
Topology{based protein structure comparison using a patterndiscovery technique(Extended abstract)David Gilbert� David Westheady Juris Viksnaz Janet ThorntonxJanuary 2000Overview We describe the design and implementation of a fast topology{based method for proteinstructure comparison. The approach uses the TOPS topological representation of protein structure,aligning two structures using a common discovered pattern and generating measure of distance derivedfrom an insert score. Heavy use is made of a constraint-based pattern matching algorithm for TOPSdiagrams that we have designed. The system is maintained at the European Bioinformatics Instituteand is available over the Web via the at tops.ebi.ac.uk/tops. Users submit a structure descriptionin Protein Data Bank (PDB) format and can compare it with structures in the entire PDB or arepresentative subset of protein domains, receiving the results by email.Keywords: structure comparison, constraints, pattern matching, pattern discovery, protein motifs,protein topology.1 IntroductionAn understanding of the similarities and di�erences between protein structures is very important forthe study of the relationship between sequence, structure and function, and for the analysis of possibleevolutionary relationships. This has lead to the need for computational methods of structure com-parison; furthermore, the rapid increase in the size of structural databases means that techniques tocompare a given structure with member of such a database should be fast.Various structure comparison methods have emerged, ranging from those which make detailed ge-ometrical comparisons of backbone coordinates [TO89], through methods using vector approximationsto secondary structure elements, or SSEs, [MARW89, GARW93, AGP+94], and �nishing with methodsbased on highly simpli�ed models of structure [KLW96, KL97, TTS+97]. These latter methods typi-cally consider a sequence of SSEs, along with relationships like spatial adjacency within the fold andapproximate orientation, neglecting details like lengths and structures of loops, and the lengths of thesecondary structure elements themselves. This type of description of a protein structure is commonlyknown as a `topological' description.The topological description has the advantage of simplicity, which makes it possible to implementvery fast comparison algorithms. Further, by neglecting many of the details which typically vary�Responsible author: drg@cs.city.ac.uk, +44 171 477 8444, +44 171 477 8587 (fax). Department ofComputer Science, City University, Northampton Square, London EC1V 0HB, UK, and European Instituteof Bioinformatics, Hinxton, Cambridge CB10 1SD, UKySchool of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2zInstitute of Mathematics and Computer Science, University of Latvia, Riga LV-1459, Latvia: jviksna@cclu.lvxEuropean Institute of Bioinformatics, Hinxton, Cambridge CB10 1SD, UK and Department of Biochemistry, Univer-sity College, London WC1E 6BT, UK and Crystallography Dept., Birkbeck College, London WC1E 7HX, UK1



Gilbert et al 2between related structures, like lengths and structures of loops, and exact lengths, spatial positionsand orientations of SSEs, it has the potential to detect more distant structural relationships than couldbe found by methods based on more geometrical descriptions. On the other hand, its disadvantagesare that there may be structures which, although related at the topological level, are very di�erentfrom a geometric point of view, and have no meaningful biological relationship.2 TOPS diagrams and patternsTOPS cartoons were originally drawn manually [ST77] and comprise graphical representations ofsecondary structure elements (SSEs), their relative orientations and some indication of spatial ad-jacency. Subsequently a richer representation of the topological structure has been devised [FMT94,WSFT99, WHT98], termed a TOPS diagram, which includes information about hydrogen bondingbetween strands and chirality connections between SSEs; this representation is used to automaticallyproduce graphical cartoons.We have previously described in detail our formal representation of TOPS diagrams and patternsas graphs, and the design of a fast pattern matching program [GWNT99]. In this paper we describe apattern discovery algorithm for TOPS diagrams and show how we use it to structurally align diagramsand compute a comparison measure.TOPS diagrams In TOPS diagrams (for example the diagram for 2bop in Figure 1), strands arerepresented by triangles and helices by circles, connected in a sequence from the amino (N) terminusto the carboxy (C) terminus. SSEs are considered to have a direction of `up' or `down', implied inthe way the connecting lines to the symbols are drawn: connections drawn to the edge of a symbolimply connection to the base and those drawn to the centre imply connection to the top, and thedirection is that taken by the protein chain from N to C terminus. The direction information isduplicated for strands: upward pointing triangles have the direction `up' and downward pointing onesthe direction `down'. The existence of hydrogen bond ladders between a pair of strands is indicatedby a single H-bond in the TOPS representation, labelled as being parallel or anti-parallel, accordingto the relative directions of the two strands that it joins. In addition, TOPS diagrams also representthe chiralities of connections between connections between two parallel strands within the same sheetand connections between long parallel helices. A more detailed description of TOPS diagrams can befound in [GWNT99].More formally, a TOPS diagram is a triple (S;H;C) where S = S1; : : : ; Sk is a sequence of length kof secondary structure elements (SSEs) and H and C are relations over the SSEs, called respectively H-bonds and chiralities. In this description an H-bond constraint refers to a ladder of individual hydrogenbonds between adjacent strands in a sheet. We will later refer to the length of a diagram as the lengthof the sequence S.In our formalism an SSE is a character from the alphabet f�; �g standing for helix and strandrespectively. Since each SSE in a TOPS diagram is associated with a direction up or down we associatea direction symbol, + or �, with each letter of our alphabet, giving f�+; ��; �+; ��g.Both H-bonds and chiralities are symmetric relations (non-directed arcs in the graph). An H-bondconstrains the types of the two SSE's involved to be strands, and each bond is associated with arelative direction � 2 fP;Ag, indicating whether the bond is between parallel or anti-parallel strands.Chiralities are associated with handedness � 2 fL;Rg (left and right respectively), and only occurbetween pairs of SSEs of the same type. We denote the H-bond relationship between two SSEs Si andSj by (Si; �; Sj) and a chirality relationship by (Si; �; Sj).The formal de�nition of a TOPS diagram D = (S;Hd; Cd), given � = f�+; ��; �+; ��g, isS = (S1; : : : ; Sk), Si 2 �Hd = f(Si; �; Sj)jSi; Sj 2 f�+; ��g; � = P $ Si = Sj; � = A$ Si 6= SjgCd = f(Si; �; Sj)jSi; Sj 2 �; � 2 fR;L; gg



Gilbert et al 3As an example, consider the TOPS diagram for 2bop in Figure 1; we can `stretch out' this diagramto give a linear form, as shown in Figure 3, and represent it formally as 2bop = (S;H;C), whereS = (�+1 ; ��2 ; ��3 ; �+4 ; �+5 ; ��6 ; �+7 ; ��8)H = f(�+1 ; A; ��6); (�+1 ; A; ��8); (�+4 ; A; ��6); (�+5 ; A; ��6)gC = f(�+1 ; R; �+4); (��6 ; R; ��8)gTOPS patterns A TOPS pattern (or motif ) is similar to a TOPS diagram, but is a generalisationwhich describes several diagrams conforming to some common topological characteristics. This gener-alisation is achieved by specifying the insertion of SSEs (and any associated H-bond and chiralities)into the sequence of secondary structure elements; indeed a diagram is just a pattern where no insertsare permitted. The length of an insert is constrained to be within the range of the lengths of thesequences that can be inserted. A TOPS pattern is thus a triple, similar to that of a TOPS diagram;in this case, however, we refer to the sequence of SSEs with inserts permitted as T-pattern. The insertsare similar to wild cards with length constraints; we extend the de�nition of TOPS patterns given in[GWNT99] to permit such wild cards before the beginning of, and after the end of the sequence ofSSEs.Formally a TOPS pattern is a triple (T;H;C) where T (referred to as a T -pattern) is a sequence(n0;m0)�V1�(n1;m1)�V2�: : :�(nk�1;mk�1)�Vk�(nk;mk) comprising secondary structure elementsindicated by Vi and between each of these an insert description, as well as an insert description (n0;m0)before V1 and also an insert (nk;mk) after Vk. Each insert description is a pair (n;m) where n standsfor the minimum and m for the maximum number of SSEs which can be inserted at that position. Therange of n andm is from zero to the largest number of SSE's in any TOPS diagram (approximately 60).H are H-bonds and C are chiralities, just as in the diagrams. Since TOPS diagrams exhibit rotationalinvariances of 180� about the x and y-axes, we associate a direction variable, � or 	 with each SSE ina pattern P s.t. they satisfy the constraint8�;	 2 P : opp(�;	)$ (� = + ^ 	 = �) _ (� = � ^	 = +)The formal de�nition of a TOPS diagram pattern P = (T;Hp; Cp), 8�;	 2 P : opp(�;	), given� = f��; �	; ��; �	g is:T = (n0;m0)� V1 � (n1;m1)� V2 � : : :� (nk�1;mk�1)� Vk � (nk;mk), Vj 2 �, nj � mjHp = f(Si; �; Sj)jSi; Sj 2 f��; �	g; � = P $ Si = Sj; � = A$ Si 6= SjgCp = f(Si; �; Sj)j� 2 fR;L; g; Si; Sj 2 �gFor example a TOPS pattern which describes plaits, of which 2bop is an instance, is given by Plait= (V;H;C), whereV = ((0;N )� ��1 � (0;N )� �	2 � (0;N )� ��3 � (0;N )� �	4 � (0;N )� ��5 � (0;N )� �	6 � (0;N ))H = f(��1 ; A; �	4); (��1 ; A; �	6); (��3 ; A; �	4)gC = f(��1 ; R; ��3); (�	4 ; R; �	6)g)Figures 2 and 4 illustrate this in non-linear and linear form respectively.3 MethodsWe have designed a measure to compare the similarity between two TOPS diagrams, in order to beable to perform structure comparison at the topological level. Our method works by performing astructural alignment of the SSEs of the diagrams and computing a score based on an edit distanceover aligned blocks of SSEs plus contributions from the H-bond and chirality sets of the diagrams.In order to perform the alignment we use a least general common pattern generated by a patterndiscovery technique which we have designed; this in turn makes heavy use of our constraint-basedpattern matching method for TOPS diagrams.
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Figure 1: TOPS diagram for 2bop
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I_6Figure 2: TOPS diagram for the plait motif3.1 Pattern discovery for TOPS diagramsPattern discovery for sequences is a well-established technique [BJEG98] which could be applied toTOPS diagrams and patterns as follows. The �rst, \pattern driven" (PD) is based on enumeratingcandidate patterns in a given solution space and picking out the ones with high �tness; the second,\diagram driven" (DD) comprises algorithms that try to �nd patterns by comparing given diagramsand looking for local similarities between them. In the equivalent of DD for sequences, an algorithmmay be based on constructing a local multiple alignment of given sequences and then extracting thepatterns from the alignment by combining the segments common to most of the sequences.Essentially the di�erence between pattern discovery for sequences and TOPS diagrams is thattechniques for the former assume that the grammar of the former is regular whilst that of the latter iscontext{sensitive due to the fact that H-bond and chirality arcs may cross (i.e. they describe a \copylanguage"). Thus in a naive version of a PD approach for TOPS diagrams not only would we have toenumerate an exponentially large number of patterns comprising not only all the possible combinationsof the SSEs (and their orientations) in a pattern of length k, but also all the possible H-bond andchirality connections over them.Our algorithm discovers patterns of H-bonds (and chiralities) based on the properties of sheets forTOPS diagrams; we also derive T-patterns, i.e. the associated sequences of SSEs and insert sizes.Brie
y, the algorithm attempts to discover a new sheet by �nding, common to all the target set ofdiagrams, a (fresh) pair of strands, sharing an H-bond with a particular direction. Then it attempts to
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I_6Figure 4: Linearised TOPS diagram for the plait motifextend the sheet by repeatedly inserting a fresh strand which is H-bonded to one of the existing strandsin the (current) sheet. The algorithm then �nds all further H-bonds between all the members of thecurrent sheet. The entire process is repeated until no more sheets can be discovered; any chirality arcsbetween the H-bonds in the pattern are then discovered by a similar process. The numbers of insertsbetween each strand in the pattern are then computed for all the patterns in the learning set, andthe minimum and maximum size of the gaps in the corresponding insert positions in the pattern arethus found, and combined with the SSE sequence to give the T-pattern. The result is the least generalcommon TOPS pattern characterising the target set of protein descriptions.Naive insertion of a new SSE into an existing sequence of SSEs is expensive: consider the casewhen the existing sequence is of length 2. The new H-bond can be inserted at the beginning of thesequence, at the end of the sequence or between the existing two SSEs. Moreover, a new H-bond mustbe discovered between the new SSE and one of the existing SSEs in the sequence. We use a `seed'derived from one of the target set of diagrams in order to give the insertion point: the H-bond patternis extended in one diagram �rst by selecting one of the remaining bonds from the diagram H-bond set;if this fails to give a pattern which matches the other diagram, then an alternative bond is selected.Our sheet discovery algorithm is as follows:Given: a target set of TOPS diagrams TD = fDj jj 2 1::n, Dj = (Seqi;Hsi; Csi)gInit : Patt:=(Seq,Hs,Cs), Seq := �, Hs := ;, Cs := ;,1. Discover sheets:



Gilbert et al 6Repeat(a) Find new sheet:Insert two new strands X;Y into Seq (renumbering);add new Hbond (X; �; Y ) to Hs, � 2 fP;Ag;test if Patt weakly matches all D 2 TD;Initialise CT (current sheet) := fX;Y g(b) Extend current sheet:Repeat :Insert one new strand X into Seq (renumbering);add new Hbond (X; �; Y ) to Hs, � 2 fP;Ag, Y 2 Seq;test if Patt weakly matches all D 2 TD;CT := CT [ fXguntil no more new Hbonds can be added to CT(c) Complete current sheet connectivity:Repeat :Add new H-bond (X; �; Y ) to Hs, � 2 fP;Ag, X;Y 2 CT;test if Patt weakly matches all D 2 TDuntil no more new Hbonds can be added to Hsuntil no more new sheets can be discovered:2. Discover chiralities:RepeatAdd (X;C; Y ) to Cs, X;Y 2 Seq ; test if Patt weakly matches all D 2 TD;until no more chirality connections between the members of the sequence Seq can bedetected3. Construct T-pattern:Pattern match (Seq,Hs,Cs) to all of Dj 2 TD;For all SSEj ; SSEj+1 2 Seq, find Xj = (minj ;maxj) s.t. minj (maxj) is the minimum(max) number of inserts between the corresponding SSEs in the diagrams in TD.Find also X0 = (min0;max0), Xk = (mink;maxk), the range of SSE numbers beforeSSE1 and after SSEk;T := X0 � SSE1 �X1 � SSE2 �X2 � ::::Xk�1 � SSEk �XkOutput Patt = (T,Hs,Cs)An alternative approach would be to adapt that of Koch et al [KLW96], which constructs anedge product graph for two graphs and then employs Bron and Kerbosch's algorithm [BK73] whichenumerates all the maximal cliques in the graph. Although Koch et al improve Bron and Kerbosch'salgorithm by restricting the search process to cliques representing connected substructures, they deter-mine common substructures in more than two topology graphs by forming the intersections betweenall substructures of all cliques resulting from a pairwise comparison.The worst-time complexity for the learning algorithm based on repeated matching is approximatelyO(k � nn), where k is the number of sequences, and n the number of secondary structures (helices andstrands) in a sequence. The maximal clique method has complexity O((nk=ck)!) (with little informationabout ck, except ck � 1) for the same n and k. These are approximations assuming that number ofnodes is approximately the same as the number of edges | this is more or less true in TOPS. In termsof implementation, the clique algorithm (for k = 2) tends to be slower (up to 10 times) in comparisonwith the repeated matching algorithm, although it sometimes produces better results.
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Figure 6: Coverage vs errorCoverage % Error %1 36.52 44.83 49.64 54.35 57.9Table 1: Percentage coverage versus errorthe PDB (currently over 15000 domains) or with a representative subset (the TOPS Atlas [WHT98]),based on clustering structures in the structural databank [BKW+77, ABB+87] using the standard singlelinkage clustering algorithm at 95% sequence similarity, and containing to date over 3000 members.Users upload a target structure description in PDB format, select a database against which tocompare, and enter their email address in order to receive the result. The target description is �rstanalysed using the DSSP program [KS83] which locates SSEs and atomic hydrogen bonds. The TOPSprogram [FMT94, WSFT99] uses this information in a topological analysis which includes analysis ofconnection chirality; the resulting �le is then translated into a TOPS diagram in logic programmingformat by a compiler we have written in clp(FD) [CD96]. The comparison is then performed o�-line,the result of each comparison comprising the distance measure, the name of the domain compared, andits hierarchic classi�cation according to the CATH system developed at UCL [OMJ+97]. The output issorted by distance from the target protein, and returned to the user by email. Users may also requestthe output for each comparison to be annotated with the numbers of the corresponding residues andalso the common discovered pattern.The system is fast; a comparison of one structure against the entire PDB (15000 domains) takesfrom under 10 minutes to 1 hour or more on a DEC Alpha, depending on the complexity of the structuresubmitted.4 ConclusionsAlthough our pattern discovery algorithm produces the richest patterns over �{� domains, when bothH-bond and chirality connections can be discovered, it also discovers patterns of H-bonds for all-�domains and patterns of chiralities for all-� domains. However, the null pattern will be discovered when
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