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Abstract—Semi-supervised learning methods based on the
mean teacher model have achieved great success in the field of
3-D medical image segmentation. However, most of the existing
methods provide auxiliary supervised signals only for reliable
regions, but ignore the effect of fuzzy regions from unlabeled data
during the process of consistency learning, which results in the
loss of more valuable information. Besides, some of these methods
only employ multitask learning to improve models’ performance,
but ignore the role of consistency learning between tasks and
models, thereby weakening geometric shape constraints. To
address the above issues, in this article, we propose a semi-
supervised 3-D medical image segmentation framework with
multiconsistency learning for fuzzy perception-guided target
selection. First, we design a fuzzy perception-guided target
selection strategy from multiple perspectives and adopt the fusion
method of fuzziness minimization and the fuzzy map momentum
update to obtain a fuzzy region. By incorporating the fuzzy
region into consistency learning, our model can effectively exploit
more useful information from the fuzzy region of unlabeled
data. Second, we design a multiconsistency learning strategy that
employs intratask and intermodal mutual consistency learning as
well as cross-model cross-task consistency learning to effectively
learn the shape representation of fuzzy regions. The strategy can
encourage the model to agree on predictions for different tasks
in fuzzy regions. Experiments demonstrate that the proposed
framework outperforms the current mainstream methods on
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two popular 3-D medical datasets, the left atrium segmentation
dataset, and the brain tumor segmentation dataset. The code will
be released at: https://github.com/SUST-reynole.

Index Terms—Consistency learning, fuzzy estimation, medical
image segmentation, semi-supervised learning.

I. INTRODUCTION

EDICAL image segmentation plays a key role in
Mradiotherapy and computer-aided diagnosis by accu-
rately and automatically segmenting anatomical structures or
lesions, which can greatly improve diagnostic efficiency and
accuracy [1]. In recent years, many supervised learning-based
methods for medical image segmentation have been demon-
strated to be effective, such as U-Net [2], TransUnet [3], and
Swin-Unet [4]. However, these methods typically require
large amounts of high-quality labeled data, but in practice
the annotation of medical images is usually very expensive,
especially for 3-D medical images, such as CT and MRI
scans. One of the main reasons is that medical image anno-
tation requires a tedious and specialized manual contouring
process. Compared to supervised learning, semi-supervised
learning is a new learning paradigm to solve the problem of
incomplete data supervision [5]. It mainly utilizes unlabeled
data to mine effective hidden information, thus improving
models’ performance. In addition to traditional supervised and
semi-supervised methods, new approaches, such as one-shot
segmentation and template-based joint learning methods, have
also been reported. One-shot segmentation methods aim to
learn effective segmentation models from a single annotated
example, which is particularly useful in the medical field
where annotated data are scarce [6]. These methods leverage
prior knowledge and transfer learning to improve the model’s
generalization ability from minimal labeled data, thus reducing
the dependency on extensive annotations [7]. Template-based
joint learning methods, on the other hand, use predefined
templates or atlases to guide the segmentation process [8].
By aligning new images with these templates, the model
can effectively leverage prior structural information, which
enhances segmentation accuracy and robustness, especially in
complex anatomical regions [9]. Obviously, in the field of
medical image segmentation, semi-supervised learning is more
suitable for the needs of practical clinical scenarios.
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Currently, a large number of semi-supervised medical image
segmentation methods have emerged. Most of these methods
first employ a popular encoder-decoder network architecture as
the backbone, perform model pretraining using full supervision
on a few labeled data, and then utilize data perturbation,
model perturbation, or feature perturbation to achieve the
effective utilization of unlabeled data, and finally update the
network model. For most semi-supervised learning methods,
their core idea is to use consistency learning to mine potential
knowledge from unlabeled data and improve the generalization
ability of the model. Consistency learning usually employs
consistency regularization with different perturbations to train
a network. One of the most representative methods is the
mean teacher (MT) [10] and its variant models [11], [12],
[13], [14], [15], [16]. This class of methods exploits the
perturbation-based consistency loss between the teacher model
and the student model, and the supervision loss on labeled
data. They face the following two problems when they are
applied to 3-D medical image segmentation. First, to improve
the performance of the model, these methods provide addi-
tional supervision in a complex and computationally overhead
way [12], [14] and retain only reliable prediction regions when
calculating the consistency loss. Reliable regions commonly
occupy a large portion of an image but have a small con-
sistency loss, and consistency loss commonly measures the
average difference between the predictions of each individual
voxel in the image, so the consistency learning on reliable
regions potentially reduces the role of fuzzy regions that only
occupy a small portion of an image. Second, consistency
learning is usually applied to identical models or tasks [15],
[17], ignoring the role of the combination of different models
and different tasks, which has not fully explored and utilized
the geometric shape information and intermodal differentiation
information for medical image segmentation.

To solve the above problems, we propose a semi-supervised
3-D medical image segmentation framework using mul-
ticonsistency learning with fuzzy perception-guided target
selection. Since the fuzzy regions provide more useful
information for medical image segmentation, the model can
learn the most valuable regions from unlabeled data and
does not focus too much on voxels that already have good
classification. By performing multiconsistency learning on
fuzzy regions, the model better encourages consensus in the
most challenging regions, allowing network models based
on semi-supervised learning to achieve better-segmentation
performance. The main contributions of this article are
summarized as follows.

1) Different from the mainstream semi-supervised med-
ical image segmentation networks that only rely on
confidence or uncertainty for consistency learning
[12], [14], [18], we propose a new fuzzy perception-
guided target selection strategy. The proposed target
selection strategy focuses only on the regions with high
fuzziness in medical images through a fusion method,
which improves the model’s learning effect, achieves
strong regularization constraints, and thus improves the
generalization ability of our network model.

2) Different from the mainstream semi-supervised med-
ical image segmentation networks that only focus
on intratask or intermodal consistency learning [15],
[17], [18], we propose a novel consistency learning
strategy that combines tasks and models. Intratask
and intermodal mutual consistency learning as well
as cross-model cross-task consistency learning enable
our proposed network to simultaneously take into
account geometric shape constraints and differential
perturbations between models, which enhances the
representation ability of our network on the shape
information of targets in 3-D medical images.

3) Our proposed framework of fuzzy perception-guided
target selection can be applied to any semi-supervised
medical image segmentation task. We evaluated it exper-
imentally on two public datasets, the 3-D left atrium
(LA) [48] and the 3-D brain tumors (BraTSs) [49]. It is
demonstrated that our proposed framework outperforms
state-of-the-art (SOTA) methods.

II. RELATED WORK
A. Semi-Supervised Medical Image Segmentation

To overcome the problem of insufficient labeled data in
medical image segmentation, researchers have proposed many
semi-supervised learning methods. Although semi-supervised
methods based on deep learning can provide excellent seg-
mentation results with their powerful feature representation
and modeling capabilities [12], there are still challenges in
applying these methods to complex 3-D medical images. In
order to better utilize unlabeled data, more methods focus on
improving learning strategies, which are mainly classified into
consistency learning [10], [11], [12], [18], [19], [20], pseudo-
label learning [21], [22], [23], contrastive learning [24], [25],
[26], [27], [28], and adversarial learning [29], [30], [31].
Among them, consistency learning focuses on maintaining
the consistency of predictions under different data perturba-
tions to improve models’ robustness. However, it is more
sensible to choose an appropriate consistency loss function.
Pseudo-label learning uses predictions of unlabeled data as
pseudo-labels and trains them together with labeled data, but
it is easily interfered by noisy samples. Contrastive learning
usually requires the design of effective similarity measures
to enhance the feature representation of similar samples by
learning similarity measures. Adversarial learning introduces
adversarial networks to improve the robustness of a model by
generating adversarial samples, but the stability and conver-
gence of adversarial networks are the main challenges. Among
these methods, consistency learning is the most popular
for semi-supervised medical image segmentation in practical
applications.

Consistency learning aims to learn useful features from both
labeled and unlabeled images, computing regularly supervised
loss on labeled images and unsupervised consistency loss
on unlabeled images. Laine and Aila [32] first proposed a
temporal ensembling strategy by using exponential moving
averages (EMAs) to predict unlabeled data as a consistency
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goal. However, maintaining EMA of the model’s predictions
during the training process, which increases the computa-
tional cost of the training process. To address this problem,
Tarvainen and Valpola [10] used the EMA weights of the
teacher model and the student model (MT) to achieve model
training, so that the model is able to achieve consistency
learning under different data perturbations. Specifically, MT
first performs a supervision learning on labeled data, and
then utilizes the prediction from the teacher model to provide
a pseudo-label for unlabeled data, and leverages different
learning strategies to ensure that the predictions of the teacher
model and the student model on unlabeled data are consistent,
and finally updates the student model with feedback on
supervision and consistency losses. Most of the subsequent
improvements [11], [12], [13], [14], [15], [28] employ more
complex or computationally expensive methods to provide
additional supervision signals for consistency regularization
strategies, which improves the prediction quality on unlabeled
data. For example, Chen et al. [11] proposed a cross-pseudo-
supervision (CPS) method based on model perturbations to
encourage high consistency between different predictions from
two perturbation models. However, evaluating the consistency
between two predictions on unlabeled data can lead to unre-
liable guidance, which, in turn, affects the accuracy of the
final model. For this, Yu et al. [12] proposed an uncertainty-
aware framework (UA-MT) based on the MT model, which
enables the student model to acquire more reliable targets by
estimating uncertainty through multiple forward propagations.
To reduce time and memory overhead, Luo et al. [14],
[15] proposed to learn multiscale consistency (URPC) from
pyramid predictions at different scales to obtain target vol-
ume segmentation and constructed a dual-task-consistency
(DTC) regularization method by jointly predicting pixel-by-
pixel segmentation maps and geometrically aware level-set
representations of targets. Wu et al. [16] introduced a mutual
consistency network (MC-Net) comprising two decoders,
which captures model uncertainty information by evaluating
the discrepancy between their predictions. The MC-Net can
effectively improve pseudo-label quality by adding a regu-
larization term. However, these networks ignore correlations
between labeled and unlabeled data and only compute pixel-
level consistency. For this reason, Lei et al. [34] adopted two
discriminators (ASE-Net) based on consistency learning to
obtain the prior relationship between labeled and unlabeled
data and computed both the pixel-level and image-level con-
sistency on unlabeled data under different data perturbations
in order to improve the quality of predictions. However, the
perceptual bias of the model may reduce its segmentation
performance. For this, Wang et al. [35] proposed a mutual
correction framework (MCF) through a comparative difference
review module to find inconsistent prediction regions and
dynamically select more reliable pseudo-labels. Although the
above improved methods are better than the classic MT
model, most of them ignore improving consistency learning
from the perspective of voxel target selection. In contrast to
UA-MT [12], which is most relevant to voxel target selection
and only selects reliable voxel targets with low uncertainty
for consistency learning, we choose fuzzy voxel targets with

high uncertainty due to higher-learning value for model
training.

B. Fuzzy Estimation

In the field of medical image segmentation, accurately
quantifying fuzziness is crucial to evaluate the confidence of
predicted regions [36], as it indicates the image regions in
which the model is most likely to be incorrect for target
segmentation [37]. However, determining the fuzzy regions
in an image remains a challenging task. One of the most
critical issues is how to effectively identify the fuzzy regions
containing rich information that is more useful for accurate
segmentation. In the field of image semantic segmentation,
fuzziness is mainly used to guide semi-supervised learning to
improve learning efficiency [33]. Fuzziness mainly originates
from the estimation of uncertainty, because uncertainty can
effectively depict fuzziness.

In semi-supervised learning, the utilization of fuzziness can
be roughly divided into two groups. The first group focuses
on learning deterministic regions by discarding ambiguous
regions. For example, Yu et al. [12] used Monte Carlo
sampling to estimate the perceptual uncertainty of each target
prediction and only selected samples with low uncertainty for
model training, so that the model could obtain more reliable
guidance. Although this approach improves the accuracy and
confidence of the model for unlabeled data, it ignores potential
effectiveness of the regions with high uncertainty. Aiming at
the shortcomings of the first group of methods, the second
group focuses on learning only fuzzy regions to fully utilize
unlabeled data. To identify fuzzy regions in unlabeled data,
Lei et al. [33] argued that more information about fuzzy
regions can be obtained from data with high uncertainty. In
addition, Chen et al. [39] revealed the association between
model uncertainty and error-prone fuzzy regions in image seg-
mentation, emphasizing the importance of focusing on fuzzy
regions. Meanwhile, Zheng and Yang [40] obtained larger
prediction variance values in regions with fuzzy predictions
and pointed out that the estimation of fuzzy regions is
related to the variance. The high-variance regions mean higher
uncertainty. Zheng and Yang [40] also observed a considerable
overlap between high-variance regions and noise in pseudo-
labels, which suggests that attention to fuzzy regions can be
improved by focusing on high-variance regions. To obtain
the fuzzy regions in pseudo-labels, Zhang et al. [41], in
a self-training-based unsupervised domain adaptation study,
found that the class prototype is less sensitive to errors in
pseudo-labels, which can help to remove noise, and thus more
accurately capture the fuzzy regions in pseudo-labels.

III. METHODS
A. Overview

In this article, we propose a semi-supervised 3-D medical
image segmentation framework for fuzzy perception-guided
target selection with multiconsistency learning. As shown in
Fig. 1, our framework can be represented as an ensemble of
teacher and student models with the same network structure.
The framework shares an identical encoder and two slightly
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Overview of a semi-supervised 3-D medical image segmentation framework using multiconsistency learning with fuzzy perception-guided target

selection. & and &’ are different perturbations applied to the data input to the student model and the teacher model. Jfseg and fgis are segmentation probability
maps and signed distance maps generated by the student model, fs’eg and féis are segmentation probability maps and signed distance maps generated by the
teacher model. The student model is updated via backpropagation and the teacher model is updated via the EMA of the student model weights. Lgyp is
the supervised loss for labeled data, L,j. is the fuzzy mask consistency loss within the task for unlabeled data, L is the cross-task consistency loss for
unlabeled data, and Lcmct is the cross-model cross-task consistency loss. The fuzzy map is used to guide the fuzzy mask consistency loss within the task
Lt and the cross-task consistency loss Li]. When computing Lemer and Lege], the smooth approximation Gpask (+) of the inverse transformation Ggpg(+)

is applied to convert the level set function into a probability map.

different decoders. The segmentation branch uses the original
3-D transposed convolution to achieve up-sampling and a
Softmax activation function at the last layer of the decoder
to obtain segmentation probability maps, while the regression
branch uses trilinear interpolation and 3-D convolution to
extend the feature maps and a Tanh activation function at
the last layer of the decoder to obtain the signed distance
maps. The process of guided consistency learning for the
fuzzy maps is as follows. First, three different strategies of
information entropy, perceptual uncertainty, and label noise
variance identification are used to obtain three fuzzy maps
(high-uncertainty regions) respectively. Second, the three fuzzy
maps are fused to form a final fuzzy map through the
minimization of the fusion strategy and the way of momentum
update on the fuzzy map. Finally, the generated fuzzy maps
are incorporated into multiconsistency losses.

In our framework, we improve the consistency learning of
the MT model into multiconsistency learning with a new fuzzy
perception-guided target selection, which can obtain better
and more useful target information from fuzzy regions of a
large number of unlabeled data. By combining intratask and
intermodal mutual consistency learning as well as cross-model

cross-task consistency regularization, we utilize multitask
learning of geometric shape information and differential
perturbation information between the teacher and student
models to encourage consistent predictions on fuzzy regions.
Essentially, fuzzy perception-guided target selection finds the
most valuable voxel targets from fuzzy (high uncertainty)
regions, and the model learns useful knowledge from these
valuable voxel targets.

B. Fuzzy Estimation Guided Target Selection

In medical image analysis, the fuzziness is usually evaluated
by information entropy, perceptual uncertainty and label noise
variance identification to select valuable target voxels. With the
consistency loss of these valuable fuzzy voxels, the network
model can selectively focus on learning image information-
rich regions from unlabeled data, particularly in challenging
regions.

First, the information entropy can be used to measure
the model’s prediction fuzziness for each voxel. Higher-
information entropy indicates that the model has an uncertain
prediction at that voxel, which also means that the voxel



LEI et al.: SEMI-SUPERVISED 3-D MEDICAL IMAGE SEGMENTATION USING MULTICONSISTENCY LEARNING 425

is more challenging to accurately segment. Therefore, the
student model generates a predicted probability at each voxel
by V-Net [42] and uses information entropy to represent the
fuzziness at the voxel

fo==>_plog(pt) (1)
ceC

where ¢ € C denotes the category, p§ is the predicted
probability from the student model at the vth voxel, f; is the
fuzziness at the vth voxel, and the high-information entropy
map Fyp € REXWXD is obtained by selecting voxels with
fv = H. Since the number of voxels in the fuzzy region
decreases as the training proceeds, a dynamic threshold H €
[0.75,0.60] similar to the Gaussian ramp-down paradigm is
used to control the degree of fuzziness.

Second, when the prediction fuzziness of models is
quantified by information entropy, we further consider the
high-perceptual uncertainty of models in different regions,
especially in cases of limited training data or when model
convergence is affected, and this high-perceptual uncer-
tainty is often associated with high fuzziness. To quantify
the perceptual uncertainty of models, Monte Carlo sam-
pling is introduced as an approximation of Bayesian neural
networks [43] to describe the probability distribution of mod-
els’ perceptual uncertainty. Two dropout layers with a dropout
rate of 0.5 are used at the last layer of the downsampling
stage and the first layer of the upsampling stage of the
segmentation network. During the training process, by utilizing
these dropout layers to perform 7 random forward passes
for the student model, the perceptual uncertainty for each
voxel is estimated. Therefore, the predicted entropy is used
to approximate the perceptual uncertainty for each voxel as
follows:

1 T
==Y p° 2
P== ;pA )
fo==>_plog(5) 3)
ceC

where p° is the average of T predicted probabilities and the
high-perceptual uncertainty map Fyapy € R¥*W*D is obtained
by selecting voxels with f, > H.

Next, we investigate the common issue of fuzziness in semi-
supervised learning based on pseudo-labeling. Errors from
pseudo-labels usually appear in fuzzy regions, since a model
struggles to make accurate predictions with limited labeled
data. Moreover, the regions with high-variance exhibit clear
overlap with noise in pseudo-labels. To capture errors from
pseudo-labels without introducing Gaussian noise or additional
branches, the noise from pseudo-labels is modeled only by
the model’s prediction variance. Here, the KL-divergence
predicted by the student model and teacher model is used to
approximate the variance

pc
Var, = ) pf 1og(p—§) 4)
t

ceC
where p{ is the predicted probability of the teacher model at
the vth voxel and Var,, is the variance of the teacher and student
model’s prediction probabilities at the vth voxel.

If the predictions from the two models are different at a
voxel, the variance will be a large value, meaning that the
voxel is located in a fuzzy and information-rich region. Label
noise variance identification combines pseudo-labeling with
consistency regularization, where the student model generates
noisy pseudo-labels, while the teacher model recognizes label
noise. The erroneous locations in pseudo-labels usually cor-
respond to fuzzy and information-rich voxel regions. Because
the location of the target voxel is to be determined in an
original image rather than in the randomly perturbed image,
no additional perturbation is introduced. We will use the
class prototype method in unsupervised domain adaptation to
identify errors in the pseudo-labels from the student model,
where the features of correctly labeled voxels should be closer
to their associated class prototypes. Regarding the generation
of class prototypes, the masked average pooling operation [39]
will be used to calculate the class prototypes of the foreground
and background, respectively

S [T € Con] - Fy - PP

obj
9" = " e (5)
S [7 € Con| - P
L[V e Cog) By P
q* = (6)

S I[ 0 € G| - P
where F' € REXHXWxD g the feature map generated by
convolution of the penultimate layer in the teacher model after
up-sampling to obtain the feature map, pobi represents the
predicted probability of the teacher model on the foreground,
pbe represents the predicted probability of the teacher model
on the background, Y’ is the label generated by the teacher
model used as the mask for prototype generation, and I[ - ] is
the mask selected as foreground or background based on the
label generated by the teacher model. The cosine similarity
distance is computed between the vth feature vector F and
the class prototypes ¢°® and ¢°¢

bi
COS<F/7qobj) _ F, - q° | o
Y IF} 2 - 1g°% 12
/. ,bg
cos(F;, qbg) = /F"—qb. (8)
IE 02 - lgPEll2

The unlabeled data X,, is input into the student model to
generate noisy pseudo-labels Y. If the vth voxel ¥, generated
by the student model is foreground (background) but its cosine
similarity distance is closer to the prototype of background
(foreground), it will be considered as a mislabeled voxel.
Additionally, we incorporate the fuzzy map derived from
voxels with a variance Var, > H as a regularization term,
which prevents the class prototype method from judging
voxels wrongly and reduces discontinuities in the fuzzy map,
making the fuzzy map smoother. Therefore, the fuzzy map for
label noise variance identification can be defined as

FIny = ]I[f/‘, = O] -]I[cos(F;, q"bj) < cos(F;, qbg)]
+ ]I[f’v = 1] -H[cos(F;, q"bj) > cos(F;, qhg)]
+ Var,,. 9



426 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 9, NO. 4, APRIL 2025

Finally, three different fuzzy maps are obtained by the above
three methods, each with slightly different selected targets
and characteristics. Given the diversity and differences of
the different fuzzy maps, we design and use a minimized
fusion strategy and a momentum update way to update the
fuzzy maps, which naturally combines multiple different fuzzy
maps to generate a comprehensive and representative fuzzy
map. This fusion process aims to balance and integrate the
information from each fuzzy map to improve the quality
of the final fuzzy map. Specifically, this approach ensures
that the fusion of different fuzzy maps produces consistent
and reliable results by enhancing the stability of the fuzzy
map. The fast convergence property of the momentum method
helps to efficiently process the fuzzy regions of large-scale
medical image data, reducing the number of iterations and thus
reducing the computational cost. Solving the problem of noise
in the 3-D medical data voxels is another advantage of the
proposed method. It effectively maintains the stability of the
fuzzy map by considering the historical update direction to
cope with the common noise and changes in 3-D medical data
voxels. Therefore, updating the fuzzy map by the momentum
method can ensure stable, accurate and efficient results during
the fusion process, which is defined as

(10)
(1)

F = IIlvin(FHE + Fuau + FiNvy)
F;otal —a _F;Stzlﬂ + (-0 ,F;lew

where ¢ represents the current number of iterations, FyV is
the new fuzzy map generated by the current iteration, F'*%!
is the fuzzy map generated by the previous iteration, and « is

the weight coefficient that controls the previous fuzzy map.

C. Fuzzy Perception-Guided Multiconsistency Learning

In many previous methods, medical image segmentation is
often regarded as a task of pixel-level classification, where
the goal is to generate a segmentation probability map and
assign a corresponding class label to each pixel. In addition to
employing binary or multilabel masks for pixel classification,
other researches focus on methods using signed distance maps.
This type of methods converts a binary mask into a gray-level
image, where the intensities of a pixel changes depending on
the distance from the nearest boundary. The signed distance
function (SDF) is a traditional technique [44], [45] used to
represent object contours in a high-dimensional space. In med-
ical image segmentation, the SDF is often utilized to describe
the geometric features of targets to capture geometric distance
information, which improves the segmentation performance
of models. Specifically, we apply the transformation of the
pixel-level segmentation map of a prediction image to a signed
distance map [15], [17]. A regression branch is introduced into
the traditional encoder-decoder architecture to generate signed
distance maps while working in parallel with the traditional
segmentation branch for generating segmentation probability
maps. Task-level differences between the two branches lead
to model perturbations and encourage the model to learn
different representations of segmentation targets from different
perspectives. The segmentation branch and regression branch

provide supervised information for labeled data. Therefore, the
supervised loss can be defined as

£sup = Z Edice(fseg(xi)a yi) + Acbce(fseg(xi)v )71')

Xi,yi€D;

+ Lais (fais (x:), Gspr (i) (12)
where Lgice(-) represents the commonly used dice loss,
Lpce(+) represents the binary cross entropy loss, Lgis(-) rep-
resents the mean squared error loss, fseg(-) represents the
segmentation network model, f3is(-) represents the regression
network model, and Gspp(-) represents the signed distance
transformation function.

For semi-supervised medical image segmentation, the
improvement in model performance comes from generating
supervised signals and obtaining unsupervised knowledge
from unlabeled data via an unsupervised loss function. The
main semi-supervised segmentation methods often use the
MT model as its framework, which consists of two models,
namely, the student model and the teacher model, which
have the same network structure but different parameters.
During the training process, the network parameters of the
teacher model are updated as the EMA of the parameters
of the student model [10], [12], [32]. Unlike the classical
MT [10] that computes all voxels, or its variant UA-MT [12]
that only computes reliable regions for consistency learning,
our model will compute the consistency loss on the finally
generated fuzzy regions because they have higher-learning
value. Specifically, we redesign the consistency loss as an

intratask fuzzy mask mean squared error loss
Zv |:FV Zc( fseg _fs/eg

(sl

>, [Fv > ( fais — fis 2)]
2y

/v‘aitc(fvf/; F) =p

+d-=5

(13)

where F), is the fuzziness at the vth voxel, (fseg, fais) T€presents
the outputs of the segmentation branch and the regression
branch of the student model at the vth voxel for each class ¢ €
C, (fieg- fis) Tepresents the outputs of the segmentation branch
and the regression branch of the teacher model at the vth voxel
for each class ¢ € C, and B is the weight coefficient that
achieves a balance between the segmentation and regression
tasks.

For the same input data in different tasks, their predictions
should keep consistency when mapped into the same
predefined space. In order to efficiently utilize unlabeled data,
we perform cross-task consistency learning on fuzzy regions,
aiming to ensure that the outputs from the segmentation
branch and the regression branch remain consistent. We use
the smooth approximation method of the inverse transfor-
mation of the SDF to convert the output of the distance
map back to the binary segmentation output [15]. The cross-
task consistency learning method helps the model to learn
the correlations between different tasks comprehensively and
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establishes consistency between the outputs of two tasks.
Therefore, cross-task consistency loss can be defined as

S [F0 e (o) — Gl )]
2 F
) = G| |
2 F

Lctcl(f»f/§ F) =B

R[N

+d-8)
(14)

where Gpask(+) is the smooth approximation to the inverse
transformation of the SDF.

The task differences between the two branches can cause
perturbations in the model, which means that the different
tasks are able to guide the model in their respective ways,
enabling it to learn the segmentation target from multiple
perspectives, thus obtaining more diverse and comprehensive
target representations. This cross-model cross-task consistency
learning can help the model understand and learn the different
characteristics and changes of targets. It’s loss function is
defined as

2
Ecmct(faf/) = fs/eg (*) — Gmask (fdis (x)) H

+ fieg@ — Gmask (fi @) ]

Cross-model cross-task consistency learning further
enhances the model’s representation abilities, allowing it to
deeply understand the relationship between different tasks
and different models. It not only helps models improve the
segmentation performance, but also can better cope with the
diversity and complexity of 3-D data voxels in medical image
segmentation tasks.

15)

D. Overall Training Process

Our proposed framework can be trained by minimizing the
weighted sum of the supervised segmentation loss Lgyp, the
intratask consistency loss L, the cross-task consistency loss
Lecie1 and the cross-model cross-task consistency loss Lemet.
The student model utilizes the supervised segmentation loss
Lsup to learn from the labeled data. At the same time, the
student model and the teacher model learn more challeng-
ing information from the unlabeled data under the fuzzy
perception-guided target selection. Therefore, the framework
can be formulated as minimizing the following function:

mgin Lsup(0; Dr) + )\(['aitc (97 6’ D)

+ Letet (0, 0'; D) + Lemet (60, 0'; D)) (16)

where A represents the rising weighting coefficient. According
to [46] and [47], we use the Gaussian ramp function A(f) =
e=30=1t/maxD” o control the balance between the supervised
and semi-supervised losses, mitigating the interference of the
consistency loss in the early training stage, where ¢ represents
the current step of the iteration and fax represents the max-
imum training step. The training procedure of our proposed
semi-supervised medical image segmentation framework can
be described by Algorithm 1.

Algorithm 1 Training Procedure of Multiconsistency Learning
With Fuzzy Perception-Guided Target Selection

Input: A batch of x;,y; from labeled dataset D; and x, from
unlabeled dataset D,,.
Output: Trained network N with 6
1: fseg and fy;; represent the output predictions of segmentation
branch and regression branch to generate segmentation proba-
bilistic maps and signed distance maps, respectively

2: for minibatch {(x,r(,yk)}f?:l C <Dl UD“) do

3:  Generate output segmentation maps fseg, output distance maps

fais and the final fuzzy map F formed by fusion

Calculate supervised segmentation loss Lgup as Eq. (12)

Calculate intratask consistency losses L as Eq. (13)

Calculate cross-task consistency losses L. as Eq. (14)

Calculate cross-model cross-task consistency losses Leper as

Eq. (15)

8:  Update the student model’s weights 6 with £ = Lgp +
M Laite + Letel + Lemet)

9:  Update the teacher model’s weights with EMA of the student
model’s weights

10: end for

11: return 6

AN

IV. EXPERIMENTS AND ANALYSIS
A. Datasets

To evaluate our framework, we conducted a comprehen-
sive evaluation of two different types of medical image
datasets, including the 3-D LA magnetic resonance (MR)
image scans [48] and the 3-D BraTS MR image scans [49].

1) 3-D LA Segmentation MR Dataset: The LA dataset
originates from the 2018 Atrial Segmentation Challenge
and includes 100 sets of 3-D gadolinium-enhanced MR
images, which contain 3-D binary masks representing
the left atrial cavity. The original isotropic resolution
is 0.625 x 0.625 x 0.625mm?>. Following [12], [15],
[50], and [51], we split the 100 scans into 80 scans for
training and 20 scans for testing. For the 80 training
scans, 2.5%/2, 5%/4 and 10%/8 scans are used as labeled
data, and the rest of the scans are employed as unlabeled
data.

2) 3-D BraTS Segmentation MR Dataset: The BraTS
dataset comes from the 2019 Multimodal BraTS
Segmentation Challenge. It is mainly used to study
and evaluate the performance of BraTS segmentation
algorithms. It contains 335 scans usually, including
T1-weighted, T2-weighted, and contrast-enhanced T1-
weighted sequences, with the same resolution of 1 x
1 x Imm?>. Following [13] and [50], we randomly chose
250 scans for training, 25 scans for validation, and
60 scans for testing. For the 250 training scans, 5%/12
and 10%/25 scans are used as labeled data, and the rest
of the scans are employed as unlabeled data.

B. Implementing Details and Evaluation Metrics

Implementing Details: All algorithms in our experiments
were implemented on a server with NVIDIA GeForce RTX
3090 24 GB, Ubuntu 18.04, and PyTorch 1.7. The batch size
is 4, consisting of two labeled images and two unlabeled
images in each mini-batch. We employed V-Net [42] as the
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backbone for all experiments to achieve a fair comparison.
The framework is trained for 6000 iterations using the SGD
optimizer (weight decay = 0.0001, momentum = 0.9). The
learning rate is initialized as 0.01 and decayed by 0.1 every
2500 iterations. We randomly cropped 112 x 112 x 80 on the
LA dataset [48] or 96 x 96 x 96 on the BraTS dataset [49]
subvolume as the input. According to [12], [15], and [51], data
augmentation, including randomly flip and rotation, is applied
to avoid over-fitting. For the testing phase, we employed the
teacher model. This choice was made due to the teacher
model’s superior stability and robustness in semi-supervised
learning scenarios. By aggregating the results from multiple
training of the student model, the teacher model effectively
reduces noise and uncertainty, leading to higher-prediction
accuracy compared to the student model.

Evaluation Metrics: According to [50], we adopted four
metrics for a comprehensive evaluation, i.e., Dice similarity
coefficient (Dice), Jaccard index (Jaccard), average surface
distance (ASD) and 95% Hausdorff distance (95HD), which
can be defined as
2|Vpred N Vgll

Dice(Vpred, Vor) = 17

( pred gz) Woreal + Vel (17)
|Vpred N Vgt|

Jaccard(Vpred, Vor) = ————— (18)
( pred gt) Vorea U Verl

ASD(A, B) = (ZaeA minyep da, b) > bep Mingea d(a, b))

2 ZaEA 1 ZbEB 1
(19)
HD(A, B) = max |:sup inf d(a, b), sup inf d(a, b):| (20)
aeA PE beB A€A

where Vpeq 18 the set of voxels in the predicted pixel-level
probability map from the segmentation network and Vg, is
the set of voxels in a pixel-level probability map from the
ground truth. A and B represent two sets of contour points,
and d(a, b) denotes the Euclidean distance between the two
points a and b.

C. Comparisons With SOTA Methods

In this section, we conducted a large number of comparative
experiments on the LA dataset [48] and BraTS dataset [49]
to verify the superiority and effectiveness of the proposed
framework under three general semi-supervised experimental
settings. To fairly evaluate the various methods, we used the
same V-Net [42] as the backbone network, as well as the
same experimental platform and hyperparameter settings in
all the comparison experiments. In addition, we used 2.5%,
5%, and 10% labeled data as training datasets on the LA
dataset [44] to demonstrate the segmentation performance
obtained by the V-Net [42] network under different settings,
as shown in Table I, respectively. On the BraTS dataset [49],
using 5% and 10% labeled data as a training dataset, the
segmentation performance obtained by the V-Net [42] network
under different settings is demonstrated, as shown in Table II,
respectively.

Comparison on LA Dataset: In order to demonstrate the
effectiveness of our proposed framework, a comprehensive
comparison with existing methods is performed on the
LA dataset. We evaluate our framework by comparing it

TABLE I
QUANTITATIVE COMPARISONS OF DIFFERENT METHODS ON THE LA
DATASET BY UTILIZING 2.5%, 5%, AND 10% LABELED DATA OF
TRAINING SET. THE BEST VALUES ARE IN BOLD. THE NUMBER IN RED
INDICATES THE IMPROVEMENT OF OUR METHOD COMPARED WITH THE
BEST OF THE OTHER METHODS

Scans used Metrics

Method
Labeled Unlabeled Dice(%)T Jaccard(%)T ASD(voxel)] 95SHD(voxel)|
V-Net 4 0 52.55 39.60 9.87 47.05
V-Net 8 0 79.99 68.12 5.48 21.11
V-Net 80 0 91.14 83.82 1.52 5.75
MT[NeurIPS’17] 2 78 7278 58.88 3.65 34.16
UA-MT[MICCATI’19] 2 78 74.63 60.79 3.39 35.98
SASSNet[MICCAI'20] 2 78 73.35 59.12 3.47 36.52
DTC[AAAT21] 2 78 73.24 58.54 3.52 35.64
URPC[MIA’22] 2 78 74.87 60.82 3.54 34.63
MC-Net[MIA’22] 2 78 75.73 60.94 322 32.18
ASE-Net[TMI'22] 2 78 76.94 63.58 3.03 30.04
DSTP[TAT’23] 2 78 75.76 63.45 3.16 31.59
3D-VIiT[ICCV’23] 2 78 76.85 64.09 3.01 32.13
BCP[CVPR’23] 2 78 77.19 65.17 3.18 29.86
MCF[CVPR’23] 2 78 76.88 63.48 3.90 30.11
Ours 2 78 78.9871.79 66.65 2.88 28.14
MT[NeurIPS’17] 4 76 80.67 68.85 4.03 15.24
UA-MT[MICCAI'19] 4 76 82.26 70.98 3.82 13.71
SASSNet[MICCATI’20] 4 76 81.60 69.63 3.58 16.16
DTC[AAAI'21] 4 76 81.25 69.33 3.99 14.90
URPC[MIA’22] 4 76 82.48 71.35 3.65 14.65
MC-Net[MIA™22] 4 76 83.59 72.36 2.70 14.07
ASE-Net[TMI'22] 4 76 83.33 71.79 433 15.70
DSTP[TAI'23] 4 76 82.15 70.76 4.10 16.74
3D-VIiT[ICCV’23] 4 76 82.47 71.38 3.86 15.12
BCP[CVPR’23] 4 76 84.50 72.71 2.56 12.96
MCF[CVPR’23] 4 76 84.39 73.17 3.31 14.85
Ours 4 76 85.8571.35 75.47 2.32 14.76
MT[NeurIPS’17] 8 72 84.24 73.26 271 19.40
UA-MT[MICCAT'19] 8 72 84.25 73.48 3.36 13.48
SASSNet[MICCAI'20] 8 72 86.81 76.92 3.94 12.54
DTC[AAAT21] 8 72 86.57 76.55 3.74 14.47
URPC[MIA"22] 8 72 85.02 75.98 2.96 15.21
MC-Net[MIA’22] 8 72 87.71 78.31 2.18 9.36
ASE-Net[TMI'22] 8 72 87.83 78.45 2.17 9.86
DSTP[TAT’23] 8 72 86.74 71.19 227 8.67
3D-ViT[ICCV’23] 8 72 87.62 78.12 2.66 8.92
BCP[CVPR’23] 8 72 87.91 78.58 2.10 8.99
MCF[CVPR’23] 8 72 86.63 77.01 295 8.97
Ours 8 72 89.1171.2 80.48 2.01 8.54
with several recent SOTA semi-supervised segmentation
methods, including MT [10], UA-MT [12], shape-aware
semi-supervised network (SASSNet) [51], DTC [15],

URPC [14], MC-Net [16], adversarial consistency learning
(ASE-Net) [34], dual-stage semi-supervised pretraining
approach (DSTP) [52], dual-contrastive dual-consistency
dual-transformer (3D-ViT) [53], bidirectional copy-paste
(BCP) [54], and MCF [35].

We used the same V-Net [42] backbone in all these
methods for a fair comparison. Table I shows the results of
the comparison of different methods on the left atrial test
set in the case of utilizing 2.5%, 5% and 10% labeled data.
It can be seen that UA-MT [12] improves Dice by 4.26%,
compared to V-Net [42] when utilizing the same percentage
of labeled data, suggesting that UA-MT effectively uses unla-
beled data for better-segmentation results by using consistency
learning for reliable labels only. By leveraging the consistency
of the fuzzy regions of a large amount of unlabeled data
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TABLE 11
QUANTITATIVE COMPARISONS OF DIFFERENT METHODS ON THE BRATS
DATASET BY UTILIZING 5% AND 10% LABELED DATA OF TRAINING SET.
THE BEST VALUES ARE IN BOLD. THE NUMBER IN RED INDICATES THE
IMPROVEMENT OF OUR METHOD COMPARED WITH THE BEST OF THE
OTHER METHODS

Scans used Metrics

Labeled Unlabeled Dice(%)T Jaccard(%)T ASD(voxel)| 95HD(voxel)|

Method

V-Net 12 0 70.28 60.42 2.82 38.44
V-Net 25 0 74.43 61.86 2.79 37.11
V-Net 250 0 86.95 78.03 1.75 6.56
MT[NeurIPS’17] 12 238 80.31 70.37 2.83 11.69
UA-MT[MICCAT'19] 12 238 7725 63.56 3.80 17.56
SASSNet[MICCATI'20] 12 238 76.17 66.43 332 13.09
DTC[AAAT21] 12 238 74.21 64.89 3.16 13.54
URPC[MIA’22] 12 238 78.74 68.20 4.51 14.43
SS-Net[MICCAI'22] 12 238 78.03 68.11 2.76 13.70
MC-Net[MIA'22] 12 238 78.69 68.38 4.49 13.44
ASE-Net[TMI'22] 12 238 78.53 68.03 3.57 15.99
DSTP[TAT'23] 12 238 77.26 66.82 3.06 14.90
3D-ViT[ICCV 23] 12 238 71.66 67.08 3.05 14.93
BCP[CVPR’23] 12 238 79.27 68.69 2.25 12.25
MCF[CVPR’23] 12 238 78.67 67.94 2.89 12.59
Ours 12 238 80.0970.82 70.07 333 13.78
MT[NeurIPS’17] 25 225 81.21 70.83 2.45 14.72
UA-MT[MICCAT’19] 25 225 80.85 70.32 2.57 14.61
SASSNet[MICCAI'20] 25 225 79.19 68.80 6.67 16.36
DTC[AAAT21] 25 225 81.75 71.63 2.56 15.73
URPC[MIA’22] 25 225 82.59 72.11 3.72 13.88
SS-Net[MICCAI'22] 25 225 82.00 71.82 1.98 10.68
MC-Net[MIA'22] 25 225 79.63 70.10 2.45 12.28
ASE-Net[TMI"22] 25 225 83.24 73.43 2.15 10.32
DSTP[TAT'23] 25 225 83.13 72.77 2.02 12.45
3D-ViT[ICCV 23] 25 225 82.56 72.62 2.33 13.25
BCP[CVPR’23] 25 225 83.31 73.63 2.23 10.86
MCF[CVPR’23] 25 225 83.28 73.99 293 11.29
Ours 25 225 84.1710.81 74.28 1.92 9.60

during training, the proposed framework obtains significant
performance improvements (Dice from 52.55% to 85.85%,
Jaccard from 39.60% to 75.47%, ASD from 9.87 to 2.32, and
95HD from 47.05 to 14.76 under 5% labeled data). Compared
to the most recent semi-supervised method BCP [54], it
reduces the distribution gap between labeled and unlabeled
data by enforcing the invariance of predictions under different
distributions, but it does not fully exploit the shape constraints
and boundary-level distance information of most fuzzy regions
from the unlabeled data and does not set a threshold to focus
on region-level consistency learning, whereas our framework
focuses on local region learning in the unlabeled data and puts
more emphasis on fuzzy regions of consistency. Therefore,
compared with it, the value of Dice increases by 1.35% under
5% labeled data and by 1.2% under 10% labeled data. In
addition, Fig. 2 shows the segmentation results provided by
our framework, it is clear that our framework provides better-
segmentation results than other methods used for comparison.

Comparison of BraTS Dataset: To further validate our
proposed framework, thirteen SOTA methods are compared
on the BraTS dataset [49], including MT [10], UA-MT [12],
SASSNet [51], DTC [15], URPC [14], smoothness and class
separation consistency learning (SS-Net) [55], MC-Net [16],
adversarial consistency learning (ASE-Net) [34], DSTP
approach [52], 3D-ViT [53], BCP [54], and MCF [35]. Table II
shows the comparative results of different methods on the
BraTs test set using 5% and 10% labeled data. The segmenta-
tion results on the BraTS dataset [49] are shown in Fig. 3. Our
results demonstrate a closer alignment with the ground truth.
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Fig. 2. Visualization results of different methods on the LA dataset by
utilizing 5% and 10% of the labeled data in the training set, respectively.
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Fig. 3. Visualization results of different methods on the BraTS dataset by
utilizing 5% and 10% of the labeled data in the training set, respectively.

Our predicted segmentation results have smoother transitions
at the boundaries and reduce misclassification cases due to
boundary fuzziness, which allows for better capturing of fuzzy
boundaries and provides more accurate segmentation results.

The results presented in Figs. 2 and 3 show that the
performance of the semi-supervised approach is still insuffi-
cient in some critical regions (e.g., edges and small lesions).
For example, in the edge region, the segmentation results
of the model may appear blurred or inaccurate, which may
lead to misjudgments by clinicians when determining the
tumor boundary. In addition, for the identification of small
lesions, the sensitivity of the model is low, which may lead
to some small lesions being overlooked. In practical clinical
applications, these limitations may have a significant impact
on diagnosis and treatment. For example, for tumor resection
surgery, accurate tumor boundary determination is crucial. If
the model is not accurate enough in edge detection, it may
lead to incomplete tumor resection or mistakenly cut normal
tissues, affecting the surgical outcome and patient prognosis.
In addition, in early cancer screening, identifying small lesions
is crucial for early diagnosis and treatment. If the model misses
these small lesions, it may lead to delayed treatment and
affect the survival rate of patients. Consequently, in actual
clinical practice, doctors usually combine multiple images
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TABLE III
COMPARISON OF ABLATION EXPERIMENTS ON THE LA DATASET BY
UTILIZING 10% LABELED DATA OF TRAINING SET.
THE BEST VALUES ARE IN BOLD

Supervised Loss Consistency Loss

Method Fuzzy Map Dice(%)
Lseg Lyis Laite  Letel  Lemet

Scheme. 1 v - - 83.08
Scheme.2 v v - 84.29
Scheme.3 v v ' - - 85.96
Scheme.4 v v v v - - 87.42
Scheme.5 - v ' ' 86.48
Scheme.6 ' v v - v 87.65
Scheme.7 - v 's v v 87.38
Scheme.8 v ' v v v 88.17
Scheme.9 v v v v - v 88.25
Scheme.10 v ' v v v 88.37

Ours ' ' v ' ' v 89.11

(e.g., CT, MRI, etc.) to make a comprehensive judgment. If
the model only relies on a single modality image for training
and prediction, it may not be able to fully utilize other imaging
information, thus affecting the accuracy of diagnosis.

D. Ablation Experiments

We conducted ablation experiments on the LA dataset [48]
using 8 labeled and 72 unlabeled images to check the
effectiveness of each component, as shown in Table III. The
results show that when only a small amount of labeled data
is available for training, the performance can be improved by
mining meaningful latent information from the 72 unlabeled
images. Specifically, the model achieves the best performance
when fuzzy map, supervised loss, and consistency learning
guided by fuzzy perception are introduced. In particular, the
intratask consistency loss and the cross-task consistency loss
guided by fuzzy perception, as well as the cross-model cross-
task consistency loss, play an important role in performance
improvement because they help to improve the model’s uti-
lization of unlabeled data and enhance the model’s ability to
perceive fuzziness in the data. Experimental results (3)—(8)
show that consistency learning on fuzzy regions can more
fully exploit the valuable information from unlabeled data and
significantly improve the segmentation accuracy. Moreover,
experimental results (9) and (10), and ours show that a
combination of intratask consistency learning and cross-task
consistency learning on fuzzy regions helps the model learn
the features of different tasks from unlabeled data and empha-
size the importance of fuzzy regions, resulting in significant
performance improvement. In addition, experimental results
(8) and ours demonstrate the effectiveness of the proposed
cross-model cross-task consistency learning, which enables the
model to learn segmentation targets from multiple perspectives
and obtain more diverse and comprehensive target represen-
tations. All the above strategies emphasize small branches or
edges by fully mining the most valuable voxel targets of fuzzy
regions from unlabeled data, which is meaningful guidance for
challenging regions.

According to Table IV, the model performs better in various
metrics when the value of « is 0.9. One major cause is that
it better balances the effects between the old and new fuzzy
maps and takes into account most of the information of the
previous fuzzy maps, which helps to ensure the consistency
of the fuzzy maps during the iterative stage. This consistency

TABLE IV
COMPARISON OF DIFFERENT BALANCE WEIGHT o USED FOR THE OLD
Fuzzy MAP AND NEW Fuzzy MAP ON THE BRATS DATASET BY
UTILIZING 5% LABELED DATA OF TRAINING SET.
THE BEST VALUES ARE IN BOLD

Metrics
¢ Dice(%)T  Jaccard(%)!  ASD(voxel)]  95HD(voxel)]
0 78.62 68.36 3.48 14.19
0.5 79.12 69.20 3.37 13.89
0.7 80.04 69.79 2.98 13.81
0.9 80.09 70.07 333 13.78
TABLE V

COMPARISON OF DIFFERENT BALANCE WEIGHT 8 USED FOR
SEGMENTATION TASK AND REGRESSION TASK ON THE BRATS DATASET
BY UTILIZING 10% LABELED DATA OF TRAINING SET.

THE BEST VALUES ARE IN BOLD

Metrics
Dice(%)T  Jaccard(%)T  ASD(voxel)]  95HD(voxel)]
0 83.47 74.05 2.16 11.83
0.25 83.98 74.14 2.15 11.94
0.5 84.01 73.42 2.13 11.37
0.75 84.17 74.28 1.92 11.29
1 83.68 73.71 2.10 11.88

is crucial for producing consistent and reliable final results
when fusing multiple fuzzy maps, and more historical fuzzy
map information is retained, which has a positive impact on
combating noise and data changes.

Since the classical consistency learning process is based
on segmentation prediction, we used balanced weights 8 to
control the consistency learning between the segmentation
and regression tasks. We performed experiments to assess the
selection of B within our consistency learning framework, with
the outcomes presented in Table V. When the value of g8 sets
1 or 0, the model’s performance diminishes as it relies only
on the segmentation or regression branch while ignoring the
other branch. It can be found that the framework achieves the
best performance when 8 = 0.75. Therefore, we set 8 = 0.75
for our model in the experiments.

V. DISCUSSION

Threshold Selection (Comparison of Fuzzy and Reliable): In
the medical image segmentation task, it is crucial for the region
selection of targets, so we adopted a dynamic threshold [0.60,
0.75] with a Gaussian ramp-down paradigm to divide the
fuzzy value, thereby selecting the target region for consistency
learning. Specifically, when the fuzzy value of a voxel is less
and equal to the given threshold, it is classified as a reliable
region, and when the fuzzy value is greater and equal to the
given threshold, it is labeled as a fuzzy region. In our study,
we compared the effects of using common traditional fixed
thresholds (e.g., 0.5, 0.6 and 0.7) and dynamic thresholds, as
shown in Table VI. However, experiments have proven that
the application of a dynamic threshold achieves better results
for medical image segmentation. The dynamic threshold takes
into account the fact that the fuzzy region will reduce with
the process of training, which makes the selection of the
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TABLE VI
COMPARISON OF FIXED THRESHOLDS AND DYNAMIC THRESHOLDS ON
THE LA DATASET BY UTILIZING 5% LABELED DATA OF TRAINING SET.
THE BEST VALUES ARE IN BOLD

1.0 4

Metrics
Threshold

Dice(%)T  Jaccard(%)T  ASD(voxel)]  95HD(voxel)|

0.5 83.08 71.31 3.76 19.15

0.6 83.77 72.34 3.31 23.49

0.7 83.97 72.65 2.98 20.92

Ours 85.85 75.47 2.32 14.76
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Fig. 4. Unsupervised loss curve of comparison between fuzzy map and
reliable map on the LA dataset by utilizing 10% of the labeled data in the
training set.

TABLE VII
COMPARISON OF RELIABLE MAP AND FuzzY MAP ON THE LA DATASET
BY UTILIZING 10% LABELED DATA OF TRAINING SET. THE BEST
VALUES ARE IN BOLD

Metrics
Method
Dice(%)T  Jaccard(%)tT  ASD(voxel)]  95HD(voxel)|
Reliable Map 87.38 77.81 2.59 15.08
Fuzzy Map 89.11 80.48 2.01 8.54

threshold more flexible and adaptable. It can better reflect
the distribution of fuzziness in different periods, and can also
be adjusted according to the characteristics of data and the
learning ability of the model, so that the fuzzy boundaries
can be obtained, which helps to distinguish fuzzy regions and
reliable regions more precisely.

In addition, we further studied the effect of selecting fuzzy
regions or selecting reliable regions for model training. The
results show that selecting fuzzy regions for model training
can lead to more accurate segmentation results, as shown in
Table VII. This suggests that the learning of models that focus
too much on fuzzy regions is crucial for the success of the
medical image segmentation task, while focusing on reliable
regions may lead to the neglect of fuzziness and reduce the
segmentation performance, as shown in Fig. 4. Error-prone
fuzzy regions contain richer information and more valuable
clues in unlabeled data. Therefore, individually selecting fuzzy
regions for model training under dynamic thresholds proves to
be a more effective strategy, which helps the model to learn
and process the most challenging and attention-demanding
regions in the medical images, thus enhancing the performance
and reliability of the segmentation model.

VI. CONCLUSION

Although existing deep learning-based medical image seg-
mentation methods have achieved great success, they are
limited by the requirement for large amounts of labeled data.
Semi-supervised medical image segmentation, which encour-
ages segmentation models to utilize more easily collected
unlabeled data, demonstrates potential in overcoming this
limitation. In this study, we have proposed a new semi-
supervised medical image segmentation with multiconsistency
learning for fuzzy perception-guided target selection. First, the
framework introduces fuzzy perception-guided target selection
to identify the most challenging targets in fuzzy regions
of unlabeled data, which allows the model to enhance the
learning of the representation for these valuable regions and
thus obtain a fuzzy map. Then, the fuzzy map is incorporated
into intratask and intermodal mutual consistency learning as
well as cross-model cross-task consistency regularization to
further improve segmentation accuracy. Extensive experiments
on two challenging public datasets demonstrate that the
proposed framework provides a general and effective solution
for achieving high-quality 3-D medical image segmentation
compared with other methods using small amounts of labeled
data.
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