
FURY : Fuzzy unification and resolution based on edit distance

David Gilbert and Michael Schroeder
School of Informatics, City University

Northampton Square, London, EC1V 0HB, UKfdrg,mschg@soi.city.ac.uk

Abstract

We present a theoretically founded framework for fuzzy
unification and resolution based on edit distance over trees.
Our framework extends classical unification and resolution
conservatively. We prove important properties of the frame-
work and develop the FURY system, which implements the
framework efficiently using dynamic programming. We
evaluate the framework and system on a large problem in
the bioinformatics domain, that of detecting typographical
errors in an enzyme name database.

1. INTRODUCTION

Uncertainty and fuzziness play an important role in rea-
soning and occur on various levels: Uncertainty and fuzzi-
ness of the concepts in question, of the rules and domain
knowledge, or of the reasoning process itself. In contrast to
fuzzy logic and uncertainty in AI which deal mainly with
the first two aspects, we address with the last and focus on
fuzzy unification. In classical unification predicates unify
or they do not; we introduce a degree of unification ranging
from a complete match (degree 0) as in classical unification
to a complete mismatch (degree 1). Arcelli, Formato, Gerla
have developed a general abstract framework for fuzzy uni-
fication, quotient unification and unification as negotiation
[3]. In this paper, we develop an alternative approach for
fuzzy unification and resolution based on edit distance. The
concept of edit distance has a well established history dat-
ing back to the 60s and 70s [9, 15, 1] and is still widely
used, for example, in bioinformatics to comparing genomic
sequences. The edit distance between two stringsA andB is defined as the minimal number of delete, add, and re-
place operations to convertA intoB. The basic principle of
edit distance is well-understood, but to employ it for fuzzy
unification there are three requirements: First, a normalisa-
tion is required to be able to compare strings independent
of their size, otherwise relative many mismatches of two
small strings is possibly rated better than only a few on long

strings, which is counter-intuitive. Second, the definition of
edit distance has to be extended to deal with general tree
structures representing the predicates and terms to be com-
pared. Third, for compatibility reasons fuzzy unification
should be an extension of classical unification.

Once such a fuzzy unification mechanism is in place, res-
olution needs to be extended. In most approaches to fuzzy
resolution the conjunction of body literals is mapped to
the minimum operation on the corresponding fuzzy values.
However, since our approach does not attempt to capture
fuzzy concepts, but instead fuzzy unification, a set of differ-
ent operations for resolution is useful. An alternative to the
minimum operation is multiplication or average. Both have
the advantage of being accumulative integrating all values
in the rule body under consideration. Furthermore, mini-
mum and multiplication exhibit the same intuitive property
that failing goals are translated to a fuzzy value of 0, which
is propagated.

Potential applications of our method include data clean-
ing (for example detecting typographical errors in database
entries), and debugging logic programs (e.g. detecting ty-
pological errors in predicate names and arguments, missing
or exchanged arguments). Embury et al. [2] for example
tackle the problem of conflict detection for integration of
taxonomic data sources. They specify domain knowledge
and consistency rules in Prolog and search for inconsisten-
cies, which are often based on different spellings and nam-
ing conventions. For such problems, our meta-interpreter
FURY implementing fuzzy unification and resolution may
be used directly. Another general problem, where our
approach is useful, concerns data cleaning: Given two
databases, one with accurate data and another one with less
reliable data, our system can compare the reliable entries to
the best hits of the unreliable source and subsequently clean
up the latter.

The paper is organised as follows: First, we introduce
and review some basic definitions. Next, we introduce
fuzzy unification and resolution and show important prop-
erties of our approach. Finally, we describe an efficient im-
plementation FURY , discuss its complexity and evaluate it

on a problem in bioinformatics.

2. DEFINITIONS AND BACKGROUND

Symbols are strings, where a string is either the empty
string � or a stringa:A, wherea is a character andA is a
string. jAj denotes the length ofA.

Let V be a set of variable names,F a set of function
symbols andP a set of predicate symbols. The set of terms
is defined inductively. Every variablex 2 V is a term. Letf 2 F be a function symbol of arityn (if n = 0, f is also
called a constant) andt1; : : : ; tn terms, thenf(t1; : : : ; tn) is
a term. Additionally, we introduce a unique, empty term�.
Nothing else is a term. Letp 2 P be a predicate symbol of
arity n andt1; : : : ; tn terms, thenp(t1; : : : ; tn) is an atomic
formula. Literals are all atomic formulaA and their nega-
tion:A. For convenience, we defineL = :A if L = A andL = A if L = :A for an atomA. The set of formulae is
defined recursively. Every atomic formula is formula. IfF
andG are formulae, andx is a variable, thenF ^G, F _G,:F , 8x F , 9x F are formulae. Nothing else is a formula.

Any formula can be equivalently transformed into
Skolem normal form, where all existential quantifiers are
followed by universal quantifiers followed by a quantifier
free formula in conjunctive normal form (CNF). A formula
is in CNF if it has the form(L11 _ : : : _ Lmn1) ^ : : : ^(Ln1 _ : : : _ Lnmn), where theLij are literals. Each of
the conjuncts in a CNF formula is called clause and usually
written as a set omitting the_ connective. A clause is called
Horn or definite if it contains exactly one positive literal.A
clause is negative if it contains only negated atoms.

In order to check whether a goal is entailed by a Horn
formula, we employ unification and resolution.

Definition 1 Unificator [12]. A substitution is a replace-
ment of variables by terms. A substitutionsub is a unifica-
tor of two literalsL;L0 if Lsub = L0sub. A unificatorsub
ofL;L0 is the most general unificator (MGU) ofL;L0 if for
every other unificatorsub0 ofL;L0 there is a substitutions,
such thatsub0 = subs.

The MGU can be computed using Robinson’s unification
algorithm [12].

Example 1 The predicates address(x) andaddress(Northampton) unify and the MGU is[x=Northampton℄. For various reasons all of the
following predicates do not unify: address(x) andaddress(f (x)), becausex occurs inf(x), which would lead
to a circular substitution; address(Northampton) andaddress(10 ;Northampton) as the predicates do not have
the same number of parameters;address(Northampton)
and adresse(Northampton) as the predicate names

slightly mismatch; address(Northampton) andaddress(Northhampton) as the terms slightly mismatch.

Definition 2 SLD Resolution [10]. LetN be a negative
clause and:A 2 N . Let D be definite clause andA0 2 D. Let sub be the MGU ofA and A0. Then((N � f:Ag) [(D � fA0g))sub is called resolvent ofN and D. Let N be a negative clause andD be a set
of definite clauses. An SLD-derivation ofD [fNg con-
sists of a sequenceN = N0; N1; : : : of negative clauses,
a sequenceD1; D2; : : : of clauses inD and a sequence
of MGUssub1; sub2; : : : such thatNi+1 is a resolvent ofNi andDi+1 usingsubi+1. An SLD-refutation is an SLD-
derivation, where the last negative clause is empty.

Resolution is fundamental, as it allows us to efficiently
check satisfiability of a formula:

Theorem 1 A formula is satisfiable iff there is an SLD-
refutation [10].

Example 2 Consider the clausesfaddress(x; y);:id(x; z);:street(z; y)g;fid(007; Bond)g;fstreet(007; Bondstreet)g and the goaladdress(Bond; x) or expressed as a clausef:address(Bond; x)g. There is an SLD-refutation
for the definite clauses and the goal clause with the
variable substitution[x=Bondstreet℄.
3. FUZZY UNIFICATION AND RESOLTU-

ION

In this section, we set out to broaden the principles of
unification and resolution to encompass fuzzy matches of
predicate and function symbols and to deal with missing
arguments. We need a comparison measure to define how
similar two symbols are. An established measure for this
purpose is edit distance [9], which is the minimal num-
ber of add, delete, and replace operations to transform one
string into another. An equivalent, more operational defi-
nition of edit distance recursively compares two strings by
either dropping one of the two or both first characters of the
strings at a penalty of 1 or to drop the two with no penalty
if they match.

3.1. Edit distance

Definition 3 Edit distance
LetA, B be strings anda; b characters, thene(A; �) = e(�; A) = jAje(a:A; b:B) = minfe(A; b:B) + 1; e(a:A;B) + 1;e(A;B) + 1; e(A;B) if a = b g

Example 3 e(address; adresse) = 2 ande(007; aa7) =2.

Although the first example has six letters in common
(adress) and the second only one (7), both edit distances
amount to 2. Therefore, there is a need to normalise edit
distance to judge the penalties for mismatches relative to the
size of the strings. Such a normalised edit distance should
range between 0 (no matches) to 1 (no mismatches).

Definition 4 LetA, B be strings and at least one of them
non-empty, thenne(A;B) = e(A;B)max(jAj;jBj) is the normalised
edit distance.

Example 4 With normalisation we obtainne(address; adresse) = 27 andne(007; aa7) = 23 .

As the name suggests edit distancee and normalised edit
distancene are distance metrics, i.e. they are (i) symmetric,
(ii) the distance fromA toB is 0 iff A = B and greater oth-
erwise, and (iii) they satisfy the triangle inequality stating
that the direct distance between two strings is the shortest.

3.2. Edit Distance over Trees and Fuzzy Unification

While normalised edit distance is well suited to compare
symbols, we want to deal with predicates and terms, which
have a tree structure. Therefore, we have to extend our def-
inition. It is very important that for the purpose of com-
parison there is no difference between a tree structure of a
predicate and of terms. Hence, we do not distinguish be-
tween predicate and function symbols, and in the remaindert often denotes both a predicate or a term. Please note also
that we include the empty symbol� as predicate or function
symbol and we do not distinguish between�(t) andt for a
termt.

To define fuzzy unification, we have to recursively tra-
verse the tree representing the predicates and terms. In def-
inition 5 of edit distance over treeset, the first returned
parameter is the number of mismatches, the penalty; the
second is the accumulated substitution; the third is a fac-
tor for normalisation: the sum of the maximal nodes of the
pairwise node comparisons in the recursive traversal. But
let’s consider this recursive definition in detail: Any term
perfectly mismatches the empty symbol, which is penalised
with the maximum value - the size of the term. Two vari-
ables as well as a variable and a term perfectly match, which
is captured by a fuzzy factor of 0 and the corresponding
substitutions. Note that for the latter an occurs check is per-
formed. Predicate or function symbols do not contain any
further structure and therefore their fuzzy unification factor
is given by the edit distancee. For the purpose of normalisa-
tion we use here the maximum length of the two symbols. In
the core of the definition, we reduce two predicates or terms

t; t0 and call the edit distance over tree recursively. To the
edit distance of the leading predicate or function symbol we
add the minimum distance after dropping the first term(s)
and adding the penalty of the dropped term(s). Thus, the
definition compares terms from left to right dropping terms
of either thet, t0, or botht andt0. The result of this decom-
positions are added up using�, which adds numbers and
concatenates substitutions.

Definition 5 Fuzzy Unification
Let t = f(t1; : : : ; tn) and t0 = f 0(t01; : : : ; t0m) be two

terms or predicates, and letx; y 2 V be variables. The
size of a term or predicate is defined as:size(x) =size(�) = 0, size(f) = jf j, and size(f(t1; : : : ; tn)) =jf j+Pi=1;:::;n size(ti).

The edit distance over treeset maps two terms or pred-
icate to a tuple of the number of mismatches, a unificator,
and a normalisation factoret(t; �) = (size(t); [℄; size(t))et(x; y) = (0; [x=y℄; 0)et(x; t) = (0; [x=t℄; 0) if x not in t andt 62 Vet(f; f 0) = (e(f; f 0); [℄;maxfjf j; jf 0jg)et(t; t0) = et(f; f 0)�minvfet((t2; : : : ; tn); (t01; : : : ; t0m))� et(t1; �);et((t1; : : : ; tn); (t02; : : : ; t0m))� et(t01; �);et((t2; : : : ; tn); (t02; : : : ; t0m))� et(t1; t01)g

where(v; s; n)� (v0; s0; n0) = (v+ v0; s s0; n+ n0) andminv returns the triple with minimal first component.et is called edit distance over trees. The normalised
edit distance over treesnet(t; t0) = (vn ; s) with (v; s; n) =et(t; t0) is called fuzzy unification. For convenience, we of-
ten usenet to refer only to its first component.

Example 5 Consider example 1, where unification failed
because of mismatching predicate and function symbols
or missing parameters. With fuzzy unification, we obtainnet(address(Northampton); address(9b;Northampton)= 27+2+11 = 110 as the argument 9b cannot be matched,net(address(Northampton); adresse(Northampton)= 27+11 = 19 as the predicate names mismatch;net(address(Northampton); address(Northhampton) =17+12 as the terms slightly mismatch.

Fuzzy unification lifts the normalisation by maximum
size of the compared strings as introduced for the simple
edit distance to the level of terms and predicates with a
tree representation. An alternative to adding all mismatches
and then normalising by the pairwise maximum length of
the compared nodes is a direct normalisation of compared
nodes usingne and then redefining� to take the average.
This has however the disadvantage of favouring short mis-
matches of parameters (see e.g. example 3, 4, which our
above definition does not suffer from.

With the definition ofnet in place we can prove some of
its properties.

Lemma 1 Fuzzy unification is a conservative extension of
unification, i.e. ifs is an MGU for literalsL;L0, then(0; s)
is a fuzzy unificator forL;L0.
Proof sketch: The proof is by induction on the predi-
cate/term structure. Let’s consideret directly. The caseet(t; �) cannot occur, as they would not unify. For vari-
ables we haveet(x; y) = et(x; t) = (0; s; 0), wheres is
the MGU. For the general case oft; t0, we know by the in-
duction hypotheses that all subterms unify with factor 0 and
according MGU. 2
Theorem 2 Let t; t0 be terms or predicates.net is nor-
malised, i.e.0 � net(t; t0) � 1.

Proof sketch: To see thatnet is normalised, consider
thatnet(t; t0) � 0 as all factors involved are positive and
that net(t; t0) � 1 asnet(t; t0) = vn = v1+v2+:::n1+n2+::: with(v; s; n) = et(t; t0) and v = v1 + v2 + : : : and n =n1 + n2 + : : : andvi � ni by definition ofet. 2

For the purpose of relating our edit distance over trees to
classical edit distance, let us not distinguish between terms
and their canonical string representation. Then edit distance
over treesnet is ”cruder” thanne, as the latter can compare
character by character, whereas the former has to drop, add,
or replace whole terms.

Lemma 2 Given two terms or predicatest; t0 without vari-
ables and let us not distinguisht; t0 from their canonical
string representation, thennet(t; t0) � ne(t; t0).

Before we formally prove this lemma let us introduce a
helpful lemma:

Lemma 3 Let A = CD andB = EF be strings. Thene(A;B) � e(C;E) + e(D;F)
Proof sketch of lemma 3: By definition of edit distancee(C;E) and e(D;F) are the minimal number of add-,
delete-, replace-operations required to transformC toE andD to F , respectively. Thereforee(A;B) = e(CD;EF) �e(C;E) + e(D;F). 2
Proof of Lemma 2: To provenet(t; t0) � ne(t; t0) it is
sufficient to consider the simplified caset = p(
) andt0 =p0(
0) for predicate symbolsp; p0 and constants
;
0. If t =t0, thennet(t; t0) = 0 = ne(t; t0) by definition. Ift 6= t0, we
assume without loss of generality thatsize(t) > size(t0).
If jpj � jp0j; j
j � j
0j, thennet(t; t0) = e(p;p0)+e(
;
0)jpj+j
j �e(p(
);p0(
0))jp(
)j = ne(t; t0) according to lemma 3. In the final
case ((thatjpj � jp0j; j
j � j
0j does not hold), we assume
without loss of generality thatjpj � jp0j; j
j � j
0j. Now let

us assume thatnet(t; t0) < ne(t; t0) and thusnet(t; t0) =e(p;p0)+e(
;
0)jp0j+j
j = e(p;p0)+e(
;
0)jp(
)j�(jp0j�jpj) < e(p(
);p0(
0))jp(
)j = ne(t; t0)
by definition. This is however contradictory, asjp(
)j >jp(
)j�(jp0j�jpj) by the choice ofp; p0;
;
0 ande(p; p0)+e(
;
0) � e(p(
); p0(
0)) by lemma 3. All in all, we have
established thatnet(t; t0) � ne(t; t0). 2
3.3. Fuzzy SLD Resolution

Having defined fuzzy unification, we can turn to fuzzy
SLD resolution. The extension is straight forward in that
we only replace unification by fuzzy unification. The tricky
part is the definition of how to add fuzzy unificators. I.e.
given two fuzzy unification factors, we have to define a
function
 combining both and returning the desired value
for the resolvent. In a fuzzy setting, the natural choice for
 is the maximum, but as we will see below there are other
options. For the general setting, we just require that
 op-
erates on the interval of[0; 1℄ and has a neutral element0,
i.e. 0
 x = x
 0 = x.

Definition 6 Fuzzy SLD Resolution
LetN be a negative clause and:A 2 N . LetD be definite
clause andA0 2 D. Let(v; sub) = net(A;A0) be the fuzzy
unification ofA andA0. ThenN 0 = ((N � f:Ag) [(D �fA0g))sub is called fuzzy resolvent ofN andD with fuzzy
unificator(v; sub).

Let
 : [0; 1℄ � [0; 1℄ 7! [0; 1℄ be a function withx
 0 = x
 0 = x. Let N be a negative clause andD be a set of definite clauses. An fuzzy SLD-derivation ofD [fNg consists of sequenceN = N0; N1; : : : of nega-
tive clauses, a sequenceD1; D2; : : : of clauses inD, a se-
quence of fuzzy unificators(v1; sub1); (v2; sub2); : : :, and
a sequence of fuzzy factors0 = v00; v01; : : : such thatNi+1
is a fuzzy resolvent ofNi andDi+1 with fuzzy unificator(vi+1; subi+1) andv0i+1 = v0i
 vi+1.

A fuzzy SLD-refutation is a fuzzy SLD-derivation, where
the last negative clause is empty.

Lemma 4 Fuzzy resolution is a conservative extension of
resolution, i.e. if there is an SLD refutation, then there isa
fuzzy SLD refutation with fuzzy unificators(0; vi).
Proof sketch: The lemma holds since fuzzy unification
conservatively extends unification and since the initial fuzzy
factorsv00 = 0 and clauses to be resolved perfectly match
and combining these factors always maintains 0 by defini-
tion of
, i.e. 0
 0 = 0. 2
3.4. Accumulation Functions

There is a fundamental difference between the operators� for unification and
 for resolution. During unification

we add up mismatches of symbols supposed to be similar;
during resolution we add up mismatches of different predi-
cates, which are not related to each other apart from occur-
ring in the same clause. The operation
 caters for the com-
putation of the fuzzy values during inference. Hence, one
natural interpretation of
 would be the maximum value
(note, a fuzzy “and” is usually associated with the mini-
mum function, but in our case 0 represents no mismatch
and 1 complete mismatch, so that we use maximum). No
matter how
 is instantiated, it is important that it respects
the neutral element 0, so thatx
 0 = 0
 x = x. This is
satisfied by the max function. The intuitive idea of the max-
function for
 is that max propagates the worst match from
a body of a rule to the head. If for example nine out of ten
predicates in a rule perfectly match, but one does not match
at all, the overall result would be a complete mismatch. Al-
though this is natural bearing classical inference in mind,
some applications may require a ”softer” function such as
multiplication:x
 y = 1� (1� x)(1� y) = x+ y � xy.
Again, x
 0 = 0
 x = x is satisfied, but in contrast to
max, the inputs are accumulated, so that all contribute to
the final result. Two other alternatives worth mentioning
are the average, which is interesting for the same reasons asx+y�xy, but which does not treat 0 as the neutral element
and second a hierarchical approach, which emphasises the
mismatches on higher levels of the tree structure more than
on lower levels. This corresponds to the intuition that mis-
matches in the predicate symbol are more important than
mismatches in some nested argument to a predicate.

4. META-INTERPRETER

We have implemented a meta-interpreter for FURY in
Sicstus Prolog based on a standard vanilla interpreter, as
found in [7], replacing Kowalski’s “match” by fuzzy uni-
fication. In addition in the interpreter below,
 is imple-
mented as multiplication and the result is stored in the vari-
ableAccVal . As theorem 2 states, any termst; t0 match at
least withnet(t; t0) � 1, wherenet(t; t0) = 1 for complete
mismatches. In order to prune the search space to a rea-
sonable size, we introduce a cut off value (Cutoff), which
terminates the exploration of the current branch, ifAccVal
is less than the cut-off. In the code below,P is the programs,
G, Gs goals,Subs substitutions,R rules

solve(P,Gs,Cutoff,AccVal)<-empty(Gs).
solve(P,Gs,Cutoff,AccVal))<-AccVal<Cutoff.
solve(P,Gs,Cutoff,AccVal))<-

AccVal >= Cutoff, select(Gs,G,Rest),
member(R,P), renamevars(R,Gs,R’),
parts(R’,Head,Body), net(Head,G,Net,Subs),
AccVal’=Net*AccVal, add(Body,Rest,NewGs),
apply(NewGs,Subs,NewGs’),
solve(P,NewGs’,Cutoff,AccVal).

net < n %0:1 0.0090:2 0.0150:3 0.0310:4 0.0810:5 0.240:6 1.00:7 5.00:8 260:9 791:0 96

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

net cutoff score

Percent Coverage "analysis.dat"

Figure 1. Coverage vs net cutoff n and distri-
bution of cumulative scores for pairwise com-
parison of entries in Brenda database.

Edit distance [9] (see Def 3.1) for two strings lengthn
andm when implemented naively has complexity order ex-
ponential inn andm, hence the complexity of edit distance
over trees is even worse. However, using a dynamic pro-
gramming approach [15, 6] the complexity of edit distance
can be reduced toO(mn). Based on dynamic program-
ming, our algorithm computing edit distance over trees hasO(n2d) wheren is the maximum number of children andd
is the minimum depth of the two trees.

4.1. Analysis of the BRENDA enzyme function
database

Biologists make heavy use of database in flat-file, which
are often unclean as they are compiled by hand. However,
the correct spelling of entries is crucial, when performing
automatedanalysis of the data. As a first step to clean data,
we performed an analysis of the BRENDA enzyme function
database [13]. There are 15915 entries (enzyme names),
with an average string length of 26. We performed an all
against all pairwise comparison of the entries; the average
time for performing a normalised edit tree comparison be-
tween any two enzyme names is 3.9ms, i.e. on average a
minute to compare one enzyme name against all the others
in Brenda.

As an example, we performed a normalised edit tree
comparison between the string ‘H2O’ and all 15915 entries.

net A B C D[0:0� 0:1) 1 1 1 1[0:1� 0:2) 0 0 0 0[0:2� 0:3) 2 4 4 4[0:3� 0:4) 0 0 0 4[0:4� 0:5) 2 4 4 4[0:5� 0:6) 4 4 4 7[0:6� 0:7) 9 10 10 39[0:7� 0:8) 5 7 7 25[0:8� 0:9) 13 20 21 97[0:9� 1:0) 17 22 676 33461:0 0 0 0 12388

Figure 2. Analysis of Brenda database listed
by net-intervals. Distribution of scores for all
15915 for exact matching of ’H2O’ (A), match-
ing of the regular expression ’H.*2.*O’ (case
sensitive (B) and insensitive (C)), and net-
matching with ’H20’ (D).

Most typographical errors were found withnet < 0:4 (8
mismatches out of 15915 entries, see D in Fig. 2). In the
general case, 1% comparisons result in a score less than 0.6
and less than 0.1% result in a score of less than 0.4 (see Fig.
1). Thus, extrapolating from our results for the ’H2O’ com-
parison with a cutoffnet < 0:6 then on average there will
be only 160 potential errors to check out of the database of
15915 entries, which is a realistic task.

The distribution of scores in shown in the last column
(D) of Fig. 2. The other columns show the number of hits
for matching of ’H20’ (A) and ’H*2*O’ (B (case sensitive),
C (case insensitive)) listed by intervals ofnet. Fig. 3 shows
a detailed list of the top hits ofnet with score less than
0.625. It indicates thatnet filters entries well and illustrates
the kind of false positives detected by our method.

We have also adaptednet to be used to compute the dis-
tance between the topological representation of two aligned
protein structures [5].

5. COMPARISON AND CONCLUSION

Recently, there has been much interest in fuzzy logic pro-
gramming. Our work is closely related to Arcelli, Formato,
Gerla [3], who develop an abstract framework for fuzzy uni-
fication and resolution. There are important differences:
First, [3] does not allow unification of predicates of differ-
ent arity, which is however a problem often occurring in
Prolog programming [4]. Second, [3] is not an extension
of classical unification, which is important for compatibil-
ity reasons. Third, our work is based on a specific simi-
larity measure, namely edit distance. Much work on edit
distance is quiet mature [9, 15, 1], but still widely used, es-

net String net String net String
0.0 ’H2O’ 0.40 ’H2CO3’ 0.60 ’H2N-R’
0.25 ’H 2O’ 0.40 ’H2SO4’ 0.60 ’HCO3-’
0.25 ’H2 O’ 0.40 ’NH2OH’ 0.60 ’HCOO-’
0.25 ’H2O2’ 0.50 ’H2Se’ 0.60 ’NH4OH’
0.25 ’H2Oo’ 0.50 ’HNO2’ 0.60 ’RHg2+’
0.33 ’H2’ 0.50 ’Hg2+’ 0.63 ’ADP+ H2O’
0.33 ’H20’ 0.50 ’RCH2OH’ 0.63 ’AMP+ H2O’
0.33 ’H2S’ 0.57 ’C3(H2O)’ 0.63 ’CO2 +H2O’
0.33 ’N2O’ 0.57 ’H+ H2O2’ 0.63 ’GDP+ H2O’
0.40 ’+ H2O’ 0.57 ’H2O (r)’ 0.63 ’H2O <1>;’

0.60 ’CH3OH’ 0.63 ’IDP+ H2O’

Figure 3. Absolute scores of closest fuzzy
matches to ’H20’ in the Brenda database. Cor-
rect matches are bold.

pecially in bioinformatics. For our interpreter we needed
a normalised edit distance over trees. Although there has
been some work on normalised edit distance [14], this work
does not deal with tree structures and the normalisation is
defined different from ours. Basically, the authors assign a
weight for each edit operation and minimise the sum of all
required edit operations and then divide by the length of the
path. In our context this is not applicable, as we normalise
by the maximum string length. Some other interesting work
on edit distance introduces swapping of characters as addi-
tional edit operation besides replace, add, and delete [11].
This idea could be integrated into our fuzzy unification def-
inition, and would make sense as [4] points out that this is a
common mistake in logic programming. Besides our purely
syntactical string comparisons, it may be desirable to con-
sider semantical similarity. To this end, [8] introduces se-
mantic comparisons, which our current framework and sys-
tem do not deal with. One reason, why this is difficult to
achieve, is the definition of semantical equality, which may
be based on thesaurus entries, but which is quite vulnerable.

To summarise, the main contributions of this paper are
three-fold: First, we define and proof important proper-
ties of normalised edit distance over trees, which is gen-
eral in nature and applicable to other problems; Second,
we define fuzzy unification and resolution in terms of this
normalised edit distance over trees and show that it is
a conservative extension of classical unification and res-
olution; Third, we efficiently implement our system us-
ing dynamic programming and evaluate its performance
and behaviour on the Brenda database [13]. To the
best of our knowledge there is no other similar frame-
work and system The system is available over the web at
www.soi.city.ac.uk/˜drg/systems/fury

Acknowledgements

We would like to thank Lorenz Wernisch for the com-
plexity results.

References

[1] A. V. Aho and T. G. Peterson. A minimum distance error-
correcting parser for context-free languages.SIAM Journal
on Computing, 1(4):305–312, Dec. 1972.

[2] S. Embury, A. Jones, I. Sutherland, W. Gray, R. White,
J. Robinson, F. Bisby, and S. Brandt. Conflict detection for
integration of taxonomic data sources. InProceedings of the
11th International Conference on Scientific and Statistical
Database Management, pages 204–213, 1999.

[3] F. A. Fontana, F. formato, and G. Gerla. Fuzzy unifica-
tion as a foundation of fuzzy logic programming. InLogic
Programming and Soft Computing, pages 51–68. Research
Studies Press, 1998.

[4] P. Fung, M. Brayshaw, B. du Boulay, and M. Elsom-Cook.
Towards a taxonomy of misconceptions of the prolog inter-
preter. In P. Brna, B. du Boulay, and H. Pain, editors,Learn-
ing to Build and Comprehend Complex Information Struc-
tures: Prolog as a Case Study. Ablex, 1999.

[5] D. Gilbert, D. Westhead, J. Viksna, and J. Thornton.
Topology–based protein structure comparison using a pat-
tern discovery technique. Insubmitted to AISB2000 (Artifi-
cial Intelligence in Bioinformatics), 2000.

[6] D. Gusfield. Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology.CUP, 1997.

[7] R. A. Kowalski. Logic for Problem Solving. Elsevier, 1979.
[8] P. Krisko, P. Marcincak, P. Mihok, and J. Sabol. Low re-

trieval remote querying dialogue with fuzzy conceptual, syn-
tactical and linguistical unification.Lecture Notes in Com-
puter Science, 1495:215–??, 1998.

[9] V. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals.Doklady Akademii nauk
SSSR (in Russian), 163(4):845–848, 1965. Also in Cyber-
netics and Control Theory, vol 10, no. 8, pp 707–710, 1996.

[10] J. Lloyd. Foundations of Logic Programming. Springer–
Verlag, second edition, 1987.

[11] R. Lowrance and R. A. Wagner. An extension of the
string-to-string correction problem.Journal of the ACM,
22(2):177–183, Apr. 1975.

[12] J. A. Robinson. A machine oriented logic based on the res-
olution principle.Journal of the ACM, 12(1):23–42, 1965.

[13] D. Schomburg, D. Salzmann, and D. Stephan.En-
zyme Handbook, Classes 1–6. Springer, 1995.
http://www.brenda.uni-koeln.de.

[14] E. Vidal, A. Marzal, and P. Aibar. Fast computation of nor-
malized edit distances.IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 17(9):899–902, Sept. 1995.

[15] R. A. Wagner and M. J. Fischer. The string-to-string cor-
rection problem.Journal of the ACM, 21(1):168–173, Jan.
1974.

