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ABSTRACT

In this study, we aim to identify the machine learning model that can overcome the limitations of traditional statistical modelling

techniques in forecasting Bitcoin prices. Also, we outline the necessary conditions that make the model suitable. We draw on a

multivariate large data set of Bitcoin prices and its market microstructure variables and apply three machine learning models,
namely double deep Q-learning, XGBoost and ARFIMA-GARCH. The findings show that the double deep Q-learning model
outperforms the others in terms of returns and Sortino ratio and is capable of one-step-ahead sign forecast of the returns even on

synthetic data. These critical insights in forecasting literature will support practitioners and regulators to identify an economi-

cally viable cryptocurrency forecasting return model.

1 | Introduction

In recent years, there has been growing interest in Bitcoin
investment as the cryptocurrency gains global popularity
and acceptance in some countries (Xie, Chen, and Hu 2020;
Rehman, Asghar, and Kang 2020). There are more than 81
million crypto wallets user across the world as of November
2022 (Statista 2021). The rapid evolution of Bitcoin trading over
the past years has often raised concerns among investors in
terms of overvaluation, overreaction, and irrational behaviour
of the cryptocurrency prices (Amini et al. 2013; Borgards and
Czudaj 2020; Corbet and Katsiampa 2020; Mattke et al. 2021).
Investors, market practitioners, and regulators have shown vig-
orous interest in understanding and explaining the movements
of cryptocurrency prices in detail (Raimundo Junior et al. 2020;
Signature Bank failure, March 2023). Nevertheless, understand-
ing the drivers of changes in cryptocurrency prices remains an
open question as the application of econometric and statistical
modelling has largely failed to adequately provide actionable

insights in forecasting Bitcoin prices (Chen et al. 2021; Wang,
Andreeva, and Martin-Barragan 2023).

Given that Bitcoin transactions generate large data sets that can
provide critical insights, it is therefore important to explore if
big data analytical tools such as machine learning could be use-
ful solution to overcome the limitation in forecasting Bitcoin
prices (Tofangchi et al. 2021). In addition, cryptocurrencies like
Bitcoin are less efficient when compared to the traditional finan-
cial assets (Al-Yahyaee, Mensi, and Yoon 2018), in the context of
volatility. Even though, we observe a decrease in this volatility
over the time, but the historical volatility of Bitcoin remains al-
most 10 times higher than gold and several conventional curren-
cies (Bianchetti, Ricci, and Scaringi 2018).

Moreover, Bitcoin, possess a combination of properties of other
traditional financial and speculative asset and has a low cor-
relation with other financial instruments traded in the finan-
cial market (Klein, Thu, and Walther 2018). Thus, following
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the literature, we use the highly liquid cryptocurrency, Bitcoin
in this study (Amiram, Jergensen, and Rabetti 2022). We sum-
marise the main socio-economic impact of Bitcoin. Over the
years, we mainly observe that researchers either focus on one
type of value creation mechanism (Kitchens et al. 2018) or adopt
the additive approach (Grover et al. 2018). Such approaches are
difficult to apply in a complex set-up, such as explaining com-
plex financial relationships (Gradojevic et al. 2021; Newell and
Marabelli 2015). However, in recent years, there have been sev-
eral recommendations on the importance of applying big data
analytics to generate valuable insights about business operations
(Grover et al. 2018). As suggested by Hendershott et al. (2021),
the adoption of machine learning models can be a game changer
in the context of investment in cryptocurrency trading (Miiller
et al. 2016). However, the application of the machine learning
model invites the challenge of identifying the algorithm that
possesses the capability to forecast the cryptocurrency return
with real time data. Thus, in this research we ask the follow-
ing question: Does double deep Q-learning model outperforms
the other popular models (XGBoost and ARFIMA-GARCH) in
forecasting cryptocurrency return? Because of wider discussion
about prediction efficiency of XGBoost and ARFIMA-GARCH
model in forecasting, we decided to compare their performance
with the double deep Q-learning model.

Extant literature documents the challenges in smoothing and
forecasting Bitcoin prices (Miller et al. 2019; Jana, Ghosh, and
Das 2021; Kraaijeveld and De Smedt 2020), especially due to its
high volatility (Li et al. 2021; Yaya et al. 2021; Gradojevic and
Tsiakas 2021). Moreover, while advanced machine learning
algorithms are capable to deliver exceptional in-sample perfor-
mances, the ability to generalise out-of-sample remains inherent
to a more limited reach (Keilbar and Zhang 2021; Anyfantaki,
Arvanitis, and Topaloglou 2021). Out-of-sample performance
is the most important performance indicator to find whether
a financial model will deliver the expected performance in the
real world (Catania and Grassi 2022; Liang et al. 2020). The lack
of logical understanding of outputs generated by complex algo-
rithms is often regarded as black boxes and because of such com-
plication, the application of machine learning models remains
limited. So far, prior literature has largely focused on complex
models such as reinforcement learning (Tofangchi et al. 2021).
Nevertheless, practitioners such as regulators, and some indi-
vidual investors are unlikely to favour the implementation of
complex, black box-deemed algorithms over simpler ones where
the relation between cryptocurrency returns and explanatory
variables can be easily explained and interpreted. Thus, to con-
tribute to the ongoing discussion on forecasting cryptocurrency
returns, we examine the research question by applying machine
learning algorithms and displaying various levels of their com-
plexity. In addition, to provide critical insights about the model
interpretability, we conduct out-of-sample performance test.

The sample time-series data set consists of daily, open, spot
prices of Bitcoin for the period February 2012-December 2023
sourced from Quandl (3290 daily observations). We randomly
select the above period to set up a synthetic data set for the sim-
ulation purpose. In the simulation process, we aim to invest
according to the algorithms and calculate the investment per-
formance. We selected Bitcoin in this study because of its popu-
larity, maturity, market position as the leading cryptocurrency

(Gradojevic et al. 2021) and for its long-term social impact.! Our
unique finding shows that the double deep Q-learning model
outperforms the others in terms of returns and Sortino ratio and
is capable of one-step-ahead sign forecast of the returns even on
synthetic data. According to these results, the success of ma-
chine learning models in the prediction of cryptocurrency re-
turns is re-established and double deep Q-learning model adds
an extra layer of confidence about its predictability in the fore-
casting literature.

Our contributions are threefold—first, previous research has
conflicting views on the suitability of these models. To our best
knowledge, this is the first study to resolve debates with empiri-
cal evidence on the effectiveness of machine learning models in
predicting cryptocurrency returns. Second, the study uses the
Sortino ratio instead of the Sharpe ratio, focusing on downside
volatility to provide a more accurate risk assessment. Thus, it
highlights the difference in risk considerations between pro-
prietary traders and investment funds/banks, emphasising the
latter's focus on controlled risk scenarios. Finally, to address the
unreliability of historical data (Pintelas et al. 2020) we propose
using a Variational Autoencoder to create synthetic data sets for
out-of-sample performance evaluation.

The rest of the paper is organised as follows. Section 2 further of-
fers a general overview of the relevant literature and an in-depth
discussion of reinforcement learning models. Section 3 outlines
the research methodology by discussing the data and the train-
ing architectures. Section 4 introduces the out-of-sample back-
testing methodology based on synthetic data extracted from the
Variational Autoencoder model. Section 5 compares the out-of-
sample performances in terms of investment strategies and clas-
sification statistics. Section 6 concludes and addresses potential
future work.

2 | Literature Review

Introduced by Sutton and Barto (1998), the literature on rein-
forcement learning relishes several extensions that enrich its
original scope and application opportunities to various indus-
tries (Van Moffaert, and Now'e 2014). The application of rein-
forcement learning includes self-driving cars, mastering board
games such as the AlphaZero chess engine (Silver et al. 2017),
and so on. Among the extensions of reinforcement learning,
the basic Q-learning algorithm (Watkins 1989) was revised as
double Q-learning and can address an overestimation bias of the
basic Q-learning model (Van Hasselt, Guez, and Silver 2016).
Moreover, recent reinforcement learning literature focuses on
prioritised experience replay to improve data efficiency (Schaul
et al. 2015), the duelling network architecture (Wang et al. 2016)
and noisy double Q-learning (Fortunato et al. 2017) for stochas-
tic network layers to improve exploration. These several contri-
butions are blended into a rainbow model showing that most of
the extensions are complementary and capable of producing out-
performing performances (Hessel et al. 2018).

On the other hand, financial literature has adopted reinforce-
ment learning models in the recent years. In our survey of
literature, we find an excellent application of reinforcement
learning in financial markets (Fischer 2018). Lee et al. (2007)
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apply multiple Q-learning agents to a stock-trading framework
focused on Korean stock market. Jiang, Xu, and Liang (2017)
use a 30-min cryptocurrency trading strategy and apply an
ensemble of identical independent reinforcement learning
evaluators based on a convolutional neural network, a recur-
rent neural network, and a long-short term memory model.
Sadighian (2020) applies deep reinforcement learning to cre-
ate an intelligent market-making strategy testing seven reward
functions, extending the previous reinforcement learning
market-making models based on time-based event environ-
ments. Xiong et al. (2018) show how a Deep Deterministic
Policy Gradient can build an optimal portfolio that outper-
forms the traditional mean-variance asset allocation and a
buy-and-hold strategy on the Dow Jones Industrial Average.
Wu et al. (2020) apply the Gated Recurrent Unit model to ex-
tract informative financial features that are eventually used
to extract intrinsic characteristics of the US stock market.
Besides reinforcement learning, several neural network appli-
cations have been deployed to the problems of financial fore-
casting, portfolio optimization, investment strategies and risk
management. In the work of Chen, Leung, and Daouk (2003),
we observe one of the first applications of neural networks
in finance, where they predicted the return direction of the
Taiwanese Stock Exchange index by means of a probabilistic
neural network and showing its capability to outperform non-
neural network-based strategies. In the field of time series
forecasting, recurrent neural networks have proven to be par-
ticularly useful, thanks to their stateful architecture which al-
lows modelling of serial autocorrelation. Edet (2017), predicts
the movements of the S&P 500 index using a recurrent neural
network and its variations, namely the long-short-term mem-
ory and the gated recurrent unit. They applied the networks to
14 economic variables and 4 levels of hidden layers.

Following Baillie, Chung, and Tieslau (1996) and Gianfreda
and Grossi (2012) we use the ARFIMA-GARCH regression
model and Chen and Guestrin (2016) for the XGBoost model.
After critically examining the relevant literature, we cannot
find any evidence of studies focusing on the out-of-sample per-
formance via synthetic data sets produced with a Variational
Autoencoder of a Bitcoin investment strategy based on rein-
forcement learning, XGBoost and the ARFIMA-GARCH re-
gression model.

In the extant literature, some reinforcement learning ap-
proaches, frameworks and models have been proposed, see
Table Al in Appendix A. Despite the contributions of these
studies, some limitations exist. First, we observe that models
in existing studies (see Wu et al. 2020) have largely relied on
an out-of-sample performance evaluation on a single set of
historical data, making it difficult to generalise the results.
In literature, we mainly observe out-of-sample performance
evaluation on historical data, with limited focus on synthetic
data (Catania and Grassi 2022). When the training data are
highly imbalanced (especially relevant for cryptocurrencies
given the highly volatile and leptokurtic distributions), then
models using synthetic data could generate more accurate re-
sults when applied on real data. One of the most efficient ways
to generate a synthetic data set is by means of a Variational
Autoencoder (VAE). In this technique, the encoder com-
presses the original data set into a more compact structure,

which is, in turn, transmitted to the decoder to generate an
output which represents the original data set with some noise.
The lack of attention by scholars on synthetic data sets moti-
vates us to focus on the out-of-sample performance. Second,
we observe that models in existing studies (see Li, Zheng, and
Zheng 2019) target the maximisation of total returns or cu-
mulated profits and do not use explanatory variables, rather
only focus on time-series dependencies. Algorithms targeting
total returns or cumulated profits result in extreme portfolios,
with large exposures in a single asset that widely vary over
time. On the other hand, targeting a risk-adjusted measure—
such as the Sortino ratio—results in more stable, less extreme
investment strategies. However, cryptocurrencies are charac-
terised by complex distributions that cannot be explained by
their respective univariate time series, rather the usage of ex-
planatory variables is deemed necessary.

3 | Methodology

3.1 | Reinforcement Learning—Model
Specification

Reinforcement learning is a reward-driven process where
an agent learns to interact with a complex environment via
trial-and-error to achieve rewarding outcomes (Sutton and
Barto 1998). The agent learns to maximise the reward by choos-
ing the best action in each state of the environment. At the heart
of reinforcement learning lies the explore-exploit dilemma. In
practice, the agent faces the dilemma of either exploiting what
has been learned thus far or exploring to gain additional knowl-
edge at the risk of recording lower payoffs.

Consider an agent within the environment Q in discrete time
with single step t =1,2, ... ,n coupled with the triplet action,
state, and reward (a,, s,, r,). At each time ¢, the agent is in state
s, and selects an action a,. The interaction with the environment
Q returns the next reward r, 4+ 1 and the next state s, + 1. The
entire set of states and environment rules for transitioning from
one state to another may be represented as a Markov decision
process. In fact, the current state s, encompasses all the infor-
mation needed by the environment for processing state transi-
tions and assigning rewards. Therefore, an agent tries to choose
an action r, € A that maximises the expected conditional future
reward. This approach is named Q-learning (Watkins 1989), a
form of temporal difference learning (Sutton and Barto 1998).

Deep reinforcement learning involves the usage of deep neu-
ral network architectures to serve as function approxima-
tors. A deep-Q-network is a multi-layered neural network
f(x):R" - R™ that outputs Q(a,,s;), where a, €A, s, € S and
r; € R. As a result, the objective of the reinforcement learning
becomes learning the optimal set of neural network weights
w, € W that minimises a loss function. The latter, however, is
an unobservable process which depends on the future combina-
tions of (a,, s,). As such, one needs to solve a dynamic program-
ming algorithm in the form of a Bellman equation.

This optimization mechanism, however, would lead to quickly
forgetting rare outcomes as well as it is prone to strongly cor-
related updates that violate the i.i.d. assumption of stochastic
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gradient descent algorithms. Experience replay (Lin 1992) ad-
dresses these issues as experience is stored in a replay memory
from where the network can draw input values, thus potentially
including long-term learning and rare outcomes. At the same
time, this allows mixing more with less recent experiences for
the updates, leading to an update distribution closer to being
i.i.d. (Mnih et al. 2015) introduce experience replay to the deep-
Q-network architecture. Moreover, it would be more efficient to
sample more frequently replay batches where there is more to
learn. To do so, (Schaul et al. 2015) introduced prioritised expe-
rience replay.

We define the following reinforcement learning environment
composed of:

« State S = [p, h]: a set including the univariate time-series of
prices p € R, and the number of contracts held h € R_;

« Action S =[1, — 1]:a set of actions where 1 represents a buy-
ing order and —1 a selling one. The action leads to changes
in the holding balance h € R;

« Reward r(s;,a,,5,,,): the change of the cumulated return
of the investment strategy when action at is taken in state
s, and eventually leading to the new state s,,, and where

Pt ).
r,=In( =
t P )

» No contract accumulation is possible; hence a single con-
tract can be traded each time.

The goal is to design an investment strategy that maximises the
Sortino ratio SR, for the investors in the Bitcoin exchange:

_rt_'ft

Gt,semi

SR, @

where o, i,,;; is the semi-standard deviation of the returns gener-
ated by the investment strategy, and rf, is the risk-free rate which
we set equal to the 3months LIBOR/SOFR rate. We choose to
target the Sortino ratio to limit the downside volatility on the
strategy since the Bitcoin market is characterised by frequent
and pronounced volatility spikes.

3.2 | XGBoost—Model Specification

XGBoost is an implementation of gradient-boosting machines
belonging to the broader collection of tools under the um-
brella of the Distributed Machine Learning Community. Its
widespread adoption followed winning the Higgs Machine
Learning Challenge. The XGBoost library provides two wrap-
per classes that allow the random forest implementation
provided by the library to be used with the scikit-learn ma-
chine learning library. One of the most important differences
between XGBoost and Random Forest is that the XGBoost
always gives more importance to functional space when re-
ducing the cost of a model while Random Forest tries to give
more preferences to hyperparameters to optimise the model.
As such, while the XGBoost model often achieves higher accu-
racy than decision trees, it sacrifices the interpretability of the
explanatory variables. Unlike gradient boosting that works
as gradient descent in function space, a second order Taylor

approximation is used in the loss function to make the con-
nection to the Newton-Raphson method. For an overview of
XGBoost models, see Chen and Guestrin (2016).

3.3 | GARCH Model—Model Specification

Generalised Autoregressive Conditional Heteroskedasticity
(GARCH) is a statistical model used for analysing time-series
data where the variance error is serially autocorrelated. GARCH
models assume that the variance of the error term follows an au-
toregressive moving average process. GARCH models are com-
monly employed in modelling financial time series that exhibit
time-varying volatility and volatility clustering. For an overview
of GARCH models, see Bollerslev (1987).

4 | Data

The data set used is a time-series of daily, open, spot prices of
Bitcoin futures (BTC) for the period February 2012-December
2023 sourced from Quandl (3290 daily observations). The choice
of the data set has been driven by data completeness and the
availability of many explanatory variables. Due to the persistent
correlation and Granger causality between Bitcoin prices and
other cryptocurrencies (Ghorbel and Jeribi 2021), investigation
of the former allows for establishing a gauge over the entire
market. In Table 1, we define every explanatory variable used
in this study.

We fractionally differentiate each time series to achieve station-
arity. To estimate the fractional parameter, we used the algo-
rithm of Geweke and Porter-Hudak (2008), whose estimator is
based on the regression equation using the periodogram func-
tion as an estimate of the spectral density.

We trained each model on a training sample composed of 60%
of the observations and cross-validated the in-sample estima-
tions by means of k-fold cross-validation, with k = 5. Since a
Portmanteau test rejected the null hypothesis of identically and
independently distributed data at any confidence interval, the
cross-validation was purged to take into consideration the se-
rial correlation of the data. As such, in Figure 1 we formed the

TABLE1 | The variables composing the data set used in this study.

Name Description

BTC Bitcoin price in USD

AVBLS Average block size

HRATE Hash rate (diff.)

ETRAV Estimated transaction volume (diff.)

NTRBL Transactions per block (diff.)

NADDU Transactions excluding
popular addresses (diff.)

NTREP Number of transactions (diff.)—1.6

Note: In this table we define the variables used in this study. The abbreviations
are defined in the second column and in other tables and in the text we used the
abbreviations.
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validation folds with adjacent observations, rather than with
randomly picked ones.

The model specifications are fine-tuned via grid search. For
the multilinear perceptron within the reinforcement learning
model, we use two hidden layers with leaky RELU activation
function, the Glorot kernel initializer, a Ridge regularizer of
0.01 and a Lasso regularizer of 0.01. The training is done via
Stochastic Gradient Descent with a Nesterov momentum of 0.6.
The loss function is binary cross-entropy. We chose the multilin-
ear perceptron model as more complex models, such as convolu-
tional neural networks or recurrent neural networks, improved
the in-sample fitting but worsened the model's capability to gen-
eralise out-of-sample. In other words, the reduced bias due to
enhanced model complexity is more than offset by the increased
variance. For the XGBoost, we use a Ridge regularizer of 0.05
and a Lasso regularizer of 0.02, a maximum tree depth of 5 and
accuracy as the evaluation metric. In both cases, a validation
sample of 20% of the training observation was used to apply the
purged fivefold cross-validation algorithm. For the univariate
ARFIMA-GARCH model, we use an eGARCH(1,1) specifica-
tion with skewed t-student distribution and an ARIMA(2,0,2)
for the mean model.

5 | Out-of-Sample Validation Methodology

To address the research question, we follow the literature and
apply the double deep Q-learning, as it avoids the overesti-
mation problem associated with Q-learning. Application of
machine learning is challenging in the case of stock market
forecasting because of the noisy nature of the historical data.
Competitive machine learning approaches mostly act in a su-
pervised manner, ignoring several macro factors affecting the

financial market, which leads to over-fitting. As reinforcement
learning approaches can learn the process to maximise a re-
turn function during the training stage, we can minimise the
overfitting problem. Thus, we use a Q-learning agent, which
can be trained several times using the same training data
and can be important in the real-world stock markets (Carta
et al. 2021). However, double deep Q-learning might under-
estimate the action values at times. Since neural networks
and machine learning models are prone to overfitting in the
training sample, the focus should be on the capability to gen-
eralise out-of-sample. For this reason, we evaluate the models
on a strict out-of-sample framework based on 10 synthetic data
sets generated by means of a variational autoencoder (VAE),
which was introduced by Kingma and Welling (2013). The
VAE reduces the reconstruction error between the input and
output of the network when applied on real data. Thus, VAE
improves the generated data quality by minimising the distri-
bution distances between the real posterior and the estimated
one (Tables C1 and C2) in Appendix C.

The next of this paragraph introduces the VAE model used to
produce the synthetic data sets.

Consider a data set X = {X(”}Ii\i1 composed of N i.i.d. samples
coming from a random variable x. Let's assume that the data is
generated by a random process involving an unobserved contin-
uous random variable z. The process consists of first generating
a value z from some prior distribution p,(z) to then generating a
value x! from the conditional distribution p,(x|z). Let's assume
that the PDFs of p,(z) and p,(x|z) are differentiable almost ev-
erywhere with respect to z, . However, the true parameters 6
and the values of the latent variable z are unknown. The objec-
tive is to find an efficient neural network approximation for the
latent variable z as this would allow to mimic the hidden random
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process and generate a synthetic data set that resembles the real
data. To do so, we employ a Variational Auto-Encoder. Assume
the prior over the latent variables to be a centred isotropic multi-
variate Gaussian p,(z) = N(z,0,1). Let p,(x| z) be a multivariate
Gaussian with 6 estimated via a fully connected neural network
with a single hidden layer. The true posterior is intractable but
assuming that is approximated by a Gaussian distribution with
an approximately diagonal covariance, then the variational ap-
proximate posterior is a multivariate Gaussian with a diagonal
covariance structure:

logg, (Z| xi) )IOgN(Z, u, O'iI) )

where g, (z| xi) is based on an alternative technique for sampling
zsuch as Monte Carlo and ( ut, ai) are the mean and standard de-
viation of the approximate posterior which are outputted by the
neural network as nonlinear functions of x and the variational
parameters ¢.

Afterwards, one simply need to sample from the posterior
zh ~ gy (z] xT) with 2 = gy (x', e') = y' + o'¢!, where e ~ N(0,1).
Itcanbe proven that the Kullback-Leibler divergence can be com-
puted without estimation and the resulting estimator for the
data point x' is given by:

7

£(0,¢,x) g% Z <1+log<(a;i)>2> - (;4;17)2_ (6;i>)2>

Jj=1

©)
logpg (xi | Zi,l)

Il
—

+
=
M=

where logp, (xil zi”) is a Gaussian fully connected neural net-
work decoding term.

The robustness of the VAE used in our study is coherent with other
studies (Camuto et al. 2021). Given this framework, we produce
10 multivariate synthetic data sets composed of 1316 observations
(40% of out-of-sample observations). Once again, focusing on out-
of-sample performance is essential in financial applications to
avoid in-sample overfitting. On the other hand, the models have
been trained and validated on the 60% of in-sample observations.
The model specification is fine-tuned via grid search. For the
VAE, we use two hidden layers with five hidden units activated
by means of the leaky RELU function, initialised with the Glorot
kernel initialiser, with a Ridge regularizer of 0.02 and a Lasso
regularizer of 0.01. The training is done via Stochastic Gradient
Descent with a Nesterov momentum of 0.6. The loss function tar-
gets the representation error via the mean squared error.

Figures B1-B7 in Appendix B compare each variable's density
plot in the original data with those in the 10 synthetic data sets.
The grey-shaded area is the distribution of the synthetic variable
in each data set, while the red-shaded one is the distribution
of the same variable in the original data set. As is visible, the
synthetic distributions closely match the original data set with
few discrepancies, which are mostly limited to higher standard
deviation around the mean and rare differences in the tails.

6 | Results

In this section, we discuss our findings. We follow the extant
literature (e.g., Ding, Cui, and Zhang 2022; Wang, Andreeva,

and Martin-Barragan 2023; Kumar et al. 2024) to evaluate
the performance of our double deep Q-learning model and
compare its performance with two existing models, namely
XGBoost and ARFIMA-GARCH. In line with our aim of of-
fering an approach to forecast Bitcoin prices, we focused our
evaluation on 10 synthetic data sets in terms of an invest-
ment strategy based on their one-step-ahead sign forecasts
and in terms of their performances as classifiers. According
to Huang (2021) the significance of model-predicted signs is
crucial for investment strategies and indicates while ordinary
least squares (OLS) estimators generally yield better Sharpe
ratios, sign regression can outperform for certain assets.
Similarly using sign prediction, Sebastido and Godinho (2021)
examine the predictability of digital currency using linear
models, random forests, and support vector machines. They
show how the combination of multiple models can achieve an-
nualised Sharpe ratios of 80.17% for Ethereum and 91.35% for
Litecoin (despite changes in trading costs and market volatil-
ity). So, we first illustrate how the sign predictions are trans-
lated into investment strategies. Starting from the double deep
Q-learning model, the output of the learning process is the
triplet state, action, and reward (a,, s;, ;). As such, given a state
s,, the chosen actions a, € [1, — 1] are directly translated into
rewards r,. Hence, the profit and loss of the investment strat-
egy are the direct output of the learning algorithm.

The XGBoost model, instead, forecasts the one step-ahead
probability p, of the next fractional return r,,, being positive
(Chen et al. 2021). Hence, we convert the probability into a
trading action by using a static threshold of 0.5 with a buying
mechanism triggered when p, > 0.5, and vice versa. This is a
direct yield of having a binary classification as the evaluation
objective. Finally, the ARFIMA-GARCH is a univariate re-
gression model that forecasts the one-step-ahead fractional re-
turn. Hence, the strategy is to ‘buy’ when the one-step-ahead
predicted return, r,,, is positive and vice versa. The fractional
differentiation algorithm does not alter the sign of the price
change. As such, increase in price reflects positive fractional
returns, and vice versa. This property is important since both
the XGBoost and the ARFIMA-GARCH models use fractional
returns of Bitcoin prices as these are not stationary (Almaafi,
Bajaba, and Alnori 2023).

Following Dos Santos and Aguilar (2024), at the next stage, we
compare the investment performance achieved by the three
models on the 10 synthetic data sets (also see Arian, Norouzi,
and Seco 2024). To showcase the applicability of these models,
we add to the comparison a naive buy-and-hold strategy on the
BTC. Tables C3 and C4 in Appendix C report the descriptive
statistics of the returns as well as the Sharpe and Sortino ratios
achieved by each strategy in each of the 10 out-of-sample syn-
thetic data sets. To improve comparability, we also include the
average across the 10 data sets. Double deep Q-learning achieves
the highest average annualised mean return of 15.8%. This sug-
gests that the model is capable of generating substantial returns
over time. However, high returns often come with higher risk.
Investors should evaluate their risk tolerance and ensure they
are comfortable with the potential volatility associated with this
strategy. While XGBoost outperforms in terms of average an-
nual median return (10.5%) which indicates a more consistent
and stable return profile. This could be appealing to investors
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who prioritise stability and predictability in their investments.
In addition, XGBoost may be less prone to extreme outcomes,
making it a potentially safer choice for risk-averse investors.
Both double deep Q-learning and XGBoost outperform the buy-
and-hold strategy (7.9% annual mean and 4.8% annual median),
ARFIMA-GARCH is the worst performer in terms of both met-
rics. At the same time, ARFIMA-GARCH strategies achieve
unstable performances across the 10 data sets compared to the
double deep Q-learning and XGBoost whose statistics are stable
across the synthetic data sets.

Nevertheless, the double deep Q-learning records the highest
annualised standard deviation across the 10 data sets, averag-
ing 33.2% compared to 26.9% of XGBoost and 24% of ARFIMA-
GARCH. Investors might use double deep Q-learning as part
of a diversified portfolio to balance risk and reward, leveraging
its potential for high returns while mitigating overall portfolio
risk. All the models have a larger standard deviation compared
to the buy-and-hold strategy whose annualised standard devia-
tion is 20.7% (also see Gort et al. 2022). At the same time, double
deep Q-learning records a large average kurtosis of 9.7x, while
XGBoost and ARFIMA-GARCH achieve a kurtosis below three,
improving on the 6.7x of the buy-and-hold strategy. However,
the larger standard deviation and kurtosis of double deep Q-
learning are offset by the largest, positive average skewness of
2.4 and the lowest downside volatility of 3.1%. In fact, the ob-
jective function of double deep Q-learning is to maximise the
Sortino ratio, which embeds minimising the downside volatility
while maximising the returns. This implies that its higher aver-
age standard deviation is the result of higher upside volatility.
Figure 2 plots the average standard deviations while Figure 3
plots the average downside volatilities both calculated on a roll-
ing window of 100days. ARFIMA-GARCH returns, instead, are
mostly symmetrical (positive and negative returns are roughly
equal in magnitude and frequency) while the downside volatil-
ity is the highest across all the synthetic data sets. This means

that while the returns are symmetrical, the negative returns
(losses) can be quite large and frequent, leading to higher risk
during downturns. So, the model's performance could be more
erratic during the financial crisis, requiring investors to be vig-
ilant and possibly adjust their strategies accordingly. Investors
may need to implement robust risk management strategies to
mitigate this downside risk. From these figures, it is evident that
both double deep Q-learning and XGBoost can effectively cur-
tail the standard deviations and the downside volatility of the in-
vestment strategies. From this follows an expectation of superior
risk-adjusted performances, such as Sharpe and Sortino ratios,
wherein an improved performance is linked to lower volatility,
all else equal.

In terms of Sharpe ratio, double deep Q-learning and XGBoost
achieve a similar performance of 0.63x, while ARFIMA-GARCH
underperforms due to lower returns not sufficiently offset by
lower standard deviation. The findings are consistent with the
existing studies (Wang et al. 2020). For the ARFIMA-GARCH
strategy, the same applies in terms of the Sortino ratio. Double
deep Q-learning, instead, is the best-performing model in terms
of Sortino ratio (best risk-adjusted returns by focusing on down-
side risk) on the back of lower downside volatility (meaning it
is less likely to experience significant losses, which is crucial
for risk-averse investors) and higher returns, followed by the
XGBoost strategy which also outperforms the buy-and-hold
strategy. This makes the machine learning model an attractive
option for investors seeking high returns with controlled risk.

Moving to the performance of the classification models, Table 2
reports statistics of the confusion matrices generated by each
classifier. All the confusion matrices are based on the model's
ability to correctly classify the sign of the one-step-ahead re-
alised return on the average of the 10 out-of-sample synthetic
data sets. The sign is extracted in the same way as presented
in the previous section. The realised classes in the average

BN DDQRL I XGboost

c
Jun 20

ARFIMA-GARCH N BTC

FIGURE2 | Rolling standard deviations obtained by each strategy. [Colour figure can be viewed at wileyonlinelibrary.com]|
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FIGURE 3 | Rolling downside volatilities obtained by each strategy. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 | Statistics of confusion matrices.

Double deep Q-learning XGBoost ARFIMA-GARCH
Accuracy (%) 75.27 76.35 51.93
95% CI lower (%) 77.6 78.34 54.68
95% CI upper (%) 72.8 73.94 49.17
Sensitivity (%) 74.11 74.57 52.4
Specificity (%) 76.42 78.1 51.45
Balanced accuracy (%) 75.26 76.34 51.93

Note: The statistics of the confusion matrices generated by each classifier. The classifiers are double deep Q-learning; XGBoost and ARFIMA-GARCH. The statistics

are reported in percentages.

out-of-sample data sets are well balanced, with 50.3% of the
observations belonging to the buying class and the rest to the
selling one. Double deep Q-learning and XGBoost outperform
ARFIMA-GARCH in terms of all the metrics proposed. The lat-
ter, in fact, can barely improve on the performance of a random
classifier as it records a 51.9% accuracy and a 95% confidence
interval lower bound below the 50% threshold. Double deep Q-
learning and XGBoost, instead, achieve fairly similar results.
The latter records the highest out-of-sample classification ac-
curacy of 76.35%. Moreover, both double deep Q-learning and
XGBoost have larger specificity compared with sensitivity. In
other words, both models are better suited to identifying days
when selling is the best strategy compared to buying (Filos 2019).
ARFIMA-GARCH, on the other hand, records higher sensitiv-
ity compared to specificity, yet not far enough from the perfor-
mance of a random classifier.

7 | Conclusions

In this study, we investigate whether a machine learning-
inspired model can successfully forecast cryptocurrency

returns. We need machine learning models to find easy ex-
planation for investors and policy makers and also to address
the limitations of statistical models explained in the existing
recent studies (Chen et al. 2021; Wang, Andreeva, and Martin-
Barragan 2023). To address the above question, we evalu-
ated the performance of three models, namely double deep
Q-learning, XGBoost and ARFIMA-GARCH in forecasting
Bitcoin prices as well as to a buy-and-hold strategy. Our results
show that the double deep Q-learning model outperforms the
other models in terms of returns and Sortino ratio while the
ARFIMA-GARCH model represented the worst-performing
model across all tests. In layman's terms, by using the above
models we identified one of the best models that can consider
the risk factor appropriately in forecasting and can be suitable
for any investors with any level of risk-taking behaviour. The
findings suggest that in practice, an investment strategy will
only be penalised for volatility in a down-moving market,
which is a great assurance for investors. It is also important
for policymakers to know that our findings suggest less dam-
age to economic value of the market during a time of extreme
volatility. Based on these results, the study offers three main
contributions.
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First, our study contributes to the literature on cryptocurrency
returns by settling the debates on the suitability of machine
learning models in forecasting cryptocurrency returns. In prior
finance literature, there are debates about the suitability of ma-
chine learning models in forecasting (Sun Yin et al. 2019). While
some studies (Chen et al. 2021; Gradojevic et al. 2021) argue that
machine learning models can forecast cryptocurrency returns,
others (Christodoulou et al. 2019) disagree, leading to incon-
clusive debates. Moreover, existing research (Xie, Chen, and
Hu 2020) tends to use regression approaches or primarily focus
on out-of-sample performance evaluation on a single subset of
historical data opening the results to more criticisms as to the
suitability of machine learning models. However, in this study,
we move beyond the existing research by evaluating the suitabil-
ity of three machine learning models as well as used the entire
historical data of Bitcoin to overcome the single historical snap-
shot criticism. By doing so, the study offers critical insights that
address the criticism of existing research as well as attempts to
settle the ongoing debate in the literature.

Second, whereas existing research mainly uses the total cumu-
lated profit as target function, only focusing on the time series
of returns and out-of-sample backtesting on historical data,
our study contributes new insights by targeting a risk-adjusted
measure such as the Sortino ratio, which penalises an invest-
ment strategy only for volatility in a down-moving market, as
opposed to Sharpe ratio which penalises for volatility in any
market movement. For instance, prior studies (Li, Zheng, and
Zheng 2019) use cumulated profit, which is criticised for not ac-
curately reflecting risk considerations. However, our approach
of risk adjusting using the Sortino ratio offers a more holistic
representation of risk targeting cumulated profit results in an in-
vestment strategy with extreme allocations, without considering
the riskiness of the position. The difference becomes particularly
relevant when different types of investors are considered. While,
on one hand, proprietary traders are focused on maximising the
profit and loss function of their investment strategies, invest-
ment funds and banks are focused on delivering higher returns
amid controlled risk scenarios. For these reasons, these institu-
tions are mostly evaluated against risk-adjusted measures, such
as the Sortino ratio. A widespread adoption of cryptocurrencies
to foster broad societal consequences also passes through the in-
clusion of these instruments among the traded instruments of
such large institutions.

Lastly, our study enriches the literature on financial asset
forecasting by offering an alternative perspective in fore-
casting Bitcoin returns. By conducting this study on Bitcoin
price forecasting, we enrich the investment literature (Mattke
et al. 2021; Mai and Hranac 2013; Gefen 2002). The extant lit-
erature (Ibrahim, Kashef, and Corrigan 2021) predominantly
uses time-series data on cryptocurrency prices, which often
do not take other critical peculiarities—such as market micro-
structure—into consideration. By relying solely on time series
data of cryptocurrency price, the results of these studies are
sometimes criticised for robustness. Our study overcame this
challenge by using a set of explanatory variables (average block
size, has rate, transaction volume, transaction per block, trans-
actions excluding popular addresses and number of transac-
tions), in addition to time-series data of cryptocurrency prices.
Thus, this approach allows us to take into consideration the

peculiar market microstructure of cryptocurrencies. By using
explanatory variables to augment limitations in solely rely-
ing on time-series data, this study contributes a novel process
that advances cryptocurrency returns forecasting research. In
addition, Bitcoin time-series exhibit high volatility and lepto-
kurtosis, which, coupled with the short trading history, makes
out-of-sample evaluations based on historical data highly un-
reliable (Pintelas et al. 2020). For this reason, we contribute to
the finance literature by proposing the usage of a Variational
Autoencoder to simulate the original distribution of the un-
derlying data in 10 synthetic data sets and evaluate the out-of-
sample performances on these.

Practically, the study also offers some critical insights. First,
the results demonstrate that it is possible to use machine learn-
ing models to successfully predict cryptocurrency returns. This
means practitioners using and those thinking of using machine
learning models can be more confident in applying machine
models. It is difficult for the practitioners to use the findings of
the prior studies because most of them cannot accurately reflect
risk consideration by using cumulated profit (Li, Zheng, and
Zheng 2019). However, we use a more holistic approach where
the Sortino ratio is relevant for different types of investors.
Second, the results of this study offer practitioners a benchmark
and reference point for their application of machine learning
models since existing research has only provided anecdotal ev-
idence. Lastly, the study offers some strategies to cope with the
cryptocurrency volatility. For instance, we define an environ-
ment where an agent learns to choose the best suited between
two actions, buy or sell a BTC future contract, during each trad-
ing day to maximise the Sortino ratio of the investment strat-
egy. We choose to target the Sortino ratio to limit the downside
volatility on the strategy since the Bitcoin market is character-
ised by frequent and pronounced volatility spikes. Creating a
consistently profit-making investment algorithm based on on-
line learning would attract more long-term investors and po-
tentially win the regulatory consensus (Sun Yin et al. 2019) for
creating regulated spot trading venues. Therefore, this would
result in improved long-term market liquidity and lower mar-
ket volatility. The virtuous cycle would complete with the more
widespread adoption of digital coins, fuelling positive societal
impact hidden beneath the merely speculative aims. As such,
the scope of this manuscript is to propose an online machine
learning model, the double deep Q-learning, and analyze its
performance both in terms of investment strategy and as a clas-
sifier. Like all research, this study has some limitations, which
presents an avenue for future studies. First, this research only
focused on Bitcoin, therefore future studies can use other cryp-
tocurrencies such as Ethereum, Litecoin, Doge coin and so on;
validate our findings towards wide generalisation. Second, our
study used three popular machine learning models, namely
double deep Q-learning, XGBoost and ARFIMA-GARCH in
forecasting Bitcoin prices. Second, future studies can explore
further development and refinement of cross-validation meth-
ods tailored to financial data, particularly focusing on miti-
gating overfitting and improving model robustness. It is also
important to examine the application of the combinatorial
purged cross-validation (CPCV) method to real-world financial
markets to validate its effectiveness and practicality. Finally,
financial institutions can explore the validation techniques for
regulatory compliance.
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Appendix A

TABLE A1 | Comparative table for existing literature.

Articles

Reinforcement
learning model

Application domain

Limitations

Wu et al. (2020)

Borrageiro, Firoozye,
and Barucca (2022)

Zhang and
Maringer (2016)

Li, Zheng, and
Zheng (2019)

Zhang, Zohren, and
Roberts (2020)

Deng et al. (2016)

Moody et al. (1998)

Yang et al. (2020)

Lee et al. (2007)

Adhami and
Guegan (2020)

Schnaubelt (2022)

Alonso-Monsalve
et al. (2020)

Dempster and
Leemans (2006)

Gated deep Q-learning

Recurrent
reinforcement learning

Genetic algorithm-
recurrent
reinforcement learning
(GA-RRL)

Deep reinforcement
learning

Deep Q reinforcement
learning

Fuzzy deep direct
reinforcement

Recurrent
reinforcement learning

Deep Q-reinforcement
learning

Inverse reinforcement
learning

DCC, ADCC

Backward-induction Q-
learning, deep double
Q-networks

Compares the
performance of four
different network
architectures

Adaptive reinforcement
learning. The
parameters are
dynamically optimised
to maximise a trader’s
utility. Adaptive
reinforce-utility

Equity single stock

Bitcoin versus US Dollars;
trading perpetual swap
derivatives contract

Daily prices, trading volume,
price-earning, price-cash flow,
debt-market value of S&P 500
US firms

Equity single stock

Multi assets future contracts

Equity indexes and commodity
futures

Equity index

Equity Index

Bitcoin

Multi assets, cryptocurrencies
(bitcoin, tokens)

Multiple assets

Multiple cryptocurrency
forecasting

Historical data on foreign
exchange markets

Out-of-sample performance evaluated on a single set of
historical data.

Monte Carlo simulation of 250 trials, obtained reasonable
variability of returns.
No out-of-sample data analysis.

GA-RRL trading system did not outperform the buy-and-
hold strategy by producing a greater number of positive
Sharpe ratio.

Out-of-sample performance evaluated on a single set
of historical data. Low volatility time series removed.
Maximises cumulated profit. Cumulates large positions
(n contracts). No explanatory variables
(Time-dependency)

Out-of-sample performance evaluated on a single set of
historical data. Maximises cumulated profit. Cumulates
large positions (n contracts). No explanatory variables
(Time-dependency)

Out-of-sample performance evaluated on a single set of
historical data. Maximises cumulated profit. Cumulates
large positions (n contracts). No explanatory variables
(Time-dependency)

Out-of-sample performance evaluated on a single set of
historical data.

Out-of-sample performance evaluated on a single set of
historical data. Maximises cumulated profit.

Out-of-sample performance evaluated ed. on multiple
sets of historical data. Maximises cumulated profit.

The evolution of the economic impact of ICOs on the real
economy and financial stability is still to be tested. No
use of machine learning.

Used out-of-sample performance of reinforcement
learning algorithms and benchmark strategies. No
implementation of feature representations from the data
using CNN and routing orders to multiple exchanges

For dash and ripple because of noise and temporal

behaviour. The data generation parameters are not

sufficient. Short-term trend prediction has its own
limitations with network architecture.

Risk management layer can be extended to control
several automated FX trading systems that trade
different currencies. Out-of-sample cumulative profit
measured.

Note: Summary of the most relevant literature related to our study.
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Appendix B
Synthetic distributions (obtained via VAE) versus original ones (Figures B1-B7).
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FIGURE B2 | AVBLS—Average block size. [Colour figure can be viewed at wileyonlinelibrary.com]
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ETRAV—Estimated transaction volume. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE B5 | NTRBL—Transaction per block. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE B6 | NADDU—Transactions excluding popular addresses. [Colour figure can be viewed at wileyonlinelibrary.com]

3184 International Journal of Finance & Economics, 2025

85U017 SUOWILIOD BAITEID) 8|qed! (dde 8y} Aq peuienob afe sejoie VO ‘85N J0 S9N 10} A%iq18UlUO 48] UO (SUONIPUOD-pUR-SLUB)L0D A8 | 1M Afe1q 1 Ul |UO//SdNY) SUORIPUOD Pue SWIB | 3U188S *[520z/2T/8T] Uo AriqiTauluo Ae|im ‘AiseAlun punig Ag 290 a4(1/200T 0T/1I0pw0d- A8 | imAeiq Ul |uo//Sdny wo.j pepeojumod ‘¢ ‘5202 ‘8STT660T


https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/

NTREP-D1

NTREP-D2

NTREP-D3 NTREP-D4

NTREP-D5

NTREP-D6

NTREP.D7

NTREP.D8

NTREP-D9

NTREP-D10

Densty

Densty

Densty

Densty
4

Densty

Densty

Densty

Densty

Densty

Densty

05 00 05 10

FIGURE B7 | NTREP number of transactions. [Colour figure can be viewed at wileyonlinelibrary.com]

Appendix C

04 00 04

00 05 10 04 00 04 08

Annualised descriptive statistics for investment strategies.
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TABLE C1 | Annualised descriptive statistics for double deep Q-learning investment strategy.
Volatility Downside Sharpe Sortino
Sample Mean Median SD Skewness Kurtosis skew volatility ratio ratio
Vi1 15.629% 8.214% 33.005% 1.990 6.023 60.054 3.011% 0.592 4.190
V2 15.385% 7.950% 33.718% 2.194 6.150 61.466 3.258% 0.589 4.333
V3 15.811% 7.746% 31.953% 1.844 5.455 64.304 2.735% 0.649 4.258
V4 14.885% 7.646% 32.691% 2.493 6.517 68.208 3.085% 0.655 4.412
V5 15.762% 6.941% 34.191% 2.310 5.753 71.336 3.213% 0.636 4.422
V6 15.666% 8.247% 33.215% 1.931 5.866 66.233 2.698% 0.627 4.097
v7 15.915% 8.146% 33.869% 2.583 6.273 66.259 3.104% 0.603 4.386
V8 15.865% 7.123% 33.040% 2.321 6.483 67.120 2.948% 0.611 4.380
\E 15.756% 7.016% 33.817% 1.762 5.636 71.153 2.739% 0.618 4.180
V10 15.396% 7.246% 33.684% 2.358 6.912 69.235 3.232% 0.598 4.137
Average 15.607% 7.627% 33.318% 2.179 6.107 66.537 3.002% 0.618 4.279

Note: In this table, we report the annualised descriptive statistics for double deep Q-learning investment strategy in each of the 10 out-of-sample synthetic data sets.

V1-V10 denote each of the out-of-sample synthetic data sets. In the last row of the table, we included the average of the 10 data sets.
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TABLE C2 | Annualised descriptive statistics for XGBoost investment strategy.

Volatility Downside Sharpe Sortino
Sample Mean Median SD Skewness Kurtosis skew volatility ratio ratio
V1 16.169% 7.398% 35.145% 2.167 6.239 72.821 2.938% 0.598 4.657
V2 16.086% 7.523% 32.517% 1.761 5.691 64.059 3.240% 0.591 4.475
V3 16.419% 6.651% 33.157% 2.129 6.938 67.732 2.740% 0.675 4.630
V4 16.439% 7.066% 32.237% 2.275 7.721 69.766 3.341% 0.621 4.436
V5 15.751% 7.879% 34.236% 2.055 5.461 64.796 3.121% 0.604 4.301
Vo6 15.750% 7.197% 34.442% 2.738 6.406 71.401 3.196% 0.620 4.606
v7 15.946% 6.335% 33.251% 2.448 5.630 65.679 2.771% 0.618 4.355
V8 15.624% 7.871% 31.230% 2.180 5.977 69.754 3.199% 0.645 5.277
V9 15.551% 6.578% 31.988% 2.286 6.716 56.727 3.325% 0.660 4.693
V10 16.288% 7.903% 31.758% 2.391 7.046 68.861 2.790% 0.651 4.507
Average 16.002% 7.240% 32.996% 2.243 6.382 67.160 3.066% 0.628 4.594

Note: In this table, we report the annualised descriptive statistics for XGBoost investment strategy in each of the 10 out-of-sample synthetic data sets. V1-V10 denote
each of the out-of-sample synthetic data sets. In the last row of the table, we included the average of the 10 data sets.

TABLE C3 | Annualised descriptive statistics for ARFIMA-GARCH investment strategy.

Volatility Downside Sharpe Sortino

Mean Median SD Skewness Kurtosis skew volatility ratio ratio
V1 3.49% 1.85% 17.38% 0.27 3.08 1.16 7.44% 0.03 0.04
V2 5.59% 4.02% 26.34% -0.04 2.13 1.07 11.54% 0.03 0.04
V3 4.92% 3.07% 23.21% —0.08 1.93 1.09 10.12% 0.03 0.04
V4 6.27% 11.28% 24.31% —0.18 1.79 1.03 10.74% 0.03 0.05
V5 4.83% 0.21% 21.49% 0.22 1.81 1.21 9.11% 0.03 0.04
Vo6 15.06% 14.01% 30.66% —0.02 1.32 1.22 13% 0.06 0.1
V7 2.82% 6.75% 25.13% -0.13 1.89 0.98 11.23% 0.01 0.02
V8 1.79% 3.59% 19.89% -0.14 2.08 0.98 8.89% 0.01 0.02
V9 5.56% 1.86% 29.51% 0.05 1.11 1.12 12.77% 0.02 0.04
V10 4.83% 9.29% 22.60% -0.22 3.92 0.98 10.11% 0.03 0.04
Average 5.52% 5.59% 24.05% -0.03 2.11 1.08 10.50% 0.03 0.04

Note: The descriptive statistics of the returns as well as the Sharpe and Sortino ratios achieved by ARFIMA-GARCH investment strategy in each of the 10 out-of-
sample synthetic data sets. To improve comparability, we also include the average across the 10 data sets. V1-V10 denotes the out-of-sample synthetic data sets.

TABLE C4 | Annualised descriptive statistics for Bitcoin buy-and-hold investment strategy.

Volatility Downside Sharpe Sortino
Mean Median SD Skewness Kurtosis skew volatility ratio ratio
BTC 7.96% 4.79% 20.70% 1.21 6.73 8.71 4.69% 20.2 1.41

Note: The descriptive statistics of the returns as well as the Sharpe and Sortino ratios achieved by Bitcoin buy and hold investment strategy.
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