it is directly associated with the control of EV 

charging and discharging, enabling controllable range anxiety.  

Therefore, the reward function derived from the optimization objective is 
elec AC EV( )t t t tr r r r= − + + . By introducing weights for penalty terms, we ensure 

that both penalty terms and cost terms have the same units of measurement and 

can balance and adjust the relative influences of the two penalty terms. 

Through the above clear definitions, user perceptions can be quantified and 

incorporated into the optimization framework of PSTER-TD3. Specifically, 

we first incorporate the operation of the HVAC system into the optimization 

framework and design a penalty term for household thermal discomfort to 

penalize behaviors deviating from the human comfort zone, thereby meeting 

thermal comfort requirements. Next, range anxiety is used to describe the 

concerns of EV owners regarding whether there is sufficient power to meet 

travel needs. We design a penalty term for range anxiety to penalize the anxiety 

regarding insufficient energy in the EV battery to reach the destination, 

managing the charging/discharging of the EV battery to minimize the risk of 

not having enough power to complete the intended journey. Finally, the 

thermal discomfort penalty term and range anxiety penalty term are explicitly 

incorporated into the MDP formulation and reward design, superimposed with 

the household energy cost term, and mapped into the reward function of the 

DRL method. During the interaction between the agent and the environment, 

training is conducted to learn a policy that maximizes the cumulative rewards. 

This policy ensures not only a reduction in energy costs but also a decrease in 

thermal discomfort and range anxiety, effectively meeting the requirements for 

household comfort. 

3.5. Action-value function 

The utility of the HEMS agent in executing scheduling action a  following 

policy   under a given state s  is evaluated by the cumulative discount 

reward 
1

0
( , ) [ , ]

T t

t t tt
Q s a r s s a a  

−

=
= = =  within T  time steps, where 

( , )Q s a
 is the action value function. The HEMS agent aims to find the 

optimal scheduling policy *  among all feasible policies to maximize the 

reward or minimize the energy cost. This can be represented as 
* argmax ( , )a AQ s a = . 

4. Proposed online energy management method 

4.1. Preliminaries 

As a representative algorithm based on policy gradient DRL, DDPG is 

known for its ability to effectively handle control tasks with high-dimensional 

continuous action and state spaces. DDPG is based on the deterministic policy 

gradient (DPG) algorithm combined with the actor-critic framework and DQN 

extension [17]. Although DDPG has many advantages, one drawback is that 

the critic network in DDPG is always updated in the gradient direction of 

increasing Q-values, which can lead to overestimation of the Q-values. 

Furthermore, high variance in the calculation of the target value makes it 

difficult to stably obtain the optimal action strategy. Although the above 

shortcomings seriously affect the policy learning quality of DDPG, they also 

provide motivation for research on DRL methods that perform better than 

current DRL methods. These better-performing methods can contribute to the 

learning of better action strategies for HEMS agents in complex RM 

scheduling environments. 

4.2. Proposed PSTER-TD3 method 

The PSTER-TD3 method framework we developed to solve RM 

optimization operation problems is shown in Fig. 2. First, the proposed method 

calculates the target value by truncating the double Q-learning process, 

addressing the overestimation problem for critic networks in DDPG. In the 

proposed method, two identical and independent critic networks are used to 

estimate the Q value. Their target value calculations can be formulated as 

follows, where j represents the jth critical network: 

( )1 1
1,2

min , ( ) .
jt t t t

j
y r Q s s   + +

=
= +   (16) 

Second, the proposed method introduces a regularization term in the output 

of the target policy to reduce the variance of the target value calculation in 

DDPG. Specifically, random noise   is added to the target action used to 

calculate the target value, smoothing out the variation in the Q function along 

the action: 

1( ) ,  ~ clip( (0, ), , ),t ta s c c    +
 + −  (17) 

where clip( )  represents the truncation function and truncating random noise 

limits the amplitude of changes in the action after noise processing. Therefore, 

Equation (18) can be rewritten as 

 

Fig. 3. Actor and critic network architecture of the proposed PSTER-TD3. 

 



 

( )1
1,2

min , .
jt t t t

j
y r Q s a  +

=
= +   (18) 

Third, the proposed method weakens the negative impact of the target 

value calculation variance on actor network learning in DDPG by reducing the 

update frequency of the actor network parameter   and the target network 

parameters   and   . Specifically, in the proposed method, the critic 

network completes ( 2)d d   updates before updating the actor network once. 

This update method can better stabilize the training of the actor network. The 

actor and critic network architecture of the proposed PSTER-TD3 method is 

shown in Fig. 3. The actor network of the proposed method takes the 

environmental state observation 
ts  of the RM as input and outputs continuous 

scheduling action 
ta  based on the Q value estimated by the critic network. 

The critic network takes state observation 
ts  and action 

ta  as inputs and 

outputs an estimated Q value. 

Furthermore, to enable the model to fully explore the important scheduling 

experience obtained from the interactions between the agent and the 

environment during training, we introduce priority experience replay (PER) in 

the proposed method. PER assigns a priority weight value to each empirical 

sample based on its importance to model training; the larger the priority weight 

value is, the higher the sampling probability. In the proposed PER mechanism, 

the temporal difference error (TD error) 
i  of the empirical sample i  is used 

to measure the importance of the sample for training the proposed method, 

where 
t  is defined as the estimated Q value error between the online critic 

network and the target critic network: 

1( , ) ( , ).
j ji i i i i ir Q s a Q s a    += + −   (19) 

The larger the absolute value of the TD error 
i  of empirical sample i  is, 

the greater its contribution to the gradient update of the neural network. This 

also means that the more assistance it provides for learning the proposed 

method policy, the greater its importance. We define the probability of 

sampling experience sample i  from experience buffer pool  as 

1 1( ) ,i kk
p i p p =    (20) 

where 
1 [0,1]   represents the sampling weight coefficient of priority, which 

is used to control the degree of priority usage. If 
1 0 = , then the sampling 

rule at this time completely follows a uniform distribution. In Equation (22), 

we calculate the priority 1 rank( )ip i=  of empirical sample i  based on the 

sorting priority strategy. Here, rank( )i  represents the sequence number of the 

replay unit sorted from highest to lowest based on the absolute value 
i  of 

the TD error in the empirical sample. In addition, we introduce importance 

sampling (IS) to correct the model updating deviation caused by the change in 

the sample experience distribution. The IS weight 
i  of sample i  is 

2( ( )) / max ,i p k kN p i  −=    (21)  

where 
2 [0,1]   represents the IS weight adjustment coefficient. To ensure 

the stability of the model during training, the IS weights are normalized using 

maxk k . Then, the IS weight 
i  is included in the calculation of the critic 

network loss function. Therefore, the calculation formula of the critic network 

loss function corrected by the proposed method is rewritten as 

2

1

1
( ) ( ( , )) .

j

m

j i i i ii
L y Q s a

m
 

=
= −   (22) 

Similarly, the actor network update equation of the proposed method is 

rewritten as 

Algorithm 2 PSTER-TD3-based RM Online Operation Strategy 

Input: RM environment status 
ts  on test day, test period testE   

Output: The scheduling action decision 
ta  of the HEMS agent in  

 each period 

1: Read the online actor network parameters    trained  

 according to Algorithm 1 

2: for episode = 1: testE  do 

3: Obtain the initial status 
1s  of the test day 

4: for t = 1: 
maxT  do 

5: Set the action of the HEMS agent to ( )t ta s =   

6: Perform action 
ta and interact with the RM 

 

environment to obtain reward value 
tr , and 

observe the RM environment transfer to a new 

state
1ts +
  

7: end for 

8: end for 

 

Algorithm 1  Training Process of PSTER-TD3 

Input: RM's environmental status information on training day  

 
ts ; action space information 

ta  

Output: The parameters ( ),
j t tQ s a  and corresponding weight  

 parameters 
1   and 

2   of the two trained critic target  

 networks; The parameters ( )ts   and corresponding  

 weight parameters   of the trained actor target network 

1: Random initialization: Two critic network parameters 

 
1
( , )Q s a  and 

2
( , )Q s a , as well as their parameters 

1  

and 
2 ; Actor network parameter   and its parameter   

2: Initialization： 
j j   ，     ，experience buffer  

 
pool  with capacity 

pN ; The structure of the experien-

ce pool is a sum tree with priority parameters 
1  and 

2  

3: for episode = 1: trainM  do 

4: Initialize exploration noise 
t
 

5: Obtain the initial observation status 
1s  from RM 

6: for t = 1: 
maxT  do  

7: Select actions based on the current policy and  

 exploration noise based on ˆ ( ) ( )t t ts s = +  

8: Execute action 
ta  in the RM environment to receive 

 reward 
tr  and the next new state 

1ts +
 

9: Store experience samples 
1( , , , )t t t ts a r s +

 in the  

 sum tree and set priority maxt i t ip p=  

10: for i  = 1: m  do 

11: Use the probability ( )p i  obtained from equation 

 (20) to sample experience i  from the sum tree 

12: Calculate the priority importance sampling weight  

 i  through equation (21) 

13: Calculate the TD error 
i  of experience i  through 

 equation (19) 

14: Update the priority value corresponding to leaf  

 nodes in the sum tree using 
i  based on 

 1 rank( )ip i=  

15: end for 

16: Use the target network to obtain actions 

 1( )t ta s  + + ， ~ clip( (0, ), , )c c   −  

17: Calculate the target Q value of the online critic  

 network according to equation (18) 

18: Update the online critic network parameters according  

 to equations (22) and (24) 

19: if t mod d then 

20: Update actor network parameters according to 

 equations (23) and (25) 

21: Soft update the target network parameters  

 according to equations (26) and (27) 

22: end if 

23: end for 

24: end for 

 



 

( )1

1
( ) ( , ) ( ).

i

m

a i a s ii
J Q s a s

m      ==
 =    (23)  

The weight parameter update formulas for the proposed online critic and 

actor networks can be expressed as 

( ),j

jj j jL


    +    (24)  

( ),J

    +    (25) 

where j
  and   represent the corresponding learning rates of the online 

critic and actor networks, respectively. Notably, the "soft update" strategy is 

used to update the weight parameters of the proposed method's target network: 

(1 ) ,j j j     + −   (26) 

(1 ) ,     + −   (27) 

where ( 1)    represents the soft update coefficient and 
j   and   

represent the corresponding weight parameters of the critic and actor target 

networks, respectively. 

To further improve the sampling efficiency and model convergence speed, 

the proposed method introduces PER based on a sum-tree structure, known as 

PSTER. The empirical sample data structure based on the sum tree is shown 

in Fig. 4. Here, the prioritized actual data of the experience sample are stored 

only in the lowest leaf node. Based on the binary tree structure of the sum tree, 

the sum of the priority values of the two leaf nodes is stored in the 

corresponding parent nodes of each pair of child nodes. Then, this summation 

method continues until it converges to the root node. Therefore, the root node 

priority value, represented as 
ps , is the sum of the priority values stored by all 

leaf nodes. 

When it is necessary to use empirical samples, the sampling probability 

interval [0, 
ps ] with a total interval length of 

ps  is first divided evenly into 

subintervals with the same number of small batch sampling times m , which 

are then sorted by priority interval from smallest to largest. Then, one number 

rands  is randomly selected from each of the m  subintervals. Starting from the 

root node, the rules are followed from left to right and from top to bottom to 

traverse the child nodes of 
rands  point by point. The above process is repeated 

until the leaf node is retrieved, and the corresponding priority values retrieved 

by each random number are used to determine the experience sample.  
To address uncertainty, the PSTER-TD3 method proposed in this paper 

leverages real-world historical data and adaptive learning strategies through 

environmental interactions to gain experience and approximate the optimal 

decision-making strategy. It implicitly learns the probability distribution 

characteristics of the interactions based on the historical data of the system's 

random parameters and then handles the issue of unknown state transition 

probabilities. Additionally, the proposed method introduces an experience 

replay strategy based on a prioritized sum tree, which automatically 

distinguishes the supervisory values of different experience samples when 

facing complex dynamic environments. It automatically selects the most 

effective training data from a large amount of encountered data and 

dynamically adjusts the distribution of sample weights. This enables the model 

training to automatically focus on high-value data in regions of the state space 

with significant dynamic changes, enhancing the data utilization efficiency, 

accelerating policy convergence, and addressing environmental uncertainty in 

a targeted manner. Moreover, this structure reinforces the agent's ability to 

discover and adapt to the inherent dynamic patterns of the environment by 

reusing critical experiences. This helps mitigate the impact of state variable 

dynamics and randomness, thereby strengthening the robustness of the policy. 

4.3. Application process 

The process of applying the proposed method includes two stages, offline 

training and online deployment, the input and output variables of which are 

shown in Table 3. First, the proposed PSTER-TD3 method is used for offline 

training of the DNN, as shown in Algorithm 1. After training, the optimal 

parameters of the PSTER-TD3 model can be obtained. Then, the trained 

PSTER-TD3 model is deployed on the HEMS agent to provide online 

optimization operation strategies for the RM. 

The online optimization operation strategy of the RM based on PSTER-

TD3 is shown in Algorithm 2. For each period of the selected test day, the 

Table 2 

PSTER-TD3 hyperparameter setting information. 

Parameters Value 

critic Network Learning rate 1  and 2  1×10-3 

actor Network Learning rate   1×10-4 

Discount factor   0.99 

Soft update coefficient   5×10-3 

Policy update interval d  2 

Minimum batch sampling size m   128 

Experience buffer pool capacity 
pN   1×105 

Noise clipping coefficient c   0.5 

Priority sampling weight 
1   0.6 

Weight adjustment coefficient of Importance sampling 
2   0.4 

 

Table 1  

Operating parameters of RM key components. 

Type Symbol and Value 

EV 

EV

maxP =3kW, EV

CAPE =16kWh, EV

ch = EV

dis  =0.98 

EV

maxSoC =1.0, EV

minSoC =0.1 

2~clip( (18,1 ),15,21)at , 2~cilp( (8,1 ),6,11)dt  

HVAC 

AC

setT =24℃, AC =2.0,  =0.7,  =7.27×10-3kW/℃ 

AC

maxP =2kW, AC

thesT =2℃ 

ESS 

ESS

dis = ESS

ch  =0.95, ESS

maxP =2kWh 

ESS

maxSoC =1.0, ESS

minSoC =0.1, ESS

CAPE =6kWh 

 

 

Fig. 5. The average reward for each DRL method training process. 

 

Fig. 4. Experience sample priority storage structure based on sum-tree. 

 



 

HEMS agent trained with Algorithm 1 for the optimal online actor network 

parameters is read. Based on the observed initial state 
1s  of the RM 

environment at this moment, the control action 
ta  is determined based on the 

optimal policy ( )ts   learned from PSTER-TD3. Then, reward 
tr  is 

observed, and the environmental state transitions to 
1ts +
. Finally, the above 

process is repeated until all the scheduling tasks for the testing period are 

completed online.  

To address variations in the size of the elements or parameters of the 

problem, the method proposed in this paper can adapt to different scales of 

state and action spaces through sampling buffers and neural network function 

approximation. It can handle variations in the size of elements or parameters 

of the problem to a certain extent without needing to be retrained from scratch, 

and it has strong robustness. These variations mainly involve variations in the 

number of states, action dimensions, and environmental parameters. 
Specifically, 1) when the number of states varies, the proposed PSTER-TD3 

method uses an experience replay buffer based on importance sampling to 

store historical state-transition data and samples these data in batches 

according to priority from the buffer to train the neural network. The sampling 

scope is not dependent on the specific number of states. Therefore, the addition 

or removal of states has little impact on the method. 2) When the dimension of 

actions varies, in the PSTER-TD3 method, the output layer dimension of the 

policy network (actor) corresponds to the dimension of actions. It is sufficient 

to adjust the output layer while keeping the other parameters unchanged, and 

retraining is not necessary. 3) When the environmental parameters vary, the 

proposed PSTER-TD3 method utilizes a priority experience replay mechanism 

based on the sum tree, which focuses on learning transitions with large TD 

errors and pays attention to these difficult-to-learn but crucial samples to 

enhance generalizability. Combined with exploratory random action noise and 

slower policy updates, the proposed method demonstrates reliable 

performance even under changing environmental parameters.  

4.4. Global Optimality Analysis of the PSTER-TD3 Algorithm 

As a type of memoryless stochastic process, the convergence theory of 

Markov chains provides theoretical tools for analyzing the convergence of 

optimization algorithms. The proposed PSTER-TD3 algorithm generates a 

sequence of solutions by repeating actions such as state sampling, action 

selection, reward evaluation, and policy/value function updates. The behavior 

in each round depends only on the current state of the solution and is 

independent of historical states, thus satisfying the Markov property. Therefore, 

the sequence of solutions generated by the algorithm can be regarded as a 

Markov chain. Based on the theory of Markov chains, if the algorithm ensures 

that the sequence of solutions has a positive probability of visiting all states 

within a finite time and that each new solution is always better than or equal 

to the previous one, then the algorithm will converge to the global optimal 

solution with probability 1. Therefore, this paper uses Markov chain theory to 

demonstrate that the proposed algorithm can converge to the global optimum. 

If the proposed algorithm converges to the global optimum with 

probability 1, it needs to satisfy the following two conditions [27]: 

(1) Any two points ( ) ( )
1 2

| , |q q   in the feasible solution space can be 

reached through state transitions; 

(2) The sequence of experienced solutions 
1 2, , , nM M M  is monotonic. 

To ensure that (1) holds, we need to prove that (i) the Markov chain of 

experienced solution sequences is finite; (ii) the Markov chain of experienced 

solution sequences is homogeneous; and (iii) the Markov chain of experienced 

solution sequences is ergodic. The details are as follows: 

For the nth round of the experience solution 

( ) ( ) ( ) 
1 2

= |Q , |Q , |Qn D
M     , D  represents the dimensionality of the 

experience samples sampled from the experience replay pool, and ( )|Q
d

  is 

the dth experience solution.  

According to D   , 
nM  is finite; thus, condition (i) holds. In the 

proposed algorithm, state sampling, action selection, reward evaluation, and 

policy/value function updates are performed independently in stochastic 

processes. Each update of the policy/value function is chosen optimally based 

on the expected return through gradient ascent. The update of the policy/value 

function in round 1n +  depends only on the cumulative reward evaluation in 

round n , which is independent of the transition probabilities between other 

states and the number of iterations. Thus, condition (ii) holds. 

To prove that condition (iii) holds, the Markov chain needs to satisfy 

irreducibility and aperiodicity and be ergodic. We refer to the following 

Table 3 

The input and output variables for offline training and online deployment. 

Stage Category Variable Description 

Offline training 

Input 

PV FL

ESS out EV AC

, , , ,
.

, , ,

t t t t

t

t t t t

P P
s

SoC T

 

 

+ −  
=  

  

 The RM's environmental status information on the training day 

AC EV ESS{ , , }.t t t ta P P P=  The RM's action space information on the training day 

Output 

( ),
j t tQ s a  The parameters of the trained critic target network 

1 、 2   The weight parameters of the trained critic target network 

( )ts   The parameters of the trained actor target network 

  The weight parameters of the trained actor target network 

Online 

deployment 

Input 

PV FL

ESS out EV AC

, , , ,
.

, , ,

t t t t

t

t t t t

P P
s

SoC T

 

 

+ −  
=  

  

 The RM environment status on the test day 

testE  The test period 

Output 
AC EV ESS{ , , }.t t t ta P P P=  The scheduling action decision of the HEMS agent in each period 

 
Table 4 

Comparison of computational performance between different methods 

Methods MILP MPC DQN PPO DDPG TD3 Proposed 

Training 
(h) 

- - 2.85 3.47 3.72 3.28 2.94 

Operation 

(s) 
1.035 0.497 0.406 0.428 0.459 0.393 0.342 

 
Table 5 

Test performance indicators for different methods 

Methods MACE(%) MTD(℃) RANGE STD 

MILP 33.46 0.00 0.21 0.076 

MPC 37.50 4.27 0.26 0.095 

DQN 29.17 10.82 0.39 0.137 

PPO 44.79 9.71 0.20 0.051 

DDPG 40.63 8.65 0.31 0.113 

TD3 26.04 5.36 0.27 0.086 

Proposed 20.83 0.00 0.15 0.048 

 



 

definitions in the proof [28]: 

a) The transition probability matrix between different solutions in the 

sequence is  1 | , 1ij n nP P M j M i n+= = =  ; if for any ,i j , there exists an 

1n   such that 0k

ijP  , then the Markov chain is irreducible; 

b) If the greatest common divisor of the nonempty set 

 | 1, 0, ,
ij

nU n n P i j=     is 1, then the Markov chain is aperiodic; 

c) If the recurrent state i  satisfies 
ij

n

i

n

U nP


=  + , then i  is called 

positively recurrent. If i  is aperiodic, then the Markov chain is ergodic. 

The specific proof is as follows: Since the transition probability matrix 

ijP  depends only on ,i j  and all elements in 
nM  are positive, for any ,i j , 

there exists an 1n   such that 0k

ijP  . According to definition a), the Markov 

chain satisfies irreducibility. Based on irreducibility, for 

 | 1, 0, ,
ij

nU n n P i j=    , there exists 1n =  such that the greatest common 

divisor of set U  is 1. According to definition b), the Markov chain satisfies 

aperiodicity. The behaviors of state sampling, action selection, reward 

evaluation, and policy/value function updates all lead to state transitions, 

which can be represented by transition matrices ' ' 'S A R、 、 and 'O , and all 

of them are between 0 and 1, as the transition probabilities are defined as 

' : ' ' ' ' [0,1]P S A R O   → . Therefore, the transition probabilities satisfy 

0 1ijP  . Let  max : ,ijP i j H =   ; then, by the Cauchy-Riemann 

equation, there exists 1n   such that for any state F, it satisfies 

( )( )max
ij

n
n

i ij

n n

U nP n P
 

=     . Given that i  is aperiodic, according to 

definition c), the Markov chain is ergodic. In conclusion, condition (iii) holds. 

 The state sampling, action selection, reward evaluation, and policy/value 

function updates in the proposed algorithm all adhere to a policy of selecting 

and retaining better solutions. Furthermore, the sequence of policy/value 

function solutions generated by the algorithm can be regarded as a finite 

homogeneous Markov chain, and each round only transitions and updates the 

policy/value function when a better Q-value estimate is found. Therefore, in 

each iteration round of TD3, the newly generated policy/value function must 

be superior to the old estimate. Thus, it can be concluded that the sequence of 

policy/value function solutions generated by the TD3 algorithm converges 

monotonically, satisfying condition (2). 

Overall, the proposed algorithm converges to the global optimal solution 

of the problem with probability 1.  

5. Case study 

5.1. Experimental settings 

 Datasets and Parameter Setup: We evaluate the performance of the 

proposed method on actual data. The actual photovoltaic output, load 

demand, and outdoor temperature data are provided by the famous Pecan 

Street database [25]. The data in this database from March 2, 2017 to 

June 29, 2017 are used as the training set, and the data from July 2 to 

August 30 are used as the test set. The detailed parameter settings for 

EVs, HVAC systems, and ESSs are shown in Table 1. In this study, we 

assume that EVs have relatively fixed arrival and departure times, and 

their arrival and departure times are modeled as truncated normal 

distributions [22]. Moreover, we assume that the SoC of a battery is 

sampled from the truncated normal distribution 
2clip( (0.5,0.1 ),0.2,0.8)  when an EV arrives [22], [24]. To ensure the 

compatibility of the input data in the simulation environment, 

parameters for the driving distances and charging patterns of EVs are 

sourced from traffic data in the same region as Pecan Street. This ensures 

that the data for EVs in the simulation environment are matched with 

those of other energy-consuming devices. The Adam optimizer [26] is 

used to train the actor and critic network parameters of PSTER-TD3. 

The settings of the other hyperparameters for the proposed method are 

displayed in Table 2.  

 Benchmark Method: To verify the performance of the proposed method, 

we compare it with the following benchmark methods. The traditional 

online energy management method MPC, in which the long short-term 

memory neural network (LSTM) is used for temporal prediction of 

uncertain parameters in the future rolling period, is used as one of the 

benchmarks. We also compared the proposed method with benchmark 

methods based on the DQN, PPO, DDPG, and TD3 algorithms. 

 

Fig. 6. The scheduling results of the proposed method on a certain testing 

day (a) Required power and photovoltaic power for fixed loads. (b) ESS 

charging and discharging power and SoC variation. (c) EV charging and 

discharging power and SoC variation. (d) HVAC output power. (e) 

Comparison of indoor and outdoor temperatures. 

 

Fig. 7. The scheduling results of each DRL method on a certain testing 

day 



 

 Performance Metrics: To comprehensively evaluate the optimization 

performance of various online energy management methods, we adopt 

the following performance evaluation indicators. The mean absolute 

optimization error (MACE) and mean temperature deviation (MTD) are 

used to evaluate the optimization accuracy of each method. The range 

and standard deviation (STD) of the optimization errors are used to 

evaluate the stability of the scheduling results. The definitions of each 

metric are as follows: 
test

bias PIO

test
1

1
= . ( / ) 100%

E

i i

i

MACE c
E


=

   (28) 

test
dev test

1
=

E

ii
MTD T E

=   (29) 

test test

bias bias bias bias

1 1=max{ ,..., } min{ ,..., }
E E

RANGE    −  (30) 

( )
test 2

bias bias test

1
=

E

i mi
STD E 

=
−   (31) 

MACE represents the mean absolute percentage error between the energy 

cost 
daily

ic   of test day i   and the solution 
PIO

ic   of the Perfect Information 

Optimum (PIO) strategy [18], where 
bias

i   represents the optimization bias, 

that is, 
daily PIO

i ic c− . MTD represents the average deviation between the indoor 

temperature on the test day and the comfortable temperature range (22°C to 

26°C), where 
dev

iT  represents the sum of the deviations between the indoor 

temperature on test day i   and the comfortable temperature range. RANGE 

represents the range of optimization errors generated during testing. STD 

represents the standard deviation of optimization errors during testing, where 
bias

m  represents the mean of all optimization errors.  

5.2. Numerical results 

5.2.1. Training performance 

Fig. 5 compares the average reward obtained during training by the 

proposed method and other DRL methods. Fig. 5 illustrates that the 

performance of the proposed PSTER-TD3 is superior to the performances of 

the other DRL methods. Specifically, PSTER-TD3 converges at 

approximately the 600th round, while TD3/DDPG/PPO/DQN converge at 

approximately the 1000th/2000th/1100th/2200nd rounds. PSTER-TD3 

explores the optimal action strategy approximately 1.7/3.3/1.8/3.7 times faster 

than TD3/DDPG/PPO/DQN. The average reward (-1.12) when PSTER-TD3 

converges is greater than the average rewards (-5.29/-8.30/-9.76/-13.31) when 

TD3/DDPG/PPO/DQN converge. These results also indicate that the proposed 

method has lower learning costs than the compared methods. Compared to 

TD3, the superior performance of PSTER-TD3 is due to its ability to replay 

action experiences associated with high TD errors more frequently during 

training with less time complexity. This greatly aids in improving the agent's 

action policy and enhancing the algorithm's convergence speed. Compared to 

DDPG/PPO/DQN, the adoption of a series of key techniques in PSTER-TD3 

(see Section 4.2) effectively alleviates the issues of overestimation and high 

variance of Q-values. Specifically, compared to DDPG/PPO/DQN, (i) the 

higher quality of the convergent solutions in PSTER-TD3 is attributed to the 

double Q-network architecture, which reduces the overestimation of Q-values 

and enhances the robustness of Q-value estimation, leading to more accurate 

and robust state value evaluation. (ii) The increased stability in the 

convergence process of PSTER-TD3 is due to the introduction of a 

regularization term in the output of the target policy, which smooths the target 

policy actions. This helps prevent drastic policy oscillations and divergence 

during the learning process, thereby improving the stability of policy updates. 

Additionally, by reducing the update frequency of the actor network and target 

network parameters, PSTER-TD3 mitigates the instability caused by constant 

changes in the targets, further enhancing the stability of learning and control. 

Compared with the DQN, the proposed method can more fully utilize the 

information in the entire multidimensional continuous action space, which 

significantly improves the learning quality of the policy. Overall, the proposed 

PSTER-TD3 can adaptively learn stable optimized scheduling policies through 

good training, and its policy learning speed and quality are higher than those 

of other DRL methods.  

5.2.2. Scheduling results on a test day 

To verify the effectiveness of the proposed method, we present the 24-hour 

scheduling results for a test day, as shown in Fig. 6. Figs. 6 (a) and (b) 

demonstrate that ESSs try to absorb the remaining electricity generated by PV 

during the peak period of PV output to prevent electricity from being sold. The 

ESSs discharge during peak electricity consumption periods (16:00-20:00) 

with high electricity purchase prices, which helps reduce electricity purchase 

costs and absorb PV output. ESSs do not immediately charge a large amount 

when the SoC is at a low level; instead, the ESSs shift the charging period to a 

low electricity price period (22:00-6:00). Similarly, the EVs discharge during 

the high electricity price period from 19:00 to 22:00 (Fig. 6 (c)), and their 

charging process shifts to the low electricity price period as much as possible. 

In addition, Fig. 6 (c) demonstrates that introducing battery degradation costs 

enables the HEMS to purposely control EV charging and discharging actions 

and SoC fluctuations, which helps to extend the service life of the battery. 

Moreover, when an EV is about to leave, the SoC of its battery approaches 1, 

indicating that the EV has effectively completed the charging task while 

participating in the demand response process. In addition, Figs. 6 (d) and (e) 

demonstrate that due to the low temperature at 08:00 and to reduce energy 

costs, the HVAC system did not start until approximately 10:00. However, the 

HVAC system also maintains the indoor temperature precisely within a 

comfortable temperature range. 

 

Fig. 8. Comparison of rewards for testing different DRL methods. 

 

Fig. 9. Comparison of rewards for testing various DRL methods under 

different prediction errors. 



 

Furthermore, to better illustrate the performance of the proposed method, 

we present the scheduling results of each DRL method for 24 hours on this test 

day in Fig. 7. As shown in Fig. 7(a), compared with the total reward obtained 

by TD3/DDPG/PPO/DQN (-4.86/-8.29/-9.19/-12.96), the total reward 

obtained by the proposed method (-1.18) is greater, indicating that the 

proposed method achieves the best overall performance when considering 

various metrics. Additionally, from Fig. 7(b), (c), and (d), it can be observed 

that while achieving the lowest electricity costs, the proposed method also 

minimizes thermal discomfort and range anxiety, thereby maximizing the 

satisfaction of user comfort requirements. This finding implies that the 

proposed method not only effectively regulates the indoor temperature but also 

ensures that the EV battery has sufficient charge before departure. In summary, 

compared to other DRL methods, the proposed PSTER-TD3 method 

demonstrates superior energy management, cost-effectiveness, and user 

comfort during this test day. 

5.2.3. Comparison with the benchmark methods 

A comparison of the calculation performances of the different methods is 

shown in Table 4. It can be intuitively observed that the daily online runtime 

based on the MILP method is the longest, followed by that of MPC and then 

those of the other DRL methods. This is because both MILP and MPC require 

rolling calculations of mathematical programming problems with multiple 

variables. As the problem size increases, the computational complexity 

increases exponentially, which may make it impossible to meet the 

requirements of online operation. DRL-based methods can make scheduling 

decisions immediately using trained DNNs without requiring repeated 

calculations, which results in shorter response times. Among the DRL-based 

methods, the DQN has the shortest offline training time, followed by the 

proposed PSTER-TD3. This is because the DQN must train only one DNN, 

resulting in a higher training speed. However, the PSTER strategy in the 

proposed method helps it achieve the shortest online running time (0.342 

seconds) of all methods. Therefore, the proposed method can meet the 

computational performance requirements of online operation better than the 

compared methods. 

Table 5 lists the performance indicators of the different methods on the test 

set. In terms of the optimization accuracy, the MACE of the proposed method 

is 12.63%/16.67%/8.34%/23.96%/19.80%/5.21% lower than those of 

MILP/MPC/DQN/PPO/DDPG/TD3. Moreover, the proposed method is the 

only one that has an MTD of 0.00 ℃, indicating that only the proposed method 

effectively maintains the indoor temperature. The proposed method also 

achieves the smallest RANGE (0.15) and STD (0.048) among all methods, 

indicating that the variation number and degree of dispersion of the 

optimization error in the test process are the lowest. Therefore, the proposed 

PSTER-TD3 has better optimization accuracy and stability than the other 

methods. In addition, the PSTER strategy and performance improvement 

technology in the proposed method significantly improve the optimization 

accuracy and stability of the scheduling strategy learned by the agent. 

Notably, compared to the MILP method, which relies on rigorous 

mathematical theory to obtain theoretically globally optimal solutions, the 

proposed method achieves the same MTD and achieves better results on 

MACE while also obtaining lower values of RANGE and STD. This indicates 

that the proposed method has superior accuracy and stability. MPC also 

achieves relatively good performance through rolling optimization and 

feedback correction within a finite time domain. However, similar to the MILP 

method, its optimization performance relies on prediction accuracy, making it 

susceptible to the influence of uncertain parameter prediction errors. As a 

result, both of these methods have inferior optimization accuracy and stability 

to the proposed method. Another interesting result is that PPO has good 

optimization stability, but its optimization accuracy is poor. This is because 

the environment exploration method of PPO based on policy improves the 

training stability while reducing the motivation of agents to attempt random 

actions, resulting in conservative suboptimal strategies with lower 

optimization accuracy. In addition, the DQN has the optimal performance 

among the DRL-based methods, which indicates that discretizing the action 

domain significantly reduces the optimization quality of the policy. The reward 

distributions for different DRL methods during testing are shown in Fig. 8. 

From the graph, it can be observed that the mean values of the RM electricity 

cost obtained by DQN/PPO/DDPG/TD3/the method proposed in this paper are 

1.24/1.39/1.35/1.21/1.16, the mean values of thermal discomfort are 

2.16/1.94/1.73/1.07/0, and the mean values of range anxiety are 

9.93/6.48/5.26/3.04/0. Compared to DQN/PPO/DDPG/TD3, the method 

proposed in this paper has the following three advantages: (i) it reduced the 

electricity costs by approximately 6.45%/16.55%/14.07%/4.13%; (ii) it 

decreased thermal discomfort by 2.16/1.94/1.73/1.07; and (iii) it lowered range 

anxiety by 9.93/6.48/5.26/3.04. Notably, the thermal discomfort of the 

proposed PSTER-TD3 method is 0, indicating its effective maintenance of the 

indoor temperature within the threshold range, and it meets the thermal 

comfort requirements of households; the proposed method also results in the 

minimum range anxiety, indicating its ability to ensure sufficient battery power 

for EVs before departure. This means that the proposed method not only 

effectively reduces the energy cost of residential microgrids but also meets the 

thermal comfort requirements of households and reduces the range anxiety of 

EV usage. Consistent with Table 5, Fig. 8 also shows the superiority of the 

proposed method over other DRL-based methods in the RM optimization 

scenario. Compared to DDPG, the superior performance of PSTER-TD3 is 

primarily attributed to the following four features: (i) PSTER-TD3 employs 

the technique of truncated double Q-learning, effectively mitigating the bias of 

overestimation by the truncation technique of minimizing the double Q 

regression target, thus stabilizing the value function optimization. (ii) DDPG 

introduces noise during policy updates to aid exploration, but excessive noise 

can lead to instability. In PSTER-TD3, by incorporating a target policy 

smoothing regularization term, the Q-function along action changes is 

smoothed, and the stability and convergence of behavioral policy learning are 

enhanced. (iii) DDPG updates the network parameters at each time step, 

potentially causing excessive parameter updates and unstable training. By 

delaying and reducing the update frequency of target networks and actor 

networks, PSTER-TD3 further improves stability, making the training process 

smoother. Compared to TD3, the superior performance of PSTER-TD3 is due 

to its introduction of a priority sampling mechanism based on the sum-tree 

method. By assigning different priorities to samples in experience replay, 

important samples can be learned from historical experience more intensively, 

significantly improving the learning efficiency of the policy network and 

enhancing the algorithm's global search capability. Additionally, this sparse 

emphasis update learning method further reduces the bias of overestimation, 

facilitating stable policy optimization. Overall, the proposed PSTER-TD3 can 

Table 6 

Performance indicators of different methods under different prediction errors 

Methods 
±10% PE ±15% PE ±20% PE 

MACE(%) MTD(℃) RANGE STD MACE(%) MTD(℃) RANGE STD MACE(%) MTD(℃) RANGE STD 

MPC 48.96 5.46 0.31 0.124 54.17 6.12 0.34 0.139 61.46 6.84 0.38 0.157 

DQN 40.63 12.12 0.46 0.175 45.83 12.77 0.49 0.197 52.08 13.42 0.53 0.223 

PPO 55.21 10.61 0.25 0.069 59.38 10.98 0.27 0.079 63.54 11.37 0.29 0.092 

DDPG 54.17 9.94 0.37 0.147 61.46 10.61 0.41 0.165 69.79 10.81 0.45 0.186 

TD3 35.42 6.38 0.31 0.092 39.58 6.93 0.33 0.101 45.83 7.43 0.36 0.115 

Proposed 27.08 0.75 0.18 0.053 30.21 1.09 0.19 0.060 34.38 1.46 0.21 0.071 

 



 

effectively address the online optimization operation problems of the RM, and 

it has better optimization accuracy and stability than the compared methods.  

5.3. Algorithmic robustness analysis 

To verify the robustness of the proposed method against environmental 

changes, we compare and analyze the performance of different online 

optimization methods under an additional prediction error (PE) in the test 

dataset. The size of the PE is sequentially set to ± 10%, ± 15%, and ± 20%. 

The comparison of the performance indicators of the different methods for 

a gradually increasing PE is shown in Table 6. As the PE increases, the 

optimization accuracy and stability of each method are negatively affected to 

varying degrees, and their optimization accuracy indicators (MACE and MTD) 

and optimization stability indicators (RANGE and STD) both increase. This is 

because the comparison methods encounter more interference states with high 

bias under an increasing PE, which increases the difficulty of precise 

scheduling. The proposed method exhibits better performance than the other 

methods in the three different situations. Although its various performance 

indicators slightly increase under the influence of PE, no significant mutation 

occurs, and they remain relatively low. This indicates that the proposed 

scheduling strategy can adapt to uncertain environments and achieve more 

stable scheduling results than the other methods can. In addition, Fig. 9 

compares the test rewards of various DRL methods under different prediction 

errors. Consistent with Table 6, this graph verifies the advantages of the 

proposed method over the other DRL-based methods in resisting 

environmental uncertainty. Although the proposed method results in certain 

thermal discomfort and range anxiety punishments as the PE is increased, it 

still keeps them at a lower value than the other methods. Even under the 

condition of ± 20% PE, the thermal discomfort and range anxiety of the 

proposed method are only 0.29 and 0.35, respectively, which are significantly 

lower than those of the other methods. The above results indicate that 

compared to the other methods, the proposed method can achieve more stable 

scheduling results when uncertainty changes occur in the RM environment and 

is more robust in resisting uncertainty. This is primarily because the proposed 

method does not rely on predictive inputs or the modeling of environmental 

transition probabilities. On the basis of learning a large amount of historical 

environmental data, this method adopts truncated double Q-networks, target 

policy smoothing and delayed policy updates, as well as the prioritized sum 

tree experience replay mechanism, which give it good robustness and 

generalizability. Specifically, (i) the proposed method is capable of capturing 

data features and adaptively updating network parameters by learning from a 

large amount of historical environmental data, giving it excellent 

generalizability to environmental changes. (ii) The design of twin critics within 

the actor-critic framework enhances the accuracy and robustness of the state 

value evaluation. Through the mutual supervision and correction of the two 

critic networks, the risk of overfitting is reduced, and the stability and accuracy 

of Q-value estimation are improved. This provides reliable guidance for the 

policy network, thereby enhancing its robustness. (iii) By introducing a 

regularization term into the output of the target policy, the proposed method 

smooths the target policy actions, ensuring the continuity of the policy between 

different states and the stability of policy updates. Moreover, by reducing the 

update frequency of the actor and target network parameters, it is possible to 

mitigate the instability caused by continuously changing targets, further 

enhancing the stability of learning and control and thus strengthening 

robustness to environmental uncertainty. (iv) Through the efficient sampling 

mechanism of the prioritized sum-tree structure, the proposed method 

automatically identifies and focuses on learning from high-value experience 

samples with larger TD errors, allowing the training distribution to adaptively 

concentrate on state areas with significant environmental changes, thereby 

enhancing generalizability. (v) By employing importance sampling based on 

the prioritized level and reweighting the loss function based on importance 

weights, critical experiences with high errors can be effectively reused, 

reinforcing the agent's control ability and enhancing the robustness of the 

policy. 

6. Conclusion 

In this paper, a new energy management method based on PSTER-TD3 is 

proposed for grid-connected RMs. First, considering household thermal 

discomfort and EV range anxiety, the sequential decision-making problem of 

RM energy management is described as an MDP with the objective of meeting 

households' comfort needs and minimizing residential energy costs. Then, the 

PSTER-TD3 method is proposed to determine the optimal scheduling strategy 

to achieve this goal. This method integrates a priority experience replay 

strategy based on a sum tree structure into TD3, enabling agents to learn the 

optimal strategy in complex environments. In particular, this method combines 

TD3 with the PSTER strategy proposed in this paper. The proposed PSTER 

strategy prioritizes the sampling of high TD-error experience related to training 

with lower time complexity, which further improves the speed and quality of 

energy management strategy learning. The case study results based on real-

world data show that compared with other DRL-based methods and MPC-

based methods, the proposed method can effectively meet the needs of 

households for thermal comfort and range anxiety while reducing RM energy 

costs. Moreover, the proposed method has stronger robustness when resisting 

uncertain changes in the RM environment. 
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