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Abstract—Semi-supervised learning methods based on the
mean teacher model have achieved great success in the field of 3D
medical image segmentation. However, most of the existing meth-
ods provide auxiliary supervised signals only for reliable regions,
but ignore the effect of fuzzy regions from unlabeled data during
the process of consistency learning, which results in the loss of
more valuable information. Besides, some of these methods only
employ multi-task learning to improve models’ performance, but
ignore the role of consistency learning between tasks and models,
thereby weakening geometric shape constraints. To address the
above issues, in this paper, we propose a semi-supervised 3D
medical image segmentation framework with multi-consistency
learning for fuzzy perception-guided target selection. First, we
design a fuzzy perception-guided target selection strategy from
multiple perspectives and adopt the fusion method of fuzziness
minimization and the fuzzy map momentum update to obtain
a fuzzy region. By incorporating the fuzzy region into consis-
tency learning, our model can effectively exploit more useful
information from the fuzzy region of unlabeled data. Second, we
design a multi-consistency learning strategy that employs intra-
task and inter-model mutual consistency learning as well as cross-
model cross-task consistency learning to effectively learn the
shape representation of fuzzy regions. The strategy can encourage
the model to agree on predictions for different tasks in fuzzy
regions. Experiments demonstrate that the proposed framework
outperforms the current mainstream methods on two popular 3D
medical datasets, the left atrium segmentation dataset, and the
brain tumor segmentation dataset. The code will be released at:
https://github.com/SUST-reynole.

Index Terms—Medical image segmentation, Semi-supervised
learning, Fuzzy estimation, Consistency learning
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MEDICAL image segmentation plays a key role in ra-
diotherapy and computer-aided diagnosis by accurately

and automatically segmenting anatomical structures or lesions,
which can greatly improve diagnostic efficiency and accuracy
[1]. In recent years, many supervised learning-based methods
for medical image segmentation have been demonstrated to
be effective, such as U-Net [2], TransUnet [3] and Swin-Unet
[4]. However, these methods typically require large amounts
of high-quality labeled data, but in practice the annotation of
medical images is usually very expensive, especially for 3D
medical images such as CT and MRI scans. One of the main
reasons is that medical image annotation requires a tedious
and specialized manual contouring process. Compared to su-
pervised learning, semi-supervised learning is a new learning
paradigm to solve the problem of incomplete data supervision
[5]. It mainly utilizes unlabeled data to mine effective hidden
information, thus improving models’ performance. In addition
to traditional supervised and semi-supervised methods, new
approaches such as one-shot segmentation and template-based
joint learning methods have also been reported. One-shot
segmentation methods aim to learn effective segmentation
models from a single annotated example, which is particularly
useful in the medical field where annotated data are scarce
[6]. These methods leverage prior knowledge and transfer
learning to improve the model’s generalization ability from
minimal labeled data, thus reducing the dependency on exten-
sive annotations [7]. Template-based joint learning methods,
on the other hand, use pre-defined templates or atlases to
guide the segmentation process [8]. By aligning new images
with these templates, the model can effectively leverage prior
structural information, which enhances segmentation accuracy
and robustness, especially in complex anatomical regions [9].
Obviously, in the field of medical image segmentation, semi-
supervised learning is more suitable for the needs of practical
clinical scenarios.

Currently, a large number of semi-supervised medical image
segmentation methods have emerged. Most of these methods
firstly employ a popular encoder-decoder network architecture
as the backbone, perform model pre-training using full super-
vision on a few labeled data, and then utilize data perturbation,
model perturbation, or feature perturbation to achieve the
effective utilization of unlabeled data, and finally update the
network model. For most semi-supervised learning methods,
their core idea is to use consistency learning to mine potential
knowledge from unlabeled data and improve the generalization
ability of the model. Consistency learning usually employs

This article has been accepted for publication in IEEE Transactions on Radiation and Plasma Medical Sciences. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2024.3473929

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. X, NO. X, X X 2

consistency regularization with different perturbations to train
a network. One of the most representative methods is the Mean
Teacher (MT) [10] and its variant models [11] [12] [13] [14]
[15] [16]. This class of methods exploits the perturbation-
based consistency loss between the teacher model and the stu-
dent model, and the supervision loss on labeled data. They face
the following two problems when they are applied to 3D med-
ical image segmentation. First, to improve the performance of
the model, these methods provide additional supervision in
a complex and computationally overhead way [12] [14] and
retain only reliable prediction regions when calculating the
consistency loss. Reliable regions commonly occupy a large
portion of an image but have a small consistency loss, and
consistency loss commonly measures the average difference
between the predictions of each individual voxel in the image,
so the consistency learning on reliable regions potentially
reduces the role of fuzzy regions that only occupy a small
portion of an image. Second, consistency learning is usually
applied to identical models or tasks [15] [17], ignoring the
role of the combination of different models and different tasks,
which has not fully explored and utilized the geometric shape
information and inter-model differentiation information for
medical image segmentation.

To solve the above problems, we propose a semi-supervised
3D medical image segmentation framework using multi-
consistency learning with fuzzy perception-guided target selec-
tion. Since the fuzzy regions provide more useful information
for medical image segmentation, the model can learn the most
valuable regions from unlabeled data and does not focus too
much on voxels that already have good classification. By
performing multi-consistency learning on fuzzy regions, the
model better encourages consensus in the most challenging
regions, allowing network models based on semi-supervised
learning to achieve better segmentation performance. The main
contributions of this paper are summarized as follows:

• Different from the mainstream semi-supervised medical
image segmentation networks that only rely on confidence
or uncertainty for consistency learning [12] [14] [18], we
propose a new fuzzy perception-guided target selection strat-
egy. The proposed target selection strategy focuses only on
the regions with high fuzziness in medical images through a
fusion method, which improves the model’s learning effect,
achieves strong regularization constraints, and thus improves
the generalization ability of our network model.

• Different from the mainstream semi-supervised medical
image segmentation networks that only focus on intra-task or
inter-model consistency learning [15] [17] [18], we propose
a novel consistency learning strategy that combines tasks and
models. Intra-task and inter-model mutual consistency learning
as well as cross-model cross-task consistency learning enable
our proposed network to simultaneously take into account
geometric shape constraints and differential perturbations be-
tween models, which enhances the representation ability of
our network on the shape information of targets in 3D medical
images.

• Our proposed framework of fuzzy perception-guided
target selection can be applied to any semi-supervised medical
image segmentation task. We evaluated it experimentally on

two public datasets, the 3D left atrium [48] and the 3D brain
tumors [49]. It is demonstrated that our proposed framework
outperforms state-of-the-art (SOTA) methods.

II. RELATED WORK

A. Semi-supervised Medical Image Segmentation

To overcome the problem of insufficient labeled data in
medical image segmentation, researchers have proposed many
semi-supervised learning methods. Although semi-supervised
methods based on deep learning can provide excellent seg-
mentation results with their powerful feature representation
and modeling capabilities [12], there are still challenges in
applying these methods to complex 3D medical images. In
order to better utilize unlabeled data, more methods focus on
improving learning strategies, which are mainly classified into
consistency learning [10] [11] [12] [18] [19] [20], pseudo-label
learning [21] [22] [23], contrastive learning [24] [25] [26] [27]
[28], and adversarial learning [29] [30] [31]. Among them,
consistency learning focuses on maintaining the consistency
of predictions under different data perturbations to improve
models’ robustness. However, it is more sensible to choose an
appropriate consistency loss function. Pseudo-label learning
uses predictions of unlabeled data as pseudo-labels and trains
them together with labeled data, but it is easily interfered
by noisy samples. Contrastive learning usually requires the
design of effective similarity measures to enhance the feature
representation of similar samples by learning similarity mea-
sures. Adversarial learning introduces adversarial networks to
improve the robustness of a model by generating adversarial
samples, but the stability and convergence of adversarial
networks are the main challenges. Among these methods,
consistency learning is the most popular for semi-supervised
medical image segmentation in practical applications.

Consistency learning aims to learn useful features from both
labeled and unlabeled images, computing regularly supervised
loss on labeled images and unsupervised consistency loss on
unlabeled images. Samuli et al. [32] first proposed a temporal
ensembling strategy by using exponential moving averages
(EMA) to predict unlabeled data as a consistency goal. How-
ever, maintaining EMA of the model’s predictions during the
training process, which increases the computational cost of the
training process. To address this problem, Tarvainen et al. [10]
used the EMA weights of the teacher model and the student
model (MT) to achieve model training, so that the model
is able to achieve consistency learning under different data
perturbations. Specifically, MT first performs a supervision
learning on labeled data, and then utilizes the prediction from
the teacher model to provide a pseudo-label for unlabeled
data, and leverages different learning strategies to ensure that
the predictions of the teacher model and the student model
on unlabeled data are consistent, and finally updates the
student model with feedback on supervision and consistency
losses. Most of the subsequent improvements [11] [12] [14]
[15] [13] [28] employ more complex or computationally
expensive methods to provide additional supervision signals
for consistency regularization strategies, which improves the
prediction quality on unlabeled data. For example, Chen et
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al. [11] proposed a cross-pseudo-supervision (CPS) method
based on model perturbations to encourage high consistency
between different predictions from two perturbation models.
However, evaluating the consistency between two predictions
on unlabeled data can lead to unreliable guidance, which, in
turn, affects the accuracy of the final model. For this, Yu et
al. [12] proposed an uncertainty-aware framework (UA-MT)
based on the MT model, which enables the student model
to acquire more reliable targets by estimating uncertainty
through multiple forward propagations. To reduce time and
memory overhead, Luo et al. [14] [15] proposed to learn
multi-scale consistency (URPC) from pyramid predictions at
different scales to obtain target volume segmentation and con-
structed a dual-task-consistency (DTC) regularization method
by jointly predicting pixel-by-pixel segmentation maps and
geometrically-aware level-set representations of targets. Wu
et al. [16] introduced a mutual consistency network (MC-
Net) comprising two decoders, which captures model un-
certainty information by evaluating the discrepancy between
their predictions. The MC-Net can effectively improve pseudo-
label quality by adding a regularization term. However, these
networks ignore correlations between labeled and unlabeled
data and only compute pixel-level consistency. For this reason,
Lei et al. [34] adopted two discriminators (ASE-Net) based on
consistency learning to obtain the prior relationship between
labeled and unlabeled data and computed both the pixel-
level and image-level consistency on unlabeled data under
different data perturbations in order to improve the quality
of predictions. However, the perceptual bias of the model
may reduce its segmentation performance. For this, Wang
et al. [35] proposed a mutual correction framework (MCF)
through a comparative difference review module to find in-
consistent prediction regions and dynamically select more
reliable pseudo-labels. Although the above improved methods
are better than the classic mean teacher model, most of them
ignore improving consistency learning from the perspective
of voxel target selection. In contrast to UA-MT [12], which is
most relevant to voxel target selection and only selects reliable
voxel targets with low uncertainty for consistency learning, we
choose fuzzy voxel targets with high uncertainty due to higher
learning value for model training.

B. Fuzzy Estimation
In the field of medical image segmentation, accurately

quantifying fuzziness is crucial to evaluate the confidence of
predicted regions [36], as it indicates the image regions in
which the model is most likely to be incorrect for target
segmentation [37]. However, determining the fuzzy regions
in an image remains a challenging task. One of the most
critical issues is how to effectively identify the fuzzy regions
containing rich information that is more useful for accurate
segmentation. In the field of image semantic segmentation,
fuzziness is mainly used to guide semi-supervised learning to
improve learning efficiency [33]. Fuzziness mainly originates
from the estimation of uncertainty, because uncertainty can
effectively depict fuzziness.

In semi-supervised learning, the utilization of fuzziness can
be roughly divided into two groups. The first group focuses

on learning deterministic regions by discarding ambiguous
regions. For example, Yu et al. [12] used Monte Carlo sam-
pling to estimate the perceptual uncertainty of each target
prediction and only selected samples with low uncertainty for
model training, so that the model could obtain more reliable
guidance. Although this approach improves the accuracy and
confidence of the model for unlabeled data, it ignores potential
effectiveness of the regions with high uncertainty. Aiming at
the shortcomings of the first group of methods, the second
group focuses on learning only fuzzy regions to fully utilize
unlabeled data. To identify fuzzy regions in unlabeled data,
Czolbe et al. [33] argued that more information about fuzzy
regions can be obtained from data with high uncertainty. In
addition, Chen et al. [39] revealed the association between
model uncertainty and error-prone fuzzy regions in image
segmentation, emphasizing the importance of focusing on
fuzzy regions. Meanwhile, Zheng et al. [40] obtained larger
prediction variance values in regions with fuzzy predictions
and pointed out that the estimation of fuzzy regions is related
to the variance. The high variance regions mean higher uncer-
tainty. Zheng et al. [40] also observed a considerable overlap
between high variance regions and noise in pseudo-labels,
which suggests that attention to fuzzy regions can be improved
by focusing on high variance regions. To obtain the fuzzy
regions in pseudo-labels, Zhang et al. [41], in a self-training
based unsupervised domain adaptation study, found that the
class prototype is less sensitive to errors in pseudo-labels,
which can help to remove noise, and thus more accurately
capture the fuzzy regions in pseudo-labels.

III. METHODS

A. Overview

In this paper, we propose a semi-supervised 3D medical
image segmentation framework for fuzzy perception-guided
target selection with multi-consistency learning. As shown in
Fig. 1, our framework can be represented as an ensemble of
teacher and student models with the same network structure.
The framework shares an identical encoder and two slightly
different decoders. The segmentation branch uses the original
3D transposed convolution to achieve up-sampling and a
softmax activation function at the last layer of the decoder
to obtain segmentation probability maps, while the regression
branch uses trilinear interpolation and 3D convolution to
extend the feature maps and a Tanh activation function at
the last layer of the decoder to obtain the signed distance
maps. The process of guided consistency learning for the
fuzzy maps is as follows. Firstly, three different strategies of
information entropy, perceptual uncertainty, and label noise
variance identification are used to obtain three fuzzy maps
(high uncertainty regions) respectively. Secondly, the three
fuzzy maps are fused to form a final fuzzy map through the
minimization of the fusion strategy and the way of momentum
update on the fuzzy map. Finally, the generated fuzzy maps
are incorporated into multi-consistency losses.

In our framework, we improve the consistency learning of
the mean teacher model into multi-consistency learning with a
new fuzzy perception-guided target selection, which can obtain
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Fig. 1: The overview of a semi-supervised 3D medical image segmentation framework using multi-consistency learning with fuzzy perception-
guided target selection. ξ and ξ′ are different perturbations applied to the data input to the student model and the teacher model. fseg and
fdis are segmentation probability maps and signed distance maps generated by the student model, f ′

seg and f ′
dis are segmentation probability

maps and signed distance maps generated by the teacher model. The student model is updated via backpropagation and the teacher model
is updated via the exponential moving average (EMA) of the student model weights. Lsup is the supervised loss for labeled data, Laitc is
the fuzzy mask consistency loss within the task for unlabeled data, Lctcl is the cross-task consistency loss for unlabeled data, Lcmct is the
cross-model cross-task consistency loss. The fuzzy map is used to guide the fuzzy mask consistency loss within the task Laitc and the cross-
task consistency loss Lctcl . When computing Lcmct and Lctcl, the smooth approximation Gmask(·) of the inverse transformation GSDF (·) is
applied to convert the level set function into a probability map.

better and more useful target information from fuzzy regions
of a large number of unlabeled data. By combining intra-task
and inter-model mutual consistency learning as well as cross-
model cross-task consistency regularization, we utilize multi-
task learning of geometric shape information and differential
perturbation information between the teacher and student
models to encourage consistent predictions on fuzzy regions.
Essentially, fuzzy perception-guided target selection finds the
most valuable voxel targets from fuzzy (high uncertainty)
regions, and the model learns useful knowledge from these
valuable voxel targets.

B. Fuzzy Estimation Guided Target Selection

In medical image analysis, the fuzziness is usually evaluated
by information entropy, perceptual uncertainty and label noise
variance identification to select valuable target voxels. With the
consistency loss of these valuable fuzzy voxels, the network
model can selectively focus on learning image information-

rich regions from unlabeled data, particularly in challenging
regions.

Firstly, the information entropy can be used to measure
the model’s prediction fuzziness for each voxel. Higher in-
formation entropy indicates that the model has an uncertain
prediction at that voxel, which also means that the voxel is
more challenging to accurately segment. Therefore, the student
model generates a predicted probability at each voxel by V-Net
[42] and uses information entropy to represent the fuzziness
at the voxel:

fv = −
∑
c∈C

pcs log(p
c
s), (1)

where c ∈ C denotes the category, pcs is the predicted
probability from the student model at the v-th voxel, fv is
the fuzziness at the v-th voxel, and the high information
entropy map FHE ∈ RH×W×D is obtained by selecting
voxels with fv ≥ H . Since the number of voxels in the fuzzy
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region decreases as the training proceeds, a dynamic threshold
H ∈ [0.75, 0.60] similar to the Gaussian ramp-down paradigm
is used to control the degree of fuzziness.

Secondly, when the prediction fuzziness of models is quan-
tified by information entropy, we further consider the high per-
ceptual uncertainty of models in different regions, especially
in cases of limited training data or when model convergence
is affected, and this high perceptual uncertainty is often
associated with high fuzziness. To quantify the perceptual
uncertainty of models, Monte Carlo sampling is introduced
as an approximation of Bayesian neural networks [43] to
describe the probability distribution of models’ perceptual
uncertainty. Two dropout layers with a dropout rate of 0.5 are
used at the last layer of the downsampling stage and the first
layer of the upsampling stage of the segmentation network.
During the training process, by utilizing these dropout layers
to perform T random forward passes for the student model, the
perceptual uncertainty for each voxel is estimated. Therefore,
the predicted entropy is used to approximate the perceptual
uncertainty for each voxel as follows:

p̃c =
1

T

T∑
t=1

pcs, (2)

fv = −
∑
c∈C

p̃c log(p̃c), (3)

where p̃c is the average of T predicted probabilities, and
the high perceptual uncertainty map FHAU ∈ RH×W×D is
obtained by selecting voxels with fv ≥ H .

Next, we investigate the common issue of fuzziness in semi-
supervised learning based on pseudo-labeling. Errors from
pseudo-labels usually appear in fuzzy regions, since a model
struggles to make accurate predictions with limited labeled
data. Moreover, the regions with high variance exhibit clear
overlap with noise in pseudo-labels. To capture errors from
pseudo-labels without introducing Gaussian noise or additional
branches, the noise from pseudo-labels is modeled only by
the model’s prediction variance. Here, the KL-divergence
predicted by the student model and teacher model is used to
approximate the variance:

V arv =
∑
c∈C

pcs log

(
pcs
pct

)
, (4)

where pct is the predicted probability of the teacher model at
the v-th voxel, and V arv is the variance of the teacher and
student model’s prediction probabilities at the v-th voxel.

If the predictions from the two models are different at a
voxel, the variance will be a large value, meaning that the
voxel is located in a fuzzy and information-rich region. Label
noise variance identification combines pseudo-labeling with
consistency regularization, where the student model generates
noisy pseudo-labels, while the teacher model recognizes label
noise. The erroneous locations in pseudo-labels usually corre-
spond to fuzzy and information-rich voxel regions. Because
the location of the target voxel is to be determined in an
original image rather than in the randomly perturbed image,
no additional perturbation is introduced. We will use the

class prototype method in unsupervised domain adaptation to
identify errors in the pseudo-labels from the student model,
where the features of correctly labeled voxels should be closer
to their associated class prototypes. Regarding the generation
of class prototypes, the masked average pooling operation [39]
will be used to calculate the class prototypes of the foreground
and background respectively:

qobj =

∑
v I

[
Ŷ

′

v ∈ Cobj

]
· F ′

v · P
′obj
v∑

v I
[
Ŷ ′
v ∈ Cobj

]
· P

′obj
v

, (5)

qbg =

∑
v I

[
Ŷ

′

v ∈ Cbg

]
· F ′

v · P
′bg
v∑

v I
[
Ŷ ′
v ∈ Cbg

]
· P

′bg
v

, (6)

where F ′ ∈ RC×H×W×D is the feature map generated by
convolution of the penultimate layer in the teacher model after
up-sampling to obtain the feature map, P

′obj represents the
predicted probability of the teacher model on the foreground,
P

′bg represents the predicted probability of the teacher model
on the background, Ŷ ′ is the label generated by the teacher
model used as the mask for prototype generation, and I [·] is
the mask selected as foreground or background based on the
label generated by the teacher model. The cosine similarity
distance is computed between the v-th feature vector F

′

v and
the class prototypes qobj and qbg:

cos
(
F

′

v, q
obj
)
=

F
′

v · qobj

∥F ′
v∥2 · ∥qobj∥2

, (7)

cos
(
F

′

v, q
bg
)
=

F
′

v · qbg

∥F ′
v∥2 · ∥qbg∥2

. (8)

The unlabeled data Xu is input into the student model
to generate noisy pseudo-labels Ŷ . If the v-th voxel Ŷv

generated by the student model is foreground (background)
but its cosine similarity distance is closer to the prototype of
background (foreground), it will be considered as a mislabeled
voxel. Additionally, we incorporate the fuzzy map derived
from voxels with a variance V arv ≥ H as a regularization
term, which prevents the class prototype method from judging
voxels wrongly and reduces discontinuities in the fuzzy map,
making the fuzzy map smoother. Therefore, the fuzzy map for
label noise variance identification can be defined as:

FLNV = I
[
Ŷv = 0

]
· I

[
cos

(
F

′
v, q

obj
)
⩽ cos

(
F

′
v, q

bg
)]

+ I
[
Ŷv = 1

]
· I

[
cos

(
F

′
v, q

obj
)
⩾ cos

(
F

′
v, q

bg
)]

+ V arv. (9)

Finally, three different fuzzy maps are obtained by the above
three methods, each with slightly different selected targets
and characteristics. Given the diversity and differences of
the different fuzzy maps, we design and use a minimized
fusion strategy and a momentum update way to update the
fuzzy maps, which naturally combines multiple different fuzzy
maps to generate a comprehensive and representative fuzzy
map. This fusion process aims to balance and integrate the
information from each fuzzy map to improve the quality
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of the final fuzzy map. Specifically, this approach ensures
that the fusion of different fuzzy maps produces consistent
and reliable results by enhancing the stability of the fuzzy
map. The fast convergence property of the momentum method
helps to efficiently process the fuzzy regions of large-scale
medical image data, reducing the number of iterations and
thus reducing the computational cost. Solving the problem of
noise in the 3D medical data voxels is another advantage of
the proposed method. It effectively maintains the stability of
the fuzzy map by considering the historical update direction to
cope with the common noise and changes in 3D medical data
voxels. Therefore, updating the fuzzy map by the momentum
method can ensure stable, accurate and efficient results during
the fusion process, which is defined as:

F = min
v

(FHE + FHAU + FLNV ) , (10)

F total
t = α · F total

t−1 + (1− α) · Fnew
t , (11)

where t represents the current number of iterations, Fnew
t is

the new fuzzy map generated by the current iteration, F total
t−1

is the fuzzy map generated by the previous iteration, and α is
the weight coefficient that controls the previous fuzzy map.

C. Fuzzy Perception-Guided Multi-Consistency Learning
In many previous methods, medical image segmentation is

often regarded as a task of pixel-level classification, where
the goal is to generate a segmentation probability map and
assign a corresponding class label to each pixel. In addition to
employing binary or multi-label masks for pixel classification,
other researches focus on methods using signed distance maps.
This type of methods converts a binary mask into a gray-level
image, where the intensities of a pixel changes depending on
the distance from the nearest boundary. The signed distance
function (SDF) is a traditional technique [44] [45] used to
represent object contours in a high-dimensional space. In med-
ical image segmentation, the SDF is often utilized to describe
the geometric features of targets to capture geometric distance
information, which improves the segmentation performance
of models. Specifically, we apply the transformation of the
pixel-level segmentation map of a prediction image to a signed
distance map [15] [17]. A regression branch is introduced into
the traditional encoder-decoder architecture to generate signed
distance maps while working in parallel with the traditional
segmentation branch for generating segmentation probability
maps. Task-level differences between the two branches lead
to model perturbations and encourage the model to learn
different representations of segmentation targets from different
perspectives. The segmentation branch and regression branch
provide supervised information for labeled data. Therefore, the
supervised loss can be defined as:

Lsup =
∑

xi,yi∈Dl

Ldice (fseg (xi) , yi) + Lbce (fseg (xi) , yi)

+ Ldis (fdis (xi) , GSDF (yi)) , (12)

where Ldice (·) represents the commonly used Dice loss,
Lbce (·) represents the Binary Cross Entropy loss, Ldis (·)

represents the Mean Squared Error loss, fseg (·) represents the
segmentation network model, fdis (·) represents the regression
network model, and GSDF (·) represents the signed distance
transformation function.

For semi-supervised medical image segmentation, the im-
provement in model performance comes from generating su-
pervised signals and obtaining unsupervised knowledge from
unlabeled data via an unsupervised loss function. The main
semi-supervised segmentation methods often use the mean
teacher model as its framework, which consists of two models,
namely the student model and the teacher model, which have
the same network structure but different parameters. During
the training process, the network parameters of the teacher
model are updated as the exponential moving average (EMA)
of the parameters of the student model [10] [12] [32]. Unlike
the classical Mean Teacher (MT) [10] that computes all voxels,
or its variant Uncertainty Aware Mean Teacher (UA-MT) [12]
that only computes reliable regions for consistency learning,
our model will compute the consistency loss on the finally
generated fuzzy regions because they have higher learning
value. Specifically, we redesign the consistency loss as an
intra-task fuzzy mask mean squared error loss:

Laitc

(
f, f ′;F

)
= β

∑
v

[
Fv

∑
c

(∥∥fseg − f ′
seg

∥∥2
)]

∑
v Fv

+ (1− β)

∑
v

[
Fv

∑
c

(
∥fdis − f ′

dis∥
2
)]

∑
v Fv

, (13)

where Fv is the fuzziness at the v-th voxel, (fseg, fdis) repre-
sents the outputs of the segmentation branch and the regression
branch of the student model at the v-th voxel for each class
c ∈ C,

(
f ′

seg, f
′
dis

)
represents the outputs of the segmentation

branch and the regression branch of the teacher model at
the v-th voxel for each class c ∈ C, and β is the weight
coefficient that achieves a balance between the segmentation
and regression tasks.

For the same input data in different tasks, their predic-
tions should keep consistency when mapped into the same
predefined space. In order to efficiently utilize unlabeled data,
we perform cross-task consistency learning on fuzzy regions,
aiming to ensure that the outputs from the segmentation branch
and the regression branch remain consistent. We use the
smooth approximation method of the inverse transformation of
the SDF to convert the output of the distance map back to the
binary segmentation output [15]. The cross-task consistency
learning method helps the model to learn the correlations
between different tasks comprehensively and establishes con-
sistency between the outputs of two tasks. Therefore, cross-
task consistency loss can be defined as:

Lctcl

(
f, f ′;F

)
= β

∑
v

[
Fv

∑
c

(
∥fseg(x)−Gmask (fdis(x))∥2

)]∑
v Fv

+ (1− β)

∑
v

[
Fv

∑
c

(∥∥f ′
seg(x)−Gmask (f

′
dis(x))

∥∥2
)]

∑
v Fv

,

(14)

where Gmask(·) is the smooth approximation to the inverse
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transformation of the SDF.
The task differences between the two branches can cause

perturbations in the model, which means that the different
tasks are able to guide the model in their respective ways,
enabling it to learn the segmentation target from multiple
perspectives, thus obtaining more diverse and comprehensive
target representations. This cross-model cross-task consistency
learning can help the model understand and learn the different
characteristics and changes of targets. It’s loss function is
defined as:

Lcmct

(
f, f ′) =

∥∥f ′
seg (x)−Gmask (fdis (x))

∥∥2

+
∥∥fseg (x)−Gmask

(
f ′

dis (x)
)∥∥2

. (15)

Cross-model cross-task consistency learning further en-
hances the model’s representation abilities, allowing it to
deeply understand the relationship between different tasks
and different models. It not only helps models improve the
segmentation performance, but also can better cope with the
diversity and complexity of 3D data voxels in medical image
segmentation tasks.

D. Overall Training Process

Our proposed framework can be trained by minimizing the
weighted sum of the supervised segmentation loss Lsup, the
intra-task consistency loss Laitc, the cross-task consistency
loss Lctcl and the cross-model cross-task consistency loss
Lcmct . The student model utilizes the supervised segmen-
tation loss Lsup to learn from the labeled data. At the same
time, the student model and the teacher model learn more chal-
lenging information from the unlabeled data under the fuzzy
perception-guided target selection. Therefore, the framework
can be formulated as minimizing the following function:

min
θ

Lsup (θ;DL) + λ
(
Laitc

(
θ, θ′;D

)
+Lctcl

(
θ, θ′;D

)
+ Lcmct

(
θ, θ′;D

))
,

(16)

where λ represents the rising weighting coefficient. According
to [46] [47], we use the Gaussian ramp function λ (t) =

e−5(1− t
tmax

)
2

to control the balance between the supervised
and semi-supervised losses, mitigating the interference of the
consistency loss in the early training stage, where t represents
the current step of the iteration and tmax represents the max-
imum training step. The training procedure of our proposed
semi-supervised medical image segmentation framework can
be described by Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets

To evaluate our framework, we conducted a comprehensive
evaluation of two different types of medical image datasets,
including the 3D left atrium magnetic resonance (MR) image
scans [48] and the 3D brain tumor magnetic resonance (MR)
image scans [49].

• 3D left atrium segmentation MR dataset: The left
atrium (LA) dataset originates from the 2018 Atrial Segmen-
tation Challenge and includes 100 sets of 3D gadolinium-

Algorithm 1 Training procedure of multi-consistency learning
with fuzzy perception-guided target selection
Input: A batch of xl, yl from labeled dataset Dl and xu from

unlabeled dataset Du.
Output: Trained network N with θ

1: fseg and fdis represent the output predictions of seg-
mentation branch and regression branch to generate seg-
mentation probabilistic maps and signed distance maps,
respectively

2: for minibatch {(xk, yk)}Bk=1 ⊂
(
Dl ∪Du

)
do

3: Generate output segmentation maps fseg , output dis-
tance maps fdis and the final fuzzy map F formed by
fusion

4: Calculate supervised segmentation loss Lsup as Eq.(12)
5: Calculate intra-task consistency losses Laitc as Eq.(13)
6: Calculate cross-task consistency losses Lctcl as Eq.(14)
7: Calculate cross-model cross-task consistency losses

Lcmct as Eq.(15)
8: Update the student model’s weights θ with L = Lsup+

λ (Laitc + Lctcl + Lcmct)
9: Update the teacher model’s weights with exponential

moving average (EMA) of the student model’s weights
10: end for
11: return θ

enhanced MR images, which contain 3D binary masks repre-
senting the left atrial cavity. The original isotropic resolution
is 0.625× 0.625× 0.625mm3. Following [12] [15] [50] [51],
we split the 100 scans into 80 scans for training and 20 scans
for testing. For the 80 training scans, 2.5%/2, 5%/4 and 10%/8
scans are used as labeled data, and the rest of the scans are
employed as unlabeled data.
• 3D brain tumor segmentation MR dataset: The brain

tumor (BraTS) dataset comes from the 2019 Multimodal Brain
Tumor Segmentation Challenge. It is mainly used to study and
evaluate the performance of brain tumor segmentation algo-
rithms. It contains 335 scans usually including T1-weighted,
T2-weighted, and contrast-enhanced T1-weighted sequences,
with the same resolution of 1 × 1 × 1mm3. Following [13]
[50], we randomly chose 250 scans for training, 25 scans for
validation, and 60 scans for testing. For the 250 training scans,
5%/12 and 10%/25 scans are used as labeled data, and the rest
of the scans are employed as unlabeled data.

B. Implementing Details and Evaluation Metrics

Implementing Details: All algorithms in our experiments
were implemented on a server with NVIDIA GeForce RTX
3090 24GB, Ubuntu 18.04, and PyTorch 1.7. The batch size
is 4, consisting of 2 labeled images and 2 unlabeled images in
each mini-batch. We employed V-Net [42] as the backbone for
all experiments to achieve a fair comparison. The framework
is trained for 6,000 iterations using the SGD optimizer (weight
decay = 0.0001, momentum = 0.9). The learning rate is
initialized as 0.01 and decayed by 0.1 every 2,500 iterations.
We randomly cropped 112× 112× 80 on the LA dataset [48]
or 96 × 96 × 96 on the BraTS dataset [49] sub-volume as
the input. According to [12] [15] [51], data augmentation,
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including randomly flip and rotation, is applied to avoid over-
fitting. For the testing phase, we employed the teacher model.
This choice was made due to the teacher model’s superior
stability and robustness in semi-supervised learning scenarios.
By aggregating the results from multiple trainings of the
student model, the teacher model effectively reduces noise and
uncertainty, leading to higher prediction accuracy compared to
the student model.

Evaluation Metrics: According to [50], we adopted four
metrics for a comprehensive evaluation, i.e., Dice similarity
coefficient (Dice), Jaccard index (Jaccard), Average surface
distance (ASD) and 95% Hausdorff distance (95HD), which
can be defined as:

Dice (Vpred, Vgt) =
2|Vpred ∩ Vgt|
|Vpred|+ |Vgt|

, (17)

Jaccard (Vpred, Vgt) =
|Vpred ∩ Vgt|
|Vpred ∪ Vgt|

, (18)

ASD(A,B) =
1

2
(

∑
a∈A

min
b∈B

d(a, b)∑
a∈A

1
+

∑
b∈B

min
a∈A

d(a, b)∑
b∈B

1
), (19)

HD(A,B) = max[sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)], (20)

where Vpred is the set of voxels in the predicted pixel-level
probability map from the segmentation network, and Vgt is
the set of voxels in a pixel-level probability map from the
ground truth. A and B represent two sets of contour points,
and d(a, b) denotes the Euclidean distance between the two
points a and b.

C. Comparisons with SOTA Methods
In this section, we conducted a large number of comparative

experiments on the LA dataset [48] and BraTS dataset [49]
to verify the superiority and effectiveness of the proposed
framework under three general semi-supervised experimental
settings. To fairly evaluate the various methods, we used the
same V-Net [42] as the backbone network, as well as the
same experimental platform and hyperparameter settings in
all the comparison experiments. In addition, we used 2.5%,
5%, and 10% labeled data as training datasets on the LA
dataset [44] to demonstrate the segmentation performance
obtained by the V-Net [42] network under different settings,
as shown in Table I, respectively. On the BraTS dataset [49],
using 5% and 10% labeled data as a training dataset, the
segmentation performance obtained by the V-Net [42] network
under different settings is demonstrated, as shown in Table II,
respectively.

Comparison on LA dataset: In order to demonstrate the
effectiveness of our proposed framework, a comprehensive
comparison with existing methods is performed on the LA
dataset. We evaluate our framework by comparing it with sev-
eral recent state-of-the-art semi-supervised segmentation meth-
ods, including Mean Teacher (MT) [10], Uncertainty-aware
Mean Teacher (UA-MT) [12], Shape-aware Semi-Supervised
Network (SASSNet) [51], Dual-Task Consistency (DTC) [15],

TABLE I: Quantitative comparisons of different methods on
the LA dataset by utilizing 2.5%, 5%, and 10% labeled data
of training set. The best values are in bold. The number in red
indicates the improvement of our method compared with the
best of the other methods.

Method
Scans used Metrics

Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ ASD(voxel)↓ 95HD(voxel)↓

V-Net 4 0 52.55 39.60 9.87 47.05

V-Net 8 0 79.99 68.12 5.48 21.11

V-Net 80 0 91.14 83.82 1.52 5.75

MT[NeurIPS’17] 2 78 72.78 58.88 3.65 34.16

UA-MT[MICCAI’19] 2 78 74.63 60.79 3.39 35.98

SASSNet[MICCAI’20] 2 78 73.35 59.12 3.47 36.52

DTC[AAAI’21] 2 78 73.24 58.54 3.52 35.64

URPC[MIA’22] 2 78 74.87 60.82 3.54 34.63

MC-Net[MIA’22] 2 78 75.73 60.94 3.22 32.18

ASE-Net[TMI’22] 2 78 76.94 63.58 3.03 30.04

DSTP[TAI’23] 2 78 75.76 63.45 3.16 31.59

3D-ViT[ICCV’23] 2 78 76.85 64.09 3.01 32.13

BCP[CVPR’23] 2 78 77.19 65.17 3.18 29.86

MCF[CVPR’23] 2 78 76.88 63.48 3.90 30.11

Ours 2 78 78.98↑1.79 66.65 2.88 28.14

MT[NeurIPS’17] 4 76 80.67 68.85 4.03 15.24

UA-MT[MICCAI’19] 4 76 82.26 70.98 3.82 13.71

SASSNet[MICCAI’20] 4 76 81.60 69.63 3.58 16.16

DTC[AAAI’21] 4 76 81.25 69.33 3.99 14.90

URPC[MIA’22] 4 76 82.48 71.35 3.65 14.65

MC-Net[MIA’22] 4 76 83.59 72.36 2.70 14.07

ASE-Net[TMI’22] 4 76 83.33 71.79 4.33 15.70

DSTP[TAI’23] 4 76 82.15 70.76 4.10 16.74

3D-ViT[ICCV’23] 4 76 82.47 71.38 3.86 15.12

BCP[CVPR’23] 4 76 84.50 72.71 2.56 12.96

MCF[CVPR’23] 4 76 84.39 73.17 3.31 14.85

Ours 4 76 85.85↑1.35 75.47 2.32 14.76

MT[NeurIPS’17] 8 72 84.24 73.26 2.71 19.40

UA-MT[MICCAI’19] 8 72 84.25 73.48 3.36 13.48

SASSNet[MICCAI’20] 8 72 86.81 76.92 3.94 12.54

DTC[AAAI’21] 8 72 86.57 76.55 3.74 14.47

URPC[MIA’22] 8 72 85.02 75.98 2.96 15.21

MC-Net[MIA’22] 8 72 87.71 78.31 2.18 9.36

ASE-Net[TMI’22] 8 72 87.83 78.45 2.17 9.86

DSTP[TAI’23] 8 72 86.74 77.19 2.27 8.67

3D-ViT[ICCV’23] 8 72 87.62 78.12 2.66 8.92

BCP[CVPR’23] 8 72 87.91 78.58 2.10 8.99

MCF[CVPR’23] 8 72 86.63 77.01 2.95 8.97

Ours 8 72 89.11↑1.2 80.48 2.01 8.54

Uncertainty Rectified Pyramid Consistency (URPC) [14], Mu-
tual Consistency Learning (MC-Net) [16], Adversarial Consis-
tency Learning (ASE-Net) [34], Dual-stage Semi-supervised
Pre-training Approach (DSTP) [52], Dual-contrastive Dual-
consistency Dual-transformer (3D-ViT) [53], Bidirectional
Copy-Paste (BCP) [54] and Mutual Correction Framework
(MCF) [35].

We used the same V-Net [42] backbone in all these methods
for a fair comparison. Table I shows the results of the
comparison of different methods on the left atrial test set in
the case of utilizing 2.5%, 5% and 10% labeled data. It can be
seen that UA-MT [12] improves Dice by 4.26%, compared to
V-Net [42] when utilizing the same percentage of labeled data,
suggesting that UA-MT effectively uses unlabeled data for
better segmentation results by using consistency learning for
reliable labels only. By leveraging the consistency of the fuzzy
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Fig. 2: Visualization results of different methods on the LA
dataset by utilizing 5% and 10% of the labeled data in the
training set, respectively.

regions of a large amount of unlabeled data during training, the
proposed framework obtains significant performance improve-
ments (Dice from 52.55% to 85.85%, Jaccard from 39.60% to
75.47%, ASD from 9.87 to 2.32, and 95HD from 47.05 to
14.76 under 5% labeled data). Compared to the most recent
semi-supervised method Bidirectional Copy-Paste (BCP) [54],
it reduces the distribution gap between labeled and unlabeled
data by enforcing the invariance of predictions under different
distributions, but it does not fully exploit the shape constraints
and boundary-level distance information of most fuzzy regions
from the unlabeled data and does not set a threshold to focus
on region-level consistency learning, whereas our framework
focuses on local region learning in the unlabeled data and puts
more emphasis on fuzzy regions of consistency. Therefore,
compared with it, the value of Dice increases by 1.35% under
5% labeled data and by 1.2% under 10% labeled data. In
addition, Fig. 2 shows the segmentation results provided by
our framework, it is clear that our framework provides better
segmentation results than other methods used for comparison.

Comparison of BraTS dataset: To further validate our pro-
posed framework, thirteen state-of-the-art methods are com-
pared on the BraTS dataset [49], including Mean Teacher (MT)
[10], Uncertainty-aware Mean Teacher (UA-MT) [12],Shape-
aware Semi-Supervised Network (SASSNet) [51], Dual-Task
Consistency (DTC) [15], Uncertainty- Rectified Pyramid Con-
sistency (URPC) [14], Smoothness and Class Separation
Consistency Learning (SS-Net) [55], Mutual Consistency
Learning (MC-Net) [16], Adversarial Consistency Learning
(ASE-Net) [34], Dual-stage Semi-supervised Pre-training Ap-
proach (DSTP) [52], Dual-contrastive Dual-consistency Dual-
transformer (3D-ViT) [53], Bidirectional Copy-Paste (BCP)
[54] and Mutual Correction Framework (MCF) [35]. Table II
shows the comparative results of different methods on the brain
tumor test set using 5% and 10% labeled data. The segmenta-
tion results on the BraTS dataset [49] are shown in Fig. 3. Our
results demonstrate a closer alignment with the ground truth.
Our predicted segmentation results have smoother transitions
at the boundaries and reduce misclassification cases due to
boundary fuzziness, which allows for better capturing of fuzzy

boundaries and provides more accurate segmentation results.
The results presented in Figures 2 and 3 show that the

performance of the semi-supervised approach is still insuf-
ficient in some critical regions (e.g., edges and small lesions).
For example, in the edge region, the segmentation results
of the model may appear blurred or inaccurate, which may
lead to misjudgments by clinicians when determining the
tumor boundary. In addition, for the identification of small
lesions, the sensitivity of the model is low, which may lead
to some small lesions being overlooked. In practical clinical
applications, these limitations may have a significant impact
on diagnosis and treatment. For example, for tumor resection
surgery, accurate tumor boundary determination is crucial. If
the model is not accurate enough in edge detection, it may
lead to incomplete tumor resection or mistakenly cut normal
tissues, affecting the surgical outcome and patient prognosis.
In addition, in early cancer screening, identifying small lesions
is crucial for early diagnosis and treatment. If the model misses
these small lesions, it may lead to delayed treatment and
affect the survival rate of patients. Consequently, in actual
clinical practice, doctors usually combine multiple images
(e.g., CT, MRI, etc.) to make a comprehensive judgment. If
the model only relies on a single modality image for training
and prediction, it may not be able to fully utilize other imaging
information, thus affecting the accuracy of diagnosis.

TABLE II: Quantitative comparisons of different methods on
the BRATS dataset by utilizing 5% and 10% labeled data of
training set. The best values are in bold. The number in red
indicates the improvement of our method compared with the
best of the other methods.

Method
Scans used Metrics

Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ ASD(voxel)↓ 95HD(voxel)↓

V-Net 12 0 70.28 60.42 2.82 38.44

V-Net 25 0 74.43 61.86 2.79 37.11

V-Net 250 0 86.95 78.03 1.75 6.56

MT[NeurIPS’17] 12 238 80.31 70.37 2.83 11.69

UA-MT[MICCAI’19] 12 238 77.25 63.56 3.80 17.56

SASSNet[MICCAI’20] 12 238 76.17 66.43 3.32 13.09

DTC[AAAI’21] 12 238 74.21 64.89 3.16 13.54

URPC[MIA’22] 12 238 78.74 68.20 4.51 14.43

SS-Net[MICCAI’22] 12 238 78.03 68.11 2.76 13.70

MC-Net[MIA’22] 12 238 78.69 68.38 4.49 13.44

ASE-Net[TMI’22] 12 238 78.53 68.03 3.57 15.99

DSTP[TAI’23] 12 238 77.26 66.82 3.06 14.90

3D-ViT[ICCV’23] 12 238 77.66 67.08 3.05 14.93

BCP[CVPR’23] 12 238 79.27 68.69 2.25 12.25

MCF[CVPR’23] 12 238 78.67 67.94 2.89 12.59

Ours 12 238 80.09↑0.82 70.07 3.33 13.78

MT[NeurIPS’17] 25 225 81.21 70.83 2.45 14.72

UA-MT[MICCAI’19] 25 225 80.85 70.32 2.57 14.61

SASSNet[MICCAI’20] 25 225 79.19 68.80 6.67 16.36

DTC[AAAI’21] 25 225 81.75 71.63 2.56 15.73

URPC[MIA’22] 25 225 82.59 72.11 3.72 13.88

SS-Net[MICCAI’22] 25 225 82.00 71.82 1.98 10.68

MC-Net[MIA’22] 25 225 79.63 70.10 2.45 12.28

ASE-Net[TMI’22] 25 225 83.24 73.43 2.15 10.32

DSTP[TAI’23] 25 225 83.13 72.77 2.02 12.45

3D-ViT[ICCV’23] 25 225 82.56 72.62 2.33 13.25

BCP[CVPR’23] 25 225 83.31 73.63 2.23 10.86

MCF[CVPR’23] 25 225 83.28 73.99 2.93 11.29

Ours 25 225 84.17↑0.81 74.28 1.92 9.60
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Fig. 3: Visualization results of different methods on the BraTS
dataset by utilizing 5% and 10% of the labeled data in the
training set, respectively.

D. Ablation Experiments

We conducted ablation experiments on the LA dataset
[48] using 8 labeled and 72 unlabeled images to check the
effectiveness of each component, as shown in Table III. The
results show that when only a small amount of labeled data
is available for training, the performance can be improved by
mining meaningful latent information from the 72 unlabeled
images. Specifically, the model achieves the best performance
when fuzzy map, supervised loss, and consistency learning
guided by fuzzy perception are introduced. In particular, the
intra-task consistency loss and the cross-task consistency loss
guided by fuzzy perception, as well as the cross-model cross-
task consistency loss, play an important role in performance
improvement because they help to improve the model’s uti-
lization of unlabeled data and enhance the model’s ability to
perceive fuzziness in the data. Experimental results (3), (4),
(5), (6), (7), and (8) show that consistency learning on fuzzy
regions can more fully exploit the valuable information from
unlabeled data and significantly improve the segmentation
accuracy. Moreover, experimental results (9), (10), and ours
show that a combination of intra-task consistency learning
and cross-task consistency learning on fuzzy regions helps
the model learn the features of different tasks from unla-
beled data and emphasize the importance of fuzzy regions,
resulting in significant performance improvement. In addition,
experimental results (8) and ours demonstrate the effectiveness
of the proposed cross-model cross-task consistency learning,
which enables the model to learn segmentation targets from
multiple perspectives and obtain more diverse and comprehen-
sive target representations. All the above strategies emphasize
small branches or edges by fully mining the most valuable
voxel targets of fuzzy regions from unlabeled data, which is
meaningful guidance for challenging regions.

According to Table IV, the model performs better in various
metrics when the value of α is 0.9. One major cause is that

TABLE III: Comparison of ablation experiments on the LA
dataset by utilizing 10% labeled data of training set. The best
values are in bold.

Method Fuzzy Map
Supervised Loss Consistency Loss

Dice(%)
Lseg Ldis Laitc Lctcl Lcmct

Scheme.1 - ✓ - - - - 83.08

Scheme.2 - ✓ ✓ - - - 84.29

Scheme.3 - ✓ ✓ ✓ - - 85.96

Scheme.4 ✓ ✓ ✓ ✓ - - 87.42

Scheme.5 - ✓ ✓ - ✓ - 86.48

Scheme.6 ✓ ✓ ✓ - ✓ - 87.65

Scheme.7 - ✓ ✓ ✓ ✓ - 87.38

Scheme.8 ✓ ✓ ✓ ✓ ✓ - 88.17

Scheme.9 ✓ ✓ ✓ ✓ - ✓ 88.25

Scheme.10 ✓ ✓ ✓ - ✓ ✓ 88.37

Ours ✓ ✓ ✓ ✓ ✓ ✓ 89.11

it better balances the effects between the old and new fuzzy
maps and takes into account most of the information of the
previous fuzzy maps, which helps to ensure the consistency
of the fuzzy maps during the iterative stage. This consistency
is crucial for producing consistent and reliable final results
when fusing multiple fuzzy maps, and more historical fuzzy
map information is retained, which has a positive impact on
combating noise and data changes.

TABLE IV: Comparison of different balance weight α used for
the old fuzzy map and new fuzzy map on the BRATS dataset
by utilizing 5% labeled data of training set. The best values
are in bold.

α
Metrics

Dice(%)↑ Jaccard(%)↑ ASD(voxel)↓ 95HD(voxel)↓
0 78.62 68.36 3.48 14.19

0.5 79.12 69.20 3.37 13.89

0.7 80.04 69.79 2.98 13.81

0.9 80.09 70.07 3.33 13.78

Since the classical consistency learning process is based
on segmentation prediction, we used balanced weights β to
control the consistency learning between the segmentation
and regression tasks. We performed experiments to assess the
selection of β within our consistency learning framework, with
the outcomes presented in Table V. When the value of β sets
1 or 0, the model’s performance diminishes as it relies only
on the segmentation or regression branch while ignoring the
other branch. It can be found that the framework achieves the
best performance when β = 0.75. Therefore, we set β = 0.75
for our model in the experiments.

V. DISCUSSION

Threshold Selection (Comparison of Fuzzy and Reliable)

In the medical image segmentation task, it is crucial for
the region selection of targets, so we adopted a dynamic
threshold [0.60, 0.75] with a Gaussian ramp-down paradigm
to divide the fuzzy value, thereby selecting the target region
for consistency learning. Specifically, when the fuzzy value
of a voxel is less and equal to the given threshold, it is

This article has been accepted for publication in IEEE Transactions on Radiation and Plasma Medical Sciences. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2024.3473929

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. X, NO. X, X X 11

TABLE V: Comparison of different balance weight β used for
segmentation task and regression task on the BRATS dataset
by utilizing 10% labeled data of training set. The best values
are in bold.

β
Metrics

Dice(%)↑ Jaccard(%)↑ ASD(voxel)↓ 95HD(voxel)↓
0 83.47 74.05 2.16 11.83

0.25 83.98 74.14 2.15 11.94

0.5 84.01 73.42 2.13 11.37

0.75 84.17 74.28 1.92 11.29
1 83.68 73.71 2.10 11.88

classified as a reliable region, and when the fuzzy value is
greater and equal to the given threshold, it is labeled as a fuzzy
region. In our study, we compared the effects of using common
traditional fixed thresholds (e.g., 0.5, 0.6 and 0.7) and dynamic
thresholds, as shown in Table VI. However, experiments have
proven that the application of a dynamic threshold achieves
better results for medical image segmentation. The dynamic
threshold takes into account the fact that the fuzzy region will
reduce with the process of training, which makes the selection
of the threshold more flexible and adaptable. It can better
reflect the distribution of fuzziness in different periods, and can
also be adjusted according to the characteristics of data and
the learning ability of the model, so that the fuzzy boundaries
can be obtained, which helps to distinguish fuzzy regions and
reliable regions more precisely.

TABLE VI: Comparison of fixed thresholds and dynamic
thresholds on the LA dataset by utilizing 5% labeled data of
training set. The best values are in bold.

Threshold
Metrics

Dice(%)↑ Jaccard(%)↑ ASD(voxel)↓ 95HD(voxel)↓
0.5 83.08 71.31 3.76 19.15

0.6 83.77 72.34 3.31 23.49

0.7 83.97 72.65 2.98 20.92

Ours 85.85 75.47 2.32 14.76

In addition, we further studied the effect of selecting fuzzy
regions or selecting reliable regions for model training. The
results show that selecting fuzzy regions for model training
can lead to more accurate segmentation results, as shown in
Table VII. This suggests that the learning of models that focus
too much on fuzzy regions is crucial for the success of the
medical image segmentation task, while focusing on reliable
regions may lead to the neglect of fuzziness and reduce the
segmentation performance, as shown in Fig. 4. Error-prone
fuzzy regions contain richer information and more valuable
clues in unlabeled data. Therefore, individually selecting fuzzy
regions for model training under dynamic thresholds proves to
be a more effective strategy, which helps the model to learn
and process the most challenging and attention-demanding
regions in the medical images, thus enhancing the performance
and reliability of the segmentation model.

Fig. 4: The unsupervised loss curve of comparison between fuzzy
map and reliable map on the LA dataset by utilizing 10% of the
labeled data in the training set.

TABLE VII: Comparison of reliable map and fuzzy map on
the LA dataset by utilizing 10% labeled data of training set.
The best values are in bold.

Method
Metrics

Dice(%)↑ Jaccard(%)↑ ASD(voxel)↓ 95HD(voxel)↓
Reliable Map 87.38 77.81 2.59 15.08

Fuzzy Map 89.11 80.48 2.01 8.54

VI. CONCLUSION

Although existing deep learning-based medical image seg-
mentation methods have achieved great success, they are
limited by the requirement for large amounts of labeled data.
Semi-supervised medical image segmentation, which encour-
ages segmentation models to utilize more easily collected
unlabeled data, demonstrates potential in overcoming this lim-
itation. In this study, we have proposed a new semi-supervised
medical image segmentation with multi-consistency learning
for fuzzy perception-guided target selection. First, the frame-
work introduces fuzzy perception-guided target selection to
identify the most challenging targets in fuzzy regions of
unlabeled data, which allows the model to enhance the learning
of the representation for these valuable regions and thus obtain
a fuzzy map. Then, the fuzzy map is incorporated into intra-
task and inter-model mutual consistency learning as well as
cross-model cross-task consistency regularization to further
improve segmentation accuracy. Extensive experiments on two
challenging public datasets demonstrate that the proposed
framework provides a general and effective solution for achiev-
ing high-quality 3D medical image segmentation compared
with other methods using small amounts of labeled data.
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