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Abstract— Generating synthetic electricity consumption 

data is crucial for developing efficient energy systems in smart 

cities. In this paper, we propose the use of Tabular Generative 

Adversarial Networks (Tabular GAN) for generating synthetic 

data for residential electricity consumption. Tabular GANs 

have been used in various domains and have shown promising 

results in generating high-quality synthetic data. The 

performance of our proposed method was evaluated by 

comparing the probability density, mean, standard deviation, 

and variances of the synthetic data with the original data. The 

results showed that the Tabular GAN method generated 

synthetic data that closely match the statistical characteristics of 

the original data and the simulation outcome indicated that the 

synthetic data generated by Tabular GAN could effectively 

simulate the patterns and behaviors observed in the original 

data. Overall, the proposed method demonstrates the 

effectiveness of using Tabular GANs for generating synthetic 

electricity consumption data. 
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I. INTRODUCTION

In the transition to net-zero energy scheme, the consumer 
data can enable decision-makers at the national level to shift 
from relying solely on market forces, which have guided past 
energy transitions, towards implementing psychological 
interventions by engaging consumers, influencing energy-
related behaviours, and facilitating cross-sectoral transitions 
towards achieving Net-Zero [1]. 

The increasing connectivity and automation of today's 
power grid are being driven by the grid's pervasive 
communication and computational capabilities [2]. However, 
collecting and maintaining large-scale electricity consumption 
data is challenging due to various factors, such as privacy 
concerns, data accessibility, and data quality issues. 
Additionally, not every client currently possesses an advanced 
metering infrastructure (AMI) that permits the measurement 
and storage of load profiles [3].  

These limitations pose significant challenges for 
researchers and practitioners who require accurate and diverse 
data to develop models, evaluate policies, and understand the 
behaviours of electricity consumers. 

In addition to this, Oh et al. (2022) highlighted that data 
scarcity is a critical issue in the modern engineering industry 
[4]. To make matters worse, the obstacles in developing 
evidence-based economic growth policies for the energy 
sector of these economies arise from a noticeable lack of data 
[5]. Thus, the recent literature in [6] used synthetic data 
generation to facilitate the upcoming research and 
development of future smart grids. 

The significance of synthetic data is increasing across 
several disciplines with its application as a replacement for 
real data to simulate alternative scenarios, and to facilitate the 

development and testing of AI models in fields where data 
scarcity or privacy concerns are critical factors [10]. 

Generative models have proven to be highly effective in 
generating synthetic data and among the most widely used and 
promising models are the Generative Adversarial Network 
(GAN) and Variational Autoencoder (VAE) models [11]. 
Between the two methods, GANs are generally considered to 
be superior to variational autoencoders [12]. 

Generative Adversarial Network (GAN) is a category of 
deep learning method, and it was first introduced by 
Goodfellow et al. (2014) in [13] with the objective of 
generating synthetic data by means of the adversarial process. 

Despite the outperformances of GAN, it can be 
challenging to generate synthetic data that accurately reflects 
the underlying distribution, particularly in high-dimensional 
or complex data domains and thus it is necessary to develop 
more effective techniques for addressing the problem of 
uneven distribution in synthetic data generation. 

To fulfil the abovementioned research gap, Ashrapov 
(2020) developed a Tabular Generative Adversarial Networks 
(GAN) method to reduce the probability of uneven 
distribution of data in the data synthesizing process [14]. 

The primary contribution of this study involves the 
advancement of a potential methodology for correlating the 
environmental and overall social behavior of energy users, 
enabling the synthesis of dynamic trends in electricity 
consumption. This is accomplished through the demonstration 
of a novel approach utilizing Tabular GAN to generate 
electricity consumption data, with the objective of supporting 
future energy management and grid management efforts in the 
face of uncertainty. 

II. RELATED WORK

With the modernization of the electrical grid into a smart 
grid, the use of data science has become more crucial in 
operation monitoring grid activity [15].  

Synthetic data generation plays an important role in smart 
city planning by allowing for the prediction of energy demand 
from various sources. It facilitates the analysis of energy 
demand patterns, peak loads, and energy supply optimization. 

Recent research has explored different approaches for 
generating synthetic load data. Pinceti et al. (2022) utilized a 
combination of GAN, conditional GAN, and singular value 
decomposition to synthesize time-series residential and 
industrial load data across varying timescales [16]. 

Similarly, Hosseini et al. (2017) developed a semi-
synthetic dataset development tool using statistical methods to 
support house energy management systems [6]. 

Generating high-quality synthetic data is essential to 
monitor measurement error. Hazra et al. (2022) predicted 
smart meter measurement error using synthetic data generated 
through TGAN-skipped-WGAN-GP [17], while Moon et al. 
(2020) proposed a two-stage CTGAN method to generate 
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synthetic data for short-term load forecasting in distribution 
grids [18]. 

Other studies have focused on generating synthetic load 
consumption data for smart homes. Razghandi et al. (2022) 
integrated Variational Auto Encoder (VAE) and GAN for this 
purpose [9]. Chatterjee and Byun (2023) used an ensemble 
regression method to generate synthetic electric vehicle (EV) 
profiles in [8], and Ezhilarasi et al. (2023) introduced 
FBprophet as a tool to generate synthetic data for household 
electricity consumption based on the Low Carbon London 
project dataset [15]. 

Finally, Reis et al. (2020) proposed a queuing model 
implemented in Python for generating synthetic residential 
load data to support smart city energy management [7]. 

III. METHODOLOGY

The main programming language for the proposed work 
was Python and all the code implementation and simulation 
were done in PyCharm Community edition 2022.3 due to its 
flexibility in installing the essential library tools for the 
proposed work. The main library used for building Tabular 
GAN was ‘tabgan’. Furthermore, the residential consumption 
data for Low Carbon London project available in [19] was 
used as a source data for generating new synthetic load data 
samples while the weather variables are based on the NASA 
data source available at [20]. 

A. Data Preparation

The overall process of data preparation is as described in
Fig. 1. 

To test and evaluate the effectiveness of Tabular GAN, the 
data for 8 consumption profiles were randomly selected from 
the meter data available for ‘Low Carbon London’ project. 
Each raw dataset comprises the electricity consumption of 
households in every 30-minute period (half-hourly) from 
November 2011 to February 2014. 

As the date and time values were provided in the format of 
‘MM/DD/YYYY H:M:’ in the original dataset, the proper 
date and time were split, and the day-of-week and month-of-
year were excavated from the provided date by means of the 
‘datetime’ function in Python. For this study, the variables for 
day type were carefully selected to include three categories: 
normal (working) day, day before holiday, and holiday. This 
is because consumer behavior may be particularly significant 
on the day before a holiday, especially in the evening. The UK 
Bank Holiday information were accessed via [21]. 

After cleaning or removing the outlier values that occurred 
due to measuring errors such as ‘N/A’, the last 1 year (from 
March 2013 to February 2014) from each of the selected 
datasets was reserved for testing while the rest data (from 
November 2011 to February 2013) were used for training with 
Tabular GAN. 

According to the information provided in [19], the 
downloaded load dataset was based on the households located 
in East and South East London and thus, the latitude and  

Fig. 1. Overall Process of Data Preparation 

longitude of the selected location were 51.4941 and -0.0386 
in degrees, respectively to access the historical weather 
information about average temperature, RH and wind speed. 

As the downloaded weather data were hourly sampled, the 
data values for the 30-minute ahead of each hour were 
assumed to be the same as that of the specific hour. For 
example, the data value of 15:30 was taken as the same value 
as that of 15:00. Then the electricity consumption and weather 
data were concatenated, and the specifications of the 
preprocessed data were described in Table 1. 

TABLE I. FEATURES AND RESPONSE FROM THE PREPROCESSED DATA 

Name Feature/Response Variables 

Time_of_day Feature 0 – 47  
(represents 00:00 to 
23:30 with 30-min 

timestamp) 

Day Feature 0 – 6 
(represents Monday 

to Sunday) 

Day_Type Feature 0,1,2 
(0 = normal working 

day 
1= day before 

holiday 
2= holiday) 

Month Feature 1 – 12 
(represents January 

to December) 

Temperature Feature +/- continuous 
variables 

Relative Humidity 
(RH) 

Feature Continuous 
variables between 0 

and 100 

Wind Speed Feature Positive continuous 
variables 

Electricity 
Consumption (kWh) 

Response Positive continuous 
variables 
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B. Synthetic Data Generation

As it was described in the introduction section, the Tabular
GAN was the main tool used for generating synthetic data for 
electricity consumption. 

Generative Adversarial Network (GAN) is a deep learning 
framework comprising two neural networks, namely, 
generator and discriminator. The generator takes random 
noise as input and generates synthetic data that resembles real 
data. The discriminator takes real and fake data as input and 
distinguishes between them. The generator and the 
discriminator are trained in an adversarial manner, where the 
generator tries to generate more realistic data to pit the 
discriminator, and the discriminator learns to distinguish 
between real and fake data. 

The generator and discriminator of GAN can be 
mathematically described as follows where ‘D’ represents the 
discriminator and ‘G’ the generator while ‘x’ is the sample 
drawn from the real dataset and ‘z’ is the noise data initially 
fed to the generator network. 
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     To learn the generator's distribution, a prior was defined 
on input noise variables, and a mapping to data space is 
represented as a differentiable function G(z). A second 
multilayer perceptron D(x) was also defined to output a single 
scalar representing the probability that x came from the data 
rather than the generator's distribution. D(x) was trained to 
maximize the probability of assigning the correct label to 
both training examples and samples from G(z), which was 
trained to minimize log(1 - D(G(z))). In other words, D and 
G play a two-player minimax game with a value function 
V(G, D). 
     Tabular GAN is a sub-category of GAN that is 

specifically designed for structured data such as tables and 
relational databases. 

Fig. 2. Process flow of the proposed Tabular GAN [14] 

For this particular scenario, the electricity consumption 
data from November 2011 to February 2013 was utilized as 
the training dataset (T-train). Meanwhile, the testing dataset 
(T-test) consisted of data from March 2013 to February 2014, 
as outlined in the 'Data Preparation' stage.  

The goal was to improve the performance of a machine 
learning model trained on a dataset consisting of T train and 
tested on ‘T-test’. To achieve this, the ‘T-train’ dataset was 

augmented by generating new data using the CTGAN method. 
This newly generated data, denoted as ‘T-synth’, was created 
in a manner that was similar to the distribution of ‘T-test’, 
without relying on ground truth labels. 

The experimental design involves several steps, which are 
depicted in Figure 3. First, CTGAN is trained on ‘T-train’ 
using ground truth labels, and additional data ‘T-synth’ was 
generated (step 2). Then, an adversarial boosting technique 
was applied to concatenate ‘T-train’ and T synth (with the 
target set to 0) and ‘T-test’ (with the target set to 1), in order 
to train a new model (steps 3 and 4). The aim of this step was 
to use the newly trained adversarial boosting model to obtain 
rows that are more similar to ‘T-test’. During the adversarial 
training, the original ground truth labels were not used. 

The resulting rows were most similar to ‘T-test’ which 
were then selected from ‘T-train’ and ‘T-synth’, and sorted in 
correspondence to ‘T-test’ (steps 5 and 6). 

Among the feature labels provided in Table 1, one-hot-
encoding is used to train ‘Time_of_day’, ‘Day’, ‘Day_Type’ 
and ‘Month’ which were determined as categorical features. 

The loss function used for GAN training is ‘Wasserstein’ 
distance function which could be mathematically described in 
general as follows. This function measures the distance 
between the joint distribution of the real and the generated 
synthetic to verify the generated data follow the trend of the 
original data. 

$�
%, &� = 
∑ ‖)* − +*‖�,
*-. �

/
0   (2) 

where P = joint distribution of real data R 

Q = joint distribution of generated data T 

n = number of samples randomly selected for testing 

The simulation parameters for training the Tabular GAN 
is summarized in Table 2 as follows. 

TABLE II. SIMULATION PARAMETERS 

Parameter Description Value 

gen_x_times factor increasing 
the size of the 

generated data set 

1.1 

pregeneration_frac fraction of data to 
generate before 
training GAN 

(amount of data 
generated = 

gen_x_times * 
pregeneration_frac) 

2 

bot_filter_quantile 0.001 Bottom quantile of 
data to keep (below 

which will be 
removed) 

top_filter_quantile 0.999 Top quantile of data 
to keep (above which 

will be removed) 

cat_cols Categorical 
columns 

Time_of_day, Day, 
Day_Type, Month 

Batch_size Batch_size 100 

epochs the number of 
iteration during 

training 

120 

Learning_rate Learning_rate 0.01 

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/UPEC57427.2023.10294666, 2023 58th International Universities Power Engineering Conference (UPEC)

Copyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. 
See https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ for more information



IV. RESULTS

After running the simulation, the results are visualized 
in Table 3-4 and Fig. 3-4. ‘M’ in the provided tables means 
‘meter’. 

TABLE III. STATISTICAL PARAMETERS FOR REAL AND SYNTHETIC  

KWH OUTPUT DATA 

MEAN STD VAR 

M1 REAL 0.076 0.063 0.004 

SYNTHETIC 0.084 0.069 0.005 

M2 REAL 0.128 0.083 0.007 

SYNTHETIC 0.149 0.097 0.009 

M3 REAL 0.28 0.231 0.054 

SYNTHETIC 0.34 0.228 0.052 

M4 REAL 0.175 0.179 0.032 

SYNTHETIC 0.16 0.163 0.027 

M5 REAL 0.079 0.084 0.007 

SYNTHETIC 0.083 0.086 0.0073 

M6 REAL 0.117 0.103 0.011 

SYNTHETIC 0.119 0.099 0.01 

M7 REAL 0.264 0.191 0.037 

SYNTHETIC 0.298 0.194 0.038 

M8 REAL 0.13 0.122 0.015 

SYNTHETIC 0.138 0.114 0.013 

a.
 Mean=average, STD = standard deviation, VAR = variance 

     According to Table 3, the statistical variables of the 
synthetic data exhibited a close similarity to those of the 
real data, despite minor differences in the standard 
deviation of M2, M4, and M8 when compared to other 
meter units. Additionally, the probability density charts in 
Fig. 3 demonstrated that the synthetic data closely followed 
the trend of the real data, with small deviations observed in 
the distribution of the smallest kWh values, particularly in 
M3 and M7. 

Fig. 3. Comparison of Probability Density of kWh between real and 
synthetic data for (a) Meter 1, (b) Meter 2, (c) Meter 3, (d) Meter 4, (e) 
Meter 5, (f) Meter 6, (g) Meter 7 and (h) Meter  8   (blue = real data, orange 
= synthetic data) 

     However, the synthetic kWh data were properly 
correlated with the individual generated features, which 
closely followed the correlation trend between actual kWh 
data and its respective features as depicted in Table 4. 

     Moreover, Fig. 4 visually represented the average half-
hourly load profiles with seasonal variation. It should be 
noted that the Autumn and Spring patterns were omitted 
from the figure, as they followed a similar trend to that of 
Winter and Summer. 

     The graphs in Fig. 4, from a to h, depicted the average 
half-hourly consumption for six scenarios, starting with 
Summer: normal day, day-before-holiday, holiday, and 
Winter: normal day, day-before-holiday, and holiday, each 
containing 48 samples (24-hour profile with each 30-
minute sample). The graphical results confirmed that the 
synthetic kWh data closely followed the trend of the real 
kWh data with small deviations.

 (a) (b) 

 (c)  (d) 

 (e)  (f) 

 (g) (h) 
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TABLE IV. COMPARISON OF KWH CORRELATION WITH FEATURES IN BOTH REAL AND SYNTHETIC DATA 

Time_of_day Day Day_Type Month Temperature RH Wind_Speed 

kWh 

(M1) 

Real 0.35 -0.022 -0.031 -0.025 0.01 -0.1 0.1 

Synthetic 0.29 -0.027 -0.033 -0.031 0.014 -0.12 0.07 

kWh 

(M2) 

Real 0.45 0.0086 0.027 -0.037 -0.028 -0.15 0.128 

Synthetic 0.37 0.0112 0.038 -0.047 -0.019 -0.10 0.092 

kWh 

(M3) 

Real 0.016 -0.029 -0.027 -0.39 -0.55 0.13 0.16 

Synthetic 0.022 -0.036 -0.018 -0.29 -0.51 0.18 0.16 

kWh 

(M4) 

Real 0.35 0.012 0.026 0.033 -0.037 0.0010 0.074 

Synthetic 0.27 0.014 0.031 0.024 -0.049 0.0007 0.059 

kWh 

(M5) 

Real 0.33 0.037 0.041 0.038 -0.18 0.13 0.085 

Synthetic 0.26 0.032 0.039 0.042 -0.24 0.15 0.058 

kWh 

(M6) 

Real 0.38 0.022 0.037 -0.0037 -0.084 0.017 0.074 

Synthetic 0.31 0.023 0.039 -0.0052 -0.119 0.014 0.089 

kWh 

(M7) 

Real 0.12 -0.034 -0.032 -0.022 0.0030 -0.017 0.059 

Synthetic 0.09 -0.026 -0.029 -0.029 0.0022 -0.023 0.065 

kWh 

(M8) 

Real 0.25 0.065 0.074 -0.008 0.115 -0.16 0.056 

Synthetic 0.21 0.063 0.072 -0.013 0.122 -0.19 0.087 

  (a)  (b) 

  (c)   (d) 

  (e)   (f) 
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Fig.4. Average Half-hourly kWh Profile of (a) Meter 1, (b) Meter 2, (c) Meter 3, (d) Meter 4, (e) Meter 5, (f) Meter 6, (g) Meter 7 and (h) Meter 8 (In x-axis, 
0-47 = normal working day in summer, 48-95 = day before holiday in summer, 96-143 = holiday in summer, 144-191 = normal working day in winter, 192-
239 = day before holiday in winter and 240-287 = holiday in winter) 

V. CONCLUSION

To summarize, this study showcased the significant 
potential of Tabular Generative Adversarial Networks 
(Tabular GAN) in bolstering energy management systems 
and facilitating load forecasting in smart cities. Moreover, it 
delved into the exploration of the diverse electricity 
consumption patterns of residential consumers, considering 
factors such as environmental conditions and holidays, thus 
laying the foundation for subsequent tasks involving 
consumer behavior modeling. Future endeavors should 
entail rigorous testing and validation of the proposed 
method using extended load data sets and additional sources 
of energy-related data. Such efforts will contribute to the 
advancement of this research field and enhance its practical 
applicability in real-world scenarios. 
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